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Abstract: Educational data mining is capable of producing useful data-driven applications (e.g., early
warning systems in schools or the prediction of students’ academic achievement) based on predictive
models. However, the class imbalance problem in educational datasets could hamper the accuracy of
predictive models as many of these models are designed on the assumption that the predicted class is
balanced. Although previous studies proposed several methods to deal with the imbalanced class
problem, most of them focused on the technical details of how to improve each technique, while only
a few focused on the application aspect, especially for the application of data with different imbalance
ratios. In this study, we compared several sampling techniques to handle the different ratios of the
class imbalance problem (i.e., moderately or extremely imbalanced classifications) using the High
School Longitudinal Study of 2009 dataset. For our comparison, we used random oversampling
(ROS), random undersampling (RUS), and the combination of the synthetic minority oversampling
technique for nominal and continuous (SMOTE-NC) and RUS as a hybrid resampling technique.
We used the Random Forest as our classification algorithm to evaluate the results of each sampling
technique. Our results show that random oversampling for moderately imbalanced data and hybrid
resampling for extremely imbalanced data seem to work best. The implications for educational data
mining applications and suggestions for future research are discussed.

Keywords: class imbalance; educational data mining; oversampling; undersampling; SMOTE;
SMOTE-NC

1. Introduction

As emerging technologies continue to advance at a rapid pace, modern education
also benefits increasingly from leveraging educational data to enhance teaching practices
through products such as early warning systems to notify teachers about at-risk, low-
achieving students [1]. These data-driven innovations are based on the research field
of educational data mining (EDM), which extracts insights from educational data (e.g.,
academic records, demographic data, and learning activities in digital learning environ-
ments) to inform learning and teaching decisions [2]. Insights extracted from EDM-based
innovations typically come from a predictive model predicting a categorical target variable
(e.g., passing or failing a course) from a set of relevant predictors, such as students’ activity
data, formative assessment scores, and effective time use [3]. However, class imbalance in
the target variable is a prevalent problem that negatively impacts the accuracy of predictive
models in EDM, as many of these models are designed on the assumption that the predicted
class is balanced [4,5]. This problem is especially prevalent and should be accounted for in
the prediction of high-stakes educational outcomes, such as school dropout or grade repeti-
tion, where the discrepancy between two classes is often high due to the rare occurrence of
a particular class [6–8]. For example, the students’ dropout rate may have an imbalance
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ratio of 21:1 between students who drop out and those who are able to complete their
education degrees [6]. Similarly, students’ school failure status may have an imbalance
ratio of 10:1 between students who pass and those who fail [8]. These class imbalances, if
left unaddressed, could undermine a predictive model’s accuracy and thereby hamper its
capacity to support decisions based on its output [6].

To mitigate the class imbalance problem, researchers have developed imbalance learn-
ing techniques to process and extract information from data with a severely skewed distri-
bution [4]. Specifically, the imbalance learning technique enables the prediction algorithm
to predict the outcome variable with a more realistic level of accuracy rather than ignoring
minority classes (such as students who drop out) in the data. This technique addresses the
aforementioned issue by either modifying the prediction algorithm itself or improving the
dataset [5,6]. For example, to improve the input dataset for a predictive model, researchers
can preprocess the data through oversampling by balancing the proportion between classes
of the targeted variable [7]. Researchers can also create a classification algorithm that
accounts for class imbalance in the dataset (e.g., using ensemble-based classifiers such as
the bootstrapping aggregating method [9]). Note that we use the terms “imbalance learn-
ing technique” and “resampling technique” interchangeably since the imbalance learning
approaches used in this study place more emphasis on enhancing the dataset than on
modifying the predictive model.

Despite the availability of several imbalance learning techniques to address the class
imbalance problem, the majority of the previous research focused on optimizing algorithms
from a technical perspective of each technique (e.g., algorithms behind each technique),
while only a few focused on the application aspect (e.g., the application of imbalance
learning techniques in certain contexts) [4,7,10]. Furthermore, some studies compared the
strategies using simulated data rather than actual data or used the imbalance learning
techniques as a means to build a predictive model, without explaining the mechanism
or underlying challenges during the model-building process [11]. Furthermore, while
some research has been carried out on the application of imbalance learning techniques,
very few studies have focused on imbalance learning in the context of education [7]. To
address this gap, we performed a detailed comparison of imbalance learning techniques
(i.e., oversampling, undersampling, hybrid) for an educational dataset of High School
Longitudinal Study of 2009 and illustrate the mitigation of class imbalance with different
imbalance ratios (i.e., moderately imbalanced and extremely imbalanced).

This paper illustrates and compares the capability of imbalance learning techniques in
a real dataset with a mix of numeric and categorical variables. We investigate two typical
cases of class imbalance in education, which are post-secondary enrollment for the moder-
ately imbalanced class and school dropout for the extremely imbalanced class. Instead of
using a simulated dataset, the current data present more realistic conditions with a large
set of features (i.e., predictors), including categorical and numerical variables and common
imbalance ratios in EDM. Furthermore, the features included in our predictive model were
chosen based on educational and pedagogical theories such as Bronfenbrenner’s Ecological
Systems Theory, which studies children’s development based on their environment [12],
Tinto’s theoretical dropout model, which posits how students’ background and their ap-
proach to academic tasks affect drop out rates[13], and Slim et al. [14]’s framework, which
predicts college enrollment based on real data from college students. The mentioned litera-
ture is used to inform our variable selection, as these works take students’ individual and
ecological level factors into account to study academic retention and college enrollment.
The usage of such frameworks could make our illustration representative of prediction
tasks in the educational context. This illustrative example serves as a didactic guideline to
help EDM researchers mitigate the problem of class imbalance, while also highlighting the
proper techniques for handling data with various imbalance ratios.
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2. Literature Review
2.1. Class Imbalance as a Threat to EDM

Class imbalance is described as a large discrepancy between two classes of the target
variable, where one class is represented by many instances, while the other is only repre-
sented by a small number of instances [15]. This problem has become more prevalent in a
variety of fields utilizing predictive models, including EDM, which applies data mining
and machine learning to address problems in the educational context [11,16]. In fact, class
imbalance frequently occurs in real-world situations that concern critical-but-rare instances
of the population, instead of the majority group [17]. Some examples of class imbalance
in the EDM discipline are the classification of school failure [8], school dropout [6], and
students’ letter grade (i.e., A, B, C, D, and F) [18]. Minority populations in the aforemen-
tioned situations, such as dropout students, school failures, and F-grade students, are fewer
in number, but must be quickly and accurately detected by educators in order to apply
preventative measures. However, a predictive algorithm that learned from a dataset with
class imbalance may fail to detect such cases due to its bias toward the minority class [4].

Specifically, class imbalance causes a machine learning algorithm to misclassify in-
stances from the minority class despite being able to achieve high accuracy because it may
simply classify all instances as the majority class in a dataset with class imbalance; this is
because the algorithm tends to learn more from the majority class due to its large sample
size and recognize less of the minority class because it is smaller in number [17]. This
issue affects not only the algorithm’s prediction results, but also public confidence in the
ramifications from the decision informed by the biased result [4]. For example, scholarship
selection is an important decision that a university has to make almost every academic
year, but the discrepancy in terms of sample size between successful and unsuccessful
scholarship applicants is usually large. This class imbalance problem could hamper the
credibility of the results from a predictive model if left unaddressed because the model
may classify most students as unsuccessful scholarship applicants [19].

2.2. Addressing Class Imbalance with ROS, RUS, and SMOTE-NC + RUS Hybrid

To date, various imbalance learning techniques have been developed to address the
class imbalance problem by (1) reducing the bias that a machine learning algorithm may
have toward the majority class in a dataset or (2) configuring the algorithm to be sen-
sitive toward the minority class [17]. Such techniques can be divided into three main
categories: data-level approaches that emphasize data resampling (i.e., resampling tech-
niques), algorithm-level approaches that emphasize the change of classification algorithms,
and hybrid approaches that combine the capabilities of the first two [5]. This study focuses
on comparing data-level approach techniques since one of the main applications of EDM
is to leverage the power of computational algorithms to extract insights from educational
datasets [2]. The data-level approach to imbalance learning aims to create a new dataset
with an equal ratio between classes of the target variable to reduce the bias of the predic-
tive algorithm [5,17]. This approach encompasses three umbrella resampling techniques:
oversampling, undersampling, and hybrid sampling methods [5].

Under the data-level approach, each resampling method works differently to mitigate
class imbalance. Oversampling works by replicating samples of the minority class through
several variations of the oversampling technique, such as random oversampling (ROS), syn-
thetic minority oversampling (SMOTE), borderline SMOTE, and support vector machine
SMOTE [4]. Undersampling works by removing samples of the majority class [4]. Some
popular variations of undersampling are random undersampling (RUS), repetitive under-
sampling based on ensemble models, and Tomek’s link undersampling [10,20]. Hybrid
sampling combines the capability of both oversampling and undersampling together, thus
allowing researchers to increase the number of minority classes and decrease the number
of majority classes at the same time [9]. Some popular variations of hybrid resampling
methods are the combination of SMOTE and edited nearest neighbor undersampling (ENN)
and the combination of SMOTE and Tomek’s link undersampling [20].
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The data-level approach is widely employed to mitigate class imbalance problems in
practice. A systematic review Guo et al. [7] found that 156 out of 527 articles (accounting for
29.6% in total) utilized resampling techniques to address data imbalance problems across
at least 12 disciplines. In addition, Kovács [11] empirically compared and evaluated 85
oversampling techniques across 104 datasets. The two studies show that the capability of
resampling techniques to address class imbalance issues has been intensively researched in
modern literature. Further, Kovács [11] also found that the capability of each resampling
technique depends on not only its operating principle (i.e., how it balances classes of the tar-
get variable), but also the imbalance ratio between classes of the target variable as well. For
example, oversampling works equally well as undersampling when used with moderately
imbalanced data, but the former technique performs better than the latter when used with
extremely imbalanced data [21]. Similarly, some variants of SMOTE such as cluster SMOTE
or borderline SMOTE [22,23] and nearest-neighbor-based undersampling techniques such
as ENN [24] were also found to work well for datasets with a low to moderate imbalance
ratio, while the other SMOTE variants such as polynomial SMOTE [25] could handle both
datasets with a moderately imbalanced class and an extremely imbalanced class equally
well [11,26]. These results suggest that the imbalance ratio matters to the performance of
each imbalance learning algorithm and should be accounted for when addressing class
imbalance problems.

Among various resampling techniques available, the techniques of our interest are
ROS for oversampling, RUS for undersampling, and the synthetic minority oversampling
technique for nominal and continuous (SMOTE-NC) and RUS for hybrid sampling. Ta-
ble 1 describes the operating principle, advantages, and drawbacks of each resampling
technique. These techniques were selected based on the findings of Hassan et al. [9]’s,
Pristyanto et al. [27]’s, and Rashu et al. [18] ’s research, suggesting that ROS, RUS, and
the SMOTE hybrid work well with educational datasets. Specifically, Hassan et al. [9]
addressed multi-class imbalance problems in students’ log data and found that ROS and
SMOTE exhibited excellent and acceptable performance, respectively, with ensemble clas-
sifiers. Pristyanto et al. [27] also implemented a combination of SMOTE and one-sided
selection undersampling to address the multi-class imbalance problem in EDM and found
that the proposed hybrid algorithm achieves desirable results in reducing class imbalance.
Finally, Rashu et al. [18] addressed the class imbalance problem to predict students’ final
grades and found that SMOTE, ROS, and RUS work well in enhancing the performance of
the classification models.

Table 1. The comparison of resampling techniques utilized in this study.

Approach Operating Principle Advantages Disadvantages

ROS Randomly duplicates minority samples
with replacement

Provides more replicated minority
samples

Increases the likelihood of overfitting by
introducing replicated samples

Increases training time of the predictive model

RUS Randomly removes majority samples
with or without replacement

Reduces excessive majority samples

Decreases training time of the
predictive model

Potential to exclude helpful information

SMOTE-NC+RUS

Synthesizes minority samples based on
nearest neighbors, median of standard
deviation, Euclidean distance, and
desired ratio of the minority sample

Randomly removes majority samples
with or without replacement

Provides non-replicated
minority samples

Can handle categorical variables

Less overfitting chance than ROS

Decreases training time
of the predictive model

Sub-optimal performance with
high-dimensional datasets

Potential to create noise samples

Negligence of local K-neighbor parameter

Potential to exclude helpful information

As visualized in Figure 1, ROS operates by randomly duplicating data points of the
minority class with replacement until the proportion of the two classes is balanced. In
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other words, instances that have a minority class in the target variable (e.g., students who
dropped out) are randomly replicated until their number matches the instances of the
majority class (e.g., students who did not drop out) [28]. ROS is the base method that
underpins other oversampling techniques, such as SMOTE. It improves the overall accuracy
of a predictive model by providing researchers with more samples of minority classes to
lessen the class imbalance problem [28,29]. However, samples duplicated by ROS may
have the same value and, therefore, increase the likelihood of overfitting [28]. Further, ROS
also increases the training time of the predictive model as the dataset becomes larger with
more minority samples [28,29].

Figure 1. Random oversampling process.

In contrast to ROS, RUS operates by randomly removing the data points of the majority
class, either with or without replacement, until the proportion of the two classes is balanced.
With this method, the instances of the majority class in the targeted variable are randomly
removed until their number matches the instances of the minority class [28]. As the
RUS method equalizes the majority and minority classes, it implements the following
selection procedure:

xnew = xi + (x̂i − xi) ∗ δ, (1)

where xnew refers to the synthesized instances, xi refers to the samples of the minority
class, x̂i is one of the k-nearest neighbors for xi, and δ is a random number generated
between 0 and 1. Figure 2 demonstrates how RUS works. Other than improving model
accuracy by balancing classes of the targeted variable, RUS decreases the training time of
the predictive model as it reduces the size of the dataset, thereby making the project feasible
for researchers to use complex predictive models such as a stacked ensemble algorithm [30].
However, by reducing the size of the dataset, RUS may exclude important information and
patterns that could be helpful for the prediction and, consequently, reduce the predictive
accuracy of the algorithm [28,31].

Figure 2. Random undersampling process.
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As visualized in Figure 3, the hybrid method works by implementing SMOTE-NC
and RUS in two stages. Unlike ROS operating based on randomization, SMOTE-NC
is an extension of SMOTE that operates based on (1) the base principle of SMOTE (see
Equation (1)), which accounts for the nearest neighbors of the minority instances in the
synthesis of new minority data points, (2) the median of the standard deviation of both
nominal (in terms of frequency) and continuous variables, (3) the Euclidean distance
between the minority instance and its k-nearest neighbors as determined by the researcher,
and (4) the desired ratio of the minority class over the majority class as determined by
the researcher (e.g., 80% of the number of majority class) [18,32]. Afterward, RUS is
implemented to reduce the number of majority classes to match the number of minority
classes. The hybrid method brings forth the advantages of both SMOTE-NC and RUS
to enhance the dataset. SMOTE-NC is able to handle both numerical and categorical
variables, whereas the base SMOTE can only handle numerical variables [20]. Further,
SMOTE-NC possesses the advantage of the base SMOTE, which is its ability to synthesize
minority samples that are different from the existing sample (i.e., non-replicated minority
class), thereby reducing the chance of overfitting from several identical samples [29].
However, SMOTE-NC also has the same drawbacks as SMOTE, which are: (1) its sub-
optimal performance with high-dimensional data [29], (2) its tendency to create overfitting
as it could create potential noise in the data [29,33], and (3) its negligence of the local
distribution of the minority samples as it only applies the same parameter K neighbors to
the entire dataset while ignoring the fact that some minority samples may require more
or less K neighbors to be identified [33]. Aside from SMOTE-NC, the hybrid method has
advantages and drawbacks that RUS possesses as well; that is, RUS can reduce the number
of majority instances to balance the classes of the targeted variable, thus reducing the
computational time at the cost of losing potential useful information from the dataset, albeit
not as much as implementing RUS alone [28].

Figure 3. Hybrid resampling process.

3. Present Study

Previous studies have indicated the importance of class imbalance problems, and most
of them addressed this problem in a non-education context. Furthermore, the imbalance
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ratio was found to be impactful on the performance of predictive algorithms. Therefore, the
current study seeks to answer the following research question: How do different imbalance
learning techniques work in classification tasks of moderately and extremely imbalanced data?
Specifically, this study compared the capability of ROS, RUS, and the hybrid method across
two conditions, (1) moderate class imbalance, where the targeted variable is the enrollment
of the post-secondary education of high school students (i.e., enroll and not enroll), and
(2) extreme class imbalance, where the target variable is the dropout status of high school
students (i.e., drop out and not drop out). To evaluate the effectiveness of each resampling
condition, we implemented a tuned Random Forest classifier model and consulted the
classification metrics of accuracy, precision, recall, receiver operating characteristic-area
under curve (ROC-AUC), and F1-score. This study could inform educational researchers
of appropriate resampling techniques to address class imbalance problems in educational
datasets with different imbalance ratios.

4. Methods
4.1. Dataset and Data Preprocessing

This study used the the High School Longitudinal Study of 2009 (HSLS:09) dataset, which
comes from a longitudinal study of 9th-grade students (n = 23,503) from the United States of
America [34]. We utilized the R programming language with the tidyverse [35], readxl [36],
DataExplorer [37], mice [38], Hmisc [39], and corrplot [40] packages for data preprocessing.
From the original dataset with 4014 variables, we identified 67 variables that could be used
as predictors of the two target variables (i.e., enrollment in a post-secondary institution
and high school dropout status) based on the mentioned frameworks of Bronfenbrenner’s
Ecological Systems Theory, Tinto’s theoretical dropout model, and Slim et al. [14]’s frame-
work for college enrollment. To maintain the representativeness of the sample, we removed
students for whom the HSLS:09 questionnaire was not completed by either a biological
parent or a step-parent of the students. Next, variables with more than a 30% rate of miss-
ing data were dropped, and the rest was imputed with multiple imputations by chained
equations [41]; this step dropped 16 variables. Then, variables that are not correlated with
the targeted variables based on Pearson’s r and not related to the three mentioned frame-
works were eliminated; this step further dropped 13 variables. The final dataset consisted
of 16,137 students and 38 variables. Among the selected variables, 25 were categorical,
and 13 were continuous (see Appendix A for the exhaustive list of the variables utilized in
this study). For the moderately imbalanced condition, we used students’ post-secondary
enrollment as the target variable, with 14,161 students enrolled in a post-secondary in-
stitution and 4676 students who did not enroll in a post-secondary institution (minority:
majority = 1:3). For the extremely imbalanced condition, we used students’ school dropout
rate as the target variable, with 2004 students who dropped out of their high school before
graduation and 14,133 students who did not drop out (minority:majority = 1:7).

4.2. Imbalance Learning Techniques

For the comparison of the resampling techniques, this study used ROS, RUS, and the
hybrid of SMOTE-NC and RUS with both moderately and extremely imbalanced datasets.
For the SMOTE-NC configuration, this study synthesized the minority data points based
on their five nearest neighbors and 0.8 resampling ratios. There was no configuration
needed for ROS and RUS because their operation was fully randomized. We utilized the
imbalanced-learn package [20] in Python to implement resampling techniques.

4.3. Classification Model

We used the Random Forest classifier from the scikit-learn package [30] in Python as our
classification algorithm to evaluate the results of each resampling technique. The rationale
behind our choice of this algorithm is as follows: (1) We first compared the performance of
Random Forest with the adaptive boosting (Adaboost) classifier from scikit-learn package [30]
in their default hyperparameter configuration. Both algorithms fall under the ensemble
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learning family and are successful in their application [42,43]. The two classifiers exhibited
comparable results (i.e., equal F1-scores of 0.73 and 0.88 for the moderately imbalanced dataset
and extremely imbalanced dataset, respectively). (2) The Random Forest classifier benefits
from its nature of multiple smaller decision trees, being less prone to overfitting compared
to Adaboost, which is a single tree with iterative fitting [43]. In fact, Random Forest tends to
work well with real data as it is more robust to noise, while Adaboost could fit noise into its
learning and, therefore, produce overfitting [43,44]. (3) Further, Random Forest is widely used
in the field of educational data mining [45,46], which could attest to its high performance in
the context of our interest.

To tune the classification algorithm, a randomized grid search was used, and 50 sets of
hyperparameter values were fit with 3-fold cross-validation (3-fold CV), totaling 150 model fits.
The candidate hyperparameter values were as follows: the options of max tree depth (max
depth) values were 100, 140, 180, 220, 260, 300, 340, 380, 420, 460, 500, and none; the options
of the number of trees (N estimator) were 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, and
2000; the options of the max feature (max feature) when considering the best node split were
“auto”, which takes all features at the split; and sqrt (i.e., square root), which takes the square
root of the total number of features in a tree. After obtaining the optimal hyperparameter
value, Each classification model was trained–tested–validated with repeated stratified K-folds
CV. A 10-fold CV was performed repeatedly 3 times, totaling 30 fits, accounting for the class
proportion of the targeted variable. Then, the mean and standard deviation (SD) of the
accuracy, precision, recall, and ROC-AUC were extracted from 30 model fits.

5. Results
5.1. Resampling Results

Table 2 presents the results of each resampling technique. We used non-resampled
data as the baseline to compare the ratio between the majority and minority classes. For
the moderately imbalanced dataset, “0” indicates students who did not enroll in a post-
secondary institution, while “1” indicates otherwise. For the extremely imbalanced dataset,
“0” indicates students who did not drop out of their high school before graduation, while
“1” indicates otherwise.

Table 2. Class sizes by datasets and resampling techniques.

Baseline ROS RUS Hybrid (SMOTE-NC + RUS)

Moderate imbalance 0:4676
1:11,461

0:11,461
1:11,461

0:4676
1:4676

0:9168
1:9168

Extreme imbalance 0:14,133
1:2004

0:14,133
1:14,133

0:2004
1:2004

0:11,306
1:11,306

In Table 2, ROS increased the size of the minority class (0 for the moderately imbalanced
dataset and 1 for the extremely imbalanced dataset) by randomly resampling to match the size
of the majority class. That is, the sample size of students who did not enroll in a post-secondary
institution was increased to 11,461, and the sample size of students who dropped out of high
school was increased to 14,133. Conversely, RUS decreased the size of the majority class (1 for
the moderately imbalanced dataset and 0 for the extremely imbalanced dataset) by randomly
resampling to match the size of the minority class. That is, the sample size of students who
enrolled in a post-secondary institution was decreased to 4676, and the sample size of students
who did not drop out of their high school was decreased to 2004.

The hybrid resampling (SMOTE-NC+RUS) worked by synthesizing samples of the
minority class based on their nearest neighbor, and then, RUS randomly reduced the
majority sample to match the size of the minority class. For the moderately imbalanced
dataset, the sample size of students who did not enroll in a post-secondary institution
was increased to 9,168, while the sample of students who enrolled in a post-secondary
institution was reduced to match. For the extremely imbalanced dataset, the sample size of
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students who dropped out of their high school was increased to 11,306, while the sample
of students who did not drop out of their high school was reduced to match.

5.2. Algorithm Tuning and Classification Results

The tuning results of each classification model are displayed in Table 3, and the classi-
fication results of each classification condition are displayed in Table 4. The SD scores of all
conditions were low, indicating stable performance across all iterations. For the moderately
imbalanced dataset, RUS underperformed, as indicated by its lowest overall performance
metric scores (mean accuracy = 0.705, mean precision = 0.724, mean recall = 0.662, mean
ROC-AUC = 0.763, and mean F1-score = 0.692), compared to the other three conditions.
The tuned baseline condition was in third place in its overall performance (mean accu-
racy = 0.736, mean precision = 0.773, mean recall = 0.888, mean ROC-AUC = 0.763, and
mean F1-score = 0.827), followed by the second-best performer, the hybrid condition
(mean accuracy = 0.779, precision = 0.796, recall = 0.749, ROC-AUC = 0.868, and mean
F1-score = 0.772) and the ROS condition as the best performer (mean accuracy = 0.877,
mean precision = 0.926, mean recall = 0.819, mean ROC-AUC = 0.968, and mean F1-
score = 0.870).

For the extremely imbalanced dataset, ROS exhibited an overfitting issue, as indicated
by its metrics (mean accuracy = 0.984, mean precision = 0.971, mean recall = 0.999, mean
ROC-AUC = 0.999, and mean F1-score = 0.985). This issue was expected as samples were
only replicated without adjustments [47–49]. Among the remaining three conditions, the
baseline condition had the lowest performance scores when considering its low precision,
recall, and F1-score (mean accuracy = 0.887, mean precision = 0.665, mean recall = 0.193, mean
ROC-AUC = 0.802, and mean F1 = 0.299), meaning that the model did not perform well in
detecting positive instances (i.e., students who dropped out) in the extremely imbalanced
dataset. RUS performed better due to its higher precision, recall, and F1-score, despite having
lower accuracy than the baseline condition (mean accuracy = 0.731, mean precision = 0.736,
mean recall = 0.721, mean ROC-AUC = 0.800, and mean F1-score = 0.728). The hybrid
condition performed best among all conditions in the extremely imbalanced dataset (mean
accuracy = 0.905, mean precision = 0.911, mean recall = 0.898, mean ROC-AUC = 0.967, and
mean F1-score = 0.904).

Table 3. Optimal hyperparameter values for each condition from randomized grid search.

No Augmentation ROS RUS Hybrid

Moderately Imbalanced ‘n_estimators’: 800,
‘max_features’: ‘sqrt’
‘max_depth’: 180

‘n_estimators’: 1000
‘max_features’: ‘auto’
‘max_depth’: 140

‘n_estimators’: 600
‘max_features’: ‘auto’
‘max_depth’: 220

‘n_estimators’: 2000
‘max_features’: ‘sqrt’
‘max_depth’: 220

Extremely Imbalanced ‘n_estimators’: 200
‘max_features’: ‘auto’
‘max_depth’: 420

‘n_estimators’: 600
‘max_features’: ‘auto’
‘max_depth’: 220

‘n_estimators’: 1000
‘max_features’: ‘auto’
‘max_depth’: 140}

‘n_estimators’: 1200
‘max_features’: ‘auto’
‘max_depth’: 260
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Table 4. Classification results for each resampling condition.

Performance Metrics Baseline
Mean (SD)

ROS
Mean (SD)

RUS
Mean (SD)

SMOTE-NC + RUS
Mean (SD)

Moderately Imbalanced Accuracy 0.736 (0.009) 0.877 (0.006) 0.705 (0.014) 0.779 (0.011)
Precision 0.773 (0.006) 0.926 (0.006) 0.724 (0.014) 0.796 (0.013)
Recall 0.888 (0.007) 0.819 (0.010) 0.662 (0.024) 0.749 (0.018)
ROC-AUC 0.763 (0.013) 0.968 (0.003) 0.763 (0.015) 0.868 (0.010)
F1 0.827 (0.005) 0.870 (0.006) 0.692 (0.017) 0.772 (0.013)

Extremely Imbalanced Accuracy 0.887 (0.004) 0.984 (0.002) 0.731 (0.021) 0.905 (0.006)
Precision 0.665 (0.058) 0.971 (0.003) 0.736 (0.024) 0.911 (0.008)
Recall 0.193 (0.028) 0.999 (0.001) 0.721 (0.031) 0.898 (0.008)
ROC-AUC 0.801 (0.016) 0.999 (0.0003) 0.800 (0.020) 0.967 (0.002)
F1 0.299 (0.038) 0.985 (0.002) 0.728 (0.022) 0.904 (0.006)

6. Discussion and Conclusions

This study evaluated the performance of the three imbalance learning techniques
(i.e., oversampling, undersampling, hybrid) in EDM-based classification tasks. Our goal
was to illustrate the mitigation of class imbalance in an educational dataset with different
imbalance ratios. The results from this study could inform EDM researchers of how the
resampling techniques of our choice operate, including their advantages and drawbacks
for their consideration of class imbalance mitigation. Additionally, our results from the
comparison across different conditions of class imbalance ratios could guide researchers in
choosing the appropriate resampling techniques for their educational datasets as well.

Our findings indicated that the effectiveness of imbalance learning techniques in clas-
sification tasks differs based on the skewness of class proportions in the target variable. For
the moderately imbalanced case, RUS performed worse compared to the baseline condition
of non-resampled data. On the other hand, the hybrid resampling method and ROS were
able to enhance the performance of the Random Forest classifier, with ROS as the best
performer. This finding suggests that, when the target variable is moderately imbalanced,
oversampling could be more beneficial to the classification than undersampling [48]. For
the extremely imbalanced case, ROS presented an overfitting issue, which might be due to
the repeated replication of the minority class [47–49]. For the remaining three conditions,
the baseline condition performed worst, while RUS was able to mitigate the issue to an ex-
tent and SMOTE-NC+RUS performed best in the enhancement of the classification results.
Overall, the hybrid resampling approach seems to work well in an extremely imbalanced
condition, whereas ROS is not recommended due to its vulnerability to overfitting [48,49].
Across both moderately and extremely imbalanced cases, RUS is not recommended as the
first choice as it leads to the loss of potentially useful data for the classifier [4].

Overall, our results are consistent with the literature regarding how each imbalance
learning technique performs on datasets of different imbalance ratios. We extended the
findings of the previous literature by utilizing real data, rather than synthesized data,
to reflect the patterns educational researchers are likely to come across in EDM research
focused on critical target variables, such as school dropout status and post-secondary
enrollment, which may have important consequences for both students and educators [6,7].
Further, the majority of our variables are categorical, which presents a challenge to several
imbalance learning techniques as they only support continuous variables such as SMOTE
or ENN [20]. We utilized SMOTE-NC as a novel workaround that can be applied to the
actual situation as several education-related variables, such as parental expectations or
the level of education, are either categorical or ordinal [50]. Our findings can serve as a
set of guidelines for EDM researchers who want to mitigate the data imbalance issue in
the development of data-driven innovations such as early warning systems in schools [1].
Finally, carefully addressing the class imbalance problem also contributes to improving
fairness in the education field. For example, if a class imbalance in the underlying data
results in biased predictions, such as underestimating college success for minority and
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low-income students, it might affect admissions decisions and negatively influence the
consequences of the prediction model [51].

In addition, considering that the main focus of this study was to address class imbal-
ance with resampling methods instead of testing the performance of predictive algorithms,
the current study mainly focuses on comparing the effectiveness of each resampling method
(i.e., ROS, RUS, and SMOTE-NC + RUS hybrid) on one classifier instead of many. However,
given how results from the Random Forest and Adaboost classifiers are comparable in the
initial analysis stage for algorithm selection, it is reasonable to deduce that the resampling
algorithm should work similarly to classifiers other than Random Forest, which we used as
the main evaluator. This point is supported by the literature: class imbalance is detrimental
to the performance of predictive models as it makes the algorithm learn more from the ma-
jority class instead of the minority class, thus producing bias in the predictive model [4,17].
Therefore, reducing class imbalance could be beneficial to classifiers in general as it is the
primary purpose of imbalance learning techniques [17].

This study has several limitations. First, we utilized a single dataset (HSLS:09) to illus-
trate the imbalance learning techniques and evaluate their performance in a classification
task. However, each dataset has its own characteristics, such as the pattern of variables, the
imbalance ratio, and the number of minority classes. The results of the imbalance learning
algorithm may differ based on the uniqueness of each dataset. For example, the Programme
for International Student Assessment dataset [52], despite being an educational dataset,
might yield slightly different results with the same techniques demonstrated in this study.
Thus, researchers are encouraged to explore the characteristics of their dataset carefully
before selecting an imbalance learning algorithm to address the class imbalance issue.
Second, finding an optimal set of hyperparameter values can be a challenging task in EDM.
We used a randomized grid search in this study for feasibility reasons; however, using an
exhaustive grid search and cross-validation with the same imbalance learning techniques
might yield better classification results at the expense of more computational resources.
Lastly, future research is needed to explore different combinations of resampling techniques
(e.g., random oversampling example (ROSE)) and classification algorithms because the
effectiveness of each resampling technique may partly depend on the classifier [53].
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Abbreviations
The following abbreviations are used in this manuscript:

EDM Educational data mining
ROS Random oversampling
ROSE Random oversampling example
RUS Random undersampling
SMOTE-NC Synthetic minority oversampling technique for nominal and continuous
ENN Edited Nearest neighbor
ROC-AUC Receiver operating characteristic-area under curve
ROSE Random oversampling example

Appendix A. List of Utilized Variables

Variable Type Variable Name (Variable Code)

Continuous Students’ socio-economic status composite score (X1SES)
Students’ mathematics self-efficacy (X1MTHEFF)
Students’ interest in fall 2009 math course (X1MTHINT)
Students’ perception of science utility (X1SCIUTI)
Students’ science self-efficacy (X1SCIEFF)
Students’ interest in fall 2009 math course (X1SCIINT)
Students’ sense of school belonging (X1SCHOOLBEL)
Students’ school engagement (X1SCHOOLENG)
Scale of school climate assessment (X1SCHOOLCLI)
Scale of counselor’s perceptions of teacher’s expectations (X1COUPERTEA)
Scale of counselor’s perceptions of counselor’s expectations (X1COUPERCOU)
Scale of counselor’s perceptions of principal’s expectations (X1COUPERPRI)
Students’ GPA in ninth grade (X3TGPA9TH)

Categorical Hours spent on homework/studying on typical school day (S1HROTHHOMWK)
Mother’s/female guardian’s highest level of education (X1MOMEDU)
Father’s/male guardian’s highest level of education (X1DADEDU)
How far in school 9th grader thinks he/she will get (X1STUEDEXPCT)
How far in school parent thinks 9th grader will get (X1PAREDEXPCT)
How often 9th grader goes to class without his/her homework done (S1NOHWDN)
How often 9th grader goes to class without pencil or paper (S1NOPAPER)
How often 9th grader goes to class without books (S1NOBOOKS)
How often 9th grader goes to class late (S1LATE)
9th grader thinks studying in school rarely pays off later with a good job (S1PAYOFF)
9th grader thinks even if he/she studies, he/she will not get into college (S1GETINTOCLG)
9th grader thinks even if he/she studies, family cannot afford college (S1AFFORD)
9th grader thinks working is more important for him/her than college (S1WORKING)
9th grader’s closest friend gets good grades (S1FRNDGRADES)
9th grader’s closest friend is interested in school (S1FRNDSCHOOL)
9th grader’s closest friend attends classes regularly (S1FRNDCLASS)
9th grader’s closest friend plans to go to college (S1FRNDCLG)
Hours spent on math homework/studying on typical school day (S1HRMHOMEWK)
Hours spent on science homework/studying on typical school day (S1HRSHOMEWK)
How sure 9th grader is that he/she will graduate from high school (S1SUREHSGRAD)
How often parent contacted by school about problem behavior (P1BEHAVE)
How often parent contacted by school about poor attendance (P1ATTEND)
How often parent contacted by school about poor performance (P1PERFORM)
Ever dropped out of high school in 2016 (X4EVERDROP)
Post-secondary enrollment status in February 2016 (X4PSENRSTLV)



Information 2023, 14, 54 13 of 15

References
1. Jokhan, A.; Sharma, B.; Singh, S. Early warning system as a predictor for student performance in higher education blended

courses. Stud. High. Educ. 2019, 44, 1900–1911. [CrossRef]
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