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Abstract
The statistical classification of N individuals into G mutually exclusive groups when the 
actual group membership is unknown is common in the social and behavioral sciences. 
The results of such classification methods often have important consequences. Among 
the most common methods of statistical classification are linear discriminant analysis, 
quadratic discriminant analysis, and logistic regression. However, recent developments 
in the statistics literature have brought new and potentially more flexible classification 
models to the forefront. Although these new models are increasingly being used in 
the physical sciences and marketing research, they are still relatively little used in the 
social and behavioral sciences. The purpose of this article is to provide a comparison 
of these modern methods with the classical methods widely used in situations that 
are relevant in the social and behavioral sciences. This study uses a large-scale Monte 
Carlo simulation study for the comparisons, as analytic comparisons are often not 
tractable. Results indicate that classification and regression trees generally produced 
the highest classification accuracy of all techniques tested, though study design 
characteristics such as sample size and model complexity can greatly influence optimal 
choice or effectiveness of statistical classification method.
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Statistical classification of individuals into observed groups is a very common prac-
tice throughout the social, behavioral, and physical sciences (Arabie, Hubert, & De 
Sote, 1996; Keogh, 2005; Zigler & Phillips, 1961). In education and psychology, 
examples abound in which researchers attempt to find statistical models that can be 
used to classify individuals into one of several known categories, such as those based 
on disability status (e.g., Lillvist, 2010; Mammarella, Lucangeli, & Cornoldi, 2010), 
career choice (Russell, 2008), and student preferences regarding mode of instruction 
(Clayton, Blumberg, & Auld, 2010), to name but a few. In all of these cases, the group 
membership is directly observable rather than latent in nature. It should be noted, 
however, that there is growing interest in a range of techniques designed specifically 
for use when group membership cannot be directly observed but rather is latent and 
thus must be inferred using a set of observed measures. The focus of the current study 
was on the case where group membership is observable and on a set of methods that 
can be used in that case. Generally speaking, these methods for the observed group 
context are not applicable to the situation where group membership is latent, and vice 
versa. Nonetheless, both scenarios are very applicable in the behavioral and social 
sciences and worthy of study.

Across these fields, perhaps the most common forms of statistical classification for 
group membership are linear discriminant function analysis (LDA), quadratic dis-
criminant function analysis (QDA), and logistic regression (LR). Recent advances in 
the statistical literature, however, have introduced a set of alternative classification 
techniques with computer software that allow their relatively easy implementation in 
practice. These advances include procedures such as multivariate adaptive regression 
splines (MARS), generalized additive models (GAM), classification and regression 
trees (CART), neural networks (NNET), boosting (BOOST), and mixture discrimi-
nant analysis (MDA), each of which has been used to one degree or another in a vari-
ety of disciplines. These alternative methods of prediction provide a more flexible 
framework for modeling complex data structures and interactions than do the more 
traditional methods of LDA, QDA, and LR. Many of them have been used success-
fully in areas as diverse as business (Do & Grudnitski, 1992; Lee et al., 2006; Nguyen 
& Cripps, 2001; Smith & Mason, 1997; West, Brockett, & Golden, 1997), ecology 
(Moisen & Frescino, 2002; Preatoni et al., 2005), and the medical sciences (Grassi, 
Villani, & Marinoni, 2001; Ture, Kurt, Kurum, & Ozdamar, 2005). Despite their 
increasing use in the literature, there have been few if any published studies empiri-
cally comparing all of these methods with one another and with the more commonly 
used LR and LDA under a common set of conditions using Monte Carlo simulation 
techniques. Indeed, as will be reviewed in more detail below, individual methods have 
been examined or compared with LDA and/or LR typically using only real data, 
though occasionally with simulations. In addition, some of these approaches that we 
will refer to as alternative methods (to LDA and LR) have not been systematically 
studied under known conditions at all, and there has not been a published study (to our 
knowledge) where all of these techniques were compared with one another simultane-
ously under the same set of conditions. Therefore, the purpose of the present study is 
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to use a Monte Carlo simulation to compare the classification accuracy of these alter-
native methods with one another and with the popular LR and LDA techniques. We 
believe that this study would represent the first such comprehensive comparison of 
this entire set of methods and to that end should serve to assist researchers interested 
in group classification but unsure regarding which methods might be optimal under a 
given set of conditions. Following is a brief discussion of each of the alternative meth-
ods under consideration, so that the reader may have a context for comparison if he or 
she is not already familiar with them, followed by a review of prior research in the area 
and a description of the methods used in this study. These are not intended to be thor-
ough reviews of the methods, and the interested reader is provided with relevant refer-
ences that describe each in greater detail. We will begin our discussion of these 
methods with the traditionally most common methods of classification analysis: Dis-
criminant Function Analysis and Logistic Regression.

Discrminant Function Analysis
Discriminant function analysis is a classification method that finds the combination of 
predictor variables so as to maximize the multivariate distance between groups. Based 
on this combination of predictors and a prior probability for group membership, the 
posterior probability of group membership is then computed for each individual in the 
sample, and they are in turn placed in the group for which their posterior probability 
is highest. When the group variances are equal, LDA is used, whereas when group 
variances are unequal, the resulting discriminant function will be quadratic (QDA). 
For further discussion of these methods, the interested reader is encouraged to see 
Hastie, Tibshirani, and Friedman (2001).

Logistic Regression
As with LDA, LR also bases group classification on a linear combination of the pre-
dictor variables. Specifically, LR finds the set of regression coefficients for the 
predictor variables so as to optimally predict the logit (log odds of being in one group 
vs. the other). LR differs from LDA in that it does not assume equal group variances, 
uses the logit as the response in the linear equation, and obtains parameter estimates 
through maximum likelihood estimation rather than using ordinary least squares 
(OLS), as is the case for LDA. For further discussion of LR, see Hastie et al. (2001).

Classification and Regression Trees
CART is based on an iterative decision process in which individuals are repeatedly 
partitioned using a set of predictor variables into ever more homogeneous groups 
based on the outcome variable, which in this study is categorical in nature (see Brei-
man, Friedman, Olshen, & Stone, 1984, for a review). The partitioning of subjects 
continues until a predefined level of homogeneity based on group membership has 
been attained, at which point the CART algorithm stops with individuals grouped into 
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what are known as terminal nodes. The overall goal of CART is to group subjects into 
maximally homogeneous terminal nodes based on the outcome variable (Williams, 
Lee, Fisher, & Dickerman, 1999).

The tree resulting from a CART analysis can be tested using a separate cross-vali-
dation sample of subjects drawn from the same population as the original (training) 
sample used to create the tree. The quality of the final tree is assessed by how accu-
rately it can group members of the cross-validation sample for the outcome variable. 
Predicted group membership is based on which terminal node an individual from the 
cross-validation sample is placed into, based on the predictor splits identified by 
CART. The interested reader is encouraged to read more detailed descriptions of 
CART in Berk (2008) and Hastie et al. (2001).

As with any statistical procedure, care must be taken when using CART. Hothorn, 
Hornik, and Zeileis (2006) note that when selecting predictor variables on which to 
split, CART has a tendency to favor those with more distinct values over variables 
with fewer values. In addition, trees produced by CART can sometimes contain termi-
nal nodes with few individuals or terminal nodes that are very heterogeneous, and can 
overfit the observed data, all of which characterize tree instability (Berk, 2008). In an 
attempt to address such weaknesses, researchers have developed alternatives to CART 
based on the principles outlined above but that construct many trees based on boot-
strap samples from a set of data and then combine the results of the bootstrapped trees. 
Two examples of such approaches are bagging (LeBlanc & Tibshirani, 1996) and ran-
dom forests (Breiman, 2001). Both approaches are based on selecting B samples with 
replacement from the initial sample, constructing B trees, and then averaging the B 
results to obtain a final result. The difference in the two approaches is that for random 
forests, a random sample from the full set of predictors is selected to be used in each 
split, whereas for bagging, all predictors are used at each split. A set of functions 
developed by Buhlmann and Hothorn (2007) for carrying out several tree building 
algorithms is available in the R software package under the PARTY toolbox of func-
tions. To keep the size of the study manageable, and to ensure the comparison of a 
variety of methodological approaches, these methods are not included in this study. 
However, future research focusing particular attention on tree-based methodologies 
should compare the relative predictive accuracy of these variations on the tree build-
ing theme.

Neural Networks
Following is a brief description of the NNET approach to group classification. The 
interested reader is referred to any of several excellent references for a more thorough 
treatment of the method and its various alternatives, particularly as they pertain to the 
social and behavioral sciences (Berk, 2008; Garson, 1998). NNET identifies predic-
tive relationships between an outcome variable, Y, and a set of predictors. More 
specifically, a search algorithm examines various subsets of the predictors as well as 
interactions among them (known as hidden layers), in conjunction with different 
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weights for these model terms, and selects the combination of main effects, interac-
tions, and weights that minimizes the common least squared criterion (Marshall & 
English, 2000). The resulting model typically involves a complex combination of 
main effects and hidden layers coupled with a number of different weight values. 
These model terms are selected so as to minimize the least squares criterion common 
in regression models and may involve very complex combinations of interactions, 
main effects and weights. To reduce the likelihood of finding locally optimal results 
that will not generalize beyond the original (training) sample well, random changes to 
the subset of predictors, not based on model fit, are also made. This method of ascer-
taining fit and adjusting the model weights and included terms based on the difference 
between actual and predicted values of the outcome variable is known as feed-forward 
back-propagation network and is perhaps the most commonly used NNET algorithm 
(Garson, 1998).

Although the NNET approach to prediction has the advantage of being able to 
identify complex interactions of the predictors that might be associated with group 
membership, it can also produce models that overfit the training data, thus limiting the 
generalizability of the resulting model (Schumacher, Robner, & Vach, 1996). To com-
bat this problem of overfitting, most NNET models apply what is called decay, which 
penalizes (i.e., reduces) the largest weights from the original NNET analysis. Such 
penalties essentially assume that very large weights in a model are at least partially 
driven by random variation unique to the training data, which must be ameliorated to 
some extent (Garson, 1998). Overfitting of the training data is typically identified 
through the use of cross-validation, in much the same way that CART models are 
tested, as described above.

Multivariate Adaptive Regression Splines
MARS, like NNET, is an extension of standard linear models where nonlinear rela-
tionships and interactions involving the predictor variables are modeled automatically 
through the use of smoothing splines (Simonoff, 1996). The resulting basis function 
(sometimes known as a hinge function) is piecewise linear and has change points, or 
knots, at the location where the relationship between a predictor and the outcome vari-
able, Y, changes direction (Hastie et al., 2001). In the case of a dichotomous categorical 
outcome variable such as that used in this study, Y takes the form of the familiar logit 
function, ln(pi/[1 − pi]), where pi is the sample estimate of the probability of an indi-
vidual being in group i.

MARS first estimates a predictive model using a forward stepwise methodology, 
beginning with the inclusion only of β0 and then proceeding to add new basis func-
tions to the model at each step, so as to maximize the reduction in the sum of squared 
residuals. At each step, the newly added term will include a term already in the model 
multiplied by the new hinge function, which may itself include both main effects and 
interactions of the predictor variables. When deciding which new basis function to add 
to the existing model, MARS searches across all existing terms currently in the model, 
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all the independent variables included in the analysis, and all possible values for each 
of the independent variables to select the knot for the new basis function. These terms 
will be selected automatically by the algorithm, based on the greatest reduction in the 
sum of squared residuals. Model building continues in this stepwise fashion until the 
change in sum of squared residuals becomes very small when a new term is entered or 
until a maximum model size (set by the user) is reached. Finally, to deal with the 
potential problem of the model overfitting the training data, a stepwise backward dele-
tion procedure is used, in which the least important (from a statistical sense) term is 
removed at each step and the generalized cross-validation criterion is minimized to 
identify the optimal model.

The primary advantage of the MARS model–building strategy is its ability to work 
well locally in the function space (Hastie et al., 2001). Specifically, the use of the basis 
functions described above allows for the modeling of interactions only in the range of 
data for which two such functions have a nonzero value. Thus, unlike with the more 
general polynomial terms commonly used in regression, the entire data space is not 
required to take a common linear functional form.

Generalized Additive Models
The GAM approach to prediction involves the use of models based on smoothing 
functions, such as cubic splines and kernel smoothers, which are used to link a set of 
predictor variables to a response, Y. In the case of a dichotomous outcome variable, 
the actual response is the logit. The smoothing functions are selected for each predic-
tor so as to minimize a penalized sum of squares function. The most common 
smoothing function used with GAM, and the one used in this study, is the cubic spline 
(Simonoff, 1996). To minimize the potential problem of overfitting the model to the 
training data, it is recommended that the number of smoothing parameters be kept 
relatively small and that cross-validation be used to ensure that the resulting model is 
generalizable to other samples from the target population (Wood, 2006).

Boosting
Boosting is a machine-learning technique based on the principle that combining a 
large number of weak predictor variables can result in a single very accurate predic-
tion (Freund & Schapire, 1997). The AdaBoost algorithm was designed for classifying 
individual cases into known groups based on a set of predictor variables uses the fol-
lowing steps (Berk, 2008):

1.  A regression equation using the set of predictors is fit to the original response 
variable.

2.  The residuals for this model are calculated.
3.  The original set of predictors is used to predict the residuals obtained in  

Step 2.
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4.  The fitted residual values obtained in Step 3 are used to update the fitted 
value of the response variable.

5.  Steps 1 through 4 are repeated until the change in the fitted value of the out-
come is below a predefined threshold value, in which case convergence to a 
solution has been reached.

A variety of approaches for determining at which iteration to stop the boosting 
algorithm have been investigated, with the current recommendation being to select 
the iteration which minimizes the value for Akaike’s information criterion (Buhlmann 
& Hothorn, 2007). In practice, a researcher may examine a large number of m 
iterations and then review the resultant Akaike’s information criterion values, 
selecting the model that corresponds with the smallest of these, which was the 
approach used in the current study.

Boosting will typically lead to complex models involving a large number of resid-
ual functions as the number of iterations increases. Therefore, it is generally recom-
mended that the original regression model used to predict Y be fairly simple, consisting 
of a relatively small number of predictor terms and few if any third-order or higher 
interactions (Buhlmann & Yu, 2003). In addition, it should be noted that although 
linear regression is quite often the model to which the boosting algorithm is applied, it 
is entirely possible to use smoothing splines or other functions to relate the response 
variable to the predictors and then apply the boosting algorithm, thus accounting for 
potential nonlinearity in the data structure without introducing a large number of terms 
to the model (Buhlmann & Hothorn, 2007).

Mixture Discriminant Analysis
MDA is a variant of discriminant analysis, in which classes are not modeled as Gauss-
ian distributions, as is common practice for LDA and QDA, but rather classes are 
modeled as a mixture of Gaussian distributions (Hastie & Tibshirani, 1996). This 
model represents each observed group by its centroid (like LDA and QDA) but also 
allows latent classes to exist within each group. In other words, existing groups (e.g., 
men and women) can themselves contain unobserved groups of individuals. Given its 
use of mixtures, MDA is applicable whether covariances are equal (as in LDA) or 
unequal (as in QDA; Hastie & Tibshirani, 1996). MDA typically uses the expectation 
maximization algorithm (Dempster, Laird, & Rubin, 1977) to estimate the model 
parameters including subgroup means, the common variance, the within-group mixing 
proportions, and the between-group mixing proportions—all of which are obtained 
from the training data. As with LDA, group classification in MDA is based on the 
discriminant function.

Previous Research
Research into optimal performance for categorical classification analyses is not new. 
In addition to a small number of published simulation studies (Buhlmann & Yu, 2003; 
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Kuhnert, Mengersen, & Tesar, 2003; Ripley, 1994; Tibshirani & LeBlanc, 1992), a 
number of comparative studies of categorical classification already exist in areas such 
as marketing (Curram & Mingers, 1994; Hart, 1992; West et al., 1997; Yoon, Swales, 
& Margavio, 1993) and medicine (Grassi et al., 2001; Reibnegger, Weiss, Werner-
Felmayer, Judmaier, & Wachter, 1991) as well as various applications of the natural 
sciences (Bailly, Arnaud, & Puech, 2007; Liu & Chun, 2009; Preatoni et al., 2005; 
Ture et al., 2005).

The vast majority of existing literature examines the overall percentage of correctly 
classified cases by each statistical method for a variety of existing data sets. Results of 
these previous studies using real-world data sets demonstrate conflicting results. For 
example, Ripley (1994) and Dudoit, Fridlyand, and Speed (2002) found that tradi-
tional methods such as LDA, QDA, and LR performed comparably or better to some 
of the newer classification techniques such as CART but not as well as NNET or 
MARS when used on a variety of real-world and synthetic data sets. Preatoni et al. 
(2005) also reported that LDA outperformed CART in terms of classification accu-
racy; however, in contrast to the preceding studies, they also found that LDA provided 
more accurate classification results than did NNET. In contrast, Ture et al. (2005) and 
Yoon et al. (1993) reported that NNET produce higher classification accuracy than 
traditional methods such as LR and LDA. Ture et al. (2005) found that NNET outper-
formed CART and MARS as well. Still other results indicated that CART provided the 
highest classification accuracy when compared with LDA and NNET (Grassi et al., 
2001).

In addition to these studies involving single data sets, a number of simulation stud-
ies investigating the performance of various classification methods have also been 
undertaken. For instance, LDA (Curram & Mingers, 1994) and LR (West et al., 1997) 
were found to perform as well as NNET when groups were linearly separable. How-
ever, in the presence of nonlinear relationships between predictors and group member-
ship, the classification accuracy of LR and LDA suffered (Curram & Mingers, 1994; 
West et al., 1997). Other simulations have suggested that NNET (Curram & Mingers, 
1994; Reibnegger et al., 1991; West et al., 1997; Yoon et al., 1993) and CART (Grassi 
et al., 2001) yield higher classification accuracy than LDA.

Prior simulation work has also found that certain data and distribution characteris-
tics have an impact on classification accuracy. Although the majority of these simula-
tion studies were performed on traditional methods of classification (LDA, QDA, LR, 
or cluster analysis), it is reasonable to hypothesize that these same characteristics may 
also affect some or all of the newer classification methods as well. In particular, data 
characteristics such as sample size (Holden & Kelley, 2010), group size ratio (Holden 
& Kelley, 2010; Lei & Koehly, 2003), and effect size (Finch & Schneider, 2006, 2007; 
Harrell & Lee, 1985; Holden & Kelley, 2010; Lei & Koehly 2003) can affect classifi-
cation accuracy of some techniques. In addition, assumption violations (i.e., normal-
ity, homogeneity of variances) can lower the classification accuracy of LDA and LR 
(Blashfield, 1976; deCraen, Commandeur, Frank, & Heiser, 2006; Finch & Schneider, 
2006, 2007; Lei & Koehly, 2003; Rausch & Kelley, 2009). Finally, error perturbation 
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(Baker, 1974; Breckenridge, 2000), number of true classes in the population (Finch & 
Schneider, 2007), and the number and type of predictors (Finch & Schneider, 2006, 
2007; Krzanowski, 1976; Rausch & Kelley, 2009) can each affect classification accu-
racy of some techniques.

Current Study
As can be seen from the previous section, examination of the literature reveals a fail-
ure to reach consensus regarding optimal classification method choice. This is likely 
because of the lack of comprehensive comparison studies and relative paucity of simu-
lation studies. There are also few studies comparing classification techniques under 
varying degrees of model complexity, particularly involving nonlinear relationships. 
Thus, the purpose for the present study was to provide a comprehensive comparison 
of traditional and alternative categorical classification methods using a Monte Carlo 
simulation study in order to carefully test these methods under a variety of known 
conditions that are based on those encountered in actual behavioral and social science 
data analyses. These conditions included sample characteristics (e.g., sample size and 
group size ratio) as well as varying complexity of the relationship between the predic-
tors and the outcome variable. The study focused only on supervised classification 
techniques (classification methods that use training data sets) including LDA, QDA, 
LR, CART, NNET, GAM, MARS, BOOST, and MDA to provide a fair comparison 
between techniques.

In addition, it should be noted that although most prior studies have demonstrated 
that LR and LDA perform similarly (though not identically) in terms of classification 
accuracy in the two groups case, both were included in the current study. The reason 
for including both methods was that they have not been compared extensively when 
the underlying model is nonlinear, which is the focus of this research. Thus, one ques-
tion of interest was whether there are any differences in the relative accuracy of these 
commonly used methods of classification when there are nonlinear terms in the model. 
Because both LDA and LR are based on linear models unless interactions are pur-
posely introduced into them, we do not hypothesize great differences in their perfor-
mance. Nonetheless, whether this hypothesis is warranted remains an open question, 
given the relative paucity of studies comparing them in the nonlinear case. Finally, 
after the simulation study results, an analysis of a real-world data using these tech-
niques will be presented to demonstrate the utility of these methods (especially the 
nontraditional techniques) for real-world applications.

Method
Data Generation

Generation of simulated data and classification analyses were conducted with the R 
statistical software program (R Development Core Team, 2010). Data were generated 
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to meet the conditions listed in Table 1. Simulated data consisted of a single two-group 
classification (outcome) variable and four continuous predictor variables with the cor-
relation matrix among the variables appearing in Table 1. These values are based on 
those reported in Waller and Jones (2009) for the Wechsler Adult Intelligence Scale—
Third Edition subscales, and all the manipulated variables (described below) were 
fully crossed for a total of 1,296 simulation conditions. A total of 1,000 iterations for 
each simulation condition were performed. For each method, tuning parameters used 
were those recommended in the literature discussed above.

Manipulated Study Variables
To address the research questions for the study, a number of variables were manipu-
lated. Group membership was predicted using each of the following methods: LR, 
LDA, QDA, CART, NNET, MARS, GAM, BOOST, and MDA. In addition to type of 
classification model used, the impact of four other variables was examined: sample 
size, effect size, ratio of group sizes, and model complexity. Effect size was defined as 
the standardized mean difference (commonly referred to as Cohen’s d) between the 
groups for each predictor variable. These values were set at 0.2, 0.5, 0.8, and 1.6, with 
the same values for each predictor. Cohen (1988) has termed effect size values of 0.2, 
0.5, and 0.8 as small, medium, and large. Group size ratio had three conditions: (1) 
equal group sizes (50:50), (2) 75:25, and (3) 90:10. Model complexity refers to the 
nature of the relationship between the predictor variables and the outcome. Three 
levels of model complexity (appearing below) were tested, which we termed linear, 

Table 1. Simulation Conditions
Variable Levels
Sample size 100, 200, 500, 1,000
Effect size 0.2, 0.5, 0.8, 1.6
Group size ratio 50:50, 75:25, 90:10
Model complexity Linear, simple, complex
Prediction method LDA, QDA, LR, CART, MARS, GAM, 

NNET, BOOST, MDA
Correlation Matrix for Simulated Predictor Variables

X1 X2 X3 X4

X1 1 .76 .58 .43
X2 .76 1 .57 .36
X3 .58 .57 1 .45
X4 .43 .36 .45 1

Note. LDA = linear discriminant analysis; QDA = quadratic discriminant analysis; LR = logistic regression; 
CART = classification and regression trees; MARS = multivariate adaptive regression splines; GAM = 
generalized additive models; NNET = neural networks; BOOST = boosting; MDA = mixture discriminant 
analysis.
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simple, and complex. In the linear condition (1), the four predictor variables were lin-
early related to the dichotomous outcome variable without any interactions. In the 
simple interaction condition (2), the predictor variables were related to the dichoto-
mous outcome variable via a simple interaction. In the complex condition (3), the 
predictor variables were related to the dichotomous variable via several simple and 
complex interactions.

1. logit(y) = X1 + X2 + X3 + X4.
2. logit(y) = X1 + X2 + X3 + X4 + X1 * X2.
3. logit(y) = X1 + X2 + X3 + X4 + X1 * X2 + X 23  + X 34.

Analyses
The outcome variables of interest in this study were the overall percentage of misclas-
sified cases as well as the percentage of misclassified cases from the smaller and larger 
groups, respectively, for a cross-validation sample drawn from the same population as 
the training data. To ascertain which of the manipulated variables had a significant 
impact on the misclassification rates, a factorial analysis of variance (ANOVA) was 
used. Average results across the 1,000 iterations are reported. Rates of nonconver-
gence for the prediction methods were very low (less than five replications). When 
nonconvergence did occur, another replication was run, so that for each combination 
of conditions, a total of 1,000 replications were obtained.

Results
Overall Misclassification

To identify the significant interactions and main effects for the simulation conditions, 
a factorial ANOVA was performed that tested all four-way, three-way, and two-way 
interactions and the main effects. Two four-way interactions were found to be statisti-
cally significant: Classification method × Model complexity × Effect size × Group 
ratio (p < .01, η2 = .516) and Classification method × Effect size × Group size ratio × 
Sample size (p < .01, η2 = .474). As these were the highest level interactions and all 
other interactions and main effects were subsumed in them, no further interactions or 
main effects will be discussed. Also, it should be mentioned that the N = 200 condition 
is omitted from all the tables. For all four levels of sample size, the same sample size 
patterns were observed, and we decided that to keep the tables more readily manage-
able, the N = 200 condition will not be included in the results. The full set of results 
are available from the first author on request. The technique demonstrating the most 
accurate classification for each condition is highlighted in boldface in each table.

Table 2 contains the misclassification percentages for the classification techniques 
by model complexity, group ratio, and effect size. Several immediate observations can 
be made. Consistent with previous findings, as effect size and group size ratio 
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increased, the overall percentage of misclassified cases decreased (Breckenridge, 
2000; deCraen et al., 2006; Finch & Schneider, 2006; Holden & Kelley, 2010; Lei & 
Koehly, 2003). The effect of model complexity differed depending on the classifica-
tion method used. In general, for more complex models the classification methods 
made fewer misclassification errors. This result was particularly notable for CART, 
MARS, GAM, NNET, and MDA. Across the board, the fewest misclassification errors 
were made by CART, followed by GAM and NNET, whereas the most errors were 
made by LDA, QDA, LR, and BOOST. MDA and MARS yielded the largest gains in 
accuracy as model complexity increases. Also of note is that MDA consistently dem-
onstrated very high classification accuracy at very high effect sizes (d = 1.6).

Table 3 contains the misclassification percentages by classification technique, 
group size ratio, sample size, and effect size. It is again evident that the percentage of 
misclassified cases decreases as effect size and group size ratio increased. In addition, 
across the simulated conditions, CART had the lowest levels of misclassification, fol-
lowed by NNET and GAM, whereas LDA, QDA, and LR continued to show the high-
est misclassification rates. It should be noted that CART had markedly lower 
misclassification rates at N = 100 than any of the other approaches, particularly in the 
equal group size ratio condition. In contrast, for the largest sample size condition, the 
methods all produced much more similar rates of misclassification across group size 
ratios, with the exception of MDA, which tended to yield higher rates, particularly for 
the unequal–N conditions.

Looking at the effect of sample size, however, reveals interesting differences 
between the classification techniques. For LDA and QDA, as sample size increased, 
the percentage of misclassified cases decreased, a result already documented by many 
studies (Holden & Kelley, 2010; Lei & Koehly, 2003). However, for CART, GAM, 
NNET, and MDA, larger sample sizes were associated with higher percentages of 
misclassified cases. The only exception to this result is that for MDA, when sample 
sizes are very large (N = 1,000) the misclassification percentage decreases instead of 
increases.

In summary, when looking at overall misclassification rates, larger effect sizes, 
unequal group size ratios, and greater model complexity tended to decrease the num-
ber of misclassification errors. In addition, larger sample sizes increased the accuracy 
of some classification techniques (LDA, QDA) but decreased the accuracy of others 
(CART, GAM, NNET, MDA). Finally, across the vast majority of study conditions, 
CART demonstrated the highest classification accuracy, whereas LDA, QDA, LR, and 
BOOST demonstrated the lowest.

Smaller and Larger Group Misclassification
In addition to looking at the overall misclassification rate, the results were also exam-
ined further by the percentage misclassified for each group. As for the overall 
misclassification rates, a factorial ANOVA was run testing all four-way, three-way, 
two-way interactions, and main effects for both small-group misclassification and 
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large-group misclassification, separately, to identify significant effects. The same sig-
nificant four-way interaction was identified for both groups: Classification method × 
Model complexity × Effect size × Group size ratio (p < .01, η2 = .570 for small-group, 
η2 = .604 for large-group misclassification). A significant two-way interaction was 
also found between sample size and classification method (p < .01, η2 = .503 for 
small-group; p < .05, η2 = .145 for large-group misclassification) was also found. The 
remainder of this article will focus on these two results.

Tables 4 and 5 contain the smaller and larger group misclassification rates by clas-
sification method, model complexity, effect size, and group size ratio. It is immedi-
ately evident by looking at Tables 4 and 5 that for the majority of methods, when 
group sizes were unequal, the classification techniques do not misclassify equal num-
bers of cases from the smaller and larger groups. In particular, all the studied methods, 
with the exception of MDA, demonstrated a classification bias in favor of the larger 
group. In other words, they misclassified a larger percentage of cases from the smaller 
group as belonging to the larger group than the larger group as belonging to the smaller 
group. This pattern became more pronounced as the effect size and discrepancy 
between group sizes increased. Worthy of note is the result that for unequal groups 
with low to moderate effect sizes (0.2 and 0.5), the majority of models in the linear 
condition misclassified more than 70% of the cases in the smaller group. A more strik-
ing pattern is seen for the simple interaction condition with very discrepant group 
sizes (90:10), in which most methods had misclassification rates more than 90%, 
except for CART, NNET, and MDA. As the models increased in complexity, both the 
smaller and larger group misclassification rates dropped, which is consistent with the 
previous finding that the overall misclassification rate decreases as model complexity 
increases.

It is evident that small- and large-group misclassification rates were very much 
dependent on the group size ratio and model complexity of the study. Regarding large-
group misclassification, when group sizes were equal and the model was linear or 
simple, CART demonstrated the most accuracy in classifying individuals into the 
larger group. When group sizes were equal and the model was complex, CART, 
MARS, GAM, and NNET were the most accurate. When group sizes were unequal, 
however, large-group misclassification reduced sharply for all methods, resulting in 
perfect or near perfect classification of the larger group for all methods except MDA.

With regard to small-group misclassification, across the board MDA, CART, and 
GAM most accurately classified the cases in the smaller group. It should be noted, 
however, that when group sizes were unequal and effect sizes were small, the majority 
of methods (with the exception of CART and MDA) misclassified nearly 100% of the 
cases from the smaller group. As effect size and model complexity increased, how-
ever, misclassification of the smaller group declined. Indeed, for an effect size value 
of 1.6, misclassification rates for all of the methods except BOOST were less than 
40%, with several less than 10%, even in the most unequal-groups case.

MDA displayed a different pattern from the other models tested in this study. MDA 
was the only method for which the smaller and larger group misclassification rates 
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remained relatively equal regardless of the ratio of group sizes. MDA misclassified a 
slightly higher percentage of cases from the smaller group; however, the values for 
smaller and larger group misclassification were generally within a percentage of one 
another. In comparison with the other methods, MDA displayed higher rates of mis-
classification for the larger group, except for an effect size of 1.6. On the other hand, 
it consistently outperformed the other techniques with respect to the smaller group.

Table 6 contains the small- and large-group misclassification percentages by sam-
ple size and method. The bias toward small-group misclassification for all methods 
except MDA can be seen very clearly. The tendency for MDA to equally misclassify 
cases to the smaller and larger group is also clearly apparent. The effect of sample size 
differed depending on the method of classification. For LDA and QDA, larger sample 
size slightly decreased the percentage of misclassified cases. On the other hand, for 
LR, CART, MARS, GAM, NNET, BOOST, and MDA, increasing sample size 
increased the percentage of misclassified cases. It should be noted that this pattern was 
most evident for the smaller group, whereas misclassification percentages for the 
larger group varied relatively little across sample sizes and were generally low.

In an effort to summarize the results of this study, refer to Figures 1 through 3, 
which display the misclassification rates for the traditional LDA approach to predic-
tion with that of CART, which had the lowest such rates for many conditions studied 
here, and of MDA, which generally had the lowest misclassification rates for the 
smaller group. Results in Figure 1 indicate that the overall misclassification percent-
age is lower for CART than LDA across nearly all the simulated conditions. However, 
the difference in performance is much more noticeable when the underlying model has 
interactions present (simple or complex structure) and when the groups were of equal 
size. In addition, MDA had the highest misclassification percentages of the three 
methods in the linear case but comparable percentages to those of CART in the com-
plex condition, particularly when the groups were of equal size. In addition, MDA was 
the most affected by the effect size. Figures 2 and 3 include misclassification results 
for the large and small groups respectively. For the large group, misclassification per-
centages were nearly identical for CARD and LDA, and were generally less than 10%, 
whereas for MDA, they were much larger, particularly for the smaller sample size 
condition. On the other hand, in the smaller group case the percent misclassified for 
CART was lower than that of LDA, which was most notable for the models containing 
interactions and when the group size ratio was 90:10. In addition, neither CART nor 
LDA was as accurate for the smaller group as was MDA, particularly for the 90:10 
group size ratio.

Real-Data Analysis
To demonstrate their prediction accuracy in an applied social science context, the 
methods examined in this study were applied to a data set described in Tabachnick and 
Fidell (2007, p. 277). These data include a categorical variable indicating the level of 
masculinity (high and low) based on scores on the Bem Sex Role Inventory, along 
with several continuous scale scores including attitudes toward the role of women, 
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Figure 1. Overall misclassification percentages for LDA, CART, and MDA by effect size, 
sample size ratio, and type of underlying model
Note. LDA = linear discriminant analysis; CART = classification and regression trees; MDA = mixture 
discriminant analysis.

self-esteem, locus of control, neuroticism–stability index, introversion–extroversion, 
and socioeconomic level. The sample consisted of 369 females who participated in the 
study in 1975. This data set was selected for this example both because it is available 
to anyone interested in using it to gain experience with these methods by replicating 
these analyses and because it has a social science context.

For this application, continuous scale scores were used to predict category on the 
masculinity variable (high or low) for each of the prediction models studied here. A 
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Figure 2. Large-group misclassification percentages for LDA, CART, and MDA by effect size, 
sample size ratio, and type of underlying model
Note. LDA = linear discriminant analysis; CART = classification and regression trees; MDA = mixture 
discriminant analysis.

randomly selected training sample of 269 from the full data set was used to develop 
the prediction models for each method, which were then applied to a cross-validation 
sample made up of the 100 individuals not included in the training sample. Rates of 
overall and group misclassification for each technique appear in Table 7. In general, 
these results are similar to those reported for the simulation study. CART and GAM 
provided the most accurate predictions overall, whereas MDA and CART were most 
accurate for the smaller group. LDA and QDA performed very similarly, with LR 
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Figure 3. Small-group misclassification percentages for LDA, CART, and MDA by effect size, 
sample size ratio, and type of underlying model
Note. LDA = linear discriminant analysis; CART = classification and regression trees; MDA = mixture 
discriminant analysis.

predicting with slightly greater accuracy. BOOST was the least accurate method, 
which was also reported for the simulation study.

Discussion
The results of this study have several implications for researchers interested in two-
group classification. Although literature in the social and behavioral sciences on 
classification remains dominated by traditional methods such as LDA and LR, it 
appears that several of the alternative methods investigated here might be more 
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Table 7. Misclassification Rate for Masculinity by Prediction Method
Method Total (N = 100) Large-Group (N = 66) Small-Group (N = 34)
LDA .26 .13 .49
QDA .27 .17 .47
LR .23 .12 .46
CART .20 .13 .34
GAM .20 .09 .41
MARS .24 .12 .48
NNET .29 .16 .54
BOOST .32 .01 .93
MDA .28 .26 .32

Note. LDA = linear discriminant analysis; QDA = quadratic discriminant analysis; LR = logistic regression; 
CART = classification and regression trees; GAM = generalized additive models; MARS = multivariate 
adaptive regression splines; NNET = neural networks; BOOST = boosting; MDA = mixture discriminant 
analysis.

appropriate in many situations. At the same time, there are occasions when none of 
these models will be particularly successful in terms of correctly classifying 
individuals.

The existing literature failed to reach consensus regarding optimal model choice 
for classification accuracy. Results of the present study found that CART consistently 
produced the greatest accuracy across the widest array of conditions. CART produced 
the greatest accuracy when interactions were present in the data, and it was also among 
the most accurate methods in the case of strictly linear population models. Although 
some of the other approaches (e.g., GAM, NNET, MARS, MDA) provided compara-
ble or superior accuracy to LDA, QDA, and LR in certain specific cases, in other 
instances they were not more accurate than these traditional tools. On the other hand, 
CART was typically the best, or among the best, performer regardless of sample size, 
group size ratio, effect size, and type of model and virtually always provided more 
accurate predictions than LDA, QDA, or LR.

Another clear result was that the linear methods, BOOST, LDA, QDA, and LR 
consistently had difficulty in classifying individuals when the simulated models con-
tained interactions. The only exception was for the 90:10 group ratio condition in 
which case all methods were fairly comparable except for MDA. Thus, a researcher 
interested in group prediction may want to consider carefully whether to use these 
more traditional methods when it may be that alternative techniques, particularly 
CART, GAM, MARS, and NNET, may prove superior. This superiority was particu-
larly notable for the most complex models. Also considering that boosting has rarely 
been compared with other classification methods, its poor performance is of consider-
able note.

As has been shown in previous research (e.g., Finch & Schneider, 2007; Holden & 
Kelley, 2010), when groups are of unequal size, prediction was more accurate for the 
larger group for all the methods studied here, except MDA. MDA provided more 
accurate predictions for the smaller group than any of the other models and indeed was 
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generally as accurate for this group as for the larger. Although it did not perform as 
well in this regard as MDA, CART did have lower misclassification rates for the 
smaller group in the 75:25 and 90:10 group size ratio conditions than did the other 
techniques. Considering that MDA is based on a linear model like LDA and LR, it is 
noteworthy that it demonstrated such strong performance when classifying the smaller 
group even in the nonlinear condition, especially noting that it is the only linear model 
to demonstrate a classification bias in favor of the smaller group.

Implications for Practice
Given the results described above, several implications for categorical prediction in 
practice seem to emerge. First of all, researchers should consider using an alternative 
to the traditional discriminant function analysis or LR, even when they know or 
strongly suspect that the relationship between group membership and the predictors is 
linear. Second, when this relationship is more complex, methods such as CART, GAM, 
or NNET would seem most appropriate. Third, in those cases where the groups are of 
unequal size in the population and there is particular interest in correctly identifying 
members of the smaller group, researchers should consider using MDA. Finally, when 
the degree of group separation is quite large (effect size values in excess of 0.8), the 
prediction methodology used may not matter a great deal, as they will all provide 
fairly accurate results.

Although the results of this study generally support the use of one or more of the 
alternative prediction methods, they are not without some drawbacks. Perhaps fore-
most of these is that they are typically not automatic to use and require some experi-
ence to obtain optimum results. Methods such as NNET, GAM, and MARS all require 
the user to decide on the relative degree of model complexity that is appropriate. 
CART analysis typically involves the creation of an initial tree, followed by a win-
nowing of its complexity in a process known as pruning. In short, all these methods 
require an investment of time beyond that required for the more traditional approaches. 
A second drawback to these alternative prediction methods is that, with the exception 
of CART, they do not typically provide the user with useful information regarding the 
relative importance of predictors in group separation or with an easily digested equa-
tion for this purpose. Finally, several of these methods are available only in special-
ized software such as R and not the more commonly used SPSS or SAS. Although this 
may not represent a tremendous problem for many researchers, it does require users to 
become familiar with a new computing environment.

Directions for Future Research
This study represents a first investigation into the use of these alternative methods of 
prediction in the social sciences, and as such further work extending it needs to be 
done. For example, the nonlinear models associated with group membership used here 
are just two of a great many that could be used. Thus, future studies need to expand the 
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types of such population models that are examined. In this regard, future studies 
should also examine the impact of model misspecification on the performance of these 
methods (e.g., having a population model that takes the form Y = X1 + X2, but where 
the sample model is Y = X1 + X2 + X3 + X4). In addition, the settings for the alternatives 
used here were those that are recommended in the general literature. However, in 
practice researchers typically make adjustments to the various tuning parameters and 
prune CART trees before arriving at a final model. Therefore, a next step in this line 
of research would be to investigate how results change when such adjustments are 
made.

This study also limited classification to the two-group case. However, not surpris-
ingly, classification becomes increasingly difficult as the number of groups increases. 
Therefore further research into the behavior of these models when multiple groups are 
present is warranted. On a related note, classification also becomes increasingly com-
plex when the accuracy of the observed data is in question. Each of the methods 
described in this study would be considered to be supervised classification methods—
that is, methods that rely on knowledge of true-group classification. However, when 
the accuracy of the training data is in question, the accuracy of supervised classifica-
tion methods is debatable. Authors have previously discussed the accuracy of classifi-
cation with misclassified training data for discriminant function methods and LR 
(Chhikara & McKeon, 1984; Grayson, 1987; Holden & Kelley, 2010; Lachenbruch, 
1966, 1974, 1979; Lei & Koehly, 2003; McLachlan, 1972); however, the topic of 
training data misclassification has yet to be studied for these newer classification 
methods. The results of the current study indicate that alternative methods of classifi-
cation, particularly CART, may provide better classification accuracy, especially for 
complex models. Thus, it would also be of interest to discover if these methods also 
provide higher accuracy under circumstances of misclassified training data.
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