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Abstract 

The methods “Rank” and “Fooling Set” for proving lower bounds on the deterministic com- 
munication complexity of Boolean functions are compared. The main results are as follows. 

(i) For almost all Boolean functions of 2n variables the Rank method provides the lower 
bound n on communication complexity, whereas the Fooling Set method provides only the lower 
bound d(n) < log, n+log, 10. A specific sequence {fin},OO=, of Boolean functions, where f;, has 
2n variables, is constructed such that the Rank method provides exponentially higher lower 
bounds for fz,, than the Fooling Set method. 

(ii) A specific sequence {/z~~}Z, of Boolean functions is constructed such that the Fooling 
Set method provides a lower bound of n for hzn, whereas the Rank method provides only 

(log, 3)/2 n M 0.79. n as a lower bound. 
(iii) It is proved that lower bounds obtained by the Fooling Set method are better by at most 

a factor of two compared with lower bounds obtained by the Rank method. 
These three results together solve the last problem about the comparison of lower bound methods 
on communication complexity left open in Aho et al. (1983). 

Finally, it is shown that an extension of the Fooling Set method provides lower bounds that 
are tight (up to a polynomial) for all Boolean functions. 

1. Introduction and definitions 

Communication complexity of two-party protocols, as introduced in [ 1, 151, is one of 

the most investigated complexity measures (see, for instance, surveys by Lovkz [l l] 

or Lengauer [9]), because it is closely related to fundamental complexity measures 

of several basic parallel and sequential computational models (e.g., Boolean circuits, 

* Corresponding author. 

’ Supported in part by DFG Grant Di 41212-l. 
2 Supported in part by SAV Grant No. 2/1138/94 of the Computer Science Institute of the Slovac Academy 

of Sciences. 

3 Supported in part by NSF Grant CCR-9114545. 

0304-3975/96/$15.00 @ 1996-Elsevier Science B.V. All rights reserved 

PII SO304-3975(96)00062-X 



40 M. Dietzfelbinger et al. I Theoretical Computer Science 168 (1996) 39-51 

VLSI circuits, branching programs, Turing machines, etc.). Here, we consider the stan- 

dard model of deterministic two-party protocols computing a Boolean function f of 2n 

variables xi, x2 , . . . ,x2,, as follows. The computing model consists of two computers. At 

the beginning the “first” computer obtains the actual values c11, ~2,. . . , a, of the variables 

xi ,x2,. . . ,x,, and the “second” computer obtains the values a,+~, . . . , CQ,, of the variables 

J&+1> . . . ,x2,,. To compute the value f (q, a~, . . . , q,,) the computers may exchange sev- 

eral binary messages. The number of bits exchanged is the communication complexity 

of the two-party protocol on the input ~11, ~2,. . . , ~(2~. The communication complexity 

of the two-party protocol is the maximum over all CI E (0, 1}2n. The communication 

complexity cc(f) of f is the minimum over the communication complexities of all 

protocols computing f (for a formal definition see [ 1, 151). 

The communication complexity cc(f) of a Boolean function f is mainly used as 

a method for proving lower bounds on complexity measures concerning the computa- 

tional models mentioned above. Thus, the main effort in the study of communication 

complexity is devoted to the development of methods for proving lower bounds on 

cc(f) for concrete functions f. The three basic lower-bound proof methods used are 

“Tiling” [ 161, “Rank” [ 121, and “Fooling Set” [2]. Let t( f ), r( f ), and fs(f) denote 

the lower bounds provided by the Tiling, Rank, and Fooling Set method, respectively. 

Aho et al. [2] first dealt with a comparison of cc(f) and the lower bounds provided 

by the methods “Tiling”, “Rank”, and “Fooling Set”. They showed the following. 

(i) The tiling method always provides the highest lower bounds because 

l for every f, cc(f) and the lower bound on cc(f) provided by the tiling 

method are polynomially related; namely t(f) - 1 d cc(f) <(t(f) + 1)2, and 

l r(f)< t(f) and fs(f)B t(f) for every Boolean function f. 

(ii) For any sufficiently large n, there exists a Boolean function fzn of 2n variables 

such that cc(f&) = n and fs(fzn) = O(log, n), i.e., in some cases the Fooling Set 

method can be very weak. 

Two main problems left open in [2, 1 I] are the following: 

(1) Does there exist a sequence of Boolean functions (h2,)gi such that the gap 

between cc(h2,) and r(hzn) is exponential? (The existence of such a sequence of func- 

tions was shown in [2] for a much weaker version of the Rank method than the general 

version considered in this paper.) 

(2) What is the relation between the methods “Rank” and “Fooling Set”? 

The aim of this paper is to deal with the second open problem and to consider exten- 

sions of the Fooling Set method. This is an important task since one usually applies 

the Rank method and the Fooling Set method to obtain lower bounds on communi- 

cation complexity, whereas the Tiling method, which is the best one theoretically, is 

used very rarely. The reason is that lower bounds for r(f) and fs( f) usually are easier 

to obtain than for t(f ). More precisely, a lower bound for r(f) for a function f is 

obtained by computing the rank (or a lower bound on the rank) of a given matrix, 

and a lower bound for fs(f) is obtained by constructing a set of inputs with some 

special properties. On the other hand, the tiling method requires solving a nontrivial 

optimization problem (a minimal cover of the l’s of a large matrix by disjoint 
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l-monochromatic submatrices). The extension of the Fooling Set method considered 

here is also based on constructing (or searching for the existence of) a set of inputs 

with some special properties. We prove that the extended Fooling Set method pro- 

vides lower bounds polynomially close to cc(f). This is the first “constructive” lower 

bound method (searching for an object with some given properties) that guarantees 

such close lower bounds for deterministic communication complexity. It is conjectured 

that the Rank method shares this property. Recently, it has been shown in [14] that 

the rank lower bound r(f) may differ from cc(f) by a nonconstant factor. Still, the 

conjecture remains open. 

The paper is organized as follows. In the next two subsections we present our results. 

Section 2 provides the proofs required for a comparison of the Fooling Set and Rank 

methods, and in Section 3 we prove that the extended Fooling Set method provides 

lower bounds polynomially close to cc(f). In the conclusion section we discuss some 

remaining open problems. 

1.1. Fooling Set versus Rank 

Let B” = {fif: (0, l}m --+ (0, l}}, the se o m-ary Boolean functions. For f E B2n, t f 

let MU) = [ai,jli,j=l,,.., 2” denote the communication matrix of f, where ai,j = 

f(Q.aj) E (0~~13 and & is the kth word in (0, l}” in lexicographic order, for 

k E (1,...,2”}. 

Definition 1.1. Let f be a Boolean function. For an arbitrary field F with identity 

elements 0 and 1, let RankF( f) denote the rank of the matrix M(f) over F. We 

define 

Rank(f) = max{Rank&f) IF is a field with identity elements 0 and 1) 

and 

r(f> = bg,(RaWf ))l 

Note that r(f) d cc(f) for every f and Rank(f) = Ranko(f) [ 121. 

Definition 1.2. Let f be a Boolean function of 2n variables. For 6 E (0, 1 }, a set 

d(f) = {(al,Pl>,(~2,PZ>,...,(ak,pk>>, %,I% E {O,l)” for i = L...,k, 

is called a d-fooling set for f if 

(i) f(ai,P,) = 6 for all i E {l,..., k}, and 

(ii) i #j,i,j E (1 , . . . , k} implies that ,f(~~, /I,) # 6 or f (aj, pi) # 6. 

We define 

Fool,(f) = max{card(&(f )) 1 d IS a &fooling set for f and 6 E (0, l}} 

and 

G(f) = [log,(Fooll(f ))I. 
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Note that fs(f) < cc(f) for every f [2]. Note also that the above definition of fooling 

sets [2] differs from the definition used in [9], where a weaker version is considered. 

First, using counting arguments, we show that for random functions the Rank method 

is exponentially better than the Fooling Set method. 

Theorem 1.3. (i) If n E N is sujkiently large then for at least a fraction of $ of 

the Boolean functions f of 2n variables the following holds: 

l Foolr(f)dlOn (i.e., fs(f)<log,n+logzlO), and 
l Rankz,(f) = 2” (i.e., r(f) = cc(f) = n). 

(ii) Almost all Boolean functions f of 2n variables satisfy Rank(f) = 2” and 

Foolr(f)QlOn (i.e., fs(f)<log,n+log, 10 and r(f)=n). 

Part (ii) of Theorem 1.3 shows that the Rank method is exponentially better than 

the Fooling Set method for almost all functions; part (i) shows that this is true for a 

substantial number of functions even if only rank over Z2 is used. 

Our next result shows that the Fooling Set method cannot be much better than the 

Rank method. 

Theorem 1.4. For all Boolean functions f and all fields F, 

Foolr(f)<(RankF(f)+ 1)2 (i.e.,fs(f)Q2r(f)+2). 

Furthermore, we consider the function &x1,. . . ,x,,, yr, . . . , yn) = EyEI xiyi mod 2, 

the inner product over Z2. The family {g2n} provides a specific example for which the 

Rank method is exponentially better than the Fooling Set method. 

Theorem 1.5. For every n E N we have 

(i) Rank@,) = 2” - 1, and 

(ii) Fooll(gz,)<(n + 1)2. 

Thus, fs(ga)<2 log(n + 1) and r(gzn) = n. 

Finally, we show that there is a function for which the Fooling Set method is better 

than the Rank method. 

Theorem 1.6. There is an algorithm that, for any n=P, mE N, constructs a Boolean 

fwtction h2,, of 2n variables such that 
(i) Foolr(h2,) = 2”, and 

(ii) Rank(hz,) = 3”12. 

Thus, 0.79.. . .n=ilog,3-n=r(hz,) < fs(hz,)=n=cc(&). 

1.2. An extended Fooling Set method 

The Fooling Set method is based on the fact that any two different elements of a 

fooling set require different communications, since in the communication matrix M(f) 
they span a 2 x 2 submatrix which is not monochromatic. This can easily be generalized 



(as noted 

any k+l 

now give 

M. Dietzfelbinger et al. I Theoretical Computer Science 168 (1996) 39-51 43 

already in [13]) to “fooling sets of order k” defined by the requirement that 

elements of such a set define a non-monochromatic submatrix of M( f ). We 

the formal definition of such generalized fooling sets. 

Definition 1.7. Let f E B 2n, k E N, and 6 E (0, l}. A set d C{O, 1}2n is a S-fooling 

set oj‘order k if 

(i) f(w) = 6 for all w E &, 

(ii) for any selection of k + 1 elements from rc4 the submatrix of M(f) that is 

spanned by d is not monochromatic. 

Obviously, &fooling sets of order 1 coincide with the conventional b-fooling sets. 

The extended Fooling Set method works as follows. 

Definition 1.8. Let 6 E (0, 1). We define 

(i) Fool:(f)= max{card(&‘)l& is a b-fooling set of order k}, for k E N ; 

(ii) Foe?(f)= max{Foolf(f)/k\k E N} ; 

(iii) Fool(f)= max{FoolO(f),Fool’(f)}. 

Let ncc(f) denote the nondeterministic communication complexity of a Boolean 

function f. We will show that the extended Fooling Set method provides a tight lower 

bound for ncc( f ). As a consequence, the extended Fooling Set method also yields tight 

lower bounds (up to a square) for the deterministic communication complexity. 

Theorem 1.9. For any n E N and f E B2” we have: 

(i) log,(Fool’(f 1) < ncc(f )Q log,(Fool’(f )) + log2(3.6n); 

(ii) log,(FooKf 1) < cc( f > f (log,(Fool( f )> + log2(3.6n) + 1)2. 

2. A comparison of the Fooling Set method and the Rank method 

We start with the proof of Theorem 1.3, which is a combination of counting argu- 

ments. 

Fact 2.1. rf n E N is suficiently large, then Rankr,(fz,) = 2” for at least & 

card(B2”) functions in B2”. 

Proof. This follows from the well-known fact that the probability for m randomly 

chosen vectors from (0, l}m to be linearly independent over Z2 is exactly n,<,<,,, 

(l-22’) (see, e.g., [3, p. 1691). Using the inequality (l-&)(1-&)> l-(61+&), which 

is valid for ObSt, 62 6 1, one easily sees by induction that the term fl,,i,,(l - 2-l) 

can be bounded below by (1 - 22I)( 1 - 22*)( 1 - C3GiGm 22’) hence by 
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Fact 2.2. 

,lil card({fi, E B2” 1 Rank&z,) = 2”})/card(B2”) = 1. 

(1996) 39-51 

Proof. Koml6s [7,8] has proved that a random O-l m x m-matrix has rank m over Q 

with probability tending to 1 for m + 00. 0 

This means that for almost all Boolean functions of 2n variables the Rank method 

provides the optimal lower bound IZ. Next, we show that most Boolean functions have 

small fooling sets. We do so by investigating the communication matrix M(f) as a 

representation of f. 

Definition 2.3. Let 6 E (0, l}, d E N - (0). A O-l d x d-matrix [mij]+1,..,,d is called 

a b-fooling matrix if 

(i) mii = 6 for i = l,...,d, and 

(ii) for all r,s E {l,..., d},r fs, we have mrS # 6 or mS,. # 6. 
Any matrix M’ obtained from a &fooling matrix M by any permutation of rows and 

columns of M is called a b-quasifooling matrix. 

Observation 2.4. Let M(f) be the communication matrix for f E B2” and 6 E (0, 1). 

Each &fooling set &for f unambiguously defines a card( &‘) x card(&) b-quasifooling 

submatrix of M(f ). 

Proof. Let d = {(ai, pi) 1 i = 1,. . . , k}. Then the intersection of the rows corresponding 

to RI,..., ak and the columns corresponding to /?I,. . . , ji,+ is a k x k &quasifooling 

matrix. 0 

Now let us study how large quasifooling submatrices are for random O-l matrices. 

Lemma 2.5. Let Mf(N, k) be the number of all N x N Boolean matrices having a 
&quasifooling submatrix of size at least k x k for some 6 E (0, 1). Then 

N2 
Mf(N,k)62. k 

0 
. k! . 30 . 2N2-kZ. 

Proof. There are 2 choices for 6 E (0, l}, and (y)’ ways to choose a placement of 

the k x k &quasifooling submatrix M’ ((f) ways to choose k rows (columns) from N 

rows (columns)). There are k elements of M’ that have fixed value 6 whose positions 

in M’ can be chosen in k! different ways. If we permute the rows of M’ to get a 

b-fooling matrix M, we see that there are only three possibilities for assigning values -- 
to any pair of symmetric elements of A4 (namely (6,6), (&6), or (~$2)). Thus, there 

are 3(:) possibilities for choosing the values for the elements in M’. All other elements 

lying outside M’ may be chosen arbitrarily, providing 2N2-k2 possibilities. 0 
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Lemma 2.6. Let k > [lo log, Nl. Then 

Proof. It is sufficient to show that 2.(y)’ .(k!).3(:) .2-k2 = N-“(‘OgN) for k > 10 log, N 

(see Lemma 2.5). Let us bound this expression in the following way: 

2. 
N2 

0 
(k!) . 3(:) z-k2 < 2N2k . 3k2!2 .2-k’ = 2 I +2k log, N+(kL,‘2) log, 3-k’ 

k 

= 2k2(l/k2+(2 log, N)/k+(log, 3)/2-l 1 

Since (log, 3)/2 < t and (2 log, N)/k d f, the claim follows. 0 

Now we are ready to complete the proof of Theorem 1.3. 

Proof of Theorem 1.3. Following Fact 2.1, at least & 22”’ 30.26 . 222” Boolean 

functions f from B2” have Rat&z,(f) = 2”. Following Lemma 2.6 with N = 2n, 

for all sufficiently large n the number of functions h E B2” with a fooling set of 

cardinality at least 10n (a b-quasifooling submatrix of size 10n x 10n) is bounded by 

& 222” = card(B2”)/100. For all such n there are card(B2”)/4 functions f from f12” 

with Rank(f) = 2” and Foolt(f )< 10n. This proves assertion (i) of Theorem 1.3. 

Assertion (ii) follows from Fact 2.2 and Lemma 2.6. 0 

For the following, we need the notion of the Kronecker product of two matrices. 

Definition 2.7. For arbitrary finite index sets I,J,K,L # 0 and matrices A = (cc,j)iEr,jtJ 

E FIxJ, B = @k,l)k&Y,KL E FKxL over some field F the Kronecker product A @B is 

defined as the matrix C = (Y(i,k),(i,~))(i,k,,,I)ElxKxJxL, where &,k),(j,I) = %,,bk,I. 

Informally speaking, C is obtained by replacing the entry xIj in A by the submatrix 

tr,j B. The following property of the Kronecker product is well known. 

Fact 2.8 (Kronecker fact). For arbitrary matrices A and B over some jield F as in 

Dejinition 2.1 we have 

RankF(A 8 B) = Rank&t) . em&@). 

To prove Theorem 1.4, we construct a function f * : (0, 1}4n - (0, 1) for every 

Boolean function f : (0, 1}2n + {O,l) as follows: f*hx2,.ny2) = fh,.n).f(y2,x2), 

for x1, yr,x2, y2 E {O,l}“. Define the function fR : (0, 1}2n 4 {O,l} by setting 

fR(u,v) = f(v,u), where U,VE {O,l}“. Then, obviously, M(f*)=M(f)@M(fR). 

Lemma 2.9. Let d be a l-fooling set for f. Then, over any field F, 

RankF( f * ) 3 card( &). 
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Proof. Assume that d = {(xi,vi)) 1 <i<r}. Set X = {Xiyi 11 di<r} and Y = {YiXi) 

1 <i <r}. We claim that the submatrix of M(f*) obtained by the intersection of the 

row set X and the column set Y is a diagonal matrix. For this, observe that 

C&j =M(f*)[Xi_Yi,_VjXj] = f*(Xiyi,_YjXj) = f(Xi,_Yj)’ f(xj,yi) for 1 <i,jdr. 

If i = j then aij = 1 because z? is a l-fooling set. If i # j, then the fact that d is a 

l-fooling set implies f(xi, yj) = 0 or f(xj, vi) = 0. Thus aij = 0. 0 

Lemma 2.10. For every Boolean function f and any field F, 

Rank&f)* = RankF(f*). 

Proof. This follows from the Kronecker Fact 2.8, since M(f*) = M(f)@M(fR). 0 

Now, we are prepared to prove Theorem 1.4. 

Proof of Theorem 1.4. Let d be a fooling set for f such that card(d) = Fooli( 

We distinguish two cases: 

(i) & is a l-fooling set. Then, by Lemmas 2.9 and 2.10, 

card(&) G Rank&-*) <(Rank&))* for any field F. 

(ii) d is a O-fooling set. Then d is a l-fooling set for g = f @ 1. Thus, as in (i), 

card(d) d Rank&g*) < (Rank&g))* d (Rankdf) + 1 I*, for any field F. 0 

Proof of Theorem 1.5. Recall the definition of the inner product function 

g*n(m P...YX~,YI,...YY~)= eXi.Yi mod 2. 
i=l 

According to Theorem 1.4 we have Fooli (gzn) d (Rankz,(g2,,) + 1 )*. Thus, it sufhces 

to show that Ranko(gnn) = 2” - 1 and Rankz,(g2n) = n. 
To see that Rankz,(gl,) = n, consider the n rows of M(g2,) corresponding to 

the (xi,. . . , x,)-parts lo”-‘,OlO”-*, . . .,O’lO”-‘-‘,. . . , O”-‘1 of the input. It can easily 

be observed that all other rows are linear combinations of these n rows (more pre- 

cisely, if a row corresponds to an input part with l’s in the positions il, i2, . . . , ir, then 

this row is the sum of the rows corresponding to the input assignments Oil-’ 10”-il, 
oiz-1 lon-iz 

) . . . ) o’r-1 lo”+). 

Let J, denote the 2” x 2” matrix with J,[i,j] = 1 for all 1 <i, j62”. It is well known 

that 2M(gz,) - J,, is a Hadamard matrix [4, p. 74-751 and hence Rankbg(2M(gzn) - J,) 
= 2”. On the other hand, the transformation M + 2 . A4 -J,, can increase the rank by 

at most 1. This actually occurs, since A4(gzn) possesses a null row, namely the row 

that corresponds to input 0. Hence Ranko(gzn) = 2” - 1. 0 

To prove Theorem 1.6, we have to find a function f such that there is a large 

fooling set &( f ), while the rank of M(f) is significantly smaller than card(&( f )). 
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1100 

M=Ol10 
1 

i 1 0011 

1 0 0 1 

Fig. 1. A l-fooling matrix of rank 3 

For this, it is sufficient to build a b-fooling matrix M with Rank(M) significantly 

smaller than the size of M. (Note that each Boolean matrix of size 2d x 2d together 

with an arbitrary partition of 2d variables unambiguously defines a Boolean function 

of 2d variables. Moreover, if this matrix is a &fooling matrix, then the set of the 2d 

inputs corresponding to the diagonal is a fooling set for f). 

We start by presenting (in Fig. 1) a l-fooling matrix Mr of size 4 x 4 with 

RankF(A4i) = 3 for every field F. 

That Mi is singular over every field F is obvious, since the sum of rows 1 and 3 

equals the sum of rows 2 and 4. Starting from A41 we construct a sequence of fooling 

matrices by defining Md+i = Md @ Mi, for d 2 1. It is clear that Theorem 1.6 is an 

immediate consequence of the following lemma. 

Lemma 2.11. k& is a l-fooling matrix of size Jd x Jd that satisfies Rank(A&) = 3d. 

Proof. We proceed by induction on d. For d = 1 the matrix Ml = [ar,s]r,.y=~,....~ 
obviously has the required properties. 

Now consider the l-fooling matrix & = [bi,j]i,j,l,,,,,2d with Rank(Md) = 3d. Since 

Md+i = &@Mi, We have Rank(!&+i) = 3 d+l, by the Kronecker Fact 2.8. Obviously, 

&+i has size qd+’ x qd+’ and we only have to verify that &+I is a l-fooling matrix. 

We can assume that &+i = [c(i.r),(j,s)Ii,j=l,,__, 4d;r,s=l,,,,, 4, where C(i,r),(j,s) = h,j or,&. 
Since the diagonal entries of Md and A41 are all identical to 1, the diagonal of Md+l 

consists only of 1’s. 

Now consider two different diagonal elements of Md+i, i.e., c(l,r),(i,r) and C(j,s),(j,s). 

If i = j, then Y # s and, since Ml is a l-fooling matrix, c(i,r),(i,s) = 0 or c(r,s),(i,r) = 0. If 

i # j, then b,,j = 0 or bj,i = 0 and again we have the fooling set property c(i,r),(,,s) = 0 

or ~(~,~),(b~) = 0. 0 

3. The extended Fooling Set method and nondeterministic communication 

The aim of this section is to show that the extended Fooling Set method provides 

tight lower bounds for the nondeterministic communication complexity ncc(f). We 

will obtain an “almost” tight bound for deterministic communication as a direct conse- 

quence. First we verify that the extended Fooling Set method provides lower bounds. 

Observation 3.1. Let f be a Boolean function. Then 

(0 Nf) b Pog,(Fool’(f 111. 
(ii) cc(f) 2 maxi bgdFool’(f >>l, bg,(FoolO(f >>l) = bg,(FooKf 111. 



48 M. Dietzfelbinger et al. I Theoretical Computer Science 168 (1996) 39-51 

Proof. We verify only part (i). Part (ii) follows from part (i), since ncc(f),ncc(~),< 

cc(f). According to [16], ncc(f) = [log,( cov*(f))l, where cov’(f) is the minimal 

number of l-chromatic submatrices needed to cover the l’s of the communication 

matrix M(f) of f. Let d be a l-fooling set of order k. Then any l-chromatic sub- 

matrix of M(f) can intersect & in at most k elements. Thus, cov’(f) 2 (d//k. By 

Definition 1.7, this means cov’(f)> Fool’(f), which implies (i) by Yao’s formula. 

The proof of Theorem 1.6 is based on [lo], where it is shown that for covering 

problems the greedy method provides results close to an optimal solution. We ob- 

tain our result by regarding the problem of covering the l’s in A4(f) by l-chromatic 

submatrices as an optimization problem. In [6], a similar view was taken as a start, 

but in that paper relaxations of the covering problem (“fractional covers”, as sug- 

gested by Lovasz) were studied, a method quite different from that one used 

here. 

Definition 3.2. Let f be a Boolean function in B 2n The greedy cover algorithm for . 

M(f) is described by the following recursive construction: 

UC0 := {(i,j)lM[i,j] = 1). 

Initially, all l’s are “uncovered”. For i> 1 we proceed inductively: 

Let Si = a l-chromatic submatrix of M(f) that covers a maximal number of l-entries 

from UC-i. (In case of a tie, choose the lexicographically smallest such submatrix.) 

Let hi = IUCi_1 n Sil. Then define 

UCi = UCi_1 -Si. 

g-Cod(f) = min(i20 1 UCi = 0). 

(This is the number of steps made by the greedy method for constructing a covering 

of the l’s of f by monochromatic submatrices.) 

The following lemma summarizes some further simple observations. 

Lemma 3.3. For all Boolean functions f the following holds: 

(i) cov’(f)Gg-cov’(f >. 
(ii) UCi_1 is a l-fooling set of order hi for 1 di dg-cov’(f ). 

(iii) IUCi I = IUCi-I/ -hi, for l<iGg-cov’(f). 

(iv) I UC,-c,vl(f)-l I = h,-d(f) 3 1. 

Proof. (i) is obvious, since the greedy algorithm constructs a covering with g-cov’(f) 
submatrices. (ii) By construction, hi is the maximal number of l’s in UCi_1 that can 

be covered by a l-chromatic submatrix of M(f ). (iii), (iv) are obvious from the greedy 

algorithm and the definition of g-cov’( f ). 0 
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Lemma 3.4. 

g-cov’(f) - 1 d Fool’(f) .2 In 2 . n. 

Proof. We let, with the notation from above, 

B=max 
1 %+I1 

d&g-cov’(f) , 
I > 

and note that by Lemma 3.3(ii) we have B< Fool’(f). Thus, it suffices to show the 

following. 

Claim. 

B>(g-cov’(f) - 1)/(2ln2. n). 

In the following, we prove the claim. By the definition of B, we have h, 3 

(l/B). I UC,-1 I f or all i, 1 <i<g-cov’(f). Thus, by Lemma 3.3(iii) 

I UC, 1 = I UCi-1 I -hi<( UCi-1 / .(l - l/B) for 1 <i<g-cov’(f). 

This implies 

( UCi I d I UC0 I(1 - l/B)* < ) UC0 le- “’ for 1 <i<g-cov’(f). 

Using Lemma 3.3(iv), we get 

1 d I UC,.,,,~~f~-I 1 < I UC0 / e-(g-cov’(f)-‘)‘B. 

Taking logarithms yields 

B > (g-cod(f) - l)/ln(l UC0 I). 

The simple observation that I UC0 I = the number of l’s in M(J’) d 22” = e2 ‘n2’n 

yields the claim. 0 

Proof of Theorem 1.9. We must verify that 

log,(Fool’(f))< ncc(f)< logz(Fool’(f)) + log,(3,6n). 

The first inequality was established in Observation 3.1. For the second inequality we 

use 

(a) Yao’s formula, 

(b) Lemma 3.3, 

(c) Lemma 3.4, 
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(d) the (harmless) assumption Fool’(f). n 3 3 and the fact that (1.8 - 2 In 2) + 3 > 1 

to estimate 

ncc(f) 5 [log,(cov’(f))] 

< log,(2 cov’(f)> 

2 log,(2 g-cov’(f)) 

‘~log,(2(Foo11(f)~21n2~n+ 1)) 

Cd) 
< log,(Fool’(f)) + log,(3.6n). 

Finally, we prove part (ii) of Theorem 1.9. We have to verify that 

log,(Fool(f)) G cc(f) G(log,(Fool(f)) + log,(3.6n) + 1)2. 

The first inequality has already been proved in Observation 3.1. From [ 11,2] we know 

that cc(f) < (ncc(f) + 1 )(ncc(f) + 1). Therefore, the second inequality follows directly 

from part (i). 0 

4. Conclusion 

We have compared two lower bound proof methods for communication complexity. 

We have shown that the Rank method can be much better than the Fooling Set method, 

and that the Fooling Set method can be better, but only by a factor of 2, than the Rank 

method. To complete this comparison into the smallest details the following problems 

have to be solved. 

Open Problem 1. In Theorem 1.3 we prove the existence of a Boolean function fzn 

with Fo0lt(f2~)< 10n and Rank(&) = 2”. Find a concrete function fzn with this 

property. (Note that Theorem 1.5 provides an example of a concrete function gzn with 

Fooli(g2,,)<(n + 1)2 and Rank(gzn) = 2” - 1.) 

Open Problem 2. Theorem 1.4 shows that Fooli (f) d (Rank(f)+ 1 )2 and Theorem 1.6 

shows Fooli(h2,) = 2” and Rank(hzn) = 3”12 for a specific function hzn. Which 

of these two theorems can be improved? What is the largest constant d such that 

fs(f) 2d . r(f) for a Boolean function f? Note that Theorems 1.4 and 1.6 show that 

1.261 . . . M (! log, 3)-l <d < 2. M. Hi.ihne [5] has constructed an example which yields 

d+log6= 1.292.e. . 

Furthermore, we have shown that the extended Fooling Set method provides tight 

lower bounds for deterministic as well as for nondeterministic communication. 
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