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VOS is a new mapping technique that can serve as an alternative to the well-
known technique of multidimensional scaling. We present an extensive 
comparison between the use of multidimensional scaling and the use of VOS for 
constructing bibliometric maps. In our theoretical analysis, we show the 
mathematical relation between the two techniques. In our experimental analysis, 
we use the techniques for constructing maps of authors, journals, and keywords. 
Two commonly used approaches to bibliometric mapping, both based on 
multidimensional scaling, turn out to produce maps that suffer from artifacts. 
Maps constructed using VOS turn out not to have this problem. We conclude 
that in general maps constructed using VOS provide a more satisfactory 
representation of a data set than maps constructed using well-known 
multidimensional scaling approaches. 
 
 

Introduction 
In the field of bibliometrics and scientometrics, the idea of constructing science 

maps based on bibliographic data has intrigued researchers already for several 
decades. Many different types of maps have been studied. The various types of maps 
show relations among, for example, authors, documents, journals, or keywords, and 
they have usually been constructed based on citation, co-citation, or bibliographic 
coupling data or based on data on co-occurrences of keywords in documents. Quite 
some different techniques are available that can be used for constructing bibliometric 
maps. Without doubt, the most popular technique is the technique of multidimensional 
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scaling (MDS).1 MDS has been widely used for constructing maps of authors (e.g., 
McCain, 1990; White & Griffith, 1981; White & McCain, 1998), documents (e.g., 
Griffith, Small, Stonehill, & Dey, 1974; Small & Garfield, 1985; Small, Sweeney, & 
Greenlee, 1985), journals (e.g., McCain, 1991), and keywords (e.g., Peters & Van 
Raan, 1993a, 1993b; Tijssen & Van Raan, 1989). Recently, a new mapping technique 
was introduced that is intended as an alternative to MDS (Van Eck & Waltman, 
2007a). This new mapping technique is called VOS, which stands for visualization of 
similarities. VOS has been used for constructing bibliometric maps in a number of 
studies (Van Eck & Waltman, 2007b, in press; Van Eck, Waltman, Noyons, & Buter, 
2010; Van Eck, Waltman, Van den Berg, & Kaymak, 2006; Waaijer, Van Bochove, & 
Van Eck, 2010, in press). 

An extensive comparison between the use of MDS and the use of VOS for 
constructing bibliometric maps does not yet exist. In this paper, we present such a 
comparison. We perform both a theoretical and an experimental analysis. In our 
theoretical analysis, we discuss the mathematics underlying MDS and VOS and we 
point out how the two techniques are mathematically related to each other. In our 
experimental analysis, we compare three approaches for constructing bibliometric 
maps. Two approaches rely on MDS, and the third approach relies on VOS. We use 
three data sets in our experimental analysis. One data set comprises co-citations of 
authors in the field of information science, another data set comprises co-citations of 
journals in the social sciences, and the third data set comprises co-occurrences of 
keywords in the field of operations research. Our experimental analysis indicates that 
maps constructed using either of the MDS approaches may suffer from certain 
artifacts. Maps constructed using the VOS approach do not have this problem. Based 
on this observation, we conclude that in general maps constructed using the VOS 
approach provide a more satisfactory representation of the underlying data set than 
maps constructed using either of the MDS approaches. 

This paper is organized as follows. First, we discuss the use of MDS and VOS 
for constructing bibliometric maps and we study the mathematical relationship 
between the two techniques. Next, we present an experimental comparison of three 
approaches for constructing bibliometric maps, two approaches relying on MDS and 
one approach relying on VOS. Finally, we summarize the conclusions of our research. 

Multidimensional Scaling 
In this section, we discuss the way in which MDS is typically used for 

constructing bibliometric maps. For more detailed discussions of MDS, we refer to 
Borg and Groenen (2005) and Cox and Cox (2001). From now on, we assume that the 
construction of bibliometric maps is done based on co-occurrence data (which 
includes co-citation data and bibliographic coupling data as special cases). We use the 
following mathematical notation. There are n items to be mapped, which are denoted 
by 1, …, n. The items can be, for example, authors, documents, journals, or keywords. 
For i ≠ j, the number of co-occurrences of items i and j is denoted by cij (where cij = 
cji). The total number of co-occurrences of item i is denoted by ci. Hence, 

∑ ≠
=

ij iji cc . 

                                                 
1 Other techniques include the VxOrd technique (e.g., Boyack, Klavans, & Börner, 2005; Klavans & 
Boyack, 2006), the graph drawing techniques of Kamada and Kawai (1989) and Fruchterman and 
Reingold (1991), and the pathfinder network technique (e.g., Schvaneveldt, 1990; Schvaneveldt, 
Dearholt, & Durso, 1988; White, 2003). For overviews of various techniques, we refer to Börner, Chen, 
and Boyack (2003) and White and McCain (1997). 
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Below, we first discuss the calculation of similarities between items, and we 
then discuss the technique of MDS. 

Similarity Measures 
MDS is usually not applied directly to co-occurrence frequencies. This is 

because in general co-occurrence frequencies do not properly reflect similarities 
between items (e.g., Waltman & Van Eck, 2007). To see this, suppose that journals A 
and B publish very similar articles. Suppose also that per year journal A publishes ten 
times as many articles as journal B. Other things being equal, one would expect 
journal A to receive about ten times as many citations as journal B and to have about 
ten times as many co-citations with other journals as journal B. It is clear that the fact 
that journal A has more co-citations with other journals than journal B does not 
indicate that journal A is more similar to other journals than journal B. It only 
indicates that journal A publishes more articles than journal B. Because of this, co-
occurrence frequencies in general do not properly reflect similarities between items. 

To determine similarities between items, co-occurrence frequencies are usually 
transformed using a similarity measure. Two types of similarity measures can be 
distinguished. Direct similarity measures (Van Eck & Waltman, 2009; also known as 
local similarity measures, see Ahlgren, Jarneving, & Rousseau, 2003) determine the 
similarity between two items by applying a normalization to the co-occurrence 
frequency of the items. Indirect similarity measures (also known as global similarity 
measures), on the other hand, determine the similarity between two items by 
comparing two vectors of co-occurrence frequencies. Most researchers interested in 
mapping authors or journals based on co-citation data rely on indirect similarity 
measures. Most other researchers rely on direct similarity measures. However, direct 
and indirect similarity measures can both be applied to any type of co-occurrence data. 
There is, for example, no reason to confine the use of indirect similarity measures to 
author and journal co-citation data. 

Various direct similarity measures are being used in the literature. Especially the 
cosine and the Jaccard index are very popular. In a recent study (Van Eck & Waltman, 
2009), we extensively analyzed a number of well-known direct similarity measures. 
We argued that the most appropriate measure for normalizing co-occurrence 
frequencies is the so-called association strength (e.g., Van Eck & Waltman, 2007b; 
Van Eck et al., 2006). This measure is also known as the proximity index (e.g., Peters 
& Van Raan, 1993a; Rip & Courtial, 1984) or as the probabilistic affinity index (e.g., 
Zitt, Bassecoulard, & Okubo, 2000). The association strength of items i and j is given 
by 
 

 
ji

ij
ij cc

c
=AS . (1) 

 
It can be shown that the association strength of items i and j is proportional to the ratio 
between on the one hand the observed number of co-occurrences of i and j and on the 
other hand the expected number of co-occurrences of i and j under the assumption that 
co-occurrences of i and j are statistically independent (Van Eck & Waltman, 2009). 

For a long time, the Pearson correlation has been the most popular indirect 
similarity measure in the literature (e.g., McCain, 1990, 1991; White & Griffith, 1981; 
White & McCain, 1998). Nowadays, however, it is well known that the Pearson 
correlation has some undesirable properties (Ahlgren et al., 2003; Van Eck & 
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Waltman, 2008). A well-known indirect similarity measure that does not have these 
undesirable properties is the cosine.2 The cosine of items i and j is given by 
 

 
∑∑

∑

≠≠

≠=
jik jkjik ik

jik jkik

ij
cc

cc

,

2

,

2

,COS . (2) 

 
For a discussion of some other indirect similarity measures, we refer to an earlier 
paper (Van Eck & Waltman, 2008). 

The Technique of Multidimensional Scaling 
After similarities between items have been calculated, a map is constructed by 

applying MDS to the similarities. The aim of MDS is to locate items in a low-
dimensional space in such a way that the distance between any two items reflects the 
similarity or relatedness of the items as accurately as possible. The stronger the 
relation between two items, the smaller the distance between the items. 

Let sij denote the similarity between items i and j given by some direct or 
indirect similarity measure. For each pair of items i and j, MDS requires as input a 
proximity pij (i.e., a similarity or dissimilarity) and, optionally, a weight wij (wij ≥ 0). 
In the bibliometric mapping literature, the proximities pij are typically set equal to the 
similarities sij. The weights wij are typically not provided, in which case MDS uses wij 
= 1 for all i and j. To determine the locations of items in a map, MDS minimizes a so-
called stress function. The most commonly used stress function is given by 
 

 
( )
∑

∑

<

<
−−

=
ji ijij

ji jiijij

n pfw

pfw
2

2

1 )(

)(
),,(

xx
xx �σ , (3) 

 
where f denotes a transformation function for the proximities pij and xi denotes the 
location of item i.3 Typically, bibliometric maps have two dimensions and rely on the 
Euclidean distance measure. This means that xi = (xi1, xi2) and that 
 

 2
22

2
11 )()( jijiji xxxx −+−=−xx . (4) 

 
As can be seen from Equation 3, MDS determines the locations of items in a map by 
minimizing the (weighted) sum of the squared differences between on the one hand 
the transformed proximities of items and on the other hand the distances between 
items in the map. For this idea to make sense, the transformation function f has to be 
increasing when the proximities pij are dissimilarities and decreasing when the 
proximities pij are similarities. 

Depending on the transformation function f, different types of MDS can be 
distinguished. The three most important types of MDS are ratio MDS, interval MDS, 
                                                 
2 There are two different similarity measures, a direct and an indirect one, that are both referred to as 
the cosine. These two measures should not be confused with each other. 
3  The stress function in Equation 3 is referred to as the normalized raw stress function. Various 
alternative stress functions are discussed in the MDS literature (e.g., Borg & Groenen, 2005). In this 
paper, however, we do not consider these alternative stress functions. The normalized raw stress 
function is used by most MDS programs, including the PROXSCAL program in SPSS. Some MDS 
programs, such as the ALSCAL program in SPSS, use a somewhat different stress function. 
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and ordinal MDS. Ratio and interval MDS are also referred to as metric MDS, while 
ordinal MDS is also referred to as non-metric MDS. Ratio MDS treats the proximities 
pij as measurements on a ratio scale. Likewise, interval and ordinal MDS treat the 
proximities pij as measurements on, respectively, an interval and an ordinal scale.4 In 
ratio MDS, f is a linear function without an intercept. In interval MDS, f can be any 
linear function, and in ordinal MDS, f can be any monotone function. We note that it 
makes no sense to use ratio MDS when the proximities pij are similarities. This is 
because f would then have to be a linearly decreasing function through the origin, 
which means that all transformed proximities would be negative or zero. In the 
bibliometric mapping literature, researchers often do not state which type of MDS 
they use. Since the proximities pij are typically set equal to the similarities sij, ratio 
MDS does not seem to be used. Presumably, most researchers use ordinal MDS (e.g., 
McCain, 1990; White & Griffith, 1981; White & McCain, 1998). 

The stress function in Equation 3 can be minimized using an iterative algorithm. 
Various different algorithms are available. A popular algorithm is the SMACOF 
algorithm (e.g., Borg & Groenen, 2005). This algorithm relies on a technique known 
as iterative majorization. The SMACOF algorithm is used by the PROXSCAL 
program in SPSS. 

VOS 
In this section, we discuss the use of VOS for constructing bibliometric maps. 

The aim of VOS is the same as that of MDS. Hence, VOS aims to locate items in a 
low-dimensional space in such a way that the distance between any two items reflects 
the similarity or relatedness of the items as accurately as possible. As discussed below, 
VOS differs from MDS in the way in which it attempts to achieve this aim. 

For each pair of items i and j, VOS requires as input a similarity sij (sij ≥ 0). 
VOS treats the similarities sij as measurements on a ratio scale. The similarities sij are 
typically calculated using the association strength defined in Equation 1 (e.g., Van 
Eck & Waltman, 2007b; Van Eck et al., 2006). VOS determines the locations of items 
in a map by minimizing 
 

 ∑
<

−=
ji

jiijn sV
2

1 ),,( xxxx �  (5) 

 
subject to 
 

 1
)1(

2 =−
− ∑

< ji
jinn

xx . (6) 

 
Hence, the idea of VOS is to minimize a weighted sum of the squared distances 
between all pairs of items. The squared distance between a pair of items is weighed by 
the similarity between the items. To avoid trivial solutions in which all items have the 
same location, the constraint is imposed that the average distance between two items 
must be equal to one. 

There are two computer programs in which the VOS mapping technique has 
been implemented. Both programs are freely available. A simple open source program 
is available at www.neesjanvaneck.nl/vos/, and a more advanced program called 

                                                 
4 For a discussion of the concepts of ratio scale, interval scale, and ordinal scale, see Stevens (1946). 
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VOSviewer (Van Eck & Waltman, in press) is available at www.vosviewer.com. The 
two programs both use a variant of the SMACOF algorithm mentioned above to 
perform the minimization of Equation 5 subject to Equation 6. 

We note that the objective function in Equation 5 has an interesting property.5 
To show this property, we introduce the idea of the ideal location of an item. We 
define the ideal location of item i as 
 

 
∑

∑

≠

≠=
ij ij

ij jij

i s

s x
x* . (7) 

 
That is, the ideal location of item i is defined as a weighted average of the locations of 
all other items, where the location of an item is weighed by the item’s similarity with 
item i. (Notice the analogy with the concept of center of gravity in physics.) The ideal 
location of an item seems to be the most natural location an item can have. Because of 
this, it seems desirable that items are located as close as possible to their ideal location. 
This is exactly what the objective function in Equation 5 seeks to achieve. To see this, 
suppose that the locations of all items except item i are fixed, and ignore the 
constraint in Equation 6. Minimization of the objective function can then be 
performed analytically and results in xi being equal to xi

* defined in Equation 7. 
Hence, if the locations of all items except item i are fixed and if the constraint is 
ignored, minimization of the objective function causes item i to be located exactly at 
its ideal location. Of course, items do not have fixed locations, and solutions are 
determined not only by the objective function but also by the constraint. For these 
reasons, items will in general not be located exactly at their ideal location. However, 
due to the objective function, items at least tend to be located close to their ideal 
location. 

Relationship Between Multidimensional Scaling and VOS 
In this section, we study the mathematical relationship between MDS and VOS. 

We show that, under certain conditions, MDS and VOS are closely related. 
As discussed above, when researchers use MDS for constructing bibliometric 

maps, they usually seem to rely on ordinal or interval MDS. However, when MDS is 
applied to similarities calculated using the association strength defined in Equation 1, 
the use of ordinal or interval MDS is not completely satisfactory. This can be seen as 
follows. Suppose that items i and j have twice as many co-occurrences as items i and k. 
Suppose also that the total number of co-occurrences of item j equals the total number 
of co-occurrences of item k. Calculation of similarities using the association strength 
then yields sij = 2sik. Based on this, it seems natural to expect that in a map that 
perfectly represents the co-occurrences the distance between items i and j equals half 
the distance between items i and k. Of course, due to the inherent limitations of a low-
dimensional Euclidean space, a map in which co-occurrences are perfectly 
represented usually cannot be constructed. However, ordinal and interval MDS do not 
even try to construct such a map. This is because in some sense the transformation 
function f has too much freedom in these types of MDS. In ordinal MDS, for example, 
                                                 
5 Mapping techniques based on the objective function in Equation 5 have also been proposed by Belkin 
and Niyogi (2003) and by Davidson, Hendrickson, Johnson, Meyers, and Wylie (1998). However, the 
constraints used by these researchers are different from the constraint in Equation 6. In our experience, 
the constraint in Equation 6 yields much more satisfactory results than the alternative constraints used 
by other researchers. 
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f can be any monotonically decreasing function, which means that any map in which 
the distance between items i and j is smaller than the distance between items i and k 
may serve as a perfect representation of the equality sij = 2sik. Hence, ordinal MDS 
may be indifferent between, for example, a map in which the distance between items i 
and j equals exactly half the distance between items i and k and a map in which the 
distance between items i and j is just slightly smaller than the distance between items i 
and k. 

We now propose an alternative way in which MDS can be applied to similarities 
calculated using the association strength (or to any other similarities that can be 
treated as measurements on a ratio scale). Our alternative approach does not have the 
above-mentioned disadvantage of ordinal and interval MDS. In our approach, we 
choose the transformation function f to be simply the identity function, which means 
that f(pij) = pij. Using this transformation function, it is easy to see that minimization 
of the stress function in Equation 3 is equivalent with minimization of 
 

 ∑∑
<<

−−−=
ji

jiijij
ji

jiijn pww xxxxxx 2),,(ˆ
2

1 �σ . (8) 

 
Equation 8 makes sense only if the proximities pij are dissimilarities. Because of this, 
we cannot set the proximities pij equal to the similarities sij. Instead, we first have to 
convert the similarities sij into dissimilarities dij. Converting similarities into 
dissimilarities can be done in many ways. We use the conversion given by dij = 1 / sij. 
This conversion has the natural property that if in a perfect map the distance between 
one pair of items is twice as large as the distance between another pair of items, the 
similarity between the first pair of items is twice as low as the similarity between the 
second pair of items. Substitution of pij = dij = 1 / sij in Equation 8 yields 
 

 ∑∑
<<

−−−=
ji

ji
ij

ij
ji

jiijn s
ww xxxxxx

1
2),,(ˆ

2

1 �σ . (9) 

 
If two items i and j do not have any co-occurrences with each other, Equation 1 
implies that sij = 0. This results in a division by zero in Equation 9. To circumvent this 
problem, we do not set the weights wij equal to one, but we instead define the weights 
wij as an increasing function of the similarities sij. More specifically, we define wij = 
sij.

6 Equation 9 then becomes 
 

 ∑∑
<<

−−−=
ji

ji
ji

jiijn s xxxxxx 2),,(ˆ
2

1 �σ . (10) 

 
Interestingly, there turns out to be a close relationship between on the one hand the 
problem of minimizing Equation 10 and on the other hand the problem of minimizing 
Equation 5 subject to Equation 6. This is stated formally in the following proposition. 
 
 

                                                 
6 Hence, wij increases linearly with sij. This is the most natural way to define wij. If wij increases slower 
than linearly with sij, the division by zero problem remains. If wij increases faster than linearly with sij, 
there is no penalty for locating two completely non-similar items close to each other in a map. We 
further note that wij = sij is equivalent with wij = 1 / dij. This is exactly how weights are chosen in the 
well-known Sammon mapping variant of MDS (Sammon, 1969). 
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Proposition 1. 
(i) If X = (x1, …, xn) is a globally optimal solution to the problem of minimizing 

Equation 10, then there exists a positive real number c such that cX is a 
globally optimal solution to the problem of minimizing Equation 5 subject to 
Equation 6. 

(ii) If X = (x1, …, xn) is a globally optimal solution to the problem of minimizing 
Equation 5 subject to Equation 6, then there exists a positive real number c 
such that cX is a globally optimal solution to the problem of minimizing 
Equation 10. 

 
The proof of this proposition is provided in the appendix. It follows from the 
proposition that, under certain conditions, MDS and VOS are closely related. More 
specifically, the proposition indicates that VOS can be regarded as a kind of weighted 
MDS with proximities and weights chosen in a special way. 

Experimental Comparison 
We now present an experimental comparison of three approaches for 

constructing bibliometric maps. Two approaches rely on MDS, and the third approach 
relies on VOS. The two MDS approaches differ from each other in the similarity 
measure they use. One MDS approach uses a direct similarity measure, namely the 
association strength defined in Equation 1. The other MDS approach uses an indirect 
similarity measure, namely the cosine defined in Equation 2. From now on, we refer 
to the two MDS approaches as the MDS-AS approach and the MDS-COS approach. 
Like the MDS-AS approach, the VOS approach also uses the association strength 
similarity measure. Because VOS has been developed to be used specifically in 
combination with this similarity measure, we do not study the use of VOS in 
combination with other similarity measures. 

Below, we first discuss the data sets that we use in our experimental comparison, 
and we then discuss the results of the comparison. We also briefly consider the 
phenomenon of circular maps. 

Data Sets 
We use three data sets in our experimental comparison. One data set comprises 

co-citations of authors in the field of information science, another data set comprises 
co-citations of journals in the social sciences, and the third data set comprises co-
occurrences of keywords in the field of operations research. We refer to the data sets 
as, respectively, the authors data set, the journals data set, and the keywords data set. 
All three data sets were obtained from the Web of Science database. 

The authors data set was collected as follows. We first delineated the field of 
information science. To do so, we selected the 36 journals that, based on co-citation 
data, are most closely related to the Journal of the American Society for Information 
Science and Technology (JASIST).7 These journals and JASIST itself constituted our 
set of information science journals. This set of journals is shown in Table 1. Next, we 
selected all articles with at least 4 citations (excluding self citations) that were 
published in our set of information science journals between 1999 and 2008. We then 

                                                 
7 The Journal of the American Society for Information Science and Technology and its predecessor, the 
Journal of the American Society for Information Science, were treated as a single journal. 
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counted for each author the number of selected articles.8 All authors with at least 3 
selected articles were included in the authors data set. There were 405 authors that 
satisfied this criterion. Finally, we counted the number of co-citations of each pair of 
authors in the authors data set. The co-citation frequency of two authors takes into 
account all articles published by the authors in our set of information science journals 
between 1999 and 2008. 
 
TABLE 1. Set of journals used to delineate the field of information science. 
 
ACM Transactions on Information Systems 
Annual Review of Information Science and 

Technology 
Aslib Proceedings 
Bulletin of the Medical Library Association 
College and Research Libraries 
Computers and the Humanities 
Electronic Library 
Information Processing and Management 
Information Research-An International Electronic 

Journal 
Information Retrieval 
Information Technology and Libraries 
Interlending and Document Supply 
Journal of Academic Librarianship 
Journal of Documentation 
Journal of Information Science 
Journal of Librarianship and Information Science 
Journal of Scholarly Publishing 
Journal of the American Society for Information 

Science and Technology 

Knowledge Organization 
Law Library Journal 
Learned Publishing 
Library and Information Science Research 
Library Collections Acquisitions and Technical 

Services 
Library Journal 
Library Quarterly 
Library Resources and Technical Services 
Library Trends 
Libri 
Online 
Online Information Review 
Portal-Libraries and the Academy 
Proceedings of the ASIS Annual Meeting 
Program-Electronic Library and Information 

Systems 
Reference and User Services Quarterly 
Research Evaluation 
Scientometrics 
Serials Review 

 
To collect the journals data set, we first selected all journals in the Web of 

Science database that belong to at least one social science subject category. We then 
counted the number of co-citations of each pair of journals. We took into account all 
citations from articles published between 2004 and 2008 to articles published at most 
10 years earlier. Finally, we included in the journals data set all journals with more 
than 25 co-citations. There were 2079 journals that satisfied this criterion. 

The keywords data set has already been used in an earlier paper (Van Eck et al., 
2010). The data set includes 831 keywords that were automatically identified in the 
abstracts (and titles) of 7492 articles published in 15 operations research journals 
between 2001 and 2006. The co-occurrence frequency of two keywords was obtained 
by counting the number of abstracts in which the keywords both occur. 

Results 
For each of the three data sets that we consider, three maps were constructed, 

one using the MDS-AS approach, one using the MDS-COS approach, and one using 
the VOS approach. All maps are two-dimensional. MDS was run using the 
PROXSCAL program in SPSS. Both MDS approaches used ordinal MDS. 9  100 

                                                 
8 Author name disambiguation was performed using an algorithm that we have developed ourselves. A 
few corrections were made manually. Unlike in some other author co-citation studies, all authors of an 
article were taken into account, not just the first author. 
9 Ties in the data were kept tied. This is sometimes referred to as the secondary approach to ties (Borg 
& Groenen, 2005). The secondary approach to ties is the default setting in the PROXSCAL program. 
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random starts of the optimization algorithm were used in all three mapping 
approaches.10 For the MDS approaches, stress values calculated using Equation 3 are 
reported in Table 2. The nine maps that were obtained are available online at 
www.neesjanvaneck.nl/comparison_mds_vos/, where they can be examined in detail 
using the VOSviewer software (Van Eck & Waltman, in press). The global structure 
of each of the maps is shown in Figure 1. In this figure, circles are used to indicate the 
location of an item. The size of a circle reflects an item’s total number of co-
occurrences. In order to facilitate the interpretation of the maps, items were clustered 
using a clustering technique.11 Colors are used to indicate the cluster to which an item 
belongs. 
 
TABLE 2. Stress values calculated using Equation 3 for the MDS-AS and MDS-COS 
approaches. 
 

 MDS-AS MDS-COS 
Authors 0.12 0.04 
Journals 0.14 0.05 
Keywords 0.16 0.07 

 
As can be seen in Figure 1, the MDS-AS, MDS-COS, and VOS approaches 

produce quite different maps. Although all three approaches succeed to some extent in 
separating items belonging to different clusters, the global structure of the maps 
produced by the three approaches is very different. The MDS-AS approach produces 
maps with the shape of an almost perfect circle. The distribution of items within a 
circle is more or less uniform, in particular when the number of items is large, as in 
the case of the journals and keywords data sets. The maps produced by the MDS-COS 
approach also seem to have a tendency to be somewhat circular, but this effect is 
much weaker than in the case of the MDS-AS approach. A notable property of the 
maps produced by the two MDS approaches is that important items (i.e., items with a 
large number of co-occurrences) tend to be located toward the center of a map. This is 
especially clear in the case of the authors and keywords data sets. Many relatively 
unimportant items are scattered throughout the periphery of a map. In the maps 
produced by the VOS approach, no effects are visible similar to those observed in the 
case of the two MDS approaches. Hence, the VOS approach does not seem to have a 
tendency to produce circular maps. It also does not seem to locate important items 
toward the center of a map. Instead, the VOS approach seems to produce maps in 
which important and less important items are distributed fairly evenly over the central 
and peripheral areas. 
 

                                                 
10 In the case of the MDS-AS approach, rather stringent convergence criteria were required for the 
optimization algorithm. Without such criteria, the algorithm was very sensitive to local optima. Due to 
the stringent convergence criteria, the application of the MDS-AS approach to the journals data set took 
more than two days of computing time on a standard desktop computer. For comparison, the 
application of the VOS approach to the same data set took less than ten minutes of computing time. 
11 The clustering technique that was used is similar to the technique discussed in Section 2.3 of a paper 
by Zhu, Takigawa, Zeng, & Mamitsuka (2009). 
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FIG. 1. Global structure of nine maps. Each row corresponds with a data set. Each 
column corresponds with a mapping approach. 
 

We emphasize that the results shown in Figure 1 are quite robust. The results do 
not change much when interval MDS is used rather than ordinal MDS. Using MDS 
combined with direct similarity measures other than the association strength also does 
not have much effect on the results. Furthermore, the results shown in Figure 1 are 
relatively independent of the data sets that we use. We investigated numerous other 
data sets, and this yielded very similar results. However, the almost perfectly circular 
structure of maps produced by the MDS-AS approach was not observed in the case of 
data sets with only a relatively small number of items (e.g., less than 100 items). In 
the bibliometric mapping literature, a clear example of a circular map produced by 
MDS can be found in a study by Blatt (2009). Blatt used a data set of almost 5000 
items. Most bibliometric mapping studies reported in the literature rely on data sets 
with a much smaller number of items. In such studies, MDS typically does not  
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FIG. 2. Map of the authors data set constructed using the MDS-AS approach. 
 
produce circular maps, although a tendency toward a circular structure sometimes 
seems visible.12 

We now focus on one data set in more detail. This is the data set of authors in 
the field of information science. We note that somewhat similar data sets have also 
been analyzed in a paper by Persson (1994), in a well-known study by White and 
McCain (1998), and more recently in the work of Zhao and Strotmann (2008a,b,c). 
Maps of the authors data set constructed using the MDS-AS, MDS-COS, and VOS 
approaches are shown in Figures 2, 3, and 4, respectively. These are the same maps as 
the ones shown in the top row of Figure 1. 

In various studies of the field of information science (e.g., Åström, 2007; White 
& McCain, 1998; Zhao & Strotmann, 2008a,b,c), it has been found that the field 
consists of two quite independent subfields. We adopt the terminology of Åström 
(2007) and refer to the subfields as information seeking and retrieval (ISR) and 
informetrics. Comparing the maps in Figures 2, 3, and 4, it can be observed that the 
separation of the subfields is clearly visible in the VOS map, somewhat less visible in 
the MDS-COS map, and least visible in the MDS-AS map.13 In the VOS map, the 
right part represents the informetrics subfield (e.g., Egghe, Glänzel, and Van Raan)  

                                                 
12 We note that MDS is not the only mapping technique with a tendency to produce circular maps. See 
for example Boyack et al. (2005), Heimeriks, Hörlesberger, and Van den Besselaar (2003), Klavans 
and Boyack (2006), and Noll, Fröhlich, and Schiebel (2002). 
13 In the maps, the green cluster corresponds with the informetrics subfield and the blue and red clusters 
correspond with the ISR subfield. 
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FIG. 3. Map of the authors data set constructed using the MDS-COS approach. 
 
and the left part represents the ISR subfield (e.g., Baeza-Yates, Jansen, Robertson, 
Spink, Tenopir, and Wilson). There is only a relatively weak connection between the 
subfields. In the MDS-COS map, the middle right part represents the informetrics 
subfield and the rest of the map represents the ISR subfield. A striking property of the 
map is that the ISR subfield is rather scattered, with the most prominent authors (in 
terms of the number of co-citations) appearing in the center of the map and many 
somewhat less prominent authors appearing in the periphery. In the MDS-AS map, 
the middle right part represents the informetrics subfield and the rest of the map 
represents the ISR subfield. As noted earlier, the map has the shape of an almost 
perfect circle. The informetrics subfield is partly surrounded by the ISR subfield, with 
some empty space indicating the separation of the subfields. Prominent authors in the 
ISR subfield are located toward the center of the map. Less prominent authors tend to 
be located in the top and bottom parts of the map. This is quite similar to the MDS-
COS map. 

A distinction is sometimes made between “hard” and “soft” ISR research (e.g., 
Åström, 2007; Persson, 1994; White & McCain, 1998). Hard ISR research is system-
oriented and is for example concerned with the development and the experimental 
evaluation of information retrieval algorithms. Soft ISR research, on the other hand, is 
user-oriented and studies for example users’ information needs and information 
behavior. The distinction between hard and soft ISR research is visible in all three 
maps. In the VOS map, the lower left part represents hard ISR research (e.g., Baeza-
Yates and Robertson) and the middle left and upper left parts represent soft ISR  
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FIG. 4. Map of the authors data set constructed using the VOS approach. 
 
research (e.g., Jansen, Spink, Tenopir, and Wilson). In the MDS-COS and MDS-AS 
maps, the lower part represents hard ISR research and the middle and upper parts 
represent soft ISR research. As can be seen from all three maps, there is much more 
soft ISR research than hard ISR research. This is similar to what was found by Åström 
(2007). 

The above comparison of the three maps of the authors data set indicates that 
the MDS-AS, MDS-COS, and VOS approaches all three succeed reasonably well in 
locating similar authors close to each other. However, the comparison also makes 
clear that the MDS-AS and MDS-COS approaches suffer from serious artifacts. Both 
approaches have a tendency to locate the most prominent authors in the center of a 
map and less prominent authors in the periphery. Due to this tendency, the separation 
of subfields becomes more difficult to see. The MDS-AS approach also has a strong 
tendency to locate authors in a circular structure. This tendency further distorts the 
way in which a field is represented. Unlike the two MDS approaches, the VOS 
approach does not seem to suffer from artifacts. That is, the VOS approach does not 
seem to impose any artificial structure on a map. Our findings based on the maps of 
the authors data set are confirmed when examining the maps of the journals and 
keywords data sets. A detailed discussion of the latter maps is beyond the scope of 
this paper. We note, however, that an examination of these maps indicates the same 
artifacts of the MDS-AS and MDS-COS approaches as discussed above. The 
interested reader can verify this at www.neesjanvaneck.nl/comparison_mds_vos/. 
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The maps in Figures 2 and 3 indicate the consequences of the artifacts from 
which the MDS-AS and MDS-COS approaches suffer. In these maps, a number of 
prominent ISR authors (e.g., Spink, Wang, and Wilson) are located equally close or 
even closer to various informetrics authors than to some of their less prominent ISR 
colleagues. However, contrary to what the maps seem to suggest, there is in fact very 
little interaction between the prominent ISR authors and the informetrics authors. The 
relatively small distance between these two groups of authors therefore does not 
properly reflect the structure of the field of information science. The small distance is 
merely a technical artifact, caused by the tendency of the MDS-AS and MDS-COS 
approaches to locate important items in the center of a map. It follows from this 
observation that distances in maps constructed using the MDS approaches may not 
always give an accurate representation of the relatedness of items. Hence, in the case 
of the MDS approaches, the validity of the interpretation of a distance as an (inverse) 
measure of relatedness seems questionable. The VOS map in Figure 4 does properly 
reflect the large separation between the prominent ISR authors and the informetrics 
authors. In this map, the interpretation of a distance as a measure of relatedness 
therefore seems valid. We note that the journal and keyword maps available online 
provide similar examples of the consequences of the MDS artifacts. 

Explanation for Circular Maps 
Finally, let us consider the phenomenon of the circular maps produced by the 

MDS-AS approach in somewhat more detail. Although this phenomenon may seem 
puzzling at first sight, it actually has a quite straightforward explanation. 14  Co-
occurrence data typically consists for a large part of zeros. For example, in the case of 
the authors, journals, and keywords data sets, respectively 73%, 75%, and 89% of all 
pairs of items have zero co-occurrences. It follows from Equation 1 that, when two 
items have a co-occurrence frequency of zero, their association strength equals zero as 
well. This means that in the MDS-AS approach MDS is typically applied to similarity 
data that consists largely of zeros. MDS attempts to determine the locations of items 
in a map in such a way that for each pair of items with a similarity of zero the distance 
between the items is the same. In the case of similarity data that consists largely of 
zeros, it is not possible to construct a low-dimensional map with exactly the same 
distance between each pair of items with a similarity of zero. MDS can only try to 
approximate such a map as closely as possible. Our experiments indicate that the best 
possible approximation is a map with an almost perfectly circular structure. This is in 
fact not a very surprising finding, since it is well known in the MDS literature (Buja, 
Logan, Reeds, & Shepp, 1994; De Leeuw & Stoop, 1984; see also Borg & Groenen, 
2005) that MDS produces perfectly circular maps when all similarities between items 
are equal. In our experiments, not all similarities between items are equal but only a 
large proportion. The circular structure of our maps is therefore not perfect but almost 
perfect. 

In our experiments, the VOS approach is applied to the same similarity data as 
the MDS-AS approach. Hence, the VOS approach is also applied to similarity data 
that consists for a large part of zeros. This raises the question why, unlike the MDS-
AS approach, the VOS approach does not produce circular maps. To answer this 
question, recall how MDS and VOS are related to each other. As discussed earlier, 
VOS can be regarded as a kind of weighted MDS with proximities and weights 
chosen in a special way. More precisely, in the case of VOS, the proximity of two 

                                                 
14 For an explanation similar to ours, see Martín-Merino and Muñoz (2004). 
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items is set equal to the inverse of the similarity of the items. The weight of two items 
is set equal to the similarity of the items. From this point of view, one can say that the 
VOS approach distinguishes itself from the MDS-AS approach in that it does not give 
equal weight to all pairs of items. The VOS approach gives more weight to more 
similar pairs of items. It gives little weight to pairs of items with a low similarity. As 
mentioned above, similarity data is typically dominated by low values, in particular 
by zeros. These low values cause the MDS-AS approach to produce circular maps. In 
the case of the VOS approach, however, pairs of items with a low similarity receive 
little weight and therefore have little effect on a map. Because of this, the VOS 
approach does not produce circular maps. 

Conclusions 
VOS is a new mapping technique that is intended as an alternative to the well-

known technique of MDS. We have presented an extensive comparison between the 
use of MDS and the use of VOS for constructing bibliometric maps. Our analysis has 
been partly theoretical and partly experimental. In our theoretical analysis, we have 
studied the mathematical relationship between MDS and VOS. We have shown that 
VOS can be regarded as a kind of weighted MDS with proximities and weights 
chosen in a special way. In our experimental analysis, we have compared three 
approaches for constructing bibliometric maps, two approaches relying on MDS and 
one approach relying on VOS. We have found that maps constructed using the VOS 
approach provide a more satisfactory representation of the underlying data set than 
maps constructed using either of the MDS approaches. The somewhat disappointing 
performance of the MDS approaches is due to two artifacts from which these 
approaches suffer. One artifact is the tendency to locate the most important items in 
the center of a map and less important items in the periphery. The other artifact is the 
tendency to locate items in a circular structure. Unlike the MDS approaches, the VOS 
approach does not seem to suffer from artifacts. It is worth emphasizing that our 
experimental findings are quite robust. We have made the same findings for three 
fairly different data sets. These data sets differ from each other in size (405, 831, or 
2079 items), in type of item (authors, journals, or keywords), and in concept of 
similarity (co-citation in a reference list or co-occurrence in an abstract). 

The interested reader who would like to try out the VOS approach to 
bibliometric mapping can easily do so using the VOSviewer software (Van Eck & 
Waltman, in press) that is freely available at www.vosviewer.com. The software 
offers a graphical user interface that provides easy access to the VOS mapping 
technique. In addition, the software also comprehensively supports the visualization 
and interactive examination of bibliometric maps. 
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Appendix 
In this appendix, a proof of Proposition 1 is provided. The two parts of the 

proposition will be proven separately. Both parts will be proven by contradiction. 
First consider part (i) of Proposition 1. Let X = (x1, …, xn) denote a globally 

optimal solution to the problem of minimizing Equation 10, and let Y = (y1, …, yn) 
denote a globally optimal solution to the problem of minimizing Equation 5 subject to 
Equation 6. Let c be given by 
 

 
∑ <

−
−=

ji ji

nn
c

xx2

)1(
. (11) 

 
Furthermore, define U = cX and V = Y / c. It follows from Equation 11 that U 
satisfies the constraint in Equation 6. Assume that U is not a globally optimal solution 
to the problem of minimizing Equation 5 subject to Equation 6. This assumption 
implies that 
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It then follows that 
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Extending both the left-hand side and the right-hand side of this inequality with an 
additional term, where the additional term in the left-hand side equals the additional 
term in the right-hand side, yields 
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This inequality implies that X is not a globally optimal solution to the problem of 
minimizing Equation 10. However, this contradicts the way in which X was defined. 
Consequently, the assumption that U is not a globally optimal solution to the problem 
of minimizing Equation 5 subject to Equation 6 must be false. This proves part (i) of 
Proposition 1. 

Now consider part (ii) of Proposition 1. This part will be proven in a similar 
way as part (i). Let X = (x1, …, xn) denote a globally optimal solution to the problem 
of minimizing Equation 5 subject to Equation 6, and let Y = (y1, …, yn) denote a 
globally optimal solution to the problem of minimizing Equation 10. Let c be given by 
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Furthermore, define U = cX and V = Y / c. It follows from Equation 15 that V 
satisfies the constraint in Equation 6. Assume that U is not a globally optimal solution 
to the problem of minimizing Equation 10. This assumption implies that 
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In this inequality, the second term in the left-hand side equals the second term in the 
right-hand side. The inequality can therefore be simplified to 
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It then follows that 
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This inequality implies that X is not a globally optimal solution to the problem of 
minimizing Equation 5 subject to Equation 6. However, this contradicts the way in 
which X was defined. Consequently, the assumption that U is not a globally optimal 
solution to the problem of minimizing Equation 10 must be false. This proves part (ii) 
of Proposition 1. The proof of the proposition is now complete. 


