
A COMPARISON OF UAV AND TLS DATA FOR SOIL ROUGHNESS ASSESSMENT
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ABSTRACT:

Soil roughness represents fine-scale surface geometry which figures in many geophysical models. While static photogrammetric tech-

niques (terrestrial images and laser scanning) have been recently proposed as a new source for deriving roughness heights, there is still

need to overcome acquisition scale and viewing geometry issues. By contrast to the static techniques, images taken from unmanned

aerial vehicles (UAV) can maintain near-nadir looking geometry over scales of several agricultural fields. This paper presents a pilot

study on high-resolution, soil roughness reconstruction and assessment from UAV images over an agricultural plot. As a reference

method, terrestrial laser scanning (TLS) was applied on a 10 m x 1.5 m subplot. The UAV images were self-calibrated and oriented

within a bundle adjustment, and processed further up to a dense-matched digital surface model (DSM). The analysis of the UAV- and

TLS-DSMs were performed in the spatial domain based on the surface autocorrelation function and the correlation length, and in the

frequency domain based on the roughness spectrum and the surface fractal dimension (spectral slope). The TLS- and UAV-DSM dif-

ferences were found to be under ±1 cm, while the UAV DSM showed a systematic pattern below this scale, which was explained by

weakly tied sub-blocks of the bundle block. The results also confirmed that the existing TLS methods leads to roughness assessment

up to 5 mm resolution. However, for our UAV data, this was not possible to achieve, though it was shown that for spatial scales of 12

cm and larger, both methods appear to be usable. Additionally, this paper suggests a method to propagate measurement errors to the

correlation length.

1. INTRODUCTION

Roughness is a property of surfaces, required to understand and

model interaction at these surfaces, e.g. in hydraulics, radar re-

mote sensing, or soil erosion. The assessment of roughness has

been traditionally performed by mechanical profiling (Mattia et

al., 2003), but this is naturally restricted by the length of the

ruler and the effort to place it at different locations. With effi-

cient methods for acquiring point clouds at high resolution like

terrestrial laser scanning (TLS) and high density image match-

ing (Lichti and Jamtsho, 2006) (Rothermel et al., 2012) (Rieke-

Zapp and Nearing, 2005), new possibilities for assessing rough-

ness arise. The range envelope for which roughness should be

quantified depends on the application. In radar remote sensing,

but likewise in the optical domain, the backscattering behavior

depends on the roughness in relation to the wavelength (Ulaby

et al., 1986). As an example, Sentinel-1 has a wavelength of 5.5

cm. Thus, the roughness between a few mm and up to several

decimeters should be modeled.

The shape of a rough surface can be modeled as a random pro-

cess, as a scalar function of the X- and Y-coordinate (Verhoest et

al., 2008). Assessing the roughness therefore requires the study

of a larger area. Using again the example of Sentinel-1, which

has a resolution of 5 m x 20 m, a highly detailed surface model

should be derived for an extent of several multiples of 20 m.

Terrestrial laser scanning has proven to be a suitable tool for mod-

eling the roughness at the required scales. Positioning the TLS

at large height above the ground, and restricting the ranges used,

guarantees that roughness content placed close to the Nyquist fre-

quency is assessed with 5% accuracy or better (Milenković et al.,
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2015). However, for larger areas this procedure is less practica-

ble due to the number of required stand points. Airborne acqui-

sition, in contrast, allows large area coverage. However, standard

photogrammetric flights cannot provide the resolution required.

Lower flying heights would be necessary to reach it.

Using a UAV these low flying heights become possible: the air-

borne close range approach. Above that, low cost components

(small UAVs, consumer cameras), make this approach interest-

ing. However, little work has been performed on very high res-

olution mapping of irregular surfaces by UAVs. In (Eltner et

al., 2013), UAV images with 2-4 mm ground sampling distance

(GSD) were used to provide cm to sub-cm accurate DSMs for

multi-temporal soil erosion monitoring. Also (Mancini et al.,

2013) reported that UAV data with 6 mm resolution was acquired

to monitor beach dune geometry. The heights reconstructed from

this UAV data were within a few centimeters compared to the

heights of a TLS data set used as the reference.

The aim of this article is to investigate if the quality obtained

by TLS can be achieved also by light weight UAV image based

acquisition. Specifically, in this paper data is acquired over a plot

of bare soil, by TLS and with images from a UAV. The surface

model from TLS serves as a reference and the model from the

images is compared against it. This comparison is performed on

the basis of roughness measures.

2. EXPERIMENT SETUP AND DATA

2.1 Experiment Setup

TLS and UAV data were collected over an agricultural field, lo-

cated just beyond the city border of Vienna, Austria. The mea-

surements were performed one after another in a single day in
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Figure 1: (a) The agricultural plot with the UAV and TLS mea-

surement setup; (b) An image of the fine-scale roughness ele-

ments present in the plot.

June 2015. The weather was mostly sunny with some short cloud

interruptions and without rain, but with wind that was strong

enough to prevent the UAV from flying in autopilot mode.

The experimental setup is shown in Figure 1a, where the or-

thophoto derived from the UAV images was used as background.

The large rectangular plot delineated by the ground control points

(GCPs, the white circles in Figure 1a) was surveyed with the UAV

images, while a subplot of ca. 10 m x 1.5 m (the red rectangle)

was surveyed with the TLS. Additionally, total station measure-

ments were performed to define a local datum, i.e. to derive co-

ordinates of the GCPs in the local object coordinate system. The

GCPs were symmetrically distributed around the plot and sepa-

rated at maximum 3 m from one another. This, rather small, GCP

spacing was selected to minimize systematic deformations in the

object space due to residual errors in the images.

The agricultural soil plot contained roughness elements over sev-

eral scales. The most prominent ones were low-frequency peri-

odic surface components (2 to 3 cm in the amplitude) which were

introduced with a mechanical, seed-bed preparation tool. On top

of these components, there were randomly distributed soil clods

(soil aggregates up to a few centimeters), very fine soil grains

(Figure 1b), and a number of small, individual vegetation patches

(up to a few decimeters). Since the purpose of this study was to

characterize the bare soil roughness, this vegetation was removed

from the plot before data acquisition.

2.2 UAV Images

The images were collected with a Sony α ILCE-6000, an inter-

changeable lens camera mounted on an octocopter (Figure 4).

The camera’s sensor size is 23.5 mm x 15.6 mm, which corre-

sponds to pixel size of 3.9 µm. The camera was combined with a

Figure 2: (a) Image density map (the GCPs are plotted as red

dots); (b) Image footprints within the subplot.

zoom lens Sony AF E 16-70mm 4.0 ZA OSS, the focal length of

which was 52 mm during image acquisition.

Due to strong wind, the flight was performed manually and as

much as possible parallel to the two longer sides of the plot. The

flight took 13 minutes to acquire 254 images, which were pre-

dominately distributed along the two longer sides of the plot, but

with some of them also distributed along the plot’s central axis

(Figure 1). Thus, the acquired images were not distributed in the

well-know regular strip pattern. Nevertheless, as shown in Fig-

ure 2a, the plot was covered everywhere with at least 9 images.

The average flying height was 22 m, which resulted in a ground

sampling distance (GSD) below 2 mm. The images were self-

calibrated in a bundle block adjustment procedure.

The image resolution was then examined based on the edge spread

function, also known as edge response (Perko et al., 2004)(Ja-

cobsen, 2009). The edge spread function was calculated by the

QuickMTF software (www.quickmtf.com) using the special test

charts (provided by the software company) which were printed

and fixed to flat plates on the ground during image acquisition

(Figure 3a-b). The estimated modulation transfer functions for

each color are shown in Figure 3. According to the 50 % modu-

lation threshold, the reported resolution is 6 pixels, which is ap-

proximately 12 mm in the object space. This resolution is notably

lower compared to the images’ GSD (ca. 2 mm). One of the rea-

sons for this degradation of image resolution is motion blur which

is most probably caused by an inappropriate shutter time setting

and vibration of the UAV.

2.3 TLS Data

In this experiment, the data collected with a Z + F Imager 5010c

served as reference. Generally, UAV images observe soil from

above, providing better viewing geometry compared to TLS data
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Figure 3: The modulation transfer function (MTF) corresponding

to the edge spread function (measured in the in-flight direction)

of an acquired image.

taken from classical geodetic tripods. However, UAV images are

collected in a kinetic mode,which degrades the resolution by sev-

eral pixels due to motion blur. On the other hand, the scanner

itself is static and a single measurement takes less than one micro-

second. Moreover, the TLS was applied here from a high tripod

(instrument height >2.5m) and with small ranges (<6 m), which

provided more favorable viewing geometry and higher resolution

compared to classical TLS setups and our UAV data.

2.3.1 Measurement Setup The subplot was scanned with 6

scan positions in total, where 3 of them were taken along each

of the two longer sides of the subplot. To minimize occlusions

and incidence angles, the scan positions were set approximately

opposite to one another and the scanner was placed on a high

tripod (Figure 4). The instrument height ranged from 2.55 m to

2.72 m. Scanning was performed in the high-quality and high-

sampling mode, providing 10000 range measurements per full

circle. The scanning started at 19:10 CET and completed in 50

minutes, taking on average 9 minutes per station.

The TLS points collected within the subplot have the following

characteristics. 95 % of the points have a range smaller than 4.5

m. Since the scanner has a precise laser beam (3 mm beam diam-

eter at the exit and a divergence of 0.3 mrad), the diameter of the

laser-beam footprint was below 5 mm all over the subplot. 90%

of the points have an incidence angle below 52◦, which fulfills

the requirements suggested by (Milenković et al., 2015) for TLS

in roughness applications. The average point density within the

subplot is 85 points/m2, while 90% of the subplot has at least 40

points/m2, i.e. the point spacing within the subplot is 1.5 mm or

smaller. This means that the laser-beam footprints of neighboring

points were overlapping one another, which is also known as the

correlated sampling mode where the resolution of the TLS data

is rather limited by the laser beam footprint (Lichti and Jamtsho,

2006) and (Milenković et al., 2015). This means that the resolu-

tion of this TLS data is approximately 5 mm.

2.3.2 TLS Data Pre-Processing The six raw TLS scans were

first preprocessed in “Z + F Laser Control”software where the

mixed-pixel and single-pixel filters were applied. These filters

remove points with erroneous range values happened when the

laser beam of a phase-comparison laser scanner illuminates sev-

eral objects distributed along the laser line of sight (Langer et

al., 2000). For our surface, this mostly happened when the laser

beam simultaneously illuminated the top of a soil clod and the soil

surface in the background. In addition to these filters, the inten-

sity filter was applied to remove points with an intensity smaller

than 1 %. These points are generally less accurate because their

range determination is associated with a small signal to noise ra-

tio (Langer et al., 2000).

The parameter values used in the above filters (mixed-pixel, single-

pixel and intensity) are the default values recommended by the “Z

+ F Laser Control” software. This default parameter setting was

already found to be appropriate for soil-roughness preprocessing

(Milenković et al., 2015).

3. METHODS

3.1 UAV Data Processing

The UAV imagery was oriented and the camera was calibrated

using OrientAL (Karel et al., 2013). Missing any direct sensor

orientation data, processing started with a variation of Structure-

from-Motion (SfM) (Torr and Zisserman, 2000): image feature

points are detected in each image and their neighborhoods are

described, after which point pairs with similar descriptors are

matched between image pairs. Relative image pair orientations

are computed and outlier matches discarded. For an initial im-

age pair, object points are forward intersected and both camera

orientations and object points are optimized in a bundle block ad-

justment. Subsequently, additional images are added to the block

one after another by spatial resection and further object points are

triangulated, until all images have been oriented. Aiming at the

error-free and precise orientation of all images, robust methods

are employed at all stages, and intermediate bundle block adjust-

ments are executed after the addition of further images. Already

the pairwise image matching takes place in Euclidean space, us-

ing an approximate interior orientation derived from Exif data. In

contrast to other software packages, OrientAL estimates a vari-

able set of lens distortion parameters, depending on their signif-

Figure 4: The TLS and UAV instruments used in this experiment.
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icance and stability, and to better handle perspective image dis-

tortion, we use Affine SIFT features (Morel and G.Yu, 2009),

which are not only scale and rotation invariant, but also invari-

ant to affine distortion. Finally, the maximum admissible image

point residual norm is not a fixed parameter, but is derived from

the data itself.

Using these relative image orientations, we forward intersect the

GCPs into model space using their manual image observations,

apply the resulting similarity transform to the bundle block, and

introduce additional observations for the GCPs in image and ob-

ject space, taking into account their stochastic nature. While we

assumed the standard deviations of feature point image observa-

tions a priori to be 1 pix, image observations of control points

were given the higher precision of 0.1 pix due to their higher

definition accuracy. Observations of control point coordinates in

object space were assigned a standard deviation of 1 mm a priori.

This resulted in median residual norms for feature image points

of 0.46 pix, for GCP image points of 0.97 pix, and for GCP object

points of 14 mm. The rather large residuals of GCP image points

may be a result of the weak block geometry with 2 flight strips of

extremely high overlap along-track, but low overlap across-track.

3.2 Data Co-Registration

Before interpolation and data comparison, it was necessary to

bring the UAV and TLS data into the same local object coordi-

nate system (LOCS). This was done trough several co-registration

steps. First, the individual TLS scans were georeferenced to the

LOCS with the help of the control points measured with the total

station. This procedure was performed using an adjustment pro-

cedure implemented in “Z + F Laser Control” software. Then, in

an additional step, the individual TLS scans were co-registered to

one another using a variant of the iterative closest point (ICP) al-

gorithm implemented in the software OPALS (Glira et al., 2015).

This step minimizes the point-to-surface distance among all the

scans, and for our 6 scans data, the standard deviation of this dis-

tance after the ICP procedure was 0.8 mm. This value is just two

times the specified measurement noise of the Z + F IMAGER

5010c scanner, which suggests at very good co-registration of the

TLS scans. The six TLS scans were then merged into one TLS

point-cloud block.

The UAV images were oriented trough a bundle adjustment pro-

cedure where the GCP coordinates measured with the total station

were also used as observations. Thus, the resulting exterior cam-

era parameters were already in the LOCS. This means that the

densely matched points as well as the automatically derived UAV

DSM are both in the LOCS. Still, in order to remove any remain-

ing residual errors in the absolute orientation and to optimize the

relative orientation between UAV DSM and TLS DSM, another

ICP run was applied to both DSMs. The standard deviation of the

final point-to-surface distances between UAV DSM and the TLS

block was 4 mm.

3.3 Detrending and DSM Interpolation

Roughness analysis is generally performed on detrended heights.

Thus, the UAV and TLS data were additionally detrended here

using the regression plane fitted trough the TLS points within the

subplot. This means that the detrended UAV and TLS heights

were calculated as the normal residuals to the regression plane,

while the planar coordinates were additionally reduced to the cen-

ter of gravity of the TLS points.

The TLS DSM was interpolated from the detrended TLS point-

cloud block. The interpolation was done for a 1 mm grid spacing

and with the moving plane interpolation applied to points within

a 2.5 mm neighborhood radius. This neighborhood size was se-

lected to match the size of the laser beam footprint within the

plot. The UAV DSM was automatically produced by the SURE

software (Rothermel et al., 2012), where the bundle results were

supplied as input.

3.4 Roughness Assessment

Surface roughness is treated here in two ways: (a) through the

so-called classical parametrization, i.e. as a zero-mean Gaussian

process characterized by the root mean square (RMS) height,

autocorrelation function (ACF) and correlation length (l) (Ver-

hoest et al., 2008), and (b) as a band-limited random fractal sur-

face characterized by the spectral slope (α), i.e. fractal dimen-

sion D = 5−α

2
(Davidson et al., 2003). Both parametrizations

were estimated as in (Milenković et al., 2015), i.e. from linearly-

detrended soil-roughness profiles sampled as rows of the TLS and

UAV DSMs.

For the classical parametrization, first the empirical autocorrela-

tion function was derived, with its value for a lag τk calculated

as:

r̂(τk) =
1

N − k

N−k
∑

i=1

zizi+k (1)

where τk = k ·∆x with k being the lag increment, and ∆x being

the DSM’s grid size. N is the number of height samples in a DSM

row, while zi and zi+k are the DSM row heights at positions i
and i + k, respectively. The RMS height s was estimated as

s2 = r̂(0), while the correlation length l was calculated as in

(Davidson et al., 2003), i.e. directly interpolating the normalized

autocorrelation function ρ(τk) = r̂(τk)/r̂(0):

l = τm + (e−1
− ρ(τm))

τm+1 − τm
ρ(τm+1)− ρ(τm)

, (2)

where τm ≤ l ≤ τm+1 and ρ(τm) ≤ e−1
≤ ρ(τm+1).

For the fractal parametrization, it was necessary first to estimate

the power spectral density (the roughness spectra). This was done

by calculating the assembly-average of the hamming-windowed

periodograms derived from the sampled DSM rows (Milenković

et al., 2015). Based on the derived roughness spectra, the spec-

tral slope α is calculated as the slope of a regression line used

to approximate the roughness spectrum on the logarithmic scale

and within a particular frequency band (Dierking, 1999). In the

linear-scale frequency domain, the latter is equivalent to:

S(f) = c · f−α
(3)

where f is the spatial frequency, log10(c) is the intercept of the

regression line, and S(f) is the roughness spectrum.

3.4.1 Roughness Levels of Detail The roughness level of de-

tail present in the TLS- and UAV-DSM is judged in two ways: (a)

qualitatively, by visual comparison of the DSMs’ shaded models,

and (b) quantitatively, by calculating the difference of the esti-

mated UAV and TLS roughness spectra. The roughness spectra

difference can reveal the spatial wavelengths (scales) over which

two corresponding DSMs share the same roughness information.

According to the study of (Oh and Kay, 1998), which is based

on synthetic data, the roughness spectra difference should be be-

low 1 dB for accurate prediction of the microwave backscatter

strength.

3.5 Autocorrelation Function and Error Propagation

The TLS DSM and UAV DSM which are used to derive the au-

tocorrelation functions are not free from measurement and inter-
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Figure 5: (a) Difference map between the TLS- and the UAV-DSM; (b) Min-max distance map derived from the DSMs of six overlap-

ping single-TLS scans; (c) and (d) are shaded TLS- and UAV-DSM, respectively, from the region marked by the red rectangle in (b);

(e) is the zoom-in to the blue rectangle in (b).

polation errors. Thus, this section considers how these errors can

be quantified and propagated further to to the autocorrelation es-

timates.

For the TLS DSM, the height errors are quantified with the moving-

plane interpolation error σz . This error is derived for each grid

position by propagating the RMS error of the plane adjustment

procedure of the neighboring points during the interpolation pro-

cess. Since the neighborhood used in our case is small (2.5 mm

radius), the interpolation error can be seen as a mixture of the

measurement noise as well as the modeling error caused by a pla-

nar approximation of roughness elements like soil clods.

For the UAV DSM, the height error is quantified as the standard

deviation (σMAD) derived from the median of absolute differ-

ences of the dense-matched point’s heights within 6 mm neigh-

borhood radius. The dense-matched points are one of the outputs

provided by SURE, and they are calculated while matching a base

image with several neighboring images (Rothermel et al., 2012).

This means that for each pixel of a base image there are sev-

eral reconstructed heights corresponding to the neighboring im-

age pairs. Therefore, the DSM heights (also provided by SURE)

can be seen as a median-like filter of the matched points. The

σMAD estimation radius (6 mm) was set according to the image

resolution in the object space (ca. 12 mm).

σz and σMAD are available for each height of the TLS DSM

and UAV DSM, respectively. Based on Eq.(1), it is possible to

propagate σz and σMAD further to the autocorrelation values for

each particular lag. This can be easily done when Eq.(1) is seen

as linear combination, i.e. as a product of a row vector h⊤

k and a

column vector z:

r̂(τk) =
1

N − k

N−k
∑

i=1

zizi+k = h
⊤

k · z , (4)

where:

hk =
1

N − k











0

z1
...

zN−k











, and z =











z1
z2
...

zN











,

while the first k elements of hk are zeros. For the zero-lag auto-

correlation r̂(0), it holds: h0 = 1

N
z. Following the error prop-

agation law for hk and z (both contain individual random vari-

ables), the expression for the variance of a single-lag autocorre-

lation value r̂(τk) is:

σ̂2
rk

= h
⊤

k ·Σzz · hk + z
⊤

k ·Σhkhk
· zk (5)

Σzz is a full diagonal matrix containing variances σ2
zi

, while

Σhkhk
is the same as Σzz, but with the first k diagonal elements

equal to zero. Finally, to compute the variance of r̂(τk) for the

TLS DSM, the σ2
zi

values are replaced with σ2
z , while in case of

the UAV DSM, the σ2
MAD is used instead.

4. RESULTS AND ANALYSIS

4.1 Accuracy of Data Co-Registration

Improper data co-registration may lead to false roughness analy-

sis. Thus, two elevation-difference rasters were prepared to report

on the co-registration accuracy: one to check the co-registration

of the individual TLS scans, and another to check the co-registration

of the TLS DSM and UAV DSM.

The co-registration of the individual TLS scans was checked with

the minimum-maximum elevation difference (range) for each pixel

of a set of six overlapping DSMs interpolated from the individual

TLS scans. Figure 5b shows the color-coded range map for our

6 TLS scans over the subplot with a pixel size of 1 mm. Since

the range values are non-negative, the colors correspond only to

the right half of the given color palette. The gray values show the
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areas which contain just one individual TLS DSM, and they oc-

cupy about 30% of the plot. The 95% of the remaining area con-

tains range values below 2 mm, which indicates a very good co-

registration of the TLS scans. The remaining 5% of large range

values occurs mostly around the soil clod edges, which can be

seen in Figure 5e. This is because the moving-plane interpolation

with a neighborhood radius of 2.5 mm (the interpolation method

used for the DSM interpolation) does not perform well on soil

clod borders. However, these are generally known interpolation

artifacts that can not be easily overcome with our TLS data.

Figure 5a shows the color-coded elevation differences between

the UAV DSM and the TLS DSM. Due to the ICP minimization

between the two DSMs performed in the preprocessing step, the

differences are on average zero, and 90% of the differences are

within ±9 mm. However, within this accuracy range, there are

also large systematic patterns in the difference map. After careful

examination, it was found that borders between regions of posi-

tive and negative differences correspond to image borders (see

Figure 2b). Residual image orientation errors may be responsible

for that. These orientation errors could be caused by insufficient

overlap between individual image sub-blocks. Additionally, dur-

ing the image acquisition, the image stabilization was switched

on to reduce motion blur, which caused unstable inner geometry

of the camera, and consequently, difficulties to determine a sin-

gle distortion model valid for all images. With an accuracy of

±9 mm this UAV DSM is only sub-optimal. Still, within this

accuracy bound, the UAV DSM can be used for the comparison

with the TLS DSM. However, this experience raises the aware-

ness that the acquisition of the UAV images should be conducted

with much more care - especially regarding the stability of the in-

ner image geometry. For an identical image set with a stable inner

geometry, the accuracy of the UAV DSM should be expected to

be notably higher, and without the systematic effects shown in

Figure 5a.

4.2 Roughness Assessment in Frequency Domain

The TLS and UAV DSMs of the whole plot are analyzed here in

the frequency domain. Figure 6 shows two roughness spectrum

lines derived from the TLS DSM (red) and UAV DSM (blue), re-

spectively. They are the ensemble-average, hamming-windowed

periodograms derived from 100 rows of the corresponding DSMs.

To make interpretation easier, the periodograms were further smo-

othed with the moving average with the span of 100 elements.

This procedure preserves the general trend of the periodogram

while removing the undesirable variability associated with this

estimator. The black line in Figure 6 shows the difference be-

tween the TLS- and UAV-based periodograms.

There are 4 frequency bands where the roughness spectra per-

form differently. These bands are separated with the three vertical

dashed lines in Figure 6. The very right band (from the Nyquist

up to the 5 mm wavelength) of the TLS spectrum shows a white-

noise (horizontal) roll-off, indicating that there is no further infor-

mation contained. This is fully consistent with the resolution of

the TLS DSM, i.e. with the diameter of the laser footprint which

was up to 5 mm within the subplot. These frequencies are present

in the periodogram because the TLS DSM was unnecessarily in-

terpolated to 1 mm grid even though the resolution of the data

itself was lower (5 mm). However, this was performed just to

have an additional estimate of the resolution of our control data

set, and to illustrate that the Nyquist frequency does not neces-

sarily indicate the resolution of a DSM. Additionally, it can be

seen that the roughness spectrum at these frequencies is below -

20 dB, which is several orders of magnitude smaller than the TLS

measurement noise. This indicates that the measurement noise is

Figure 6: The PSD functions

filtered out from the TLS point cloud during the DSM interpola-

tion. Thus, it shows that the TLS data are appropriately modeled.

From the spectra difference, it can be shown that the roughness

spectra are similar in the first two frequency bands up to the 1 dB

limit (the blue horizontal line in Figure 6). The 1 dB limit was

selected according to a study of (Oh and Kay, 1998). This prac-

tically means that the TLS DSM can be readily replaced with

the UAV DSM when the relevant roughness content is placed

along wavelengths up to 20 cm. For shorter wavelengths (from

20 cm till 5 mm), the TLS roughness spectrum contains much

more roughness information than the UAV spectrum. This can

be also seen in the two shaded DSMs (Figure 5c and 5d), which

clearly show that the TLS DSM contains much more roughness

elements at these scales compared with the UAV DSM, where

they are smoothed out. The latter effect is most probably a conse-

quence of image resolution and orientation errors which directly

influence the DSM.

In the second frequency band (from 1 m to 12 cm wavelengths),

both spectra exhibit a linear (fractal) nature, while the power of

the UAV DSM drops faster (17.5 dB per 0.5 of decade) compared

with the TLS power drop (17.5 dB per 0.6 of decade). The latter

is equivalent to the spectral slope values of 3.5 and 2.6 for the

UAV- and TLS-DSM, respectively. Thus, in this frequency band,

the UAV DSM has a slightly higher spectral slope (smaller fractal

dimension) compared with the TLS DSM. This shows that even

though the underlying surface is identical for both data sets, the

UAV and TLS data suggest two families of surfaces with different

stochastic properties. This, in turn, may cause an inconsistent

prediction of the microwave backscatter energy from the same

surface.

Finally, in the very left frequency band (from DC till 1 m wave-

length), the UAV spectrum is on top of the TLS spectrum, which

is opposite to its behavior along the remaining frequencies. This

shows that UAV spectra has more power at these frequencies

compared with the TLS DSM, which is a consequence of the sys-

tematics present in the UAV DSM (Figure 5a).

4.3 Roughness Assessment in Spatial Domain

The TLS and UAV DSMs of the whole plot are also analyzed

in the spatial domain by comparing individual profiles and their

autocorrelation functions. Figure 7a shows single height profiles

sampled at the identical location in the TLS DSM (red line) and

UAV DSM (blue line). From the zoomed-in area (Figure 7b), it

can be clearly seen that TLS profiles reconstructed much more

roughness level of detail compared with the UAV profile. This is

particularly true for the soil aggregates up to 3 mm in size, which
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Figure 7: (a) Single TLS and UAV height profiles sampled at

identical location from the corresponding DSMs; (b) Zoom-in to

portions of the profiles in (a).

are completely smoothed out in the UAV profile (e.g. section from

2.6 m to 2.7 m, Figure 7b). However, due to the systematic errors

in the UAV DSM, this did not have an effect on the profiles’ RMS

height values, where the RMS height of the UAV profile (suav =
22 mm) was found even larger than the RMS height (stls = 20
mm) of the TLS profile.

The correlation length, as a measure of roughness, was deter-

mined for both data sets. As can be seen in Figure 8 the shapes of

the autocorrelation functions are similar, and the faster drop was

explained as result of the finer details visible in the TLS data.

The correlation length determined from the UAV images is thus

approximately 15% larger than for the TLS data. In this article

error propagation was used to forward the uncertainty of eleva-

tion to uncertainty of the autocorrelation function and further to

the precision of the estimated correlation length. Given the lower

accuracy of the image based surface model, the precision of the

corresponding correlation length is poorer, too, but still only a

few percent of the correlation length. This uncertainty is much

lower than the offset in correlation length between the two meth-

ods. This suggests, that this error estimate is too optimistic, and a

likely cause is that correlations between the individual elevation

measures remained unconsidered (diagonal matrix in Eq (5)).

5. DISCUSSION AND CONCLUSIONS

In this experiment, a UAV data set was analyzed for soil rough-

ness assessment. The images used in the experiment had a resolu-

tion of 12 mm, which is low compared to the GSD of 2 mm. The

reason was the motion blur and poor lighting conditions, which

led to a loss of sharpness at the individual pixel level. Terrestrial

laser scanning was used as a reference method here, which does

not suffer from these two effects.

Although in this experiment the TLS was selected as the refer-

ence, point clouds based on overlapping images taken very close

to the object and using static acquisition can be more accurate.

For example, the vertical accuracy and GSD of an image block

taken 1 m apart from the object and with a contemporary cam-

era and a normal-angle lens, can be a few tenths of mm (Kraus,

2007). This is notably better than the TLS co-registration accu-

racy and the laser footprint, both found here to be of a few mm.

Thus, in further experiments, static and very close-range overlap-

ping imaging can be considered as the reference as well.

In Figure 5a systematic errors in the surface model derived from

dense image matching became apparent, under the assumption

that the TLS data serves as reference. That these systematic errors

Figure 8: Normalized autocorrelation functions based on the TLS

DSM and UAV DSM. The red dashed lines shows the 3σ bounds

of the propagated errors.

are related to the bundle block adjustment or the dense matching

is further supported by the comparison of the pattern of Figure 5a

to Figure 2b, which shows the overlap as grey tone and the image

borders. Changes from negative to positive errors occur at regions

where the overlap strongly drops. Thus, we conclude that images

within the bundle formed a sub-block which has strong ties within

itself, but poorer ties to neighboring sub-blocks. In this context

it is noted that clods and soil grains may look differently from

different perspectives, e.g. due to cast shadow, near vertical ele-

ments, etc. This would introduce high correlation between some

images, which is not considered in the stochastic model of the

bundle block adjustment used here.

Based on the performed analysis, one conclusion is that obtain-

ing very high resolution images of natural bare soil surfaces with

UAV remains challenging with low-cost components. The stabil-

ity of the camera is of concern, which can be enhanced (turning

off auto-focus, stabilizer, etc.) with suitable cameras. However,

the limited stability of consumer cameras is generally known.

Secondly, flying has to support image acquisition, thus avoiding

motion blur due to forward motion or vibrations. Additionally,

the experiment suggests that a regular block layout of the images

within the block could prevent systematic errors due to forming

of sub-blocks within the bundle block adjustment.

The experiment uses the methods suggested in (Milenković et al.,

2015) for processing TLS data to assess surface roughness. The

results are consistent with the previous study, and thus, confirm

the suggested method and show that it is extendable for TLS data

taken from high tripods and over a larger area. We could not

prove that the low-cost UAV images considered in this experi-

ment can deliver the same level of detail and accuracy as current

TLS systems (resolution of 5mm), although improvement can be

expected. However, for spatial scales of 12cm and larger (Figure

6), both methods appear to be usable.

The experiment is also complementing the study of (Eltner et

al., 2013). Both studies contribute to the same aim, i.e. devel-

oping methods for very high resolution modeling of terrain sur-

faces. The results of both studies are generally similar, though

the GCP accuracy achieved in (Eltner et al., 2013) is apparently

better compared to our results, and no systematic errors were re-

ported there. The systematic errors in our experiments originate

in (relatively) weakly tied sub-blocks of the bundle block. On the

other hand, the TLS reference of this article has a co-registration

error below 2 mm, and together with the data resolution of 5 mm,

this makes it well usable as reference data. Further experimenta-

tion is necessary to build a more comprehensive understanding of

the strengths and weaknesses of different approaches, and how to
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use them in synergy.
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