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Abstract

Several approaches currently exist for estimating the derivatives of observed data for model 

exploration purposes, including functional data analysis (FDA), generalized local linear 

approximation (GLLA), and generalized orthogonal local derivative approximation (GOLD). 

These derivative estimation procedures can be used in a two-stage process to fit mixed effects 

ordinary differential equation (ODE) models. While the performance and utility of these routines 

for estimating linear ODEs have been established, they have not yet been evaluated in the context 

of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an 

FDA-based two-stage approach denoted herein as functional ordinary differential equation with 

mixed effects (FODEmixed) in a Monte Carlo study using a nonlinear coupled oscillators model 

with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the 

GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-

order GLLA approach combined with very high embedding dimensions yielded estimation results 

that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of 

each approach and demonstrate how output from each stage of FODEmixed may be used to inform 

empirical modeling of young children’s self-regulation.
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Longitudinal data collection and analysis in the social and behavioral sciences have 

evidenced tremendous growth as researchers expand earlier tools for studying change (e.g., 

using difference scores; Cronbach & Furby, 1970; Harris, 1963) to better answer – on 

multiple fronts – whether and in what ways individuals and their behaviors change over 

time. Across fields, researchers in the physical sciences, econometricians, engineers, and 

statisticians have all made good use of differential equation models to understand many 

change phenomena, including the interplay among business firms, species, chemical 

substrates, and social actors. Along the way, they have developed a variety of analytical 

methods for fitting differential equation model to single- or multiple-subject time series data 

(Beskos, Papaspiliopoulos, & Roberts, 2009; Jones, 1993; Mbalawata, Särkkä, & Haario, 

2013; Ramsay, Hooker, Campbell, & Cao, 2007; Särkkä, 2013). A growing number of social 
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scientists, including psychologists and sociologists (e.g., Arminger, 1986; Coleman, 1968; 

Tuma & Hannan, 1984), have also turned to differential equations to capture the dynamic 

aspect of social processes, particularly the interdependence among a system of variables.

Much of the work utilizing differential equation models in the psychometric literature has 

focused on linear ordinary and stochastic differential equation (ODE and SDE, respectively) 

models using exact discrete time and state-space approaches (Oud & Jansen, 2000; Oud & 

Singer, 2008; Singer, 2010, 2012; Voelkle, Oud, Davidov, & Schmidt, 2012), differential 

structural equation models (Boker, Neale, & Rausch, 2008), Bayesian approaches (Oravecz, 

Tuerlinckx, & Vandekerckhove, 2011), and two-stage derivative estimation/modeling 

approaches (Boker, Deboeck, Edler, & Keel, 2010; Boker & Graham, 1998; Deboeck, 2010; 

Trail et al., 2013). More difficult, but also gaining traction, are methods for fitting nonlinear 

ODEs and SDEs (e.g., Chow, Lu, Sherwood, & Zhu, 2016, 1; Chow, Ferrer, & Nesselroade, 

2007; Lu, Chow, Sherwood, & Zhu, 2015, 3; Molenaar & Newell, 2003; Singer, 2002, 

2003). In the present article, we are restricting ourselves to two-stage approaches that 

facilitate the building and refinement of linear and nonlinear ODEs. Even in these special 

cases, all of the current routines for handling nonlinear ODEs generally require a level of 

technical/programming expertise that hampers uptake in applied research settings.1

The purpose of this paper is to facilitate the study of psychological/behavioral processes 

through the presentation and demonstration of an accessible two-stage approach for fitting 

linear and nonlinear differential equation models to empirical data. Our hope is that the 

approach proposed here, functional ordinary differential equation with mixed effects 

(FODEmixed), might propel discovery and understanding of human behavior by facilitating 

fitting (and rejection) of many possible models of change quickly and easily. The proposed 

approach extends prior work and provides new insights in three ways. First, the present 

article features the first Monte Carlo evaluation of the feasibility of using existing two-stage 

approaches designed for handling linear ODEs – including the generalized local linear 

approximation (GLLA; Boker et al., 2010) and the generalized orthogonal local derivative 

(GOLD; Deboeck, 2010) approaches – for fitting nonlinear ODEs. Second, we extend prior 

two-stage, functional data analysis (FDA)-based approaches for derivative estimation using 

regression splines (Trail et al., 2013) and a nonlinear regression framework (Liang & Wu, 

2008) to utilizing penalized regression splines within a nonlinear mixed effects framework. 

Third, we propose and evaluate the novel use of a 4th-order GLLA with high embedding 

dimensions against the other estimation approaches considered (i.e., conventional 2nd-order 

GLLA, GOLD and FODEmixed).

In the sections that follow, we first provide some introductory remarks on the nature and 

characteristics of ODEs in general, and the specific modeling framework considered in the 

present article. To motivate the proposed approach, we present several benchmark ODE 

models and an empirically constructed ODE model of self-regulation subsumed under this 

1Even though some options do exist in standard software packages for fitting nonlinear ODEs, all of these options are plagued by 
other practical limitations. For instance, the nlmeODE package in R (Tornøe, Agersø, Jonsson, Madsen, & Nielsen, 2004), while 
allowing users to fit selected ODE models with mixed effects, does not provide users with the option to handle unknown initial 
conditions; the PROC MODEL routine in SAS (Ferrer & Helm, 2013; SAS Institute Inc., 2008) provides more flexibility in the 
specifications of the ODEs but does not allow for random effects in the ODE parameters.
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framework. We demonstrate, in the context of these examples, the possible utility of two-

stage approaches in providing exploratory information for model development and testing 

purposes. This is followed by an introduction of the two-stage approaches considered in the 

present article (FODEmixed, GLLA and GOLD) and a simulation study conducted to assess 

their relative strengths and limitations. We then illustrate the proposed approach with a set of 

empirical data. We end with a discussion of the key insights from this paper as well as 

unresolved issues and future directions.

 Ordinary Differential Equation (ODE) Models

Formally, differential equation models are representations of systematic relations among 

derivatives – quantifications of change (and changes in the changes) that are manifested at 

infinitely small time scales. As a class, differential equation models provide a framework for 

describing how (as opposed to whether) people are likely to change. In practice, differential 

equation models are particularly useful for the study of continuous processes that are 

observed at regular intervals (e.g., panel and observational studies), or intermittently (e.g., 

experience sampling, ecological momentary, event-contingent, and other related designs; 

Hawkley, Burleson, Berntson, & Cacioppo, 2003; Merrilees, Goeke-Morey, & Cummings, 

2008).

The core building blocks of differential equation models are derivatives. In brief, consider 

the repeated observations of a continuous process, x(t), obtained over time at times t = 0, … 

T. At any given point in time, the first derivative (rate of change of x) is the change in x that 

occurs within a (infinitely) small window of time, a. Formally,

In turn, the second derivative is the change in the rate of change of x. Formally,

Other higher-order derivatives then capture further changes in these change qualities.

Dynamical phenomena can often be described using ordinary differential equations (ODEs) 

that indicate how the derivatives and levels of different variables are related to each other. 

The ODEs may be expressed in a vector form as:

(1)

where i indexes person and t indexes time, f[.] is a vector of drift functions; θf,i represents a 

q × 1 vector of person-specific parameters that affect the dynamic functions in Equation 1; 
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xi(t) is an nx × 1 vector of latent variables of interest containing level and derivatives at time 

t that are of lowers order than those in  is a corresponding nx × 1 vector of 

derivatives one order higher than those in xi(t) (e.g., level as the 0-order derivative is one 

order lower than the first derivative; the first derivative is one order lower than the second 

derivative, etc.). We further partition xi(t) into two subvectors as , 

where  is an ny × 1 subvector containing all the level variables in the ODE model and 

 is an nx − ny subvector containing all the lower-order derivative variables. Thus, for 

the hth modeled process of order mh, . The order of an 

ODE, denoted as m below, then indicates the highest-order derivative that appears in the 

model (i.e., the maximum of all values of mh). If all functions in f [.] are linear – namely, the 

relations among the dependent variables and their derivatives are additive and each term is 

raised to no higher than the first power – then Equation 1 is said to be a linear ODE model. 

Note that even though linear ODEs typically have nonlinear integral solutions (i.e., produce 

nonlinear trajectories), nonlinearities refer specifically to the presence of nonlinear terms in 

the ODE functions in Equation 1.

Individual differences in θf,i are modeled in the present context through a linear mixed 

effects model,

(2)

where β is a pβ × 1 vector of fixed effects parameters, and bi, a d × 1 vector of random 

effects; Hi and Zi are q × pβ and q × d design matrices typically seen in the linear mixed 

effects framework. Typically, bi is assumed to be multivariate normally distributed, bi ~ N 

(0, Σb), with θb containing all the unknown parameters in Σb.

In the present context, we restrict ourselves to a relatively simple measurement process: one 

in which a single manifest indicator is used to identify each underlying ODE process of 

interest. Specifically, we assume that the level variables in  are all latent true scores 

that are each indicated by only one manifest variable at individual-specific but possibly 

irregularly spaced time points, t = ti,j, j = 1, …, Ti, with Δi,j = ti,j+1 − ti,j. At each observed 

time point, there is an ny × 1 vector that is linked to :

(3)

where εi(ti,j) denotes multivariate normally distributed measurement error processes such 

that E[εi(ti,j)] = 0, E[εi(ti,j)εi(ti,j)′] = Σε, εi(ti,j) and xi(ti,j) are independent, and εi(ti,j) and 

εi(ti,k) are independent for ti,j ≠ ti,k, with a diagonal structure for Cov(εi(ti,j)) = Σε. 

Furthermore, yi = {yi(ti,j), j = 1, …, Ti} is an ny -variate time series for person i, and θε is a 

pε × 1 vector containing all the unknown parameters in Σε. Throughout, we use the notation 
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(t) to denote any time point in general whereas ti,j is used to denote the jth observed time 

point for person i.

 Examples of ODEs

ODEs are used to describe many types of change phenomena. In this section we review 

several benchmark examples of ODE models that are either well-known in the dynamical 

systems literature, or have close correspondence to other widely adopted models in the 

psychometric literature. Using these models, we demonstrate some possible ways in which 

exploratory information from two-stage procedures may be utilized to aid model 

developments and adaptations.

One of the simplest ODE models is one in which the rate of change of a process is held 

constant over time as:

(4)

where a1i is a person-specific scalar value that describes the constant growth/decline rate for 

individual i. Integrating the ODE in (4) we obtain a solution as

(5)

where x0i is a coefficient of integration that represents the initial condition for person i’s 

dynamic process at time t = 0. As discussed by Ram and Grimm (2015), the ODE in 

Equation 4, with the addition of measurement errors, is the well-known linear growth curve 

model (Meredith & Tisak, 1990). Of note, even though the person-specific initial condition, 

x0i, here coincides with the random intercept in the linear growth curve model, the initial 

conditions for an ODE generally include the initial values for all the variables in xi(t), 

including both levels (corresponding to “intercepts”) and other derivative variables. Many 

ODE applications assume that all the initial conditions are known a priori or have to be 

specified explicitly. One merit of all the two-stage procedures is that they preclude the need 

to estimate or specify the initial conditions of an ODE, thus easing estimation difficulties.

A slightly more complex ODE model that is often cited in the sociological literature (e.g. 

Coleman, 1968; Nielson, 1980; Rosenfeld, 1980) is a proportional change model,

(6)

where the first derivative is a linear function of x(t), the current level of x, and x*, an 

asymptote of the system; c is a growth/decline rate parameter. Integration with respect to t 

yields the solution expressed as
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(7)

where x0 is again a coefficient of integration that represents the initial condition at t = 0. 

When c has a negative value, the exponential terms approach zero and x(t) approaches the 

asymptotic equilibrium given by x*.2 The system in Equation 6 has two equilibrium levels of 

x(t), at which point . The equilibrium points occur at x(t) = x*, or when c is equal to 

zero. For illustration, plots of the solution trajectories over time, x(t), generated using a 

numerical solver with Equation (6) with x* = 3 and three values of c (0, −0.3, −1), are shown 

in Figure 1(A). We also plotted the phase plane of this ODE – a plot of some of the variables 

included in the ODE system, in this case  and x(t). The phase plane plot highlights that 

the system is static (i.e., intersects with the dot-dashed horizontal line, ) at x(t) = x* 

and when c= 0, in which case there is only a single dot, and the first derivative stays at zero 

throughout.

While ODEs such as those in Equations 4 and 6 may be used to describe a wide variety of 

growth and diffusion processes (Banks, 1994), other ODEs describe oscillatory processes. 

For example, a damped linear oscillator model (Boker & Graham, 1998) can be used to 

describe behavior that ebbs and flows like the swinging of a pendulum with friction,

(8)

where x1(t) represents the level or displacement of the pendulum relative to its equilibrium 

position (the center of motion); η is a frequency parameter that governs how rapidly the 

pendulum swings back and forth relative to the equilibrium point and ζ is a parameter that 

controls the extent to which the pendulum shows damping (if ζ < 0) or amplified motion (if ζ 

> 0). Like the models above, Equation 8 has analytic solutions; the mathematical form of the 

solution depends on the values of η and ζ (Hu, Boker, Neale, & Klump, 2014), but all 

solutions can be readily found in most standard textbooks on ODEs (e.g., Zill, 1993), or in 

discrete-time form for the SDE variation of Equation 8 (Oud, 2007; Voelkle et al., 2012).3

Plots of x(t) over time generated from Equation (8) with η = −0.8 and three values of ζ 

(−0.01, −0.1, −1.5) are shown in Figure 1(C) along with the phase plane plots in panels (D) 

and (E) using the same initial conditions (x1(0) = 2 and  for all three trajectories.). 

2Growth curve modelers may recognize this system as the constrained exponential growth model (see Ram & Grimm, 2015).
3Any higher-order ODEs (i.e., ODEs that involve derivatives of order beyond 1) can be rewritten into a system of multiple first-order 
ODEs. For instance, the second-order ODE in Equation (8) can be re-expressed in vector form as depicted in Equation 1, thereby 
featuring a vector of two first-order ODE functions as

(9)
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While the linear relations between levels and second derivatives are evident in Figure 1(D), 

the magnitudes of the slopes (corresponding to η) appear to differ from −0.8. The correct 

relation would be observed, however, if the effects of  are controlled for. To this end, 

standard regression diagnostic tools can be used to detect partial associations among 

variables after controlling for the effects of other predictors. One such tools is the 

component-plus-residuals plot (Faraway, 2004; Fox, 2009) – a plot of the residuals of the 

dependent variable against a predictor after the effects of other predictors have been 

partialled out; a Loess line and a linear least squares line are overlaid on the plot to help 

visualize any possible deviations in associations from linearity (Faraway, 2004; Fox, 2009). 

Here, the component-plus-residual plot in panel (F) reveals that a negative linear association 

is likely sufficient for capturing the relation between d2x(t)/dt2 and x(t), and that this 

association did not deviate notably for different cases in the data set. In contrast, the partial 

relation between d2x(t)/dt2 and dx(t)/dt depicted in panel (G) highlights the possibility that 

there are three different relations embedded in the data: two negative slopes of different 

degrees of steepness, and another set of points that is basically flat. In sum, these plots and 

other related diagnostic tools (see e.g., Faraway, 2004; Fox, 2009; Harrell, 2001) help 

identify the true model that generated the data – useful tools when the true model is 

unknown.

Intensive longitudinal data provide opportunities to examine a wide variety of dynamic 

processes that drive many aspects of individual behavior and development. Many of these 

processes (e.g., self-regulation, dyadic interaction) are filled with state-dependent changes 

wherein changes in one process are dependent on the states, or unobserved latent values of 

other processes. For instance, nonlinear ODEs have been used to model, among other 

phenomena, ovulatory regulation (Boker, Neale, & Klump, 2014), circadian rhythms (Brown 

& Luithardt, 1999), cerebral development (Thatcher, 1998), substance use (Boker & 

Graham, 1998), cognitive aging (Chow & Nesselroade, 2004), parent-child interactions 

(Thomas & Martin, 1976), dyadic relationships (Chow et al., 2007); and sudden transitions 

in attitudes (van der Maas, Kolstein, & van der Pligt, 2003).

One well-known nonlinear ODE model is the Lotka-Volterra model (Lotka, 1925; Volterra, 

1926), often used to describe the dynamics of predator and prey populations as:

(10)

where x1(t) and x2(t) are the densities of the prey and predatory populations, respectively, at 

time t, r1 is the growth rate of the prey population, and r2 is the death rate of the predator 

population. Interactions between the predator and prey reduce the density of the prey 

population and increase in the density of the predator population as noted the signs of a12 

and a21. With a particular range of parameters (and non-zero initial conditions) the predator-

prey model produces lead-lag cyclic fluctuations in the predator and prey densities like those 

shown in Figure 2(A) and (B). Adaptations of this model have been used to represent a 

variety of behavioral and psychological phenomena. For example, Chow and Nesselroade 
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(2004) developed a model for age differences in susceptibility to cognitive interference by 

including negative quadratic components,  and  that accommodate 

additional “intra-species” competition that manifests prominently when population density is 

high. As shown in Figure 2(C) and (D), including a negative quadratic component, 

, to the prey equation in Equation 10, creates some intrinsic damping of the 

population peaks. Other adaptations of the classic predator-prey model include the 

“piecewise” linear versions used by Gottman and colleagues to represent marital behavior 

(Gottman, Murray, Swanson, Tyson, & Swanson, 2002), in which the “inter-species”/inter-

spousal couplings are replaced by simple linear functions (e.g. a12x2(t) and a21x1(t)) or other 

theoretically interesting influence functions (Madhyastha, Hamaker, & Gottman, 2011; Ram, 

Shiyko, Lunkenheimer, Doerksen, & Conroy, 2014). The main point being that models 

established in other areas can be adapted and/or reconfigured in ways that accommodate the 

specific theories and data of interest.

One final nonlinear ODE example is a model first introduced by B. van der Pol and J. van 

der Mark to describe cardiac oscillations (cf., Kaplan & Glass, 1995), and extended further 

to model human circadian rhythms (Brown & Luithardt, 1999; Chow et al., 2016, 1). In 

basic form the van der Pol oscillator model is written as

(11)

Similar in construction to the linear damped oscillator model in Equation 8, the van der Pol 

oscillator also models the second derivatives, , as a function of the current level, x(t), 

and current rate of change, . As in the linear model, η governs the frequency of the 

oscillatory process (and often set to −1), and ζ is a damping or amplification parameter that 

governs the amplitude of the oscillations. However, here the inclusion of x2(t) as a multiplier 

of  means that the extent of damping (or amplification) is moderated by the squared level 

of x(t). Thus, when ζi > 0, wherein the amplification at small values of x(t) turns into large 

damping at extreme values of x(t). The result is a system characterized by saw-tooth type 

oscillations (Strogatz, 1994), shown in Figure 2(E) for systems with η = 1 and three values 

of ζ (1.0, 3.0, 5.0).

The phase plane plot of the van der Pol oscillator model is shown in Figure 2(F). The plot 

clearly shows that the relation between the second and first derivatives is nonlinear. If we did 

not know the underlying model, this would be a first indication that nonlinear terms may 

need to be included. The component + residuals plot in panel (G) shows the relation between 

the second and first derivatives after the linear effect of x(t) has been partialled out for the 

case where ζ = 1.0. The slope of the linear regression of dx(t)/dt on d2x(t)/dt2 is near zero. 

However, the Loess regression line indicates the presence of some nonlinearities. 

Furthermore, the “bow-tie-like” like patterns of association between dx(t)/dt on d2x(t)/dt2 

suggest the possibility that this relation is moderated by another process that is large while 

away from the origin (a point where the level, first and second derivatives are all equal to 
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zero) but small near the origin. One possible model is to allow the effect of dx(t)/dt on 

d2x(t)/dt2 be moderated by x2(t) because the magnitudes of x2(t) are, by definition, small 

when x(t) is close to zero and large when x(t) is far from zero. Indeed, the correlation 

between the product term, x2(t)(dx(t)/dt), and the residuals from a model where only the 

linear effects of x(t) and dx(t)/dt were included, was strong (r = −0.66), whereas the 

correlation between x(t)(dx(t)/dt) and those residuals was weak (e.g., r = −0.09). After 

incorporating the nonlinear term x2(t)dx(t)/dt into the baseline linear model (see panel (H)), 

the Loess smoother line is now near zero, and while the residuals still have some discernable 

patterns of nonlinearities, much of the nonlinear relation seen in panel (G) had now been 

accounted for.

In sum, the move into the nonlinear modeling realm opens up a myriad of new opportunities 

to represent within-person dynamics and interindividual differences therein. However, the 

increase in possibility also makes examining, sorting, and iterating through a rich array of 

potentially useful models a daunting task. We seek to underscore three additional points 

here. First, even in cases involving linear ODEs, options for pursuing model explorations 

and estimation may not be known to many social and behavioral scientists.4 Nonlinear 

ODEs of the form in in Equations 1–3 generally do not have analytic solutions and are 

associated with added computational difficulties. Most of the existing single-stage 

approaches for estimating nonlinear ODEs/SDEs with random effects (e.g., Chow et al., 

2016, 1; Singer, 2012) require appropriate handling of the initial conditions of the latent 

variables; possible use of numerical integration techniques to obtain approximation solutions 

to the ODEs, as well as the use of computational techniques (e.g., Monte Carlo methods) to 

perform integration over the random effects in bi (Beskos et al., 2009; Mbalawata et al., 

2013; Särkkä, 2013). The two-stage estimation procedures considered in the present article 

use FDA methods, the GLLA, or the GOLD to obtain approximations of all level and 

derivative terms, so that Equations 1–3 reduce to a linear or nonlinear mixed effects model. 

The implementation process is thus greatly facilitated by estimation procedures already 

available in many standard software packages.

Second, graphical summaries of the phase space of a system can help researchers 

conceptualize, build, and identify a viable model. When the underlying model is known, 

derivative values can be computed directly from the ODEs. Otherwise, some kind of 

numerical differencing/differentiation procedures (like the FDA, GLLA and GOLD 

approached examined in this paper) might be used to obtain the derivative estimates. Third, 

parallel to the confounds that may arise from omitting linear terms from a regression model 

with nonlinear terms (Faraway, 2004), the same practical rules may be used in the pursuance 

of ODE models such that linear terms are included prior to incorporating nonlinear ones. 

However, even with that, it is not always clear what forms of nonlinearities a researcher 

should consider and sample size constraints may limit the number of predictors a researcher 

can realistically consider. We have, for illustration, greatly simplified the actual process of 

4For instance, in earlier approaches of fitting the proportional change model, several researchers fitted reparameterized versions of 
Equation (7) to the data without imposing the appropriate nonlinear constraints, a practice that could lead to severely biased parameter 
estimates (Hamerle, Nagl, & Singer, 1990). Other approaches that do impose the appropriate nonlinear constraints, such as those based 
on the exact discrete time approach, have been proposed since then (Hamerle et al., 1990; Oud & Jansen, 2000). Unfortunately, uptake 
in applied settings remains slow.
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searching for appropriate nonlinear terms. In practice, one must carefully consider the 

influence of each term –linear or nonlinear – and build the model through consideration of 

both theoretical and statistical fit.

 Motivating Example

One core assumption of most models of self-regulation is that it entails the influence of 

executive processes – namely, self-initiated regulatory attempts – on prepotent responses 

(i.e., frustration, desire, immediate gratification). Despite its being conceptualized as a 

dynamic process that inherently involves change (Boker & Laurenceau, 2006; Cole, Martin, 

& Dennis, 2004), most early childhood self-regulation studies focus on between-child 

comparisons utilizing summary measures aggregated across time (e.g., latency and 

frequency counts of desired or undesired behaviors). These methods obscure temporal 

dynamics which, when placed within the appropriate analytic framework, might reveal 

subtle nuances in the overall effectiveness of children’s self-regulation attempts. In order for 

self-regulation to be effective, executive process engagement has to override children’s 

natural or prepotent responses to satisfy their immediate desires over time. In parallel, it is 

also possible for children’s pre-potent responses to show reductions or increases in 

amplitude (damping and amplification, respectively) over the course of a demanding 

situation for reasons that are unrelated to executive efforts (e.g., fatigue). Of particular 

interest to developmental psychologists is whether and how such changes in prepotent 

response amplitudes depend on – or interact with – the child’s current level of executive 

efforts to damp or amplify their prepotent responses. Nonlinear ODE models can explicitly 

capture this dynamic tension as nonlinear interactive processes that unfold over time. 

However, such modeling endeavors have been challenging. One difficulty is that despite the 

call for dynamic approaches to studying child self-regulation (Cole et al., 2004), there are no 

studies that avail themselves of the full time course of the observational tasks that are used. 

Another challenge is that developmental researchers are still trying to identify appropriate 

candidate models for demonstrating these dynamic processes, and tools in the psychometric 

literature for fitting nonlinear ODE models are scarce. In the empirical example section, we 

demonstrate how the FODEmixed approach facilitates such model exploration and model 

fitting in an investigation of young children’s self-regulation dynamics.

 The Functional Ordinary Differential Equation with Mixed Effects 

(FODEmixed) Approach

We introduce FODEmixed, as a two-stage approach for estimating linear and non-linear 

differential equation model. In Stage 1 FDA methods – a repertoire of tools for flexibly 

approximating and analyzing curves and their corresponding derivatives (Ramsay & 

Silverman, 2005) – are used to obtain smoothed level and derivative estimates. 

Implementation is facilitate by the “fda” package in R (Ramsay, Hooker, & Graves, 2009). 

In Stage 2, smoothed estimates from Stage 1 are used as observed variables in a linear or 

nonlinear mixed effects model (e.g., “nlme” package in R). Details for each of the two stages 

follow.
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 Stage 1: Derivative estimation using FDA

Given a time series for the hth manifest variable, one possible way to approximate the ebbs 

and flows in the time series is to use a collection of basis splines (B-splines; De Boor, 1977, 

1978; Dierckx, 1993) composed of K functions as:

(12)

where ϕk,i(t) is the kth known basis function of time for person i, and ck is its associated 

weight or coefficient. More generally, B-splines can be understood as a way of 

implementing piecewise polynomials up to degree K within segments of a time series (De 

Boor, 1977, 1978; Dierckx, 1993). Each segment of the time series is separated from an 

immediately adjacent segment by a knot point, with the first and last measurement occasions 

typically constituting the outer or ending knots. To ensure that a particular approximation 

curve is connected smoothly at an interior knot point, two adjacent polynomials are typically 

required to match in the values of a fixed number of their derivatives, usually chosen to be K

−1 (see e.g., Cudeck & Klebe, 2002).5 The number of basis functions used in each segment, 

also known as the order of a B-spline, is equal to K + 1. It is customary to specify the order 

of the B-spline to be at least two higher than the order of the derivative estimates of interest 

or alternatively, the order of the derivatives invoked in the estimation process, whichever one 

is higher. In this paper, we use a B-spline of order 6 because the estimation of the second-

order ODEs considered in this article requires the use of fourth derivatives in the estimation 

process.

Regularization refers to the process of imposing some kind of roughness penalty on the 

estimation routines to ensure that the approximated curves satisfy some notion of 

smoothness (Ramsay & Silverman, 2005). One way of doing so is to estimate the 

approximation curve (i.e., to estimate the basis function coefficients, ck) for the hth variable 

by minimizing the penalized residual sum of squares function

(13)

where PENALTY (ŷh,i) is a penalty function that captures the extent of deviations from a 

predefined smoothness criterion; λh ≥ 0 is a smoothing parameter that has to be estimated, or 

selected using selection criteria such as the generalized cross-validation index (GCV; lower 

is better) or information criterion measures (Shiyko, Lanza, Tan, Li, & Shiffman, 2012; Tan, 

Shiyko, Li, Li, & Dierker, 2012). The larger λh is, the heavier the penalty (i.e., the estimated 

curve is smoother). The formulation above assumes that the basis coefficients, ck (K = 1, …, 

5For example, a spline of degree 0 is a constant (a step function) that is discontinuous at knots; a spline of degree 2 is piecewise 
quadratic with matching level and first derivative (slope) at the interior knot points, and a cubic spline is piecewise cubic with 1st and 
2nd derivatives match at knot points to give visibly smooth approximation curves.
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K), and smoothing parameter, λh, are held invariant across individuals. Alternatively, 

regularized smoothing may be implemented at the individual level, with person-specific ck,i 

and λh,i for each participant, to obtain approximation curves, ŷh,i(ti,j), that may better 

capture the patterns of variability in each individual’s time-series.

One penalty function typically used for derivative estimation purposes is

(14)

where m is the highest derivative desired. All the ODE models considered in the present 

article utilize only the level, first and second derivatives. Thus, with m = 2, the fourth 

derivative is used in the penalty function (14) to ensure smoothness of the second derivative. 

As such we use B-splines of order 6 (two higher than the order of the derivatives invoked in 

the estimation process) in all our simulation and empirical examples.

Selecting the number and placement of knot points are among some of decisions the users 

have to make to determine the complexity and smoothness (or alternatively, “wiggliness”) of 

the approximated curves. There are some automated schemes that help guide these decisions 

(e.g., Eilers & Marx, 1996; Tan et al., 2012; Wood, 2003). However, simultaneous 

estimation of the smoothing parameter and knot-point related properties is a challenge. 

Thus, in the simulation and empirical examples considered in the present article, we we 

place the knot points, a priori, at the observed measurement occasions and choose the 

smoothing parameter, λh, by minimizing the GCV function.

After selecting the order of the basis functions, knot points, and an initial value for the 

smoothing parameter, the basis coefficients of the penalized approximation curves are 

estimated by minimizing the penalized residual sum of squares function given in Equations 

13–14. Estimation of the basis coefficients and smoothing parameter is then repeated 

iteratively until reasonable approximations of individual curves are obtained. From there, 

once  is available from Equation 12, estimation of derivatives of order p can be 

obtained as:

(15)

from which we obtain , 

and . In particular,  is a vector consisting of 

approximations of the highest-order derivatives implicated in the ODEs of the modeled 
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processes, i.e., , for h = 1, …, ny. These highest-order derivatives at the observed 

time points, , j = 1, …, T, are subsequently used as the “dependent variables” in a 

mixed effects model in Stage 2.

Once obtained, the smoothed level and derivative estimates can be plotted with respect to 

time and one another (yielding phase plane plots), and examined for systematic patterns that 

help guide subsequent selection of linear and/or nonlinear ODE models as shown previously. 

We note two practical advantages of using FDA-based methods for derivative estimation and 

model exploration purposes. First, once ck is known, smoothed level and derivative estimates 

can be obtained for any given time point because ϕk,i(t) is a known function of time. As 

such, this approach can be used with either equally spaced or irregularly spaced time series 

data. Second, relatively well established guidelines exist to aid decisions on the order of the 

basis functions, knot points, and smoothness parameter, and these decisions can be made 

with relatively little dependence on the nature and forms of the true underlying processes.

 Stage 2: Fitting mixed effects ODE model

In Stage 2, the smoothed level and derivative estimates from Stage 1, namely, 

 and  for all the observed time points (i.e., j = 1, …, Ti) are used as 

observed variables to fit the hypothesized mixed effects ODE of interest as:

(16)

where  is a vector of residuals from model fitting that may show some variations 

(e.g., attenuation) in magnitudes compared to the measurement errors in εi(ti,j) due to 

possible changes incurred on the true change trajectories through the smoothing procedures. 

To utilize standard mixed effects estimation routine implemented in software packages (e.g., 

the nlme function in R; Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2014), 

multivariate ODE processes such as those posited in the classical predator-prey model 

(Lotka, 1925; Volterra, 1926) or the coupled oscillators model (Boker & Graham, 1998) may 

be implemented by using the dummy indicator approach as described e.g., in MacCallum, 

Kim, Malarkey, and Kiecolt-Glaser (1997). Estimation of the parameters in β,  and Σb 

can then be obtained using maximum likelihood or restricted maximum likelihood methods 

as described e.g., in Lindstrom and Bates (1990).

 Local Linear Approximation (LLA)-Based Derivative Estimation Approaches

In evaluating the utility of the approach described above, we compare the performance of the 

proposed FODEmixed approach to two other approaches, namely, Boker and colleagues’ 

(2010) GLLA and Deboeck’s (2010) GOLD (proposed as an improvement over the GLLA) 

for obtaining derivative estimates in Stage 1 (with Stage 2 proceeding as described above). 

In brief, these two approaches use time delay embedding of the data and a matrix of 
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predefined weights, Wh, to obtain derivative estimates. In GLLA (but not GOLD), the 

weights for calculating derivative estimates depend on the maximum order of derivative 

being estimated. We first describe the time delay embedded data matrix to be used in both 

the GLLA and GOLD, and then outline the specifics for each approach.

The first step in GLLA and GOLD is to construct a time-delay embedded matrix, , that 

contains lagged replications of the original time series. The structure of this matrix depends 

on a user selected d, the embedding dimension (i.e., the number of lags used for derivative 

estimation), and τ, the spacing between occasions that constitute successive lags. Each 

individual i’s observed and lagged time series for the hth manifest variable then constitutes a 

submatrix of Ti − (d − 1)τ rows and d columns, stacked together vertically with other 

participants’ submatrices to yield , a d-order time delay embedded matrix with 

 rows and d columns from all participants. For instance, when d = 3, 

for the hth observed variable, yh,i(ti,j) is given by

(17)

The full time delay embedded matrix then consists of .

When using GLLA and GOLD users must select τ and d. In earlier implementations of the 

GLLA, the selection of τ was informed by fitting the hypothesized ODE model multiple 

times to GLLA-based derivative estimates obtained across a range of τ values, and 

identifying the optimal τ as the τ that provides the best model fit (e.g., in terms of R2, or 

information criterion measures), or the τ at which the estimate of particular model parameter 

(e.g., the frequency parameter in a damped linear oscillator model) has begun to stabilize 

(Hu et al., 2014). More recently, there has been a shift toward setting τ to 1 and selecting d 

such that the embedding dimension is spans further than notable autocorrelations in the time 

series (Boker et al., 2014). In line with this newer, “model-free” approach, we set τ to 1 and 

compare the performance of the GLLA and GOLD to the FDA approach over a range of d 

values.

 Stage 1 Using the Generalized Local Linear Approximation (GLLA) Approach

The GLLA approach uses polynomials from Taylor series expansion to obtain estimates of 

local derivatives for time-series data. Implementation is facilitated by the R functions 

available for download at http://people.virginia.edu/smb3u/GLLAfunctions.R.
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The GLLA generalizes its precursor, the local linear approximation (LLA) approach (Boker 

& Graham, 1998), in which the columns of the time delay embedded data matrix (e.g., yh(t − 

τ), yh(t), and yh(t + τ) for the hth variable) are used to compute the first and second 

derivatives as

(18)

Generalizing the LLA, Boker et al. (2010) showed that the differencing weights can be 

gathered into a matrix, denoted as Wh,GLLA, to compute approximate derivatives up to any 

order mh by computing  as

(19)

where Lh is a d × (mh + 1) matrix such that the kth column is given by

(20)

and ν is a vector of integers from 1 to d. All the columns beyond the first column of 

contain , p = 1, …, mh, namely, the least squares estimates of the pth derivative for 

time series h obtained via multiplication with Wh,GLLA, a weight matrix assumed to be 

known (i.e., not estimated, as distinct from the FDA). The original GLLA set-up was 

designed for equally spaced data because it assumes that the same set of time intervals 

characterizes the time spacing across all rows of the time delay embedded matrix. As such, 

handling irregularly spaced data requires specification of a distinct Lh and consequently, 

Wh,GLLA, for each row of the time delay embedding matrix, . Alternatively, missingness 

may be inserted at appropriate places to yield equally spaced observations in the time delay 

embedding matrix.

One characteristic of the GLLA to note is that when d = 3, the level estimates, i.e., ŷh(t) in 

, are simply observed manifest observations, yh(t), from the second column of the 

time delay embedded matrix in Equation 17. The corresponding derivatives are also 

computed based on raw observed data without additional smoothing. With d > 3, a larger 

window of neighboring observations is used to compute the local level and derivative 

estimates (Hu et al., 2014). The greater overlap between successive windows “smooths” the 

level and derivative estimates, much like a weighted moving average process.
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 Stage 1 Using the Generalized Orthogonal Local Derivative (GOLD) Approach

Deboeck (2010) noted that the GLLA yields level and derivative estimates that are correlated 

with each other. Thus, when these correlated level and derivative estimates are used in model 

fitting (Stage 2), parameter estimates may be greatly biased. To alleviate this problem, 

Deboeck proposed using an alternative weighting scheme, termed the Generalized 

Orthogonal Local Derivative (GOLD), that orthogonalizes the level and all the resultant 

derivative estimates. Implementation is facilitated by the R code in Deboeck (2010). In the 

GOLD, the matrix of level and derivative estimates, , is computed as

(21)

where D is a (mh + 1) square diagonal matrix with diagonal elements equal to 1/g!, where g 

= 0, 1, …, mh and “g!” denotes the factorial of g. Ξh is a (mh + 1) × d matrix such that for q 

= 0, 1, …, mh, and r = 1, …, d, the (q+1th, rth) entry is given by

(22)

where  denotes the measurement time of the observations in column r raised to the qth 

power, and I(q>0) is an indicator function such that the operation after  is only performed 

for q > 0. We note that, as with the GLLA, the GOLD set-up assumes that the observations 

in the rth column of the time delay embedding matrix are separated by the same time 

interval relative to the observations in the (r − 1)th column across all rows. In other words, 

while the observations may be unequally spaced within each row of the time delay 

embedding matrix, the same set of time intervals holds across all rows of the time delay 

embedding matrix. For data where the time intervals differ both within a row and across 

rows, the GOLD, similar to the GLLA, requires the specification of a distinct Ξh and 

consequently, Wh,GOLD, for each row of the time delay embedded matrix.

 Stage 2: Fitting mixed effects ODE model with GLLA and GOLD

After the selection of d, the GLLA and GOLD use related but distinct matrices of predefined 

weights – Wh,GLLA and Wh,GOLD, respectively – and a time delay embedded data matrix, to 

obtain derivative estimates. Elements in the columns of  are then used as observed 

variables for fitting a mixed effects model as in Stage 2 of FODEmixed. Specifically, for 

each observed time point, ti,j,  is approximated by ŷh(ti,j);  is approximated 

by , namely, elements from the second to the mhth column of 

; finally, , contained in the last column of , is used to approximate 
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the hth element in . These elements are then used as observed variables to fit the 

model in Equation 16 using standard linear or nonlinear mixed effects estimation routines, 

exactly as described in the presentation of the FODEmixed approach above.

 Similarities and Differences among FODEMixed, GLLA and GOLD

We note some conceptual similarities between the GLLA/GOLD method and the FDA-based 

method. Selection of τ in GLLA/GOLD is functionally similar to the placement of the knot 

points in the FDA-based method. In both approaches, some measurement occasions may be 

explicitly “skipped” or underweighted. When the underlying change process is oversampled, 

or the fluctuations between immediately adjacent measurement occasions reflect noise, 

setting τ > 1 or placing knot points more sparsely across the time series contributes to 

“smoothing” of the level and derivative estimates. In the present context, we set τ = 1 in the 

GLLA/GOLD and the knots points for the FDA to coincide with the observed time points. 

Thus, no observation is skipped and this aspect does not contribute to differences in the 

performances of the three methods.

The methods also differ with respect to whether the derivatives are computed based on 

smoothed vs. unsmoothed level data. In the GLLA/GOLD, the amount of data smoothing is 

determined solely by the order of d when τ = 1. In the GLLA, using mh + 1 weights in each 

row of the loading matrix, Lh, to compute derivative estimates has the effect of 

“approximating” the raw data using Taylor series expansion/polynomials of order mh and 

using coefficients from such a Taylor series approximation to fix (i.e., not estimate) the 

values of the weight matrices Lh and Ξh (see Equations 20; Hunter, accepted with revisions). 

The derivative estimates are thus computed using a window of raw (i.e., unsmoothed) data, 

although some smoothing can be expected by computing the derivatives from a window of 

neighboring points. In the GOLD, the weights from the Taylor series expansion are further 

subjected to linear transformations to orthogonalize the level and derivative estimates. Thus, 

derivative estimates from the GLLA, and to a lesser degree, GOLD, tend to be “rougher” 

compared to those from the FDA because derivatives in the latter are computed using 

smoothed level data (see Equation 15) weighted by means of the estimated basis 

coefficients, ck, obtained by minimizing (13). The extent of smoothing in the FDA is further 

governed by the order of the B-spline, the choice and order of the penalty function in 

Equation 14, the smoothing parameter, λh and if so desired (but not done in the current 

context), the number and placement of knot points. Some differences between the GLLA 

and the GOLD have already been noted by Deboeck (2010) and are not reiterated here. 

Several other differences that have not been addressed in previous studies will be highlighted 

next and evaluated in a simulation study.

 Unanswered Questions about Derivative Estimates from the FDA, GLLA and GOLD

Previous studies utilizing the GLLA and GOLD have focused exclusively on linear ODE 

models such as the damped oscillator model (Boker et al., 2010; Deboeck, 2010). Their 

performances in estimating derivatives from nonlinear ODE models relative to the FDA and 

each other are unknown. In addition,Deboeck (2010) considered very small embedding 

dimensions (e.g., d = 3, 4) and showed that the GOLD outperformed the GLLA in those 
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situations. The performances of these approaches in situations with very high d (e.g., d > 10 

as considered in Boker et al. (2014) have not yet been evaluated. Using the van der Pol 

oscillator model in Equation 11 with ζ = 1, T = 200 and n = 1, we will highlight here some 

of the distinct issues that may arise when derivative estimates are used to fit nonlinear mixed 

effects ODE models. Specifically, when nonlinear ODE models are involved, all three 

approaches, including the FDA, GLLA and GOLD, may yield reasonable derivative 

estimates when no measurement noise is present. For the GLLA or GOLD, a relatively low 

embedding dimension (e.g., d = 5) may be sufficient (see Figures 3(A)–(B)). However, when 

there is some measurement noise, such as when reliability = 0.9,6 derivative estimates from 

the GLLA and GOLD, particularly the second derivative estimates, were very noisy (see 

Figures 3(C)–(D)). In fact, to avoid cluttering the second derivatives plot in Figure 3(D), we 

restricted the range of the plot to [−10, 10]. The actual ranges of the derivative estimates 

from the two approaches at d = 5, as shown in the boxplots in the bottom panels of Figure 3, 

were much larger than the range of the true second derivatives.

The GLLA, however, does have one strength over the GOLD that was previously 

unexplored. In the GLLA, it is possible, in principle, to specify the extraction of derivatives 

of a higher-order than those required in a hypothesized ODE model. Even if these higher-

order derivatives are not utilized in fitting the hypothesized mixed effects ODE, doing so has 

the effect of changing the order of the Taylor series polynomials used to approximate the 

level and subsequently, changes the weights that appear in Lh and by extension, the 

derivative estimates. The derivative estimates can be expected to be more “wiggly” in this 

case because they are constructed to capture more of the subtle deviations in the data. The 

weights in the GOLD, in contrast, are unaltered by the highest-order of the derivatives a 

researcher extracts because the weight matrix is designed to orthogonalize the relations 

among level and derivatives of all orders. When a 4th-order GLLA is coupled with a low 

embedding dimension of 5 to estimate up to second-order derivatives, the corresponding 

estimates are extremely noisy (see the boxplot in panel G of Figure 3). However, when the 

4th-order GLLA is used with an extremely high embedding dimension – namely, 40, a 

number that is much higher than has been previously considered – the 4th-order GLLA 

yields second derivative estimates that appear comparable to those obtained using the FDA 

(see Figure 3(D)). However, doing so led to a time delay embedded matrix with length T − 

(d − 1) = 161 rows of data and consequently, a time series of second derivative estimates of 

length 161, in contrast to the full length of T = 200 second derivative estimates from the 

FDA.

Intrigued by these possibilities, we extend knowledge of FDA, GLLA and GOLD 

approaches for derivative estimation by examining their performances with (1) a nonlinear 

ODE; (2) a broader range of generally higher values of embedding dimensions than those 

utilized in previous studies that compared the GLLA and GOLD (e.g., > d = 3, 4 used in 

Deboeck, 2010); and (4) both 2nd- and 4th-order specification in the GLLA.

6Note that the model-implied variance functions of a nonlinear ODE model generally do not have a closed analytic form. Thus, we 
computed the estimated reliability associated with a particular ODE model using simulated data generated from the model. Reliability 
was computed heuristically as the ratio between the observed variance of repeated realizations of the true scores and the observed total 
variance at the specified n and T.
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 Simulation Study

We conducted a simulation study to evaluate the performance of the proposed FODEmixed 

approach for fitting nonlinear ODE models with random effects, and additionally, to assess 

the relative strengths and weaknesses of the FODEmixed, GLLA and GOLD. To accomplish 

these goals, we considered a nonlinear, second order ODE model adapted from our 

empirical motivating example. Numerical solutions of the hypothesized ODE obtained using 

the Livermore numerical solver, lsoda, in the R library, deSolve (Hindmarsh, 1983; Petzold, 

1983), were used as true values of the bivariate processes from ti,1 = 0 to ti,T = 20 for all 

individuals, with four sample size configurations: (1) T = 150, n = 100, (2) T = 150, n = 200, 

(3) T = 300, n = 100, and (4) T = 300, n = 200.

The model considered was formulated as

(23)

where η1,i and η2,i are person-specific parameters that govern the frequencies of the two 

processes. The terms  and  introduce nonlinearities into the model. 

Consonant with the theoretical properties of children’s prepotent responses and executive 

process described in our motivating example, this model posits that the extent to which each 

process shows damping or amplification over time is moderated by the level of the other 

process. Articulating the idea that the executive process is invoked to override prepotent 

responses and that heightened prepotent responses may, in turn, diminish or “extinguish” a 

child’s executive process, we expect bidirectional coupling wherein damping in each of the 

two processes is driven – or moderated – by the level of the other process. Conceptually, the 

model has some parallels to the classic Van der Pol oscillator model (see Equation 11) in 

which the damping in a univariate process is moderated by the squared level of the process, 

yielding especially pronounced damping in magnitude at extreme levels of the process. In 

our model, the damping is moderated by the level of an “extrinsic,” opposing process that is 

competing for the same resources, rather than by the “intrinsic” level of the process. In cases 

where there is bidirectional coupling, whether the two processes show disproportionately 

high damping or amplification depends both on the signs of a12 and a21, as well as whether 

the other process is above or below its equilibrium level (= 0 in this specific model).

The two person-specific parameters, η1,i and η2,i, were assumed to conform to a linear 

combination of fixed and random effects. To improve the numerical stability of the 

estimation algorithm, we constrained the baseline frequency parameters, η10 and η20, to be 

negative and optimized the log of −η10 and −η20 instead. u1i and u2i were fixed covariates: 

u1i was assumed to conform to a uniform distribution between the range of 0 and 4, whereas 

u2i was assumed to be a Bernoulli distributed binary variable with a .5 probability of 

obtaining a 1.0. The random effects vector, bi, consists of two random effects, bi = [bη1,i, 

Chow et al. Page 19

Multivariate Behav Res. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bη2,i]′, and is assumed to be multivariate normally distribution with mean vector of zeros and 

standard deviations given by . The other parameters used to 

simulate the data were set to the values of η10 = 0.41, η20 = 0.00, η11 = −0.5, η12 = 0.0, η21 

= 0.0, η22 = −0.3, a12 = −0.02, a21 = −0.03. Measurement errors drawn independently from 

two normal distributions with means of zeros and SDs, σε1 = 1.0 and σε2 = 1.0, respectively, 

were added to x1i(ti,j) and x2i(ti,j) to obtain noisy observed measurements, y1i(ti,) and y2i(ti,j). 

Using these parameters led to data with an average approximate reliabilities of .89 and .87, 

respectively. Reliability for each subject and process was calculated as in our earlier 

illustrations as the ratio between the variance of the simulated true scores and variance of the 

observed scores (with measurement errors) for each subject and process.

The FODEmixed approach was implemented as outlined in Equations 12–15 with the order 

of the B-spline set to 6. The smoothing parameter for each of the two processes, λh, was 

selected from the range of [1e-06, 10] and was set to be the value that minimized the average 

GCV value across individuals. The GLLA and GOLD were implemented with τ set to 1 and 

five different embedding dimensions: d = 5 (the minimum dimension needed for a 4th-order 

GLLA), 10, 30, 40, and 50. Preliminary examination of estimation results using the GLLA 

and GOLD with d < 5 suggested continued improvements in estimation results with d > 5 

for both the GLLA and GOLD so we did not include d < 5 in our full Monte Carlo 

simulations.

To summarize, we considered 4 sample size configurations x 3 estimation approaches 

(FODEmixed, GLLA and GOLD) within which 5 possible embedding dimensions were 

used for the GLLA and GOLD, yielding a total of 44 conditions. Five hundred Monte Carlo 

(MC) replications were conducted for each condition, and the results were quantified in 

several ways. The root mean squared errors (RMSEs) and relative biases were used to 

summarize properties of the point estimates. The empirical SE of a parameter (i.e., standard 

deviation of the parameter estimates across all MC runs) was used as the “true” standard 

error. As a measure of the relative performance of the SE estimates, we used the average 

relative deviance of the SE estimates (denoted as RDSE, namely, the difference between the 

average SE estimate and the true SE over the true SE). In addition, because the nlme routine 

in R does not provide SE estimates for all variance and covariance parameters, we also 

report the 95% confidence intervals for all parameters as averaged across the MC runs. We 

then computed power estimates for parameters whose true values were zero by tallying the 

proportion of MC trials in which the 95% CIs did not include zero. For parameters that had a 

true value of zero (i.e., η12 and η21), this proportion can be taken as a type I error estimate. 

All iterations in which any of the parameter and SE estimates contained non-finite values or 

nlme did not converge in 200 iterations were tallied as non-convergent cases.

 Simulation Results

Results from fitting the nonlinear ODE model are summarized in Figures 4(A)–(D), and 

detailed further in Tables 1–4. Accuracy of the point estimates from the FODEmixed, as 

indicated by relative biases and RMSEs, was reasonable given the nonlinearities in the 

model and the moderate sample sizes considered in the present study. Increasing the number 

of total time points from 150 to 300 provided notable improvements in the accuracy of the 
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point estimates (as evidenced by the lower RMSEs and relative biases of the parameters), 

and some gain in efficiency (as indicated by smaller MC SDs and SE estimates). Doubling 

the number of participants from 100 to 200 only had negligible effects on the accuracy of the 

point estimates, but more notable impact on improving the efficiency of both the fixed and 

particularly the random effects parameters (as shown by the smaller MC SDs). The point 

estimates for the random effect SDs showed good accuracy with T ≥ 150 and as few as 100 

participants.

Small biases in SEs in comparison to the MC SDs were observed for some of the fixed 

effects parameters. Inspection of the RDSE for each parameter as shown in Tables 1—4 

indicated substantial underestimation of the SEs for the parameters a12 and a21, but 

reasonable SE estimates for other parameters. Slight increases in the bias of the SE estimates 

was found with larger T, but the biases remained small except for a12 and a21 –the key 

sources of nonlinearities in the model. Power estimates for the parameters whose true values 

were significantly different from zero were satisfactory even in the smaller sample size 

configurations, and continued to improve with larger T and n. Power estimates were 

generally close to 1.0 when n = 200 and T = 300.7 Type-I error rates for the parameters 

whose true values were equal to zero, namely, η12 and η21, were close to zero in all 

conditions.

The performances of the three approaches are summarized in Tables 5–7. Power estimates 

were consistently high for all approaches at the sample size configurations considered. On 

average, the FODEmixed as well as the other three approaches (at their optimal d) all 

yielded power estimates that were generally close to, or exceeded .9 across all parameters 

whose true values were not equal to 0 in the population. For RMSEs and relative biases of 

the point estimates, we averaged these measures across all fixed effects parameters 

(including all the parameters shown in Tables 1–4 except for all the standard deviation 

parameters marked with σ) and random effects parameters (including ση1, ση2) separately as 

in previous MC studies involving nonlinear ODEs (Chow et al., 2016, 1). Biases in SE 

estimates were only available for the fixed effects parameters as noted above. The simulation 

results indicated the “best” embedding dimension for the LLA-based approaches differed by 

approach, with the GOLD generally attaining better estimation results than the GLLA at 

lower embedding dimensions. That is, parallel to the results shown by Deboeck (2010, with 

d = 3 and 4 in the context of a linear oscillator model with no damping), we found that the 

GOLD always outperformed the GLLA at d = 5 and 10 (note that comparative results were 

not available from the 4th-order GLLA due to its poor convergence property at low d8. 

However, the notable advantages of the GOLD relative to the GLLA were not present at the 

higher embedding dimensions. In fact, based on the plots in Figures 4A–D in which only 

results associated with the “best” embedding dimension for each of the LLA-based 

approaches are shown, the performances of the GOLD (d = 10) and the GLLA (d = 30) are 

similar.

7Note that this finding pertained also to the parameter log(η20), whose true value was 0 because η20 = 1.0.
8The 4th-order GLLA did not yield any converged cases in all the conditions with d < 40. We therefore report in Table 6 only the 
results from the conditions with d = 40 and 50.
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Compared to the GLLA and GOLD, the FODEmixed was associated with lower RMSEs for 

the fixed as well as random effects parameters – an advantage that is more pronounced at 

larger T. Consistent with the detailed results shown in Tables 1–4, notably lower RMSEs 

were observed for the fixed effects parameters from FODEmixed with larger T, but the 

improvements with larger n were much smaller. RMSEs for the random effects SD 

parameters were closer between the FODEmixed and the two GLLA-based approaches, with 

the GOLD consistently showing distinctly higher RMSEs in random effects SDs across all 

sample size conditions (see Figure 4B). Given that all the approaches considered were two-

stage approaches, some biases in the SE estimates are expected. Our simulation results 

indicated that biases in the SEs were indeed observed for all approaches (see Figure 4C), 

particularly for parameters associated with the nonlinear terms (i.e., a12 and a21), but the 

biases were relatively small and averaged to zero across all fixed effects parameters (in other 

words, there were no systematic under- or over-estimation in SEs).

Interestingly, of the three LLA-based derivative approaches considered, the 4th-order GLLA, 

when used with a very large embedding dimension (d = 50), yielded estimation results 

similar to the FODEmixed in terms of RMSEs and also outperformed the 2nd-order GLLA 

as well as the GOLD. Specifically, while the FODEmixed yielded the lowest RMSEs for the 

point estimates, the 4th-order GLLA was, at times, characterized by slightly lower relative 

biases than the FODEmixed (see Table 6). The 4th-order GLLA was also associated with the 

smallest biases in SE estimates, but possibly because of all approaches, this approach was 

used with the smallest sample sizes when d = 50. However, the proportions of non-

convergence were very high for the three LLA-based approaches in general with large n, 

with the proportions of non-convergence being greater than 80% in the largest sample size 

condition. Increasing the maximum number of iterations from the default 50 iterations to 

200 iterations still did not yield more convergent cases. The convergence problems were 

especially severe in the 4th-order GLLA conditions with low embedding dimensions (i.e., < 

50), wherein most replications simply did not converge and the few cases that did converge 

were characterized by very biased estimates. It is speculative, but individual differences in 

the dynamic parameters might have given rise to a wider repertoire of distinct change 

trajectories with large n and T that requires further tuning and explorations to identify the 

“optimal” embedding dimension. Another possibility is that biases in some of the dynamic 

parameter estimates might have led to additional correlations among the random effects. 

Forcing the corresponding random effects to be uncorrelated to mirror the true model might 

have aggravated the convergence problems as well, especially with increased n.

Finally, while the GOLD, just as the FODEmixed, appeared consistent (i.e., the empirical 

sampling distributions of the parameter estimates approached the true population values with 

increased sample sizes, particularly with larger T), the quality of the estimates from the two 

GLLA approaches appeared to depend more closely on the choice of d, rather than increases 

in T (see Tables 5–7).

 Empirical Illustration

Observations of children’s and mothers’ behaviors during an 8-minute wait task were used 

in this illustration. During the wait task (Cole et al., 2011; Vaughn, Kopp, & Krakow, 1984), 
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children were told that they had to wait to open a gift until their mothers completed work. 

The delay in opening the gift, the absence of interesting alternative activities, and the loss of 

the mother’s attention jointly created a frustrating situation for the children. We used 

composite scores of prepotent responses (PR) and executive process (EP) obtained from 

aggregating 3 seconds of video-coded data over the course of 8 minutes, yielding 

approximately T = 160 measurement occasions for each of n = 115 participants. Behaviors 

coded as PR included children’s anger intensity, angry bids to mother, focusing on gift, 

touching the gift and other disruptive behaviors. Indices of EP included rankings of strategic 

behaviors with 1 = self-soothing and 5 = focused distraction, with higher ranks assigned to 

strategies that were of higher developmental maturity and decreased reliance on external 

sources of regulation (e.g., the mother). A plot of the EP and PR scores from 5 randomly 

selected individuals is shown in Figure 5(A).

Two person-specific covariates were used. First, we included child effortful control, assessed 

using the Toddler Behavior Assessment Questionnaire (TBAQ-R; Goldsmith, 1996). 

Effortful control is a temperament dimension that reflects the degree to which children are 

disposed to modulating their attention, behavior and emotion (Rothbart & Bates, 2006), and 

is thought to be a child’s contribution to the development of self-regulated behavior. Second, 

we included mothers’ structuring quality – a parenting dimension involving attempts to 

foster a child’s self-regulation (Hoffman, Crnic, & Baker, 2006) – as the degree of sensitive, 

appropriate attempts by the mother to help the child tolerate the wait (0 = no structuring to 3 

= highly sensitive structuring).

We used the FDA approach outlined in Equations 12–15 with B-splines of order 6 to obtain 

smoothed estimates of the participants’ levels, first derivatives and second derivatives of EP 

and PR scores. The knot points were specified to coincide with the observed time points, and 

the integrated square of the fourth derivative was used in the penalty function in Equation 

14. The smoothing parameter, λh, was chosen separately for each individual using the GCV. 

Each individual’s PR and EP time-series were demeaned (mean-centered) so that the 

resultant EP and PR scores captured the within-person deviations in EP and PR. Throughout, 

we use EPi(t) and P Ri(t) to denote the ith child’s demeaned levels EP and PR at time t, 

respectively;  and  denote the two processes’ first derivatives at time t, and 

 and  denote the second derivatives at time t.

To probe for possible presence of nonlinearities, we fit a regression model separately to the 

participants’ demeaned PR and EP scores, in which the linear effects of the levels and first 

derivatives of each process, as well as the levels and first derivatives of the “opposing 

process,” were included as predictors of the second derivatives in each process. The 

component + residuals plots (see a selected subset in Figure 5(B)–(E)) were used to identify 

associations between the second derivatives of a process and other terms after the effects of 

the linear terms explicated above have been accounted for. For most participants, the plots 

depicted a negative relation between the PR and EP deviation scores and their second 

derivatives, thus suggesting the presence of oscillatory patterns. There was evidence that this 

relation was nonlinear, particularly for PR (i.e., the Loess line deviated more from the linear 

least squares line in Figure 5(B) compared to Figure 5(C)). We then explored the partial 
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correlations between the residuals of the linear model and additional nonlinear predictor 

terms, including (1) the quadratic level terms, PRi(t)
2 and EPi(t)

2; (2) the quadratic first 

derivative terms, (dPRi(t)/dt)2 and (dEPi(t)/dt)2, based on Figure 5(E); and (3) product terms 

such as PRi(t)EPi(t), (dEPi(t)/dt)PRi(t), (dPRi(t)/dt)EPi(t), (dEPi(t)/dt)PRi(t)
2 and (dPRi(t)/

dt)EPi(t)
2. Terms with substantial partial correlations were incorporated into the final 

nonlinear mixed effects model. All estimation in Stage 2 was performed using the nlme 

package in R with restricted maximum likelihood.

Based on results from the preliminary model explorations and our theoretical beliefs, we 

first considered the full model:

(24)

Some of the parameters in this model (e.g., ηEP, ηPR, ζEP,1 and ζPR,1) are parameters that 

also appear in the linear oscillator model in Equation (8). Exploratory evidence suggested 

the need to allow the quadratic trends seen in Figures 5 (B)–(E) to be moderated by other 

level and derivative variables. Consequently, we included the terms  and 

. Their corresponding regression slopes, ζEP,2 and ζPR,2, may be interpreted 

as the “intrinsic regulatory” parameters for EP and PR, respectively, in that they capture the 

additional damping (if negative) or amplification (if positive) in these processes when their 

levels deviated far from the person-specific EP and PR means (a characteristic of the van der 

Pol system in Equation 11).

Four kinds of coupling/moderating influences between EP and PR were considered. The first 

two kinds were linear coupling effects from the opposing process’ level, (as reflected in 

γEP,1PRi(t) and γPR,1EPi(t)) and first derivative (as captured by  and 

) had been considered previously in other work featuring coupled linear 

oscillators (e.g., Hu et al., 2014). These terms capture the effects of how the curvatures or 

“accelerations”/“decelerations” in each process are related to the level and instantaneous 

changes in the opposing process. The third kind of coupling effects, reflected in the coupling 

coefficients γEP,3 and γPR,3, is linked to the product term, (EPi(t)PRi(t)). These interactive 

level influences capture how EP and PR may induce added fluctuations in the other process 

as they “interact and compete” to be the dominant mode of behavior. These inter-process 

interaction effects are conceptually similar to how predator-prey interactions influence 

population growth and decline in the classical predator-prey model in Equation 10. However, 

here these inter-process interactions influence curvatures (second derivatives) rather than 

rates of change (first derivatives). Finally, the coefficients γEP,4 and γPR,4, tied to the product 
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terms  and , respectively, were motivated by our 

theoretical model of how the damping and amplification in PR and EP might be moderated 

by the levels of the opposing process (as discussed in the Motivating Example section).9 

This characteristic is similar to the two intrinsic regulatory parameters explained above 

(ζEP,2 and ζPR,2), except that now damping (or alternatively, amplification) is induced by the 

extrinsic opposing process.

We then explored the need to allow for random effects in subsets of the parameters shown in 

Equation 24 by sequentially adding/omitting random effects and evaluating whether the 95% 

CIs for their SDs included zero. Examination of the 95% CIs and follow-up residual plots 

revealed considerable between-individual heterogeneities in multiple aspects of individuals’ 

dynamics and the need to include random effects for almost all dynamic parameters. For 

exploratory purposes, we retained most of the of the random effect terms (a total of 10) to 

gain insights into the extent and nature of such interindividual differences (see Table 8; 

parameters with random effects are marked with a subscript i).10 Given our interest in 

exploring correlates of individual differences in the coupling and intrinsic regulatory 

parameters, effortful control and maternal structuring quality were added as predictors of 

individual differences in these parameters. We then sequentially removed fixed effects terms 

that were not statistically significant and parameter estimates from the “final” model are 

shown in Table 8.

The intercepts of 5 of the 8 coupling parameters considered were statistically different from 

zero. Significant interindividual differences were found for all coupling parameters and the 

frequency-related parameters, ηEP,1,i and ηPR,1,i. To illustrate the effects of the estimated 

parameters on the participants’ EP and PR dynamics, we plotted the observed and predicted 

(model-implied) EP and PR trajectories of one randomly selected individual (see Figure 

6(A)) using the parameter estimates from the final model and the observed initial conditions 

of the participant. The plot suggested that the model was able to capture some of the more 

pronounced curvatures in the observed data, but some evidence of misfit can also be 

observed (as we discuss below).

The intercepts of ζEP,1,i and ζPR,1,i, representing the linear effect of each process’ first 

derivative on its second derivative for individuals with average effortful control and maternal 

structuring quality, were not statistically significant. The intercepts of ζEP,2,i and ζPR,2,i, 

which represent the two process’ intrinsic regulatory strengths in the “average” individual, 

were also not statistically significant. Substantial individual differences were found in all of 

these parameters, and effortful control was found to have a significant negative effect on 

ζEP,2. As depicted in Figure 6(B), the EP of a hypothetical child with high effortful control 

(+2SD above the sample mean), when compared to a child with low effortful control (−2SD 

9We initially expected the moderating effect of the opposing process on the damping/amplification of a process to originate from the 
level of the opposing process (as captured by the parameters a12 and a21 in the simulation model; see Equation (23)). Evidence from 
preliminary model explorations suggested the need to consider, instead, the quadratic moderating effect of the level of the opposing 
process.
10Throughout, we limited ourselves to a diagonal variance structure for the random effects because the approximate Hessians for the 
parameters were not positive definite and the 95% CIs for the parameters could not be obtained when correlations were allowed 
among the random effects, even with as few as three random effects in the model.
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below the sample mean), returned to zero (the person-specific mean) more quickly at 

extreme values of EP. This intrinsic EP characteristic of children higher in effortful control 

can be interpreted as more constancy in the use of EP-related strategies. As the ability to 

initiate and sustain strategic attempts in frustrating situations is still nascent at 36 months of 

age, this finding represents a positive developmental change. In contrast, the higher 

variability shown by the low effortful control children may reflect these children’s 

haphazard attempts at using a variety of EP strategies to regulate their PR.

A statistically significant negative effect of the level of PR on the second derivative of EP 

(γEP,1) was found, and higher effortful control was associated with more negative values on 

this parameter (see Figure 6(C)). The negative value of γEP,1 suggested that EP tended to 

accelerate when PR was low (i.e., negative or below the person’s mean EP) and decelerate 

when the child’s PR was high (i.e.,positive or above the person’s mean PR). Thus, for 

children high in effortful control, EP accelerated more and “prevailed” longer when PR was 

low. In contrast, when PR was high, the child’s EP also decelerated (slowed down) more and 

“turned around” more quickly to show rises again. Overall, the magnitude and sign of the 

intercept of γEP,1 were consistent with the role of effortful control assumed in the literature: 

when PR is low, it is easier to engage developmentally mature EP strategies, particularly for 

the high effortful control children; however, when PR is high, children with high effortful 

control show a quicker reversion to more mature EP strategies than children with low 

effortful control.

Significant nonlinear interactive effects were also found in the group as a whole, with the 

intercepts for the coupling parameters, γEP,3,i, γPR,3,i and γPR,4,i all being significantly 

different from zero. The negative estimated intercept value of γEP,3,i and positive intercept 

value of γPR,3,i suggested that when these processes were in synchrony (i.e., both high or 

both low), the interaction between the two processes tended to lead to deceleration (or 

“slowing down”) in the changes in EP but acceleration (“speeding up”) in the changes in PR. 

In contrast, when they were asynchronous (i.e., one was high when the other was low), the 

reverse was observed. Thus, when EP was high (positive) and PR was low (negative), as in 

Figure 6(D) around t = 15, EPi(t)PRi(t) became negative and the resultant interaction 

boosted the level of EP (due to the negative value of the intercept of γEP,3,i) while 

simultaneously slowing down the rise in PR (due to the positive value of the intercept of 

γPR,3,i). In contrast, at around t = 40, a high (positive) level of EP was observed to “interact 

and compete with” a high (positive) level of PR to “speed up” or sustain the growth in PR 

while simultaneously slowing EP’s return to 0 following a decline. Taken together, such 

interactive coupling effects suggested the tendency for PR to “thrive and dominate” when 

both PR and EP were high, and for EP to show accelerated changes only when the levels of 

EP and PR diverged from each other.

We also found a statistically significant EP-driven damping effect in PR, but not a PR-driven 

damping effect in EP, in the group as a whole (i.e., the intercept of γPR,4,i, but not γEP,4,i, was 

negative and significantly different from zero). This parameter has the same effect on PR as 

ζ2,EP on EP, only that now PR was driven to damp toward zero by EP, as opposed to its own 

levels. The parameter estimate suggested that for this age group, PR was found to show 

greater damping (faster return to 0 or each child’s person-specific PR mean) at extreme 
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values of EP. Thus, model explorations and subsequent fitting using the FODEmixed 

provided evidence for what may be termed effective self-regulation – that at 36 months old, 

children’s executive efforts begin to damp or override their prepotent responses over the 

course of a frustrating situation. Although effortful control and maternal structuring quality 

were not found to be significant predictors of this EP-induced damping effect, significant 

individual differences were found.

For comparisons, we fit the linear oscillator model with only linear coupling effects (i.e., the 

effects γEP,1 and γPR,1 in Equation 24) and random effects for all parameters to the data. The 

final nonlinear model was characterized by lower Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC) and estimated residual error SDs (AIC = 22345; BIC 

= 22564; ) than the linear comparison model with only statistically 

significant effects retained (AIC = 24888; BIC = 24981; ). Plots of 

the discrepancies between the observed and predicted trajectories from the nonlinear and 

linear models, shown respectively in Figures 6(E) and (F), revealed that the nonlinear model 

captured the peaks and valleys in the two processes (particularly in PR) more accurately 

(i.e., with smaller discrepancies) than the linear comparison model. Of course, the nonlinear 

model is by no means perfect, and several sources of misfit can be noted from Figure 6(A). 

For instance, the nonlinear model hypothesized that the two processes would show damping 

toward zero but in practice, these processes might approach a negative asymptote that was 

below the person-specific mean. In addition, some model misfit was to be expected given 

that the EP and PR scores were essentially averages of count data that were not 

symmetrically distributed around their means. Extending the proposed ODE model to allow 

for discrete data is an important extension in the future. Stochastic extensions of the 

proposed ODE would help incorporate some uncertainties into the prediction process, 

thereby allowing the processes to deviate more from their underlying drift functions. 

Allowing the parameters in the ODE model to vary over time is another possible extension. 

These alternative modeling options should be explored thoroughly in parallel with 

investigations of other sources of between-person heterogeneities.

 Discussion

In the present article, we presented, tested, and illustrated the utility of FODEmixed, a two-

stage approach for fitting linear or nonlinear ODE models with random effects and unknown 

initial conditions. Our simulations with a nonlinear oscillator model indicated that the 

proposed technique yields satisfactory point and SE estimates of most parameters. However, 

we remain cautious about the accuracy of the SE estimates of the dynamic parameters, 

especially for parameters that enter the ODEs nonlinearly, and in situations where the data 

may not be of sufficient length and time density to capture the complexity of the dynamic 

processes of interest (i.e., time-series with T < 150).

We also examined the relative strengths and limitations of two additional two-stage 

approaches, GLLA and GOLD, for estimation of nonlinear ODEs. Three main findings 

emerged. First, extending previous studies that showed that the GOLD outperforms the 

GLLA at low embedding dimensions, we found that the advantages of GOLD do not extend 
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to situations with higher embedding dimensions. The implication is that the GOLD approach 

may be useful for modeling situations where embedding dimension must be kept low (e.g., 

when there are only a small number of repeated measures). Across conditions, the 

FODEmixed consistently outperformed the GOLD and 2nd-order GLLA in terms of 

accuracy and efficiency of the point estimates. As well, we found that a novel 4th-order 

GLLA that uses higher-order information from the time series for derivative estimation may 

have some advantages when the time-series are long and it is practical to use a high 

embedding dimension. However, similar to the GLLA and GOLD, the convergence rates of 

the 4th-order GLLA were not satisfactory in conditions with a larger number of participants, 

and its convergence rates were much worse than the 2nd-order GLLA and GOLD at low 

embedding dimensions. Reasons for the lower converge rates require more thorough 

evaluations, but alternative ways of further stabilizing the 4th-order GLLA to maximize its 

strengths (e.g., by utilizing the fourth-order derivatives in Stage 2 with specialized 

constraints; Boker, 2007) are important to consider as we venture into the realm of nonlinear 

ODE modeling.

As a whole, results from this article prompt discussion of how the strengths of each of the 

three approaches may be integrated to obtain even better estimation. First, the cross-

validation indices used in the FDA framework may serve as helpful, “model-free” tools in 

the selection of tuning parameters (e.g., d) in the GLLA and GOLD. Second, the FDA-based 

approach uses a derivative-based penalty term to regularize derivative estimates so that they 

are smooth. It is likely that such penalty terms can also be integrated into the GLLA/GOLD 

procedures as a way to reduce noise. Admittedly, other issues may arise when smoothing 

techniques are used (e.g., over- and under-smoothing); these issues apply to all three 

approaches and warrant caution in empirical applications of any of these techniques. Third, 

in the FDA framework, many candidate basis functions (e.g., Fourier basis function, wavelet 

basis functions) are available for approximating diverse forms of change (Ramsay & 

Silverman, 2005). These alternative basis functions may also be used in the GLLA and 

GOLD to capture more complex changes (e.g., discontinuous changes, changes that unfold 

across multiple time scales). Fourth, consistent with previous results (von Oertzen & Boker, 

2013), the use of time-delay embedding has been shown to improve estimation results in the 

GLLA and GOLD approaches. It may be possible to further improve the estimation 

properties in the FDA framework by incorporating time-delay embedding procedures.

In Stage 2, the FODEmixed, GLLA and GOLD approaches all make uses of standard mixed 

effects framework to model interindividual differences in intraindividual change. This part of 

the procedures can also be extended in a number of ways. For example, latent class and 

regime-switching ODE models may be developed to investigate the existence of sub-

populations and/or within-person phases with distinct dynamics. Arguments abound for why 

homogeneity of within-person dynamics may not hold in the study of human dynamics 

(Molenaar, 2004). To this end, local influence analysis (Cook, 1986; Zhu, Ibrahim, Lee, & 

Zhang, 2007) or other alternative outlier detection/person-specific procedures may be 

merged with the procedures outlined here to identify individuals whose dynamics may 

deviate substantially from others in the sample (e.g., Chow, Hamaker, & Allaire, 2009; Gates 

& Molenaar, 2012; Nesselroade & Molenaar, 1999; Ram et al., 2014). In addition, in both 

the didactic illustration and empirical example, we used a variety of regression diagnostics 
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and fit indices to evaluate and build the models. It is unclear whether fit indices such as the 

information criterion measures are appropriately sensitive to model misspecifications in two-

stage procedures.

We did not consider the use of two-stage approaches for handling SDEs in the present article 

because fitting and diagnosing SDEs are characterized by added challenges that are yet to be 

resolved in the approaches considered. For instance, in contrast to ODE processes that are 

contaminated only with measurement noise, it is unclear whether the smoothing options 

available from standard FDA procedures can adequately distill the process as well as 

measurement noises in SDEs to reveal the true relations among the derivative variables. In 

addition, as Oud (2007) has shown, when the true underlying model is an SDE, fitting the 

ODE variation of the model using two-stage (specifically, LLA) procedures generally leads 

to high biases and misleading results. Thus, if the true underlying model is in fact an SDE 

(either with or without random effects), appropriate estimation procedures have to be used in 

the second stage to incorporate the correct process noise structure. The nonlinear mixed 

effects estimation routine used in Stage 2 of all the two-stage procedures considered in this 

article requires further adaptations to fulfill this role. Despite these challenges, SDEs capture 

uncertainties and complexities in change processes in ways that ODEs cannot, and this 

extension certainly warrants further investigation in the future.

Using the FODEmixed, we were able to develop a preliminary mixed effects ODE model 

that builds on and further extends conceptual models positing transitional shifts in self-

regulatory ability at about 3 years of age. Of note, although not all the details were written 

out in the empirical illustration section, multiple models were rejected and retained for 

further consideration based on interpretability and fit. Our general conclusion was that, 

indeed, many aspects of self-regulation are not represented in standard linear models of 

change, and that at least some of those aspects can be described empirically using nonlinear 

ODE models.

In promoting the move into nonlinear models, we are often faced with concerns as to 

whether behavioral science data can support these explorations. While the sample size 

conditions considered in our simulation study may seem dense, there are many study designs 

that produce such data. In the empirical example, for instance, we used a very standard 

design wherein second-by-second coding of an 8-minute laboratory task were aggregated 

into 3-second epochs. At faster time-scales, studies involving physiological data typically 

collect time series spanning many thousands of occasions. At slower time-scales, our own 

work with experiencing sampling designs has obtained 150+ time-series of between 200 and 

800 occasions each (Ram et al., 2014). Generally, advances in mobile and web technology, 

miniaturization of sensors, and widespread adoption of digital communication platforms are 

providing a fast-expanding repertoire of data suited for dynamic modeling (Ram & Grimm, 

2015), including the methods described here.

 Conclusion

Across the domains of science, many theoretical frameworks have been developed to explain 

if, how, and when entities change. In behavioral science, our conceptualizations of change 
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phenomena often involve complex feedback loops, discontinuities, and complex 

interdependencies that require nonlinear models. Unfortunately, the hurdles between us and 

the world of nonlinear mathematical models have been many. Our intent here has been to 

remove some of those hurdles by presenting and illustrating an accessible approach that 

facilitates mapping of empirical data to nonlinear dynamic models – both in helping to 

identify viable models, and also to reject those that are not useful. We look forward to what 

emerges in the discovery, description and understanding of nonlinear human dynamics.
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Figure 1. 
(A) Over-time trajectories of x(t) from the proportional change model generated using based 

on a numerical ODE solver; (B) phase plane of levels and first derivatives in the proportional 

change model. The solid arrow points to one of the equilibrium points of the system at x(t) = 

x* = 3, defined as points at which . (C) Over-time trajectories of x(t) from the damped 

oscillator model generated using based on a numerical ODE solver at different values of ζ 

and η set to −0.8; (D) phase plane of levels and second derivatives in the damped oscillator 

model. (E) phase plane of first and second derivatives in the damped oscillator model (F)–
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(G): component + residuals plot revealing the associations between the residuals and x(t) 

and dx(t)/dt, respectively, with the linear effect of the other predictor partialled out.
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Figure 2. 
(A)–(B) Over-time trajectories of the predator and prey population sizes from the classical 

predator-prey model and the corresponding phase plane plot generated with r1 = 4, r2 = 

−3.5,a12 = −2 and a21 = 1.5; (C)–(D) over-time trajectories of the two species’ sizes and the 

corresponding phase plane plot after adding a quadratic element,  to the prey 

equation in Equation 10; (E) Over-time trajectories of x1(t) from the van der Pol model 

generated with η = 1, ζ = 1.0, 3.0, and 5.0; (F) the phase plane of the second and first 

derivatives; (G) component + residuals plot revealing the association between d2x(t)/dt2 and 

dx(t)/dt after the linear effect of x(t) has been partialled out; (H) plot of the residuals from an 
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expanded model (a model in which x(t), dx(t)/dt and x2(t)dx(t)/dt were included as 

predictors) against dx(t)/dt.
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Figure 3. 
(A) True and estimated first derivatives from the van der Pol oscillator model with no 

measurement noise; (B) true and estimated second derivatives with no measurement noise; 

(C)–(D) true and estimated first and second derivatives when reliability = 0.9. The lowest 

panels show boxplots of the second derivative estimates from the GOLD, the GLLA and the 

4th-order GLLA when d, the embedding dimension, was set to 5. Here, reliability was 

computed as the ratio between the variance of the true x(t) generated by means of a 

numerical ODE solver and the sum of the true x(t) and measurement error variance. The 

same legends were used in plots (A)–(D) but are only shown in plots (A)–(B) due to space 

limitations.
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Figure 4. 
Results from fitting the coupled nonlinear oscillators model (see Equation 23) across sample 

size conditions, with (A) the RMSEs of the fixed effects point estimates; (B) the RMSEs of 

the random effect SD parameters, (C) biases in the SE estimates and (D) proportions of non-

convergent replications.

Chow et al. Page 40

Multivariate Behav Res. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
(A) Over-time trajectories of EP and PR from 5 randomly selected children; component + 

residuals plot revealing the partial associations between d2PRi(t)/dt2 and: (B) demeaned 

PRi(t), (C) demeaned EPi(t), and (D) ; (E) the component + residuals plot revealing the 

partial associations between  and .
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Figure 6. 
(A) Observed data and predicted trajectories for one randomly selected partipant generated 

using parameter estimates from the final model; (B)–(C) simulated trajectories illustrating 

the effects of γEP,1 and ζEP,2, respectively, for a hypothetical child with high (+2SD above 

the sample average) and low (−2SD below the sample average) effortful control. (D) 

simulated trajectories generated using the estimated parameters from the final nonlinear 

model in comparison to trajectories generated by setting the values of γEP,3 and γP R,3 to 

zero; (E–F) discrepancies between the observed data and predicted trajectories for the same 

participant using the final nonlinear model and the linear comparison model, for EP and PR, 
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respectively. The shaded regions of plots (B)–(D) correspond to regions where the predicted 

EP trajectories marked with solid triangles show accelerations (positive second derivatives). 

The unshaded regions correspond to regions with decelerations (negative second derivatives) 

or second derivative value of zero (points of inflection). EC = effortful control.
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Table 8

Parameter Estimates from the Empirical Illustrative Example.

Parameters Estimates (SE) 95% CI

Intercept of ηEP,1,i −0.23 (0.004)** [−0.24, −0.22]

Intercept of ηPR,1,i −0.16 (0.004)** [−0.16, −0.15]

Intercept of ζEP,1,i −0.02 (0.01)(NS) [−0.04, 0.01]

Intercept of ζPR,1,i −0.01 (0.02)(NS) [−0.04, 0.03]

Intercept of ζEP,2,i 0.01 (0.01)(NS) [−0.01, 0.04]

Intercept of ζPR,2,i 0.001 (0.01)(NS) [−0.02, 0.02]

Effect of effortful control on ζEP,2,i −0.04(0.02)* [−0.08, −0.01]

Intercept of γEP,1,i −0.09(0.01)** [−0.10, −0.08]

Effect of effortful control on γEP,1,i −0.02(0.01)** [−0.04, −0.01]

Intercept of γEP,3,i −0.04(0.01)** [−0.05, −0.03]

Intercept of γEP,4,i −0.01(0.01)(NS) [−0.04, 0.02]

Intercept of γPR,1,i −0.03(0.01)** [−0.04, −0.02]

Intercept of γPR,3,i 0.02(0.01)(*) [0.002, 0.04]

Intercept of γPR,4,i −0.04(0.02)*) [−0.07, −0.01]

Random effect SD for ζEP,1,i 0.08(–)* [0.06, 0.10]

Random effect SD for ζEP,2,i 0.06(–)* [0.03, 0.10]

Random effect SD for ζPR,1,i 0.17(–)* [0.14, 0.20]

Random effect SD for ζPR,2,i 0.06(–)* [0.05, 0.08]

Random effect SD for γEP,1,i 0.03(–)* [0.03, 0.05]

Random effect SD for γEP,3,i 0.05(–)* [0.04, 0.07]

Random effect SD for γEP,4,i 0.11(–)* [0.09, 0.14]

Random effect SD for γPR,1,i 0.04(–)* [0.03, 0.05]

Random effect SD for γPR,3,i 0.10(–)* [0.09, 0.13]

Random effect SD for γPR,4,i 0.12(–)* [0.10, 0.15]

0.37(–)* [0.37, 0.38]

0.29(–)* [0.28, 0.30]

Note.

*
p < .05;

**
p < .01.

(NS)
Even though the some of the intercept terms were not statistically significant, they were retained in the final model in light of the substantial 

interindividual differences observed in these parameters.

 and  are residual SDs from fitting the nonlinear mixed effects model to the demeaned PR and EP scores. Other parameters are as 

defined in the context of the ODE model in Equation 24.
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