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ABSTBACT 

During the past fifte!llyears, the ordinary least squares estimator ud the 

corresponding pivotal statis'tic have been widely used for testing the UDit root hypothesis in 

autoregressive processes. Rtecently, several new criteria, bued on the maximum likelihood 

estimators and weighted syInmetric estimators, have been proposed. ID this article, we 

describe several diff'erent teflt criteria. Results from a Monte Carlo study that compares 

) the power of the different aiteria indicates that the new tests are more powerful against 

the stationary alternative. Of the procedures studied, the weighted symmetric estimator 

and the unconditional maxbnum likelihood estimator provide the most powerful tests 

against the stationary altenLative. As an illustration, we analyze the quarterly change in 

business inventories. 
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1. INTRODUCTION 

Testing for unit roots in autoregressive process has received coDSiderable attention 

since the work by Fuller (1976) and Dickey and Fuller (1979). Dickey and Fuller (1979) J 

considered tests 1;)ased on the ordinary least squares estimator and the corresponding 

pivotal statistic. Several extensions of the procedures suggested by Dickey and Fuller 

(1979) exist in the literature. See Diebold and Nerlove (1990) for a survey of the unit root 

literature. Recently, Gonzalez-Farias (1992) and Dickey and Gonzalez-Farias (1992) 

considered maximum likelihood estimation of the parameters of the autoregressive process 

and suggested tests for unit roots based on these estimators. Elliott and Stock (1992) and ~ 

Elliott, Rothenberg and Stock (1992) developed most powerful invariant tests for testing 

the unit root hypothesis against a particular altemative and used these tests to obtain an 

asymptotic power envelope. Both approaches produced tests against the alternative of a J 

root less than one with much higher power than the test criteria based on the ordinary 

lea.st squares estimators. 

We summarize the new approaches, introduce a new test, and use Monte Carlo 

methods to compare the power of the test criteria in finite samples. In Section 2, we 

introduce the model and present diHerent unit root test criteria. Extensions are given in 

Section 3. In Section 4, we present a Monte Carlo study that compares the power of the ,) i 

new approaches to that of existing methods. In Section 5, we analyze a data set to 

illustrate the different test criteria. We present our conclusions in Section 6. 

2. TEST CRITERIA
 

Consider the model
 

) 

(2.1) 

where the et's are independent random variables with mean zero and variance (12.
 

Assume that Y1 is independent of et for t ~ 2. We are interested in testing the null . J
 

) 
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hypothesis that P= 1. DUferent estimators and test criteria &re obtained depending upon 

what is assumed about Yl' Test criteria &re typically CODltructed using likelihood 

procedures under the assumption that the et'S are normally distributed. The asymptotic 

distributioDB of t~e test statistics &re, however, nJid under much weaker &ssumptiODB on 

the distribution of et. We present some different test statistics and summarize their 

asymptotic distributions. V'ie refer the reader to Dicker and Fuller (1979, 1981), EllioU, 

Rothenberg and Stock (199~!), Fuller (1992) and Gonzalez-Farias (1992) for the proofs of 

the asymptotic results. 

2.1. Y1 fixed 

When Y1 is considE~ed fixed and et N NI(D, (12) , maximizing the log likelihood 

, 
,'." 

-function is equivalent to miJD.imizing 

(2.2) 

In this case, the conditional maximum likelihood estimator of p is the same as the 

ordinary least squares (OLS) estimator P~,OLS' obtained by regressing Yt on 1 and 

Y - 1 for t =2, 3, ..., n. 'rhe OLS estimator of p ist 

( There are three COmJDon approaches for coDBtructing a test of the hypothesis that 

p = 1. For the first order ])rocess, one can CODBtruct a test based upon the distribution of 

the estimator of p. A second test is obtained by CODBtructing a pivotal statistic for p by 

analogy to the usual t-test of regression analysis. This is the most used test in practice 

( 
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because the pivotal approach mends immediately to higher order processes. The pivotal 

statistic associated with the ordinary least squares estimator is 

.. 
'Tp,OLS -

[ ..-2 ~ 
C10LSt::2 

(Y 0& )2] 1/2(.. )
t-1- 1(-1) Pp,OLS-~ t (2.3) 

), 

A third test can be constructed on the basis of the likelihood ratio. The null model 

with P = 1 reduces (2.1) to the random walk. The sum of squares associated with the null 

model is ~=2(Yt - Yt_1)2 and a likelihood ratio type statistic for testing P= 1 is 

) 

(2.4) ) 

The limiting distributions of the statisticst derived by Dickey and Fuller (1979t 1981)t are 

given in Table 2.1 t where e=0.5[T2 -1] t T =W(1) t 

1 

G = ~ W2(t)dt t H = ~1W(t)dt t 

and W(t) is a standard Brownian motion on rOt 1]. Empirical percentiles for 

n(iJ1o',0LS -1) and Tp,OLS may be found iD Tables 8.5.1 and 8.5.2 of Fuller (1976). 

percentiles for 'OLS are given in Dickey and Fuller (1981). 

The J 
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2.2. Y1 .. N(p, ;) 

2If Y1 i. IIsumed to 'be a normal random variable with mean P &Dd variance u , 

maximizing the log of the lik:elihood function is equivalent to minimizing 

(2.5) 

2where Qc(p, P, ( ) is defined in (2.1). The Drst observation enters the quantity (2.5), but 

not (2.2), because Y1 is random with variance u2 uder the model that leads to (2.5). 

The maximum likelihood estimators minimize Q1(11, P, ( 2) and satisfy 

n 
Y1 + (1 - PI ML) E (Yt - PI MLYt-1) 

... 't=2' (2.6)
pt,ML =- 1 + (n - 1)( 1 - P1,ML)2 

c 
(2.7) 

and 

n 
... 2 -1(y...)2 -1 ~ [Y ... (1'" )... y]2
u1 ML = n 1 - pt ML + n ~ t - pt ML - PI ML - PI ML t-1 . , , ' t=2 ' , ,c 

(2.8) 

Substituting (2.6) in (2.7) and simplifying, we get that n(p1,ML -1) is a .olution to a 

fifth degree polynomial. UsiJag the arguments of Goualez-Farias (1992), it i. possible to 

show that the limiting distribution of n(p1,ML -1) i. that of G-1e. Recall that G-1e 
is also the limiting represent;~tion of n(pOLS -1) ,where POLS is the OLS estimator 

( 

obtained by regressing Y 0:11 Yt- 1 without an intercept. The percentiles of G-1emayt 

( 

--- ---,---
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be found in Table 8.5.1 of Fuller (1976). The pivotal and the likelihood ratio type 

statistics for testing p =: 1 are 

(2.9) 

) 
, 

I 

and 

(2.10) 

) 

where 8 
2 

= (n -1)-1~=2(Yt y t_1)2. The limiting distributions of these statistics are 

given in Table 2.1. We make a few remarks before considering the next case. 

) 

Remark 2.1. Assume p = 1. Let p be any estimator of p such that P=: 1 + Op(n-1) . 

Then, ~ in (2.6) evaluated at P is Y1 + Op(n-1/ 2). Likewise, if p is fixed at p, then 

the value of p that maximizes the likelihood is obtained by regressing Yt - ~ on Yt - 1 

~. If ~ is such that ~ = Y1 + Op(n-1/ 2) ,then n(p(~) -I]...:! G-1e and the 

estimator has the same large sample behavior as the estimator obtained by regressing Yt 

Y1 on Yt - 1  Y1 ,which is suggested in Dickey and Fuller (1979). 

) 

)' 

Remark 2.2. Based on Remark 2.1, several approximations to the maximum likelihood 

estimator are possible. We consider the following estimators in our study. 

(a) Let pl~~L =: Pp,OLS· Compute iteratively i4~~L and pl~~L using (2.6) 

and (2.7) with PI ML and ~ ML replaced by pliMi) and i4i~L· This" , , 
iterative procedure, if it converges, converges to the maximum likelihood 

estimator. ID our study, we use the statistics obtained at the tenth iteration 

(i = 10). From Remark 2.1, it follows that the statistics have the asymptotic 

representations given in Table 2.1. In our simulations, we call these estimators 

the maximum likelihood estimators and omit the superscripts. 



T 

(b) Elliott and Stoclt (1992) suggest using the statistic 

I ES • 
..-2( 2

nD'ES I -
.. 2]
D'ES 

T+ t 
(2.11) 

(c) 

where iI-r =i/..Pjr) il the p. of (2.6) evaluated with PT iD place of Pl,ML' 

PT = 1  Tn-1 , D-is il the eatimator (2.8) with i;.,ML replaced with i-r. 
They ugue that 'ES is the mOlt powerful invariant test for telmg P = 1 

agaiDst the alterlllative Ba: P= PT' The alternative PT was selected by 

finding the point tha.t is approximately tangent to the asymptotic power 

envelope at a po'lVer of 50%. Since i-r = Y1 + Open-1/2) , it follows that ' ES 
converges in distribution to ;-2. 

Elliott, Rothenbl~rg and Stock (1992) consider 

(2.12) 

obtained by regrle5sing Yt  ~ on Yt - 1  ~ , without an intercept. They 

call the estimator PT,GLS the Dickey-Fuller generalized least squues 

estimator of p. Let ;-T,GLS denote the corresponding pivotal statistic for 

testing P = 1. ,]~he limiting distribution of ;-7,GLS is given in Table 2.1. 

( 

( 

2.3. Y1 N N[,£, (1  p2)-1 D'~I] 

Suppose that Y1 is a normal random variable with mean p. and v&riance 

(1  p2)-1D'2, for IPI < 1. Then maximizing the log of the likelihood function is 

equivalent to minimizing 

( 

222
QU(p., P, (1 ) =log (1 + 10g(1  P ) 

( > 
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(2.13) 

Gonza1ez-Farias.(1992) showed that the lmconditiow maximum likelihood estimator 

(UMLE) PU,ML of p it a solution to a fifth degree poI1ll0mi&1. She shOWl that the 

uymptotic distribution of n[PU,ML -1] is that of the UDique negative root of J 

4 .
 
E b.x1 = 0 , (2.14)

.0 1
1= 

and 
2 2b3 =-2(e- TH + H ) - 8(G - H ). 

), 
For a given p, the value of IJ that minimizes (2.13) is 

n-l 
Yl + (1 - p) E Yt + Y

J.t=2 n 
(2.15)~(p)= 2 + (--n--""II"2J(1 -p)-. 

Also, for a given p., (2.13) is muimized at the p that is the solution to a cubic equation 

[see Hasza (1980)]. The equation (2.15) and the cubic equation can be Bolved iteratively. 

If the iterations converge, the estimators converge to the UDconditiow ML estimators of p. 

and p. Gonzalez-Farias (1992) also derives the asymptotic distribution of pbi ) = 

.------- 
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Pu(~i)) • obtained at the i·-th iteration, starting with &D initial estimator of p. Even 

though the asymptotic distribution of n[pti) -1] obtained for a finite i is not the same 

as that of n[PU,ML -1] , tile observed empirical distribution &Dd the power are similar for 

the two procedur~. ID this paper, we consider n[Pb8) -1] obtained iD the 6-th iteration, 

starting the iteratiolll with 1~he simple IyD1II1trtrlc estimator given iD Section 2.4. The 

choice of the initial estimatclr &Dd the number of iteratiolll are the same as the ones 

considered by Gonzalez-Fa:lias (1992). We shall call ;b8) the unconditional maximum 

likelihood estimator &Dd shall omit the (8) exponent. The corresponding pivotal statistic is 

.. - [VA{.. }-1]-1/2 [A. 1]'TU - Pu n Pu - , 

where V{PU} is the variance of Pu computed from the estimated iDformation matrix. 

The limiting distribution of TU is given in Gonzalez-Farias (1992). 

2.4. Sym.m.etJ:ic estimators 

If a normal stationary autoregressive process satisfies (2.1), it also satisfies the 

equation 

2where Ut N NI(O, (1 ). This symmetry leads one to consider estimators of P that 

minimize . 
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where wt ' t =2, 3, ••., n are weights, 7t =Yt -, ud ,= n-1~=1Yt . Observe that 

the ordinary least squares estimator is a member of this class with all wt equal to one. 

Dicker, Buza and Fuller (1984) discuss the properties of the simple lJUUDetric ) 

estimator obtain~ b7 setting wt = 0.5. In this study we consider the estimator obtained 

by setting wt = n-1(t -1) , which we call the weighted lJIIlIDetric estimator. The 

weighted symmetric estimator is .J 

is the pivotal statistic, where Do;'S = (n  2)-IQw(pws)' The limiting distributions of the 

statistics are given in Table 2.1. The limiting distribution of the two-ttep weighted 

symmetric estimator of p that replaces 1 with the estimator of p., denoted by i£ws' 

obtained by substituting pwiY) into (2.15) has been obtained. Our simulations indicate 

that pws(i£ws) and 1'ws(i£ws) have about the same power as Pws(1) and 1'ws(1), 

respectively. Also, iterating the procedure did not produce any significant change in power 

and, hence, the iterated estimators are not included in the reported simulation results. 

We included the simple symmetric estimator in our Monte Carlo simulations. 

Because the power of the weighted symmetric estimator always exceeded that of the simple 

symmetric estimator, we do not report the results for the simple symmetric estimator. 

) 

) 

) 

) 



11 

( 

2.&. Other criteria 

We considered two o1~her estimation criteria. The test criteria usociated with the 

P obtained by regressing Yt - Pij(P",OLS) on Yt- 1 - Pij(p", OLS) • where Jiu( ) is 
defined in (2.1S)., had power's much smaller tlwl thOle based on the maximum likelihood 

and weighted symmetric estimators and, hence, the powers are not reported here. Also, we 

(	 investigated an estimator pl7,ULS similar to P7,GLS that is obtained by regressing Yt 

Pij(P7) on Yt-1 - i;](P7) ,where P7 == 1 - n-17. The powers of criteria based on 

P7, ULS' are small compared to the powers of the weighted SfD1JDetric estimator and, hence, 

are not reported. 

Finally, we studied 2L likelihood ratio test statistic based on the distribution of 

Xt = Yt - Yt- 1, t = 2, ..., n ,given that the original model is (2.1). The estimator P 

( that maximizes the likelihood is a solution to a fifth degree polynomial. The empirical 
I 
I	 powers or the correspondin(~ likelihood ratio criteria are much smaller than those or the 
I 

weighted symmetric criteriill. and, hence, are not reported here. 

c 

3. EXTENSIONS 

The test statistics p1resented here can be extended to the case where a time trend is 

C	 included in the model and also can be extended to higher order autoregressive processes. 

Elliott, Rothenberg and Stock (1992) extend their procedure to the case where a linear 

I 

I 
trend is included. They also extend their procedure to include autoregressive and moving 

C average processes. They d.erive the limiting distribution or n(P7,GLS -1) , "7,GLS ,and 

t ES under the assumption that et satisfy some stationary and mixing conditions. The 

limiting distributions depElDd on a nuisance parameter ,}, the limiting variance of 

c n-1/2~=let. They use 'two approaches to estimate,}. One approach approximates et 

by a higher order autoregJ~essive process, whereas the second approach uses a weighted sum 

of covariance type spectral estimator suggested by Phillips and Perron (1988). 
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Gonzales-Farias (1992) gives an extension of the unconditional maximum likelihood 

estimation for higher order autore~aive processes. Under some regularity condiuons on 

the roots, the MLE of the largest root has the same asymptotic distribution as that of 

Pu ML in the ~t order autoregressive model. This procedure, however, requires a search , 
for the largest root on the real line that maximizes the likelihood. TypicaJly, this is not a 

severe problem in moderately large samples. 

The pivotalstaustic rws,p for testing '1 =1 in the weighted symmetric 

regression, obtained by minimizing 

J 

) 

) 

(3.1) 

where Yt =Yt - y and Zt =Yt - Yt - 1 , has the same asymptotic distribuuon as 

TWS(Y) for the first order process. A Monte Carlo study indicates that the weighted 

symmetric estimator performs well in second order processes. The weighted symmetric 

estimator is simple to compute and extends easily to the case where a linear trend is 

included in the fitted model. If yt =Yt  i - bt ,where i and b are the ordinary least 

squares estimators obtained by regressing Yt on 1 and t, is 11Sed in (3.1), then the 

pivotaJ statistic rws,p , for testing '1 =1 , has the limiting distribuuon given by 

) 

) 

.J 

) 

• I 

._-------'
I 
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where 

4. POWERSTUDY 

~ this section, we cOlnpare the empirical power of the different test criteria 

described in Section 2. For tests based on the estimators of p, the test is the test of p =1 

against the alternative that p < 1. We first present the percentiles of the test criteria and 

then study their empirical pc)wers. 

4.1.	 Empirical Percentiles 

Our model is 

(4.1) 

where et'" NI(O, (12). To construct the percentiles, we let Y1 =e1 ' p =°,p =1 and 

generate the et as independent standard normal random variables. The RANNOR 

function in SAS (1985) is uSt~ to generate the et's. For a given sample size n, we 

generated 20,000 samples of size n and computed the different test statistics. The 

empirical critical value for a 5% level test is computed for the set of 20,000 samples. The 

procedure was replicated three times and the average of the three critical values is reported 

in Table 4.1. 

We consider the test criteria based on 

1. OLS:	 n(pp,OLS -1), rp,OLS' t OLS 

2. MLE for Y1 ,., N(p, (12):	 n(p1,ML -1), 
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3. EIliott a.nd Stock: n{P7,GLS -1), 
, 

i 

,)' 

n{Pu -1), i 

5.� Weighted symmetric: 

Except for 10LS a.nd 11,ML' we reject HO: P= 1 t for values of the statistic less tha.n 

the critical values given in Table 4.1. 

4.2.� Empirical power 

In this section, we study the empirical power of the statistics described in 

Section 4.1. Critical values for 5% level tests are given in Table 4.1. The percentiles for 

finite samples are estimated by generating et'S from a sta.ndard normal distribution. We 

consider two cases: (1) Y1 N N(O, 1) a.nd (11) Y1 N N[O, (I - p2)-I] and generated 

samples of size n =25, 50, 100, a.nd 250, with p =0.98, 0.95, 0.93, 0.90, 0.85, 0.80, a.nd) 

0.70. For case (1), we also include p =1 I a.nd for case (Il), we include p =0.99. The 

powers are computed based on 5,000 Monte Carlo replications. In generating Tables 4.2

4.9, the same et's were used in both cases, except that Y1 =e1 in case (I), whereas Y1 

=e1(1 - p2)-1/2 in case (n). The power is higher for case (I) than for case (n) for all 

test statistics. 

(I): Y1 III N(O, 1) 

Empirical powers for this case are summarized in Tables 4.2 - 4.5. The powers of 

the pivotal statistics, 1'p,OLS' 1'7,GLS ' 1'U and 1'ws are plotted in Figure 4.1. From· 

the tables, we observe that 

1.� The criteria based on ordinary least squares have low power compared to the 

remaining criteria. 

., , 
./ 

), 
, I 

---------� ' 
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2.� Except for OL8 estimation, the tests based on the pivotal natistics (1') have 

higher power the those bued on n(p - 1) . 

3.� The test criteria 'based OD the uncondiuonallikeUhood, Pu and TU' have 

powers very Iimillar to those based on the weighted symmetric estimator, Pws 
and� 1'WI with T'U bei.Dg somewhat superior iD smalls&mples (n SSO) • 

, 4.� For sample sizes D == 25 and 50, tesU based on the weighted symmetric and the 

unconditionalliklelihood estimators have higher power than those based on the 

ML estimator (P'1,ML' 1'l,ML) derived under the assumpuon that Y1 has 

variance (72. 

5.� For sample sizes n =100 and 250 , the tests based on the true model, PI , ML 

and 1'1,ML havt~ higher power than those based on the weighted symmetric 

and the UDcondiUonallikelihood estimators. 

6.� Except when n == 250, IE8 has higher power than P7,GL5 and T7,GL5 for 

values of p ~ 0.9. Also, for p ~ 0.9 , these three test criteria have higher power 
,c, 

'c,� than the remaining criteria. For values of p smaller than 0.9, these criteria 

tend to have IOWl!1' power than the criteria based on the UDconditionallikelihood 

and weighted s)'1ltlmetric estimators. 

(n). Y1 N N[O, (1 _ p2)-1] 

Empirical powers for this cue are summarized in Tables 4.6 - 4.9. In Figure 4.2, 

c we plot the powers of the ph~otal.tatisucs 1'p,OL5' 1'7,GL5 ,TU and 1'ws' From the 

tables, we observe that COmltl1ent8 1- 4 for Case (I) are also applicable for Case (n). 

5.� For all sample si:r:es, the criteria based on the unconditional likelihood and 
(� weighted symme~tric estimators have higher power than those based on P1,ML 

and T1 , ML ' except, perhaps, for p =0.99 and n =25 . 
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6.� The criteria based on the weighted symmetric and the 11Jlconditionallikelihood 

have higher power than the criteria IUggested by EllioU, Rothenberg and Stock 

(1992), except for p == 0.99 and n == 250 . 

7.� The weighted symmetric criteria have IlighUylarger power than the criteria� 

based on the 11Jlcondiuonalstauonary likelihood for n == 100 and 250. The� 

powers of the two procedures are simila.r for n = SO with neither estimator� 

uniformly superior. The 11Jlcondiuonallilte1ihood criteria had slightly larger� 

power than the weighted symmetric criteria for n = 25 .� 

5. EXAMPLE 

In this section, we present an example to illustrate the differences among test 

criteria. Pa.n.kratz (1983) analyzed the quanerlyseaBonally adjusted change in business 

inventories, stated at annual rates in billions of dollars. He examined 60 observations 

covering the period from the first quarter of 1955 through the fourth quarter of 1969. The 

data are ploUed in Figure 5.1. Pankratz (1983) concluded that a first order autoregressive =) 

) 

J 
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model fits the data adequat.~y. The OL8 estimated model is 

Yt -= 1.92 + 0.690 Yt 1 + et 
(0.73) (0.096) 

with 712 =11.42. The first column of numbers iD Table 5.1 contains the estimates of p 

obtained by the altemativeprocedures. The values of the UDconditioDallikelihood 

estimator and the weighted symmetric estimator are very similar. This will be true except 

for samples with a maximWltllikelihood estimate very close to one. The test statistics for 

these two procedures will wo be very close for samples iD which the test statistics tend to 

reject the null iD £avor of the stationary alternative. 

ID Table 5.1, we give~ the values of six pivotal test statistics for testing the null 

hypothesis HO: P =1. To facilitate the comparison, we divide the value of the test 

statistic by the 5% critical ,ralue. Thus, if the value in the table is greater than or equal to 

one, the hypothesis that p == 1 is rejected at the 5% level. If &1160 observation are used iD 

the computations, every tes't statistic rejects the null hypothesis iD favor of the stationary 

alternative. 

Let yt = Yt - Y de~ote the mean adjusted series, &Dd let 71; denote an estimate 

of the "variance" of the obsl!rVations. Then the estimators PI£,OL8 'Pws and Pu can be 

wriUen as 

( 

The values of 71; iD the denominators of PI£,OL8 and Pws are y~ and n-1~=1Y~ , 
. 0 h h 'h d .. .. 2 .. 2(1 .. 2)-1 h .. 2 . ·hrespectIvely. n t e ot er. an , Pu uses (1y = (1 - Pu w ere (1 18. e 

maximum likelihood esilina,tor of the iDDovation variance. Thus, it is the first and last 

-------------------_._-
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J 

observations that produce dif£erent results for the different eailin&tors. 

we reanal1ze the data using the first 48 and the fim 49 observations. 

. y 48 dif£ers from the reat considerabl1 whereas Y49 iI between Y48 

observations are J18ed, 

when 49 observations 'are used, 

-1 48 2]-1 2 2
(47) E "t (11,149)=(0.052,1.78)[ t=2 

and when 60 observations are used, 

-1 5 9 2]-1 2 2 
(58) E "t (11' "60) =(0.134,0.000) . [ t=2 

To illustrate this, 

The observation 

and Y60. When 48 

J� 

The values of the estimator of p for n = 48 are 0.781, 0.763, and 0.762 for p~OLS ' Pws \ 
) 

and PU' respectively. The corresponding values are 0.744,0.730, and 0.730 for n = 49 

and 0.690, 0.680, and 0.680 for n = 60 . 

Based on the first 48 observations, all pivotal statistics fail to reject HO: p = 1 at 

Q =0.05. On the other hand, when the test statistics are computed using the first 49 

observations, only the OLS test criterion fails to reject HO: P= 1 at Q = 0.05 . 

The test statistics l'~OLS' "lML and 1'7,GLS treat the first observation 

differently from other observations. We can illustrate this b1 computing the test statistic 

for the data in reverse order. H this is done, the values for the 48 observation data set are 

-3.50, -2.46, and -1.76 for l'~OLS' 1'l,ML and 1'7,GLS' respectively. The ratios of the 
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test statistics to the S% critical values are 1.19, 0.97, &Dd 0.77, respectively. The 

corresponding ratios £Or 49 4)bservations ue 0.98, 1.08, and 1.01, respectively &Dd the ratios 

£Or 60 observations are 1.10:1 1.31, and 1.43, respectively. Because y~8 is luge and y~ is 

small, reversing the directio>n of the calculations has a luge effect on the ordinary least 

squares statistic. The hypo·thesis of a unit root is rejected by rp,OL5 when Y48 is used 

as the first observation, but is ~cepted when Y1 is used as the first observation. 

6. SUMMARY 

We have discussed odteria for testing the null hypothesis of a unit root in a first 

order autoregressive process. Based on our simulation study, it is clear that the OL5 

Cldteria are the least power£111 of the statistics studied. The criteria suggested by Elliou, 

Rothenberg and Stock (199~!) are very powerful under certain alternatives but are not the 

most powerful against the s1tationary alternative. 

The criteria based OIL the unconditiona1likelihood, and those based on the weighted 

symmetric estimator, are th,e most powerful and, 1;;;.;.:.;:e, are the recommended test 

statistics. 
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Table 2.1. Limiting Null Distributions of Statistics 

Procedure, Statistic Limiting Distribution 

OLS 

[G - B2r1[f - TB]� 

[G - B2r1/2(f - TB]� 

T2 + [G _ B2]-1[f _ TB]2 
:;;'� 

'OLS 

MLE for Y1 tv N(J.', (7'2) 

n(P1 ML -1) G-1e , 
.. G-1/ 2e :;;1'l,ML 

G-1ft 1,ML 

'\ 
_/ 

Elliott and Stock 

G-1en(P7 GLS -1), 
.. G-1/2e ) 

1'7,GLS� 

t ES 
G-1f� 

)'
i 

I 

Weighted symmetric 

n(pws -1) [G - B2]-1[e - TB - G + 2B2] 
J 

.. 
1'ws [G - B2]-1/2[e - TB - G + 2B2] 

I , 
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Table 4.2.� Empirical powers for 5% level test criteria (D - 25, Y1 ItI N(O, 1) , 
5000 replications) 

p
Statistic� ,) 

1.00 0.98 0.95 0.93 0.90 0.85 0.80 0.70 

5.46 6.70 8.10 8.56 10.18 14.34 19.70 32.84P~OLS 

5.36 6.40 8.16 8.36 10.04 14.44 19.84 33.22� '. 
-J iP1,ML 

5.42 6.10 8.48 9.02 11.24 16.80 23.60 37.76P7,GLS 

5.24 6.24 8.54 8.70 10.74 15.94 22.14 36.18Pu 
:) 

5.28 6.20 8.54 8.62 10.76 15.82 21.98 36.04Pws 

5.62 6.54 6.22 6.34 6.94 8.46 12.14 20.64T~,OLS 
) . 

5.26 6.14 8.50 8.58 10.26 14.64 20.52 34.42T1,ML 

5.42 6.22 8.68 8.94 11.24 16.56 23.34 37.861"7,GLS 
.� )5.10 6.24 8.68 9.28 11.32 17.42 25.24 39.70TU 

. 
T 5.12 6.12 8.64 9.26 11.30 17.28 25.16 39.66

wS 

~)I
4.52 4.48 4.28 4.16 4.16 4.78 7.70 14.08tOLS 

5.18 5.58 7.88 8.44 10.40 15.48 22.80 37.14t 1,ML 

4.78 6.30 8.84 9.96 12.28 18.20 26.64 41.54t ES 



( 

25 

Table 4.3. Empirical powers for 5" level test criteria CD - SO, Y1 .., NCO, 1) , 

, 

5000 replications) 

P
Statistic 

1.00 0.98 0.95 0.93 0.90 0.85 0.80 0.70 

.. 
5.22 7.20 10.72 13.16 19.50 30.88 47.22 80.20Pp,OLS 

.. 
5.02 7.06 12.10 15.28 23.24 37.58 54.98 86.00P1,ML 

.. 
4.86 7.24 12.84 17.62 26.78 42.48 61.26 88.40P7,GLS 

.. 5.04 7.20 12.36 15.74 24.10 38.44 56.24 86.58Pu 
.. 

4.94 7.10 12.06 15.50 23.46 38.06 55.66 86.30Pws 

5.24 6.24 6.84 8.04 11.76 19.50 32.30 64.70T~IOLS 

4.88 7.32 12.34 15.56 23.64 37.98 56.06 86.12T1MLI 
.. 5.00 7.40 13.06 17.74 26.62 43.12 61.50 88.601"7,GLS 

5.02 7.46 12.90 17.00 25.50 40.84 59.32 88.02TU 

T 4.88 7.30 12.36 16.54 24.90 40.00 58.38 87.60 
WS 

5.22 4.46 4.20 4.96 8.16 13.74 23.82 53.00
lOLS 

4.90 6.50 11.48 15.90 23.80 39.60 57.86 86.5211ML, 
5.08 7.52 13.42 19.22 27.40 44.58 61.82 85.02I ES 
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Table 4.4. Empirical powers for 5% level test criteria (n = lOO, Y1 ,., N(O, 1) t 

5000 replicationa) 

P
Statistic ~! 

1.00 0.98 0.95 0.93 0.90 0.85 0.80 0.70 
/ 

4.90 9.10 19.32 28.66 46.82 78.82 95.50 99.94Pp,OLS 

,4.84 10.88 27.40 41.88 63.66 90.50 98.92 100.00 ~,P1MLt 

.. 
5.06 10.86 29.16 43.70 66.74 90.30 97.92 99.76P7,GLS 

.. 4.80 10.18 24.24 36.52 56.66 86.68 98.04 100.00Pu 
~ 

.. 
4.84 10.28 24.60 36.98 57.14 87.04 98.16 100.00Pws 

5.46 6.68 11.70 17.80 31.06 62.10 87.70 99.70T~;OLS 
.. 

4.84 10.92 27.60 42.02 64.40 90.54 98.84 100.00T1,ML 

.. 
4.96 10.94 29.62 44.08 67.28 90.80 97.90 99.72

T7,GLS 
)

4.96 10.30 25.86 38.82 59.98 88.38 98.34 100.00TU 

T
.. 

4.96 10.48 26.08 39.16 60.22 88.72 98.36 100.00
WS 

'l' 

)
5.10 4.40 7.98 12.10 22.00 49.76 78.82 98.98lOLS 

5.08 9.52 26.36 39.72 62.88 88.42 97.42 99.9011,ML 

5.10 11.02 29.76 44.66 67.44 88.56 95.28 98.76 )I ES 

J 
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Table 4.5. Empirical pl)wers for 5% level test criteria (n = 250, Y1 N N(O, 1) J 

Stausuc 

.. 
PII,OLS 
.. 
Pl,ML 

... 
P7,GLS 

...
Pu 
.. 
Pws 

5000 replica'tions) 

1.00 0.98 

5.08 18.'76 

5.36 30.154 

5.38 30.IH 

5.14 24.80 

5.16 25.:L6 

0.95 

61.32 

85.88 

85.52 

74.56 

75.06 

0.93 

87.08 

97.90 

97.78 

94.20 

94.48 

P 

0.90 

89.34 

99.98 

99.86 

99.76 

99.78 

0.85 

100.00 

100.00 

100.00 

100.00 

100.00 

0.80 

100.00 

100.00 

100.00 

100.00 

100.00 

0.70 

100.00 

100.00 

100.00 

100.00 

100.00 

T1o',0LS 

T1ML, 

T7,GLS 

~u 
.. 
1'ws 

5.06 

5.38 

5.20 

4.88 

5.06 

11.72 

31.~L2 

31.fiO 

26.18 

26.~ro 

44.08 

85.84 

85.66 

76.88 

77.88 

73.62 

97.88 

97.52 

95.10 

95.34 

96.74 

99.96 

99.88 

99.90 

99.94 

100.00 

100.00 

99.98 

100.00 

100.00 

100.00 

100.00 

·99.98 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

'OLS 

t 1,ML 

t ES 

5.04 

5.42 

5.16 

8.22 

27.06 

31'()6 

34.76 

81.60 

85.02 

63.42 

96.36 

96.78 

93.42 

99.82 

99.82 

100.00 

100.00 

99.94 

100.00 

100.00 

99.94 

100.00 

100.00 

99.98 

( 
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Table 4.6. Empirical powers for 5% level test criteria (D =25, 
Y1 N N[O, (1 - p2)-1] , 5000 replications) 

:J 

p 
Statistic 

0.99 0.98 0.95 0.93 0.90 ,0.85 0.80 0.70 

.. 
5.40 6.04 6.72 8.10 8.50 12.70 18.28 31.78 :JP~OLS 

5.22 5.82 6.56 7.72 8.44 12.44 18.52 31.92P1,ML 

5.32 5.72 6.74 7.54 8.72 13.88 20.00 34.28P7,GLS 
. ~ 

5.30 5.70 6.80 7.54 8.70 12.94 19.30 33.68Pu 
. 

5.22 5.64 6.80 7.50 8.70 12.84 19.30 33.64Pws 
'\ 
J . 

5.68 6.40 6.08 6.98 7.42 9.42 13.18 21.687'~,OLS 

. 
5.18 5.74 6.66 7.70 8.70 12.84 19.20 32.907'1,ML 

. )
5.14 5.82 7.12 7.46 8.88 13.86 20.34 34.787'7,GLS 

. 
5.00 5.78 7.08 7.84 9.14 14.10 20.98 36.287'U 

. 
5.02 5.78 7.08 7.78 9.10 13.86 20.80 36.107'ws ? 

4.24 4.20 4.00 4.74 4.76 5.76 8.48 14.7610LS 

4.70 5.18 6.12 7.06 7.94 12.22 18.58 33.2011,ML ) 

4.70 5.82 6.98 7.96 9.16 14.08 20.94 35.52IES 

.:) I 

:) 
1 

_______ 1 
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Table 4.7.� Empirical pc)wers.for 5% level test criteria (n -= SO, 
Y1 '" N[O, (1- p 2f·1] ,5000 replica.tiona) 

p
Statistic 

0.99 0.9!1 0.95 0.93 0.90 0.85 0.80 0.70 

5.22 6.5~~ 8.70 11.98 18.04 29.98 46.62 80.22P#£,OLS 
... 

4.76 6.4e: 9.28 13.20 19.34 32.74 50.92 84.34P1,ML 

5.16 6.10 9.48 13.44 19.92 32.90 51.06 82.12P7,GLS 

4.92 6.44 9.60 13.62 19.46 33.22 51.80 84.88Pu 

... 
4.86 6.26 9.32 13.32 19.14 33.08 51.08 84.38Pws 

A 

5.66 6.08 7.28 8.64 12.88 21.04 34.12 66.18T#£,OLS 
A 

4.82 6.38 9.52 13.18 19.44 33.26 51.~ 84.72T1,ML 

5.22 6.08 9.96 13.50 19.98 33.48 51.66 82.42/' 1'7,GLS 
A 

TU 5.02 6.20 10.06 , 13.46 20.18 33.78 52.66 85.44 

A

T 4.86 6.06 9.78 13.16 19.68 33.10 51.84 84.80 
WS 

4.88 4.30 4.86 5.58 9.08 14.64 25.36 54.76lOLS 

4.72 5.50 8.80 11.92 18.38 30.40 47.66 80.30 , 11ML 

5.46 6.04 10.32 13.88 20.24 32.38 48.60 74.90I ES 

~ , 
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Table 4.8. Empirical powers for 5% level test criteria (n = 100, 
Y1 III N[O, (1- p2)-1} t 5000 replications) 

Statistic 
0.99 0.98 0.95 0.93 

p 

0.90 0.85 0.80 0.70 
,JI 

PAOLS 

P1ML, 
.. 
P7,GLS 

Pu 

Pws 

8.28 

6.34 

6.54 

6.48 

6.62 

7.64 

8.18 

8.08 

8.00 

8.06 

17.14 

19.48 

19.20 

18.80 

19.06 

26.52 

30.98 

29.64 

29.90 

30.12 

45.90 

52.02 

48.66 

51.56 

52.06 

78.64 

82.02 

74.80 

83.94 

84.24 

95.46 

95.94 

88.12 

97.22 

97.24 

99.94 

99.96 

97.46 

100.00 

100.00 

) 

TAOLS 

T1ML, 

T7,GLS 

TU 

5.50 

6.46 

6.36 

6.40 

7.08 

8.12 

8.10 

8.00 

11.80 

19.48 

19.50 

19.48 

19.06 

31.18 

30.20 

30.68 

30.14 

51.92 

49.80 

52.10 

56.20 

82.08 

75.32 

83.70 

78.92 

95.88 

88.36 

97.16 

97.64 

99.96 

97.60 

100.00 

.> 

) 

Tws 6.54 8.10 19.62 31.08 52.18 83.86 97.08 100.00 

'OLS 

t 1,ML 

t ES 

4.94 

5.70 

6.64 

5.06 

6.84 

8.24 

8.92 

17.12 

19.44 

13.52 

26.68 

28.42 

23.80 

45.42 

47.22 

52.06 

73.28 

69.78 

80.24 

89.10 

82.84 

99.04 

99.06 

93.76 

) 

) 

J 
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Figure 4.1. Powers of pivotal statistics when Y1 is generated from N(O, 1) . 

.J 



33� 

Figure 4.2. Powers of phrotal statistics when Y1 is generated from N[O, (1 _ p2)-1) . 
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Figure 5.1. Quarterly change in business invent.ories. 
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