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ABSTRACT

Computer simulation studies of two frequency domain adaptive beamforming algo-

rithms are presented. The two algorithms are the frequency domain adaptive

beamforming modified least-mean-square algorithm, and the proposed new frequency

domain adaptive beamforming algorithm based on modified adaptive linear prediction-

error filtering. The simulation studies were conducted to determine the multiple

broadband target localization capability and the full angular coverage capability of the

two algorithms. The number of iterations that the adaptive algorithms took to reach a

minimum estimation error was determined. The algorithms were evaluated at several

signal-to-noise ratios. Finally, using the results of the simulation studies a comparison

between the two algorithms is performed.
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I. INTRODUCTION

One of the major research items in underwater acoustic signal processing is to de-

velop new sonar signal processing algorithms capable of quickly and accurately solving

target localization problems. Present technology dictates that several lines of bearing to

a target must be obtained before a sonar fire control solution can be computed. Ob-

taining these lines of bearing is a time consuming and often dangerous task due to the

increased probability of counterdetection and, as a result, evasive maneuvering and de-

fensive action on the part of the target. A sonar system capable of providing timely,

accurate target localization while minimizing own ship maneuvering would result in

longer firing ranges and, therefore, a reduction of the threat to one's own ship.

Frequency domain beamforming is accomplished by applying appropriate phase

shifts at the sensor outputs of an array to account for the relative propagation delays

of a signal from a particular direction. The phase-shifted signals from all sensors are then

added together coherently to realize the full array gain. Discrete Fourier Transform

(DFT) beamforming is the usual method of determining the direction of arrival of a

plane wave signal. A discrete number of direction cosine bins are formed and each bin

corresponds to a discrete direction. If the number of direction cosine bins is large, very-

fine spatial resolution can be obtained. The phase shifts needed to cancel the relative

propagation delays can be determined adaptively.

The research performed in this thesis is a continuation of the work of Ziomek and

Behrle [Ref. 1] and fully evaluates the capabilities of the complex, modified least-mean

square, frequency domain, adaptive beamforming algorithm that they developed via

computer simulation studies. Also, a new frequency domain adaptive beamforming al-

gorithm based on modified adaptive linear prediction-error filtering is proposed, which

promises better resolution in low signal-to-noise ratio environments especially when

multiple targets share common spectral lines [Ref. 2,3]. The computer simulation studies

were designed to test the two algorithms specifically for their multiple broadband target

localization capability, their full angular coverage capability, and their angular resol-

ution as a function of the input signal-to-noise ratio (SXR) at a single element in the

array. Using lower SXR values than those used by Ziomek and Behrle [Ref. 1] in the

evaluation of the modified LMS algorithm, and changing some assumptions, such as the



number of array elements, sampling rate, and number of iterations, a comparison was

performed between the two algorithms.

Each target was modeled as a broadband sound source. As a result, the frequency

spectrum of the output signal from each element of the planar array contains several

frequency components. An estimate of the bearing and depression angles associated with

each frequency component is provided as a result of processing the output frequency

spectrum from each element in the array through the frequency domain adaptive

beamforming algorithms. Therefore, if each target exhibits at least one unique frequency

component (or spectral line), then all targets can be located.

Full angular coverage is the ability to localize a target regardless of its relative po-

sition with respect to the array. The broadside case is the easiest since it is at this posi-

tion that the far-field beam pattern beamwidth is its narrowest. The endfire case is the

most difficult since the far-field beam pattern beamwidth is the broadest at this point.

The full angular coverage and multiple broadband target capabilities were tested simul-

taneously.

Baseline results were the first assembled. They are defined as the bearing and de-

pression angle estimation errors (measured in degrees) as a function of harmonic num-

ber, and the number of iterations of the two algorithms, for the "no noise" case.

Identical cases were then run using additive, zero mean, white, gaussian noise to corrupt

the output signal from each element of the planar array. Average bearing and depression

angle estimation errors were plotted as a function of the input SNR at a single element

of the planar array, and the harmonic number.

Chapter II describes the theory used in the development of the two frequency do-

main adaptive beamforming algorithms. First the already known modified complex

least-mean-square (LV1S) adaptive algorithm is summarized. Then the new algorithm

which is based on modified complex adaptive linear prediction-error filtering is discussed.

For both algorithms the construction of the direction cosine estimates, and the angle

estimates will be presented in detail.

Chapter III contains computer simulation results and an explanation of these re-

sults. The results are presented as plots of the average estimation errors of the bearing

and depression angles at three distinct signal-to-noise ratio levels (-3dB, -6dB, -9dB) for

five different cases for each of the two algorithms. The different test cases include targets

evaluated at broadside, endfire, random placement, and targets which share a spectral

line. Conclusions concerning the effect of harmonic number, sampling rate, number of



array elements, number ofiterations used in the two algorithms, and S\R are made. The

Appendix contains tabular numerical data for all results.

Chapter IV will present final conclusions and recommendations for future research.



II. ANALYSIS

This chapter will present a brief analysis of the two frequency domain adaptive

beamforming algorithms for planar arrays which are evaluated in this thesis. The goal

of both algorithms is to localize multiple broadband targets by processing the output

electrical signals from a planar array of sensors to provide estimates of direction (both

bearing and depression angles) and frequency content of the multiple acoustic fields in-

cident upon the array. The development of the modified complex least-mean-square

adaptive beamforming algorithm for planar arrays is a summary of the analysis section

of a paper by Ziomek and Behrle [Ref. 1]. However the modified complex adaptive lin-

ear prediction-error filter beamforming algorithm for planar arrays is presented for the

first time. As a theoretical background for both algorithms, the principles of adaptive

beamforming for planar arrays in the frequency domain are presented in the next sec-

tion.

A. FREQUENCY DOMAIN ADAPTIVE BEAMFORMING FOR PLANAR

ARRAYS

Consider a planar array of M x N (odd), equally spaced, point source elements lying

in the XY plane where M and N are the total odd number of elements in the X and Y

directions, respectively. Let the random output electrical signal received at time instant

/ and element (m,n) in the array be given by

r{l,m,n) =y(l,m,n) + n{l,m,n), I = -L',...,0,...,L'

m = -Af,...,0,...A/' (2.1)

A7 = -AV.,0,...iV,

where y(l,m,n) and n(l,m,n) are the deterministic signal and random receiver noise,

respectively,

L' = (L-l)/2 (2.2)



Af = (M- l)/2 (2.3)

A-' = (.V-l)/2 (2.4)

and

L>2K+l (2.5)

is the total number of time samples that must be taken per element in order to avoid

aliasing when the signal y(l,m,n) is composed of K harmonics [Ref. 4]. If we designate

the length of the data record (i.e., the fundamental period ) recorded at each element in

the array as T seconds, then the fundamental frequency (i.e., the FFT bin spacing ) is

f =-jr- Hz, the highest frequency component that can be calculated in y (l,m,n) is K/

Hz, and the output received signals r(l,m,n) must be sampled at a rate of

fs
= LjT samples/sec, (2.6)

where L is given by Eq. (2.5) [Ref. 4]. Taking the DFT of Eq. (2.1) with respect to the

time index / yields the complex frequency domain samples.

R(q.m,n) = Y(q.m.n) + N(q,m,n), q = — L',...,0....,L'

m = -M',...,0,...M' (2.7)

« = -AV.,0,...A
r

\

where the index q represents the harmonic number. If the acoustic field incident upon

the planar arrray is a single general plane wave %{i +—-—
) propagating in the ± nQ di-

rection (see Fig. 1 ), where n is a unit vector and g(t) is an arbitrary baseband function,

then it can be shown that the output electrical signal at time instant / and element (m,n)

in the array is given by [Ref. 4 p. 160]:

Ur
)
mdx + v ndv

y{hn,n) = g(lTs + '-)
. (2.8)



r • n
oBft?"^)
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Figure 1. General plane-wave field g (/ + ili) propagating in the ± ^ direction



The corresponding frequency spectrum is given by [Ref. 2]

vi a r < - J2n<lfouomdx v _ j2rtqf v nd
y

} (q,m,n) = Lc
q
exp( + -

) exp( + -
) (2.9)

where

c
q
= Y(q,0,0)IL, q = -L',...,0,...,L' (2.10)

are the complex Fourier series coefficients that can be used to represent g(t) by a finite

Fourier series with K harmonics during the time interval |r| < —r~,f = ~zr ,

u = sin 6 cos
\f/Q (2.11)

and

v = sin # sin i// (2.12)

are the dimensionless direction cosines with respect to the X and Y axes, respectively;

O and i// are the depression and bearing angles, respectively; dx and d
y
are the interele-

ment spacings in meters in the X and Y directions, respectively; and c is the speed of

sound in meters per second.

Equation (2.9) is the basis for the frequency domain adaptive beamforming algo-

rithms to be presented in this thesis. The algorithms presented use a planar array to

estimate both 6 and
{J/

for each harmonic q present in the multiple incindent plane-wave

fields via frequency domain adaptive beamforming. Therefore, we shall use the following

generalized version of Eq. (2.S)

y{l,m,n) = 2_Jk(lTs + 1
)

(2 - 1 3 )

k

which represents the output electrical signal at time instant / and element (m,n) in the

planar array due to several incident plane-wave fields, where gk{t), uQk , and v0k are the ar-

bitrary time function and direction cosines associated with the kth sound source (target),

respectively.



B. FREQUENCY DOMAIN MODIFIED COMPLEX LMS ADAPTIVE

BEAMFORMING ALGORITHM

The frequency domain adaptive beamforming algorithm to be discussed is based

on processing the output complex frequency domain data R(q.m,n) from all MxN ele-

ments in the planar array. We begin by defining the complex estimation error as

e(q) = S(q)-s(q) (2-14)

where

s{q) =
~LMN Z S \

R(4>m >
n

)\
exp[+/Ztf(<7,0,0)] (2.15)

m=—M' n=—S'

is the reference sianal;

M' V

Hl)= LUV 2^ 2^ c{q,m)d{q,n)R{q,m,n)

m--M' n=-Y
c
T
(q)R(q)d(q)

LMN

(2.16)

is the estimate of s(q); c(q,m) and d(q,n) are the unit magnitude complex weights in the

X and Y directions, respectively; c(q) and d{q) are the M x 1 and X x 1 complex weight

vectors in the X and Y directions, respectively; given by

c{q) = lc(q, - M'),-Aq.0),-Aq,M')f (2.17)

and

d(q) = [%, - ,Y'),..,%,0),...,%,A")]
r

(2.18)



respectively; and

&(q) =

R{q, - M\ - N')...R(q, - M',0)...R(q, - M',Y)

R(qA-y) ... R(q,0,0) ... R(q,0,N')

R{q,M\-N') ... R(qM',0) ... R(q,M'',N')

(2.19)

is the MxN complex data matrix. Next, define the (M + N) x 1 complex weight vector

w(q) as follows:

Ii-(<7) =
c(q)

d(q)
(2.20)

Therefore,

c(q) = A w(q) (2.21)

where

MxM MxN
(2.22)

is a M x (M + X) matrix, / is a M x VI identity matrix, and is a M x N null matrix

as indicated; and

d(q) = B w(q) (2.23)

where

B=[
NxM

I

NxN
(2.24)

is a N x (M + N) matrix, is a X x M null matrix, and £ is a N x N identity matrix as

indicated. Substituting Eqs. (2.21) and (2.23) into Eq. (2.16) yields



a,. )/{q)Z(q)w{q)
*(q) = t~7Jy (2-25)

where

Z(q) = A
T
R(q)B (2.26)

is a (M + N) x (M + N) complex matrix. The complex weight vector that minimizes the

mean-square error E{\e{q)\ 2
} is given by [Ref. 1]

}v
i+] (q)

= }v
i(q) + 2m(q)lZ(q) + Z

T
(q)l

l
\^, i =0,1,2,.... (2.27)

where

e
i(q) = s(q)-s

i(q) (2.28)

is the estimation error after the ith iteration,

A Kl(q)ZlqWq)
*/(<?)

=
7~^7v (

2 -29 )

is the estimate of s(q) after the ith iteration, and, the step-size parameter /jl, is given by

V-i
= Mo = i°y + anf i 1 = 0,1,2, (2.30)

where ju is constant and ^ and a* are the signal and noise power, respectively, at the

center element in the array. After each iteration, each component of the complex weight

vector w,^{q) is normalized by its respective magnitude in order to maintain unit mag-

nitude.

Once the complex weight vector w,^(q) converges to a steady-state value wss(q), the

steady-state complex weight vectors CsS(q) and dss{q) can be obtained from Eqs. (2.21)

and (2.23), respectively. The estimates of 6 (q) and \j/ (q) at each harmonic q are given

by [Ref. 3]
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6 (q) = sin-
,

[{[«"(^)]
2

+ [v
L5

(^)]
2

}

,/2

], q * (2.31)

and

ip (q) = tan
-l % (<?)

AL5/ v
<7^0 (2.32)

where wL5(^) and i'£
5
(<7) represent estimates of the direction cosines obtained by using a

least-squares fit to the "unwrapped" steady-state phase weights 6%s(q,m) and 4>ss{q>n)>

respectively. Note that in the absence of noise

v 2itqf u (q)mdx
6ss(q- fn ) = ± ? q = -L',...,0,...,L'

m = -M',...,0,...,\f

(2.33)

and

,U, v
27tqf v (q)ndx

q = -L',...
t
0,...,L'

n = -N',...,Q,...,N'

(2.34)

The steady-state phase weights need to be "unwrapped", that is. allowed to take on val-

ues outside the closed interval [ — it, it], in order to ensure full angular coverage (i.e.,

< 6 (q) <— and < ip (q) < 2n) and correct depression and bearing angle estimates,

6 (q) and \j/ (q), respectively. Finally, substituting Eqs. (2.15) and (2.16) into Eq. (2.14)

yields the following expression for the steady-state estimation error:

M' .v

essil) = YvTy- Z Z Ww^ exP^ +jLR(q,0,0)l

m=-M' n=-V

- exp{ +jldfs(q,m) + 4>ss(q,n) + LR(q,m,n)^}

(2.35)

where

11



R{q,m,n) = \R{q,m,n)\ exp[ +jLR{q,m,n)'] (2.36)

css(<!,m ) = «ss(<7>™) exP[ +/'0ss(<7>m)] = exPC +/0ss(<7>w)] (
2 - 37

)

and

tfss(<7>") = M<7>") exp[ +/</>55(<7>")] = exp[ +/</>^(<7,«)] (2.38)

where ass{q,m) = 1 and bss(q,n) = 1 are real, unit magnitude, amplitude weights and

6l
l

s(q,m) and 4>?s(q,n) are real, "wrapped" phase weights. The procedure for the unwrap-

ping of the steady-state phase weights in order to obtain least-squares estimates of the

direction cosines at each harmonic is described by Behrle [Ref. 5].

C. FREQUENCY DOMAIN MODIFIED COMPLEX ADAPTIVE LINEAR

PREDICTION-ERRROR FILTER BEAMFORMING ALGORITHM

Consider a planar array of M x N (odd), equally spaced, point source elements lying

in the XV plane where M and N are the total odd number of elements in the X and Y

directions, respectively. Figure 2 shows a linear prediction-error filtering structure in the

frequency domain (i.e., after the operation of a time domain DFT). The frequency do-

main adaptive algorithm to be presented is based on processing the output complex

frequency domain data R(q.m,n) given by Eq. (2-7). Since the target localization prob-

lem requires only phase informations in our algorithm, we processes phase only data.

Let the one- step forward linear prediction errors for harmonic number q in the X

and Y directions, be given by

F
p

{q,i,n) = sx(q,i,n)
- sx(q,i,n), n = - N' ,...,0 A7'

(2.39)

and

F
pJLq,m,i)

= s
y
{q,m,i) - s

y
{q,m,i), m = - A/',...,0,...,3/' (2.40)

12



tt X

h{q,P,n)

s(q,i,n)

s(q,i,n)

Figure 2. Frequency domain linear prediction-error filter structure

respectively, with

A
r
' = N- 1

(2.41)

and

M> = M.
2 '

(2.42)

where i is the number of the reference element in the direction of processing; sx ( •) and

sx( • ) are the reference signal and the estimate of the reference signal in the X direction,

respectively; and s
y{

• ) and s
y { • ) are the reference signal and the estimate of the reference

signal in the Y direction, respectively. Each one of the above signals is defined as follows:

sx{q,i,n) = R{q,i,n), (2.43)

r

A 1 V"* 1 T
*jc(<7,'»

=
-J

2^hx(q,p,n)R{q,i + p,n) = -j hx {q,n)i{q,i,n), (2.44)

P=\

13



sy
(q,m,i) = R(q,m,i), (2.45)

and

p
A 1 \~*

1 T
s
y
{q,m,i) =— ^hytifm^Riqw + p) = -y^y (q,fn)r(q,m,i) (2.46)

where hx(q,n) and hy
(q,m) are the P x 1 complex weight vectors in the X and Y directions,

respectively , and r(q,i.n) and r{q,m,i) are the P x 1 complex frequency domain data vec-

tors in the X and Y directions, respectively, given by

hx{q,n) = [hx{q,\,n), hx(q,2,n), ,hx(^n)f, (2-47)

r{q,i,n) = [R{qJ + l,n),R(qJ + 2,n), R{q, i + P,n)Y, (2.48)

hy(q,m)
= lhy

(q,m,l), h
y
(q,m,2) ,h

y(q,m,P)f, (2.49)

and

r{q,m,i) = [R{q,mJ + \),R{q,m,i + 2), R(q, m,i + P)']
T

(2.50)

where P is the order of the linear prediction-error filter.

Substituting Eqs. (2.43) and (2.44) into Eq. (2-39) and, substituting Eqs. (2.45) and

(2.46) into Eq. (2.40) yields

p

F
Px
(qJ,n) = R(qj,n)--^Y

J
h^<PrfR (

cl''+P^ n = ~ ^ °."^> (
2 - 51 )

and

14



p

F
Py
{q.m,i) = R(q,m,i) - -j ^fom^fom,/ + p), m = - ,V/\...,0,...,Af . (2.52)

Since we are working with phase only data, Eqs. (2.51) and (2.52) become:

F
Px

{q,i,n) = exp[ +jLR{qJ,n)']

p

~ ~p £jhjfcW#)\ exPC +JLhx{q,p,n)~] exp[ +jLR(q,i + p,nj], (2.53)

P=i

« = -Ar

',...,0,...,A
r'

and

F
Py
{q,m.i) = exp[ +jLR(q,m,i)]

p

' \h
v
{q,m,p)\ exp[ +jLh

y
(q,m,p)] exp[ +jLR{q,m,i + /?)]. (2.54)

m = -.U'....,0,...,.\/'.

From Eqs. (2.53) and (2.54) it can be seen that if each component of the complex

weight vectors have unit magnitude, then the forward linear prediction error become

zero when

p

exp[ +jLR{q,i,n)2 =y ]T exp[ +jLhx(q,p,ny] exp[ +JLR{q,i + /?,«)],
55

n = -2V' N'

and

exp[ +jLR{q,m,iy] = -p2_j expt +^hyti>m>Pft exP^ +JLR{q,m,i + pj],

m = -Af,...,0, If.

15



Equations (2.55) and (2.56) will be valid only if the phase weights cophase the data at

the output of each element in the prediction-error filters.

The algorithm used for the optimum estimation of the complex weight vectors is a

modified, complex least mean-square (LMS) algorithm. The estimates of the complex

weight vectors in the X and Y directions after the k-th iteration in X and Y directions

is given by

and

lhx(q,n)']k+x = [hx{q.n)]k + 2iik[FPx(q,Ln)]k [r {qj>n)~},

* = -A",...,0,...A" (2-57)

k = 0,1,2,3,....

ihyiq.mYlu+x = [hy
{q.m)] k + 2nk[Fp^q,m,i)]k[r {q,m,ij\,

m = -M',...,0,...,M' ( 2 - 58 )

A = 0.1.2.3

respectively, where the index k denotes the k-th step of iteration, F
p

( •
) A and, FF ( •

) k
are

the forward linear prediction errors in the X and Y directions, respectively, after the k-th

iteration; £*( • ) is the complex conjugate of the data vector; and the step-size parameter

a, is siven bv

Hk = no = {a) + o
2

n
)-\ k = 0,1,2,... (2.59)

where /u is a constant, and it is equal to the inverse of the sum of the signal and noise

power, a] and o\ , respectively, at the center element of the array. After each iteration

of the algorithm, each component of the complex weight vectors is normalized by its

respective magnitude in order to maintain unit magnitude.

Since we are working with multiple linear arrays to obtain estimates of the targets'

locations, we use average, steady-state, complex weight vectors in the X and Y di-

rections, that is,

16



^ )
=
~Y Z^'") (2>60 ^A

n=-S

and

M'

K^ =
-\i S ^'m) - (2 - 61)

Note that each of the P x 1 average, steady-state, complex weight vectors in the X and

Y directions is given bv

Kl& =^> !)
- K&&* h*Ji>pn

T
( 2 - 62

)

and

*bjd = fyJl'V' hyJ^ byJl'Prf- ( 2 - 63
)

Next, if we now use the average, steady-state, complex weight vectors in the X and

Y directions, then the one-step, steady-state, forward linear prediction errors for har-

monic number q in the X and Y directions, are given by

p

F
Px

(q,i,n) = R(q,i,n) - -±- YjhJftfWfl* + P>")> " = ~ N'

v,0,...,A
r

\ (2-64)

and

r

F
Py
(q,m,i) = R{q,m,i) - -y 2^hy

a
Jiq,m,p)R(q,m,i + p), m = - A/',...,0,...,Af . (2.65)

P=\

If we define the forward spatial Z-transform of g(i) as

17



•> I

G(z) = Z{g(i)} - 2, *('>', (2.66)

l's=—OO

then

2{g(/ + />)} = G(z)z-p
, (2.67)

and, upon taking the forward spatial Z-transform of Eqs. (2.64) and (2.65) with respect

to i, we obtain

F
Px
(q,zx,n) = R{q,zx,n)\_\ - -j? ^Jq.pK'l n = - A",...,0,...,A", (2.68)

P=\

and

p

F
Py
(q,m,z

y) = R(q,m,z
y)V

- -j ^hyJq,p)
Z;

P
l m = - M' O f...,Af . (2.69)

P=\

From Eqs. (2.6S) and (2.69), the transfer functions of the one-step forward linear

prediction-error filters (analysis filters) in the X and Y directions are given by

Hpe
F
p

(q,zx,n) , ^
*{q 'Zxin) =

R(q,zx .n)
=l ~P 2AJ^Z

* '

n = ~ A"'-'° A"' (2 - 70)

and

F (q,m,z)
, <A

H?4^m^ = L m ,z )

=l ~P Lhyj™^> m = ~ ^-A...,M'. (2.71)

Since the average complex weights in the X and Y directions are independent of the in-

dices n and m, the transfer functions are also independent of n and m, that is.

18



p

HPEx{q,2x) = 1 -y YhxJq,p)z;
p

, (2.72)

p=\

and

r

P

Therefore the transfer functions of the inverse filters (synthesis filters) in the X and Y

directions are given bv

Hjl(g.zx)
=

j
1

(2.74)

p=]

and

Hj'E>(q.zy )
= ^

. (2.75)

P=\

In order to obtain the spatial-frequency response (angular response) of the filter

described by Eq. (2.74), let

+j2nudx
zx = exp( +j2nfxdx) = exp( :

). (2.76)

Substituting Eq.(2.76) into Eq.(2.74) yields

HJ
]

Ex
(q,u) = - !

. (2.77)

1 V1 —jlnpudx
1 - p-Lh*Jq <p) exp(—T~~ }

P=\

19



Similarly, if we let

z
v
= exp( +J2nfdv ) = exp(

+j2nvd
v

(2.78)

in Eq. (2.75). we obtain

HpE
t
(l,v) =

1

1 V"1 —flnpvdy
> K, {q,p) exp( ; -)1-

p z_y %»«
p=\

/

(2.79)

Equations (2-77) and (2-79) are then evaluated as functions of the direction cosines

u and v, respectively, for a given harmonic q. The values of u and v that maximize Eqs.

(2-77) and (2-79), respectively, then become the linear prediction-error estimates u£E
{q)

and v££(q) of u (q) and v (q) . The estimates of 6 (q) and ip (q) at each harmonic q are

given by [Ref. 3]

6 (q) = sm-
]

[{[u!;
E
(q)f + [#

£
fo)]

2
}

1/2
], q * (2.80)

and

ip (q) = tan
-l vq (q)

>VE, v

"o (?)

<7*=0 (2.81)

where KFf(<?) and Vo
E
(q) are the estimates of the direction cosines obtained by using the

adaptive linear prediction-error algorithm.
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III. SIMULATION RESULTS

Computer simulation results for five test cases are presented in this chapter. The test

cases were designed to test both of the algorithms multiple broadband target localization

capability, full angular coverage capabilities, and their angular resolution as a function

of the input SXR at a single element in the array, harmonic number, and the number

of iterations.

For simplification purposes, in all of the simulation results we use the following

notation:

• LMS: When the frequency domain modified complex Least-Mean-Square adaptive

beamforming algorithm is used.

• ALP: When the frequency domain modified complex adaptive linear prediction-

error filtering beamforming algorithm is used.

The test cases are described below:

1. Case 1 - A single broadband target radiating six harmonics, located at broadside

relative to the planar array;

2. Case 2 - Three broadband targets, each radiating two unique harmonics, located

at random positions;

3. Case 3 - A single broadband target radiating six harmonics, located at endfire rel-

ative to the planar array;

4. Case 4 - Three broadband targets. Two targets are located in the same plane and
have a common harmonic. Three subcases were examined. Each subcase used a

different harmonic as the common spectral line.

5. Case 5 - Three broadband targets, located at random positions. Two targets have
a common harmonic. Three subcases were examined. Each subcase used a different

harmonic as the common spectral line.

The simulation results of these five cases are based upon processing the output

electrical signals from a 1 1 x 1 1 planar array of equally spaced hydrophones. The

acoustic field incident upon the planar array was, in general, the sum of several plane-

wave fields travelling in different directions. Each plane-wave field consisted of an arbi-

trary number of harmonics (spectral lines) emanating from one of the broadband sound
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sources. As a result, the output electrical signal at each element of the planar array was

composed of an arbitrary number K of harmonics, all with identical amplitudes of unity.

The fundamental frequency for all test cases was chosen to be/ = 1000 Hz. Via Eq.

(2-6), the fundamental period at each element of the array was 1 millisecond. The sam-

pling parameter, S, was set equal to 10. The number of time samples taken per element

of the arrav is siven bv

L = SK+5 (3.1)

where L is the total number of samples taken per element, K is the total number of

harmonics present in the signal, and S is the sampling parameter. With S = 10 and K = 6,

L = 65 time samples per element.

In the computer simulations presented in this thesis, the interelement spacing is

A-rmn
dx = d

y
= —r—

,

(3.2)

where the minimum wavelength is

J max

and

/max =A7 Hz (3.4)

Substituting Eqs. (3.3) and (3.4) into Eq. (3.2) yields

^ = d
'
=
l2KQ-

(3 ' 5)

For the ALP algorithm, the order of the forward prediction-error filter was 10. The

reference element was the first element of each linear array and the number of linear

arrays that have been processed in both directions was 11. Initial simulation tests indi-
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cated that the number of iterations required for the LMS algorithm to approach a

steady-state error was 100, while for the ALP algorithm 1000 iterations were required.

Baseline, or "no noise" test case results were the first generated to ensure that both

algorithms were working properly in a noise-free environment. Figure 3 depicts the

noise-free, time domain, received signal at element (1,1) for Case 2. For each baseline

test case, bearing and depression angle estimation errors (measured in degrees) were

obtained by running the computer simulation once allowing 100 iterations for the LMS

algorithm and 1000 iterations for the ALP algorithm.

Following compilation of the baseline results for the first three cases, identical test

cases were run using additive, wide-sense stationary, zero mean, white, gaussian noise

samples to corrupt the time samples of the received signal. Figure 4 depicts the time

domain, received signal at element (1.1) for case 2 for a SNR= -9dB. For each test case,

and for a given input S\R at a single element of the array, average bearing and de-

pression angle estimation errors were obtained by running the computer simulation 10

times. During each run, the LMS algorithm was allowed 100 iterations whereas the ALP

algorithm was allowed 1000 iterations.
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-32.0 -24.0 16.0 -8.0 0.0 8.0

* TIME INSTRNT L

CRSE:LMS2
INPUT SNR RT ELEMENT (1,1): NO NOISE

16.0 24.0 32.0

Figure 3. Real Received Signal at Element (1,1), for Case LMS2 : No Noise
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-32.0 -24.0 16.0 -8.0 0.0 8.0

TIME INSTANT L

CRSE:LMS2
INPUT SNR FIT ELEMENT (1,1): -9.0 DB

16.0 24.0 32.0

Figure 4. Real Received Signal at Element (1,1), for Case LMS2 : SNR = -9dB
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A. CASE 1

Case 1 placed a single broadband target at broadside relative to the planar array

(i.e., # = 0°). This was considered the simplest case for both of the algorithms since it

is at broadside that the far-field beam pattern has its narrowest beamwidth and, as a

result, both algorithms should provide good angular resolution [Ref. 4]. The general

plane-wave field radiated by the target consisted of six harmonics.

Figures 5, 6 and 7 present the average estimation errors of the depression angle

(e
8o
) versus SNR for Case LMS1 at 1000 Hz, 3000 Hz and 6000 Hz, respectively. Results

for bearing angle estimation errors in the broadside case are irrelevant since the target

is directly above the array, and the bearing angle has no meaning. From these figures,

we can see two trends. Increasing the SNR results in smaller magnitudes of the average

estimation errors of the depression angle and as the harmonic number(q) increases, the

magnitude of the estimation error decreases. These two trends were expected. As we

increase the SNR, the noise components of the received signals are less dominant. An

increase of the harmonic number (q) represents an increase in the frequency and, as a

result, the beamwidth of the far-field beam pattern decreases. The decreased beamwidth

increases the angular resolution of the algorithm and, as result, decreases the estimation

error.

Figures 8, 9 and 10 present estimates of the direction cosines L" and V for Case

ALP1 at SNR=-3 dB and frequencies 1000 Hz, 3000 Hz, and 6000 Hz, respectively.

Similarly. Figures 11, 12 and 13, and 14, 15, and 16 present estimates of the direction

cosines U and V for Case ALP1 with the same order of frequency as above and for

SNR = -6 dB and SNR =-9 dB. respectively. As we discussed in Chapter 2. the location

of the peaks of the magnitude of the synthesis filter transfer function in dB give the U

and V estimates. From these figures we can clearly observe that as the SNR decreases,

the difference between the peak and the background noise in the transfer function plots

decreases. Also, the harmonic number is important, because increasing the harmonic

number produces sharper peaks in the transfer function plots resulting in more accurate

estimation.

Figures 17, 18 and 19 present the average estimation error of the depression angle

(e
eo )

versus SNR for Case ALP1 at 1000 Hz, 3000 Hz and 6000 Hz. The trends which

were present in Case L.MS1 are apparent here, that is, as SNR increases, the magnitude

of the estimation error decreases and, as the harmonic number (q) increases, the mag-

nitude of the estimation error decreases.

26



Finally Tables 1 and 2 in the Appendix A present the numerical data for Cases

LMS1 and ALP1 respectively for all six harmonics. Comparing the two algorithms us-

ing these tables, we can conclude that for Case 1, both algorithms give small magnitude

estimation errors in low SXR with a little better performance for the LMS1 particularly

at 1000 Hz.
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B. CASE 2

Case 2 placed three broadband targets at random locations. The general plane-wave

field radiated by each of the targets contained two unique harmonics . Target 1 was lo-

cated at (0 O
= 49°, t// = 38°) and radiated harmonics 1 and 6. Target 2 was located at

(d = 5°, ip = 137°) and radiated harmonics 2 and 5. Target 3 was located at (6 = 77°,

\j/ = 307°) and radiated harmonics 3 and 4. Since there are three incident plane-wave

fields, each containing two unique harmonics, the output electrical signal from each el-

ement in the array exhibits a total of six harmonics.

Figures 20 through 25 present the average estimation errors of the depression (ee )

and bearing {e*) angles versus SXR for Case LMS2 for all the harmonics in increasing

order of the harmonic number (q), respectively. The same trend about the SXR as in

Case 1 holds here, that is increasing the SXR results in smaller magnitude of the average

estimation error. These general results can be explained using the same arguments pre-

sented for Case 1.

Figures 26 through 43 present estimates of the direction cosines L" and V for all the

harmonics placed in increasing order of the harmonic number (q) at SXR's -3 dB, -6 dB

and -9 dB. respectively. Again, the two trends observed in Case ALP1 are apparent here,

that is, decreasing the SXR decreases the difference between the peak and the back-

ground noise and increasing the harmonic number (q) produces sharper peaks in the

transfer function plots.

Figures 44 through 49 present the average estimation errors of the depression (ee )

and bearing (e„ ) angles versus SXR for Case ALP2 for all the harmonics in increasing

order of the harmonic number (q), respectively. The same trends as in LMS2 hold, with

the exception that now the magnitude of the average estimation error for both angles is

smaller than in LMS2 . Xote the difference in scaling between the error plots for Case

LMS2 and Case ALP2.

Finally, Tables 3 and 4 in the Appendix A present the numerical data for Cases

LMS2 and ALP2, respectively, for all six harmonics. Comparing the two algorithms

using these tables, we can conclude that for Case 2, the ALP algorithm gives smaller

magnitude estimation errors in most instances than the LMS algorithm especially for

low SXR.
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C. CASE 3

Case 3 placed a single broadband target at endfire relative to the planar array (i.e.,

6 = 90°, \jj = 90°). This case was considered the most difficult for both algorithms since

it is at endfire that the far-field beam pattern beamwidth is broadest [Ref. 4]. The general

plane-wave field radiated by the target consisted of six harmonics.

Figures 50 and 51 present the average estimation errors of the depression (eg ) and

bearing (en ) angles versus SXR for Case LMS3 at 1000 Hz and 3000 Hz. respectively.

The estimation errors for the highest harmonic (6000 Hz) are not shown for Case LMS3

since the magnitude of these errors were between 45 and 90 degrees. This poor per-

formance for the highest harmonic at endfire can be explained theoretically [Ref. 6].

Figures 52, 53, and 54 present estimates of the direction cosines U and V for Case

ALP3 at SXR=-3 dB and frequencies 1000 Hz, 3000 Hz, and 6000 Hz, respectively.

Similarly. Figures 55, 56, and 57, and 58, 59, and 60 present estimates of the direction

cosines U and V for Case ALP3 with the same order of frequency as above and

SXR = -6 dB and SXR=-9 dB. respectively. Here we can observe an ambiguity for the

V estimates at 6000 Hz which can be explained by examining the exponential term of

Eq.(2-79). This term for the highest frequency component creates integer multiplies of

In producing two peaks at ± 1 for the V
Q estimates at 6000 Hz.

Figures 61, 62 and 63 present the average estimation errors of the depression (ee )

and bearing (^
u
) angles versus SXR for Case ALP3 at 1000 Hz. 3000 Hz, and 6000 Hz,

respectively. We can observe that in Case ALP3 at 6000 Hz we have acceptable esti-

mates for depression angle (0 C ). In Figure 63 the
\J/

error plot is not shown since the

magnitude of this error was between 45 and 90 degrees.

Finally, Tables 5 and 6 in Appendix A present the numerical data for Cases L.MS3

and ALP3 respectively for all six harmonics. Comparing the two algorithms using these

tables, we can conclude that for Case 3 the ALP algorithm gives smaller magnitude es-

timation errors in most instances than the LMS algorithm for both angles.
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D. CASE 4

Case 4 corresponds to three broadband targets being present two of which have a

common harmonic. Target 1 was located at (6 = 45°, \p = 0°). Target 2 was located at

(0 O
= 45°, iA = 180°). Target 3 was located at ( O

= 33°
, ^ = 47°). A total of six har-

monics were present in the output electrical signal. The following three subcases were

examined:

•

•

•

Case 4-A: Three targets, two of which are located in the same plane. Targets 1 and
2 have a common spectral line at 1000 Hz.

Case 4-B: Three targets, two of which are located in the same plane. Targets 1 and
2 have a common spectral line at 3000 Hz.

Case 4-C: Three targets two of which are located in the same plane. Targets 1 and
2 have a common spectral line at 6000 Hz.

For these cases, only no noise results were compiled for both algorithms in order to

examine the ability of target discrimination when two targets are in the same plane and

have a common harmonic.

Figures 64, 65 and 66 present estimates of the direction cosines U and V for each

common harmonic, that is at 1000 Hz for Case ALP4-A, 3000 Hz for Case ALP4-B and

at 6000 Hz for Case ALP4-C. Clearly, we can observe that except for case ALP4-A, the

algorithm can discriminate the location of two targets.

Tables 7 through 12 in the Appendix A present numerical data for all the subcases

of Case 4 for both algorithms. From these tables we can observe that for all the har-

monics, except the common one, both algorithms correctly identified the location of the

targets with zero degrees estimation errror. However, for the common harmonic, the

LMS algorithm located a false fourth target, which was located exactly between the ac-

tual locations of targets 1 and 2. On the other hand the ALP algorithm, except for the

subcase ALP4-A, for the common harmonic, identifies two different estimates of the di-

rection cosine L' from the transfer function plots, which results in two different target

locations.
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E. CASE 5

Case 5 placed three broadband targets at random locations. Target 1 was located

at (0 O
m 49°, \p = 38°). Target 2 was located at (0 O

= 5°, i// = 137°). Target 3 was located

at (6 = 77°, \j/ = 307°). A total of six harmonics were present in the output electrical

signal. The following three subcases were examined:

• Case 5-A: Three targets located at random positions. Targets 1 and 2 have a

common spectral line at 1000 Hz.

• Case 5-B: Three targets located at random positions. Targets 1 and 2 share a

common spectral line at 3000 Hz.

• Case 5-C: Three targets located at random positions. Targets 1 and 2 share a

common spectral line at 6000 Hz.

For these cases, only no noise results were compiled for both algorithms in order to

examine the ability of target discrimination when two targets are in random positions

and have a common harmonic.

Figures 67. 68 and 69 present estimates of the direction cosines U and V for each

common harmonic, that is. at 1000 Hz for Case ALP5-A, at 3000 Hz for Case ALP5-B

and at 6000 Hz for case ALP5-C. Clearly, we can observe that exept for case ALP5-A.

the algorithm can discriminate the location of two targets.

Tables 13 through 18 in the Appendix A present numerical data for all the subcases

of Case 5 for both algorithms. From these tables we can observe that for all the har-

monics, except the common one. both algorithms correctly identified the location of the

targets with zero degrees estimation errror. However, for the common harmonic, the

LMS algorithm located a false fourth target. On the other hand the ALP algorithm,

except for subcase ALP5-A, for the common harmonic, identifies two different estimates

of the direction cosines U and V from the transfer function plots, which results in two

different target locations.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The goal of this thesis was to evaluate the multiple broadband target localization

capability and the full angular coverage capability of two frequency domain adaptive

beamforming algorithms. The main advantage of both algorithms is that no a priori

knowledge is assumed about the statistics of the received signal, the total number of

targets present, where they are located, and the frequency content of the targets.

The two frequency domain adaptive beamforming algorithms evaluated were the

modified complex Least-Mean-Square (LMS) algorithm developed by Ziomek and Chan

[Ref. 6], and the modified complex Adaptive Linear Prediction-Error (ALP) algorithm

which was presented for first time. Chapter 3 presented the results of five test cases

which were designed to test both algorithms for several different capabilities. It should

also be noted here that the number of time samples taken per element of the array never

exceeded 65 time samples, an amount which represents a small number of data points.

Summarizing the simulation results discussed in Chapter 3, we can list the following

conclusions:

• In most cases tested, both algorithms can localize multiple broadband targets and
they have full angular coverage capability.

• Increasing either the sampling rate or the array size yields better estimates in lower

SXR for both algorithms

ALP generally gives better estimates in lower SXR than LMS

• ALP can, in most of the "no noise" cases, discriminate between two targets that

have a common harmonic while LMS cannot

• ALP is more computationally intensive than LMS and requires much more iter-

ations to approach a steady-state error.

• ALP is more flexible than LMS because it can process only a part of the total

number of array elements to localize the target

In the course of this investigation, several possible areas for future research pre-

sented themselves:
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• further study of the effects of varying the step-size parameter, \x , in an attempt to

decrease the magnitude of the estimation error.

• investigation of parallel processing implementation for the ALP algorithm in order

to reduce the computation time.

• investigation of larger array size in lower SNR mainly using the ALP algorithm

• investigation of a noise reduction system prior to processing the output electrical

signals.
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APPENDIX A.

This appendix presents the numerical data for all of the test cases. Tables 1 through

6 present numerical data for the three first "noisy" cases, Cases 1 through 3, for both

algorithms, while tables 7 through 12 present numerical data from the two "no noise"

cases, Case 4 and 5, for both algorithms. The following notation is used in all the tables:

• LMS: When the frequency domain modified complex Least-Mean-Square adaptive

beamformins algorithm is used.

•

•

ALP: When the frequency domain modified complex adaptive linear prediction-

error filter beamforming algorithm is used

# : Depression Angle

i// : Bearing Angle

ee : Average Estimation Error for Depression Angle

e : Average Estimation Error for Bearing Angle
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Table 1. NUMERICAL DATA CORRESPONDING TO CASE LMS1

Case 1: One target located at broadside relative to planar array - six harmonics
present in output electrical signal - LMS algorithm is used - 100 iterations

Harmonic (q)

Location (deg) Average Estimation Error (deg)

0o <Ao

S\R
-3 dB -6dB -9 dB

% «•« **

1 270 -2.169 -1.789 -4.382

2 270 -0.810 -1.426 -2.170

->

j 270 -0.561 -0.607 -1.233

4 270 -0.360 -0.760 -0.649

5 270 -0.362 -0.363 -0.848

6 270 -0.299 -0.435 -1.596

Table 2. NUMERICAL DATA CORRESPONDING TO CASE ALPI

Case 1: One target located at broadside relative to planar array - six harmonics
present in output electrical signal - ALP algorithm is used - 1000 iterations

Harmonic (q)

Location (deg) Average Estimation Error (deg)

0o «Ao

SNR
-3 dB -6 dB -9 dB

een een een

1 270 -3.623 -4.444 -6.056

2 270 -1.307 -2.739 -2.404

3 270 -1.325 -1.831 -1.993

4 270 -1.231 -1.429 -1.463

5 270 -0.753 -0.740 -1.746

6 270 -0.471 -0.665 -0.951

100



Table 3. NUMERICAL DATA CORRESPONDING TO CASE LMS2

Case 2: Three targets located at random positions - six harmonics present in output
electrical signal - LMS algorithm is used - 100 iterations

Harmonic

(q)

Location (deg) Average Estimation Error (deg)

#0 'Ao

SXR
-3 dB -6dB -9 dB

'•„ c
«'n

eH een
e

,

1 49 38 0.265 -0.124 -0.411 -0.832 -0.571 0.325

2 5 137 0.077 -2.714 -0.161 -5.017 0.097 3.451

77 307 3.037 -0.108 0.351 -2.625 7.991 9.333

4 77 307 -10.532 1.677 -5.032 0.019 3.858 26.436

5 5 137 -0.022 0.560 -0.155 1.376 0.O7S 0.002

6 49 38 1.081 -1.531 -10.852 4.382 -2.355 -8.784

Table 4. NUMERICAL DATA CORRESPONDING TO CASE ALP2

Case 2: Three targets located at random positions - six harmonics present in output
electrical signal - ALP algorithm is used - 1000 iterations

Harmonic

(q)

Location (deg) Average Estimation Error (deg)

e >Ao

SXR
-3 dB -6dB -9 dB

*•« <Vn «* ««, «*. ^
1 49 38 -1.470 0.098 -0.826 0.380 8.243 -2.443

2 5 137 0. 1 34 6.094 -1.091 -S.072 0.879 1.252

->

3 77 307 -1.728 0.082 -3.247 -0.361 -0.697 1.131

4 77 307 -1.968 0.526 -0.964 0.218 -1.763 -0.035

5 5 137 0.019 -0.191 0.180 1.267 0.830 -6.591

6 49 38 -0.173 0.146 -0.197 -0.019 2.068 -5.109
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Table 5. NUMERICAL DATA CORRESPONDING TO CASE LMS3

Case 2: One target located at endfire relative to planar array - six harmonics present

in output electrical signal - LMS algorithm is used - 100 iterations

Harmonic

(q)

Location (deg) Average Estimation Error (deg)

#0 ^0

SNR
-3 dB -6dB -9 dB

\ e

,

**„

i 90 90 3.355 -0.055 20.000 0.545 21.186 1.023

2 90 90 33.0jj -0.200 40.425 -0.646 27.226 -0.330

3 90 90 19.490 -0.019 16.401 -0.229 16.706 -0.325

4 90 90 2.247 0.006 7.365 0.287 12.025 -0.139

5 90 90 2.136 -0.083 1.146 0.09S 14.692 -18.528

6 90 90 70.877 -84.120 69.426 -64.811 46.737 -90.393

Table 6. NUMERICAL DATA CORRESPONDING TO CASE ALP3

Case 2: One target located at endfire relative to planar array - six harmonics present

in output electrical signal - ALP algorithm is used - 1000 iterations

Harmonic

(q)

Location (deg) Average Estimation Error (deg)

o 'Ao

SNR
-3 dB -6 dB -9 dB

e*„ **„ «*, ^ **, **

i 90 90 3.948 0.217 7.806 -0.136 6.672 -0.984

2 90 90 7.2S7 -0.362 11.323 -0.4SS 9.034 0.329

3 90 90 5.342 -0.107 3.732 -0.370 1.935 -0.767

4 90 90 2.233 -0.113 2.145 0.286 7.725 -0.023

5 90 90 0.986 -0.160 3.512 0.076 14.090 -6.512

6 90 90 5.229 -89.997 7.051 -90.029 16.548 -89.088
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Table 7. NUMERICAL DATA CORRESPONDING TO CASE LMS4-A

Case 4a: Three targets two of which are located in the same plane - targets one and
two have a common spectral line at 1000 Hz - six harmonics present in output elec-

trical signal - LMS algorithm is used - 100 iterations - no noise

Harmonic (q)

Location (deg)
Average Estimation Error

(deg)

So <Ao «*, «*,

1 45 45.000 -90.000

1 45 180 45.000 90.000

2 45 0.000 0.000

3 33 47 0.000 0.000

4 33 47 0.000 0.000

5 45 180 0.000 0.000

6 33 47 o.ooo 0.000

Table 8. NUMERICAL DATA CORRESPONDING TO CASE ALP4-A

Case 4a: Three targets two of which are located in the same plane - targets one and
two have a common spectral line at 1000 Hz - six harmonics present in output elec-

trical signal - ALP algorithm is used - 1000 iterations - no noise

Harmonic (q)

Location (deg)
Average Estimation Error

(deg)

<Ao **, «w.

1 45 -44.921 0.0

1 45 ISO -44.921 180.000

9 45 0.009 0.000

3 47 0.037 -0.011

4 33 47 0.037 -0.011

5 45 180 0.009 o.ooo

6 33 47 0.037 -0.011
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Table 9. NUMERICAL DATA CORRESPONDING TO CASE LMS4-B

Case 4b: Three targets two of which are located in the same plane - targets one and
two have a common spectral line at 3000 Hz - six harmonics present in output elec-

trical signal - LMS algorithm is used - 100 iterations - no noise

Harmonic (q)

Location (deg)
Average Estimation Error

(deg)

So >Ao «* ***

1 33 47 0.000 0.000

2 45 0.000 0.000

3 45 45.00 -90.00

3 45 180 45.0 90.0

4 33 47 0.000 0.000

5 45 ISO 0.000 0.000

6 33 47 0.000 0.000

Table 10. NUMERICAL DATA CORRESPONDING TO CASE ALP4-B

Case 4b: Three targets two of which are located in the same plane - targets one and
two have a common spectral line at 3000 Hz - six harmonics present in output elec-

trical signal - ALP algorithm is used - 1000 iterations - no noise

Harmonic (q)

Location (deg) Estimation Error (deg)

o <Ao ««n «*,

1 33 47 0.037 -0.011

2 45 0.009 0.000

3 45 1.56 0.000

3 45 180 1.56 0.000

4 33 47 0.032 -0.011

5 45 180 0.009 0.000

6 33 47 0.037 -0.011
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Table 11. NUMERICAL DATA CORRESPONDING TO CASE LMS4-C

Case 4c: Three targets two of which are located in the same plane - targets one and
two have a common spectral line at 6000 Hz - six harmonics present in output elec-

trical signal - LMS algorithm is used - 100 iterations - no noise

Harmonic (q)

Location (deg)
Average Estimation Error

(deg)

0o 00 e*n

1 33 47 0.000 0.000

2 45 0.000 0.000

3 33 47 0.000 0.000

4 j3 47 0.000 0.000

5 45 ISO 0.000 0.000

6 45 45.000 -90.000

6 45 ISO 45.000 90.000

Table 12. NUMERICAL DATA CORRESPONDING TO CASE ALP4-C

Case 4c: Three targets two of which are located in the same plane - targets one and
two have a common spectral line at 6000 Hz - six harmonics present in output elec-

trical signal - ALP algorithm is used - 1000 iterations - no noise

Harmonic (q)

Location (deg)
Average Estimation Error

(deg)

e n >Ao
8fl

«*,

1 33 47 0.037 -0.011

45 0.009 0.000

3 33 47 0.037 -0.011

4 33 47 0.037 -0.011

5 45 180 0.009 0.000

6 45 2.070 0.000

6 45 ISO 2.070 0.000
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Table 13. NUMERICAL DATA CORRESPONDING TO CASE LMS5-A

Case 5a: Three targets located at random positions - targets one and two have a

common spectral line at 1000 Hz - six harmonics present in output electrical signal -

LMS algorithm is used - 100 iterations - no noise

Harmonic (q)

Location (deg)
Average Estimation Error

(deg)

#0 •Ao *«n **n

1 49 38 -13.000 252.594

1 5 137 -41.000 -16.406

2 5 137 0.000 0.000
->

5 77 307 0.000 0.000

4 77 307 0.000 0.000

5 5 137 0.000 0.000

6 49 38 0.000 0.000

Table 14. NUMERICAL DATA CORRESPONDING TO CASE ALP5-A

Case 5a: Three targets located at random positions - targets one and two have a

common spectral line at 1000 Hz - six harmonics present in output electrical signal -

ALP algorithm is used - 1000 iterations - no noise

Harmonic (q)

Location (deg)
Average Estimation Error

(deg)

n <Ao *•« «*,

1 49 38 27.121 -6.674

1 5 137 -16.879 92.326

2 5 137 -0.038 -0.008

3 77 307 0.094 0.012

4 77 307 0.094 0.012

5 5 137 0.006 -0.328

6 49 38 0.094 0.012
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Table 15. NUMERICAL DATA CORRESPONDING TO CASE LMS5-B

Case 5b: Three targets located at random positions - targets one and two have a

common spectral line at 3000 Hz - six harmonics present in output electrical signal -

LMS algorithm is used - 100 iterations - no noise

Harmonic (q)

Location (deg)
Average Estimation Error

(deg)

e n <A
fj)

e*o

1 ii 307 0.000 0.000

2 5 137 0.000 0.000

3 49 38 -13.000 252.594

3 5 137 -41.000 -16.406

4 77 307 0.000 0.000

5 5 137 0.000 0.000

6 49 38 0.000 0.000

Table 16. NUMERICAL DATA CORRESPONDING TO CASE ALP5-B

Case 5b: Three targets located at random positions -

targets one and two have a common spectral line at 3000 Hz - six harmonics present

in output electrical signal - ALP algorithm is used - 1000 iterations - no noise

Harmonic (q)

Location (deg) Estimation Error (deg)

0o >Ao een **,

1 77 307 0.094 O.012

2 5 137 -0.038 -0.008

49 3S 2.94 0.39

3 5 137 1.505 -1.992

4 77 307 0.094 0.012

5 5 137 0.006 -0.328

6 49 38 0.094 0.012
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Table 17. NUMERICAL DATA CORRESPONDING TO CASE LMS5-C

Case 5c: Three targets located at random positions - targets one and two have a

common spectral line at 6000 Hz - six harmonics present in output electrical signal -

LMS algorithm is used - 100 iterations - no noise

Harmonic (q)

Location (deg)
Averaae Estimation Error

(deg)

0o to «« e*n

1 77 307 0.000 0.000

2 5 137 0.000 0.000

3 49 38 0.000 0.000

4 77 307 0.000 0.000

5 5 137 0.000 0.000

6 5 137 -41.000 -16.406

6 49 38 -13.000 252.594

Table 18. NUMERICAL DATA CORRESPONDING TO CASE ALP5-C

Case 5c: Three targets located at random positions - targets one and two have a

common spectral line at 6000 Hz - six harmonics present in output electrical signal -

ALP algorithm is used - 1000 iterations - no noise

Harmonic (q)

Location (deg)
Average Estimation Error

(deg)

e« <Ao «fc «*,

1 ii 307 0.094 0.012

2 5 137 -0.038 -0.008

49 38 0.094 0.012

4 77 307 0.094 0.012

5 5 137 0.006 -0.328

6 5 137 2.615 -3.84

6 49 38 0.498 2.516
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