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Abstract-The unscented Kalman filter is a superior alterna- 
tive to the extended Kalman filter for a variety of estimation and 
control problems. However, its effectiveness for improving human 
motion tracking for virtual reality applications in the presence 
of noisy data has been unexplored. In this paper, we present 
an empirical study comparing the performance of unscented 
and extended Kalman filtering for improving human head and 
hand tracking. Specifically, we examine human head and hand 
orientation motion signals, represented with quaternions, which 
are critical for correct viewing perspectives in virtual reality. OW 
experimental results and analysis indicate that unscented Kalman 
filtering performs equivalently with extended Kalman filtering. 
However, the additional computational overhead of the unscented 
Kalman filter and quasi-linear nature of the quaternion dynamics 
lead to the conclusion that the extended Kalman filter is a 
better choice for estimating quaternion motion in virtual reality 
applications. 
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I. INTRODUCTION 
Accurate human motion tracking is a critical component in 

any virtual reality (VR) application [I]. Having real time head 
and hand motion information enables the computer to draw 
images in the correct perspective. Unfortunately, tracking sys- 
tems suffer from noise and small distortions causing incorrect 
viewing perspectives. To handle these imperfections, filtering 
is often applied to the tracked data so the VR application can 
obtain more accurate estimates of the user’s motion. 

The Kalman filter (KF) is a popular choice for estimat- 
ing user motion in VR applications[2][3][4]. Since position 
information is linear, standard Kalman filtering can be eas- 
ily applied to the tracking problem without much difficulty. 
However, human pose information also contains nonlinear 
orientation data, requiring a modification to the KF. The 
extended Kalman filter (EKF) provides this modification by 
linearizing all nonlinear models (i.e., process and measurement 
models) so the traditional KF can be applied[5]. 

Unfortunately, the EKF has two important potential draw- 
backs. First, the derivation of the Jacobian matrices, the linear 
approximators to the nonlinear functions, can be complex 
causing implementation difficulties. Second, these lineariza- 
tions can lead to filter instability if the timestep intervals are 
not sufficiently sma11[6]. 

To address these limitations, Julier and Uhlmann developed 
the unscented Kalman filter (UKF)[7]. The UKF operates 
on the premise that it is easier to approximate a Gaussian 
distribution than it is to approximate an arbitrary nonlinear 
function. Instead of linearizing using Jacobian matrices, the 
UKF using a deterministic sampling approach to capture 
the mean and covariance estimates with a minimal set of 
sample points. The UKF is a powerful nonlinear estimation 
technique and has been shown to be a superior alternative to 
the EKF in a variety of applications including state estimation 
for road vehicle navigation[8], parameter estimation for time 
series modeling[9], and neural network training[ lo]. The UKF 
is also effective in certain types of visual contour hand 
tracking[] 1][12]. However, these systems dealt mostly with 
tracking position and did not take orientation into account. 

Although the UKF has been applied to a wide range of 
estimation problems, to the best of our knowledge there has 
been no attempt to use it to improve human head or hand 
orientation tracking. Therefore, in this paper, we explore the 
potential benefits of the UKF over the more traditional EKF 
in human orientation estimation. We describe the results of an 
experimental study which examines the estimation accuracy 
of the EKF and UKF on both head and hand orientation 
represented with quaternions. Quaternions are a common way 
to represent rotations in tracking, robotics, and mechanical 
engineering because they are compact and avoid gimbal 
lock[l3]. The results of our study indicate that, although the 
EKF and UKF have equivalent performance, the additional 
computational overhead of the UKF and the quasi-linear nature 
of the quaternion dynamics makes the EKF a more appropriate 
choice for orientation estimation in VR applications. 

The remainder of this paper is organized as follows. In the 
next two sections, we describe the algorithmic details of the 
EKF and UKF formulations used in our study. Section IV 
describes our experimental methodology and setup. Section V 
presents the experimental results and discusses their signifi- 
cance. Section VI concludes the paper. 

11. EXTENDED KALMAN FILTERING 
The extended Kalman filter is a set of mathematical equa- 

tions which uses an underlying process model to make an 
estimate of the current state of a system and then corrects the 
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estimate using any available sensor measurements. Using this 
predictor-corrector mechanism, it approximates an optimal es- 
timate due to the linearization of the process and measurement 
models[l4]. To describe all the details of the EKF is beyond 
the scope of this paper. Therefore, we present a more algo- 
rithmic description omitting some theoretical considerations. 
More details on the EKF can be found in [15][16]. 

The process model we use is an orientatiotdangular velocity 
(OV) model defined by 

where q is the current quatemion and w is a pure vector 
quaternion representing angular velocity. We use a single EKF, 
where the state vector at time k is defined by 

(2) 
Given the state vector at step IC - 1, we first perform the 

prediction step by finding the a priori state estimate 2 i  by 
integrating equation 1 through time by At (i.e., 1.0 divided 
by the current sampling rate) using a 4th Order Runge-Kutta 
scheme. 

Then, we find the a priori estimate of the error covariance 
matrix 

T 2k = [qzrqy,qz,4w,W0,~1rW2] . 

(3) 
where Q k  is the process noise covariance, P k - 1  is the a 
posteriori estimate of the error covariance, and @ I ,  is an 
approximation to the fundamental matrix calculated by taking 
the Taylor expansion of @(t) around the system dynamics 
matrix 

(4) 

a Jacobian matrix which linearizes the process function f, and 
then substituting At for t'.  

After the prediction step, the correction step calculates the 
a posteriori state estimate using 

%k = 2, + Kk(~k - Hk%L), ( 5 )  

where KI, is the Kalman gain or blending factor and HI, is the 
measurement matrix used to combine the measurement vector 
Zk, obtained from the tracking device, with 2;. The Kalman 
gain is computed using 

where R is the measurement noise covariance, and the mea- 
surement matrix is calculated using 

'Note that from a theoretical perspective, the EKF calculates Fk each 
time f is evaluated. In the 4th order Runge-Kutta routine, f is evaluated 
8 times[l7], meaning that Fk should be a product of 8 intermediate Jacobian 
evaluations. In our formulation, we only evaluate F k  once from the output of 
the Runge-Kutta routine. Although this approach deviates slightly from the 
definition of the EKF, we find it faster, less complex, and works just as well 
for our applications. 

(7) 

a Jacobian matrix that' linearizes around the nonlinear mea- 
surement function h. In our case, h is quaternion normalization 
defined by 

for the quaternion in k,. Finally, we compute the a posteriori 
estimate of the error covariance using 

PI, = (I - KI,H~)PI,. (9) 

Note that after we calculate the a posteriori state estimate, the 
quaternion ,is renormalized ensuring it is on the unit sphere, 
making it a valid rotation. 

A. EKF Parameters and Initialization 
The EKF has two parameters, Q k  and R, which represent 

the process noise covariance and the measurement noise 
covariance. R is determined empirically and accounts for 
the uncertainty in the tracking data. Setting these matrices 
properly goes a long way toward making the filters robust. 
w e  determine Q k  using the continuous process noise matrix 
Q which assumes that the process noise always enters the 
process model on the highest derivative[ 161. Therefore, 

where is a scaling parameter which acts as a confidence 
value for how sure we are that the process model is an accurate 
description of the the true motion dynamics. 

The EKF also needs to be initialized on startup. The 
quatemion in the state vector at time 0 is simply set to 
the first observation in the motion sequence and the angular 
velocity components are set to 0. The a priori estimate of 
the error covariance and the elements in the these matrices 
are set to 0 for the off-diagonal entries and to relatively large 
numbers in the diagonal entries. For our implementation, the 
quatemion variance diagonals are set to 1 and the angular 
velocity variances are set to 100. 

111. UNSCENTED KALMAN FILTERING 
The basic premise behind the unscented Kalman filter is 

it is easier to approximate a Gaussian distribution than it 
is to approximate an arbitrary nonlinear function. Instead of 
linearizing using Jacobian matrices, the UKF uses a determin- 
istic sampling approach to capture the mean and covariance 
estimates with a minimal set of sample points[9]. As with 
the EKF, we present an algorithmic description of the UKF 
omitting some theoretical considerations. More details can be 
found in [7][6][18]. 

Given the state vector at step IC - 1 (we use the same state 
vector as in equation 2, we compute a collection of sigma 
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points, stored in the columns of the L x (2L + 1) sigma point 
matrix Xk-1 where L is the dimension of the state vector. In 
our case, L = 7 so Xk-1 is a 7 x 15 matrix. The columns of 
Xk-1 are computed by 

(Xk-110 = ?k-1 (1 1) 

(Xk-l)i = ?k-1 + ( J ( L  + X ) P k 4 ) ,  2 , i = 1.. . L 

(Xk-l)i = ?k-1 - ( J ( L  + A ) P k - l ) ,  a-L , i  = L + 1..  ,2L ,  

Note that p is a parameter used to incorporate any prior 
knowledge about the distribution of x. 

To compute the correction step, we first must transform the 
columns of Xk through the measurement function. Therefore, 
let 

where (,/(L + 
square root and A is definLd by 

, is the ith column of the matrix h is the same quaternion normalization function found in 
equation 8. 

With the transformed state vector E L ,  we compute the a 
posteriori state estimate using A = a2(L + .) - L ,  (12) 

where a is a scaling parameter which determines the spread ?k = 2; -k K k ( Z k  - E;), (20) 
of the sigma points and 6 is a secondary scaling parameter. 
Note that we assume ( d ( L  + X)P~-I )~  is symmetric and 
positive definite which allows us to find the square root using 

where Kk is once again Kalman gain. In the UKF formulation, 
Kk is defined by 

a Cholesky decomposition. 
Once X k - 1  computed, we perform the prediction step by 

first propagating each column of X k - 1  through time by At 
using 

(&)i = f ( ( X k - l ) < ) , i  = 0 .  . .2L, (13) 

where f is differential equation defined in equation 1. In our 
formulation, since L = 7, we perform 15 4th order Runge- 
Kutta integrations. 

With (xk)i calculated, the a priori state estimate is 

2 L  

2; = W p y X k ) i ,  (14) 
i=O 

where W,('") are weights defined by 

where 

2L 
T 

Pileik = W,!" [(Z,)i - E,] [(Zk)i - %i] tR (22) 
i = O  

2L 
T 

Pekik = w,!') [(xk)i - [(zk)i - %le ]  . (23) 
i=O 

Note that as with the EKF, R is the measurement noise 
covariance matrix. Finally, the last calculation in the correction 
step is to compute the a posteriori estimate of the error 
covariance given by 

(15) As with the EKF, we renormalize the state vector's quaternion 
to make sure it is on the unit sphere, making it a valid rotation. 

A. UKF Parameters and Initialization . 

x 
( L  + A) 

1 

WA" = 

w p  - , i = 1 . . . 2 L .  
2(L + A) 

As the last part of the prediction step, we calculate the a 
priori error covariance with 

2L 
A -  T PC = CWjc) [(Xk)i - [(xk)i - x k ]  + Q k ,  (16) 

where Q k  is once again the process error covariance matrix, 
and the weights are defined by 

i=O 

Q k ,  R, a, P, and n are the five parameters used in the 
UKF. We determine, R, a, 0, and IC empirically and use the 
formulation described in Section 1I.A to find Q k .  More details 
on our choice for determining &k can be found in Section V. 
The UKF is initialized in the same way as the EKF, using the 
same values for the state vector and error covariance matrix 
upon startup. 

IV. EXPERIMENTAL STUDY 

To compare the performance of the EKF and UKF al- 
gorithms described in sections II and 111, we conducted an 
experiment to determine which filtering algorithm is preferable 
for improving human orientation tracking in virtual reality 
systems. 
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A. Experimental Setup 
Two datasets (one head and one hand) were used in our 

study to represent common orientation dynamics found in 
our virtual reality applications. Each dataset consists of unit 
length quatemions running about 20 seconds in length. The 
orientation sequences were captured using an Intersense IS900 
tracking system, a hybrid inertiahltrasonic tracking device. 
The head orientation dataset, denoted HEAD and shown in 
Figure 1, is an example9of a user rotating her head to 
view images on three orthogonal display screens. The hand 
orientation dataset, denoted by HAND and shown in Figure 2, 
is an example of a user rotating his hand to navigate through 
the virtual world. 

The HEAD Dataset 

The HAND Dataset 

4.6 

. .  
1. ! qx 
.I 

I I 
0 2 4 6 8 10 12 14 16 18 20 22 

Time (seconds) 

Fig. 1 .  The four signals that make up the quatemion sequence for the HEAD 
dataset. The values for each quaternion component are unitless. 

In the experiment, the datasets were tested with sampling 
rates of 25, 80, and 215Hz giving us three different test 
scenarios for each dataset. These sampling rates were chosen 
because VR tracking systems are commonly run at these rates. 
We use a small Monte Carlo simulation on each test scenario 
since we have random Gaussian noise added to the motion 
signals, which is used to simulate jittery tracking data. A 
constant value of 5e-6 was set for the random noise variance 
providing noise added to the motion signals with a Gaussian 
distributed range of f1.19 degrees. All tests were run on a 
AMD Athelon XP 1800+ with 512Mb of main memory. 

B. Evaluation Method 
To determine how well the EKF and UKF algorithms are 

performing, we need comparison data. Comparing estimated 
output with reported user orientations is problematic since 
these records have noise and small distortions associated with 
them. Thus, any comparison with the recorded data would 
count tracking error with the estimation error. We obtain the 
"ground truth" datasets by passing them through a zero phase 
shift filter to remove high frequency noise. We determine the 

I 
0.6 

0.4 

0.2 

0 

-0.2 

0 2 4 6 8 10 12 14 16 18 20 
Time (seconds) 

Fig. 2. The four signals that make up the quatemion sequence for the HAND 
dataset. The values for each quaternion component are unitless. 

lowpass and highpass filter parameters by examining each 
signal's power spectrum. Depending on the particular dataset, 
the lowpasshighpass pairs were anywhere between 1/3 and 
2/4 Hz. This cleaning step gives us the truth datasets we 
need to test against and makes it easy to add noise of known 
characteristics for simulating jittery tracking data. With the 
truth datasets, we can calculate the root mean square error 
(RMS) for each test and take the average over the Monte Carlo 
simulation runs. For truth and estimated quatemions, qt,  and 
qe,,  RMS is defined by 

where RMS, is in degrees and 

C. EKF and UKF Parameters 

For the EKF and UKF algorithms, we needed to determine 
the R and Q k  covariance matrices. Since we know the 
variance of the Gaussian white noise we are injecting into the 
motion signals, we set the off-diagonal entries of R to 0 and 
set the diagonal entries to be the value of the noise variance 
value (5e-6 in this case). Thus we are making the assumption 
that our measurement noise is based on the variability of a 
stationary tracker. As shown in Section II.A, we calculate the 
Q k  matrix using equation 10 leaving as as our free parameter. 
The search routines ran over different integer values for 
and we found 1 to be a good choice for the HEAD dataset 
and 2 for the HAND dataset. For the UKF, we also needed 
to set the a, ,B, and K parameters. After running a number 
of tests, we found that 1,0, and 0 were appropriate for these 
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parameters. See Section V for a discussion on our parameter 
choices. 

v. RESULTS AND DISCUSSION 
Tables I and II show the RMS errors for the HEAD and 

HAND datasets across the different sampling rates. These 
results show that the EKF and UKF have roughly the same 
error in all cases. Note that we also include the RMS error for 
doing no filtering at all to show that both the EKF and UKF 
improve tracking accuracy at sampling rates of 80 and 215Hz. 

I 215Hz: I 0.222815 1 0.228121 I 0.422076 1 
TABLE I 

THE RMS ERROR RESULTS (IN DEGREES) FOR THREE DIFFERENT 

SAMPLING RATES ON THE HEAD DATASET. THE DATA SHOWS THE EKF 
AND UKF HAVE ROUGHLY THE SAME ERROR WHEN ESTIMATING 

QUATERNIONS AND IMPROVE ACCURACY OVER NO FILTERING AT ALL. 

RMS Results for the HAND Dataset 
I EKF I UKF I NONE 

TABLE I1 
THE RMS ERROR RESULTS (IN DEGREES) FOR THREE DIFFERENT 

SAMPLING RATES ON THE HAND DATASET. THE DATA SHOWS THE EKF 
AND UKF HAVE ROUGHLY THE SAME ERROR WHEN ESTIMATING 

QUATERNIONS AND IMPROVE ACCURACY OVER NO FILTERING AT ALL. 

The tests that were run at 25Hz show there is only a slight 
improvement in the EKF and UKF’s estimation performance 
for both the HEAD and HAND datasets. These numbers 
indicate that sampling rates of 25Hz are probably not high 
enough for applying filtering algorithms to quaternion motion 
data. However, more work is needed to verify this claim. 

Figures 3 and 4 show the state errors from the EKF and 
UKF filters for the quaternion components in the HEAD 
dataset sampled at 80Hz. These graphs are representative of 
the component wise error in our test scenarios and show that, 
on a component level, the accuracy of the EKF and UKF are 
roughly the same. From this data and the data in Tables I and 
11, it is difficult to make a decision about which estimation 
algorithm is the better choice. Therefore, we need to examine 
the algorithms in greater detail. 

Using the test scenarios, we recorded the running times for 
each algorithm. On average, the EKF algorithm took 266.13 
microseconds per estimate while the UKF algorithm took 
3,294.2 microseconds per estimate. The reason the UKF algo- 
rithm takes significantly longer to make an estimate is because 
it has to handle all the sigma points. In our implementation, the 
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Fig. 3. State errors from the EKF for the four quaternion components in the 
HEAD dataset sampled at 80Hz. The solid lines represent the errors while the 
dashed lines show the 3 standard deviation bounds. The component estimates 
are unitless. 
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Fig. 4. State errors from the UKF for the four quaternion components in the 
HEAD dataset sampled at 80Hz. The solid lines represent the errors while the 
dashed lines show the 3 standard deviation bounds. The component estimates 
are unitless. 

UKF has to perform 15 Runge-Kutta integrations to propagate 
the sigma points through time while the EKF only has to 
perform one integration. Even if we used Julier and Uhlmann’s 
method for reducing the number of sigma points[l9], we 
would still need to do 8 Runge-Kutta integrations for the UKF 
to only one for the EKF. If the estimation accuracy of the 
UKF was better than the Em, this additional computational 
overhead would be warranted. However, since the UKF does 
not give us any additional accuracy, from a running time 
standpoint, the EKF seems the more appropriate estimator in 
this case. 

In addition to the issue of time complexity between the 
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EKF and UKF, we also need to examine their theoretical 
performance. From [6], we know that UKF can predict the 
state estimate and error covariance to 4th order accuracy while 
the EKF only predicts up to 2nd order for the state estimate 
and 4th order for the error covariance. However, the UKF will 
make more accurate estimates only if the kurtosis and higher 
order moments in the state error distributions are significant. In 
our application, the magnitudes of the quaternion component 
covariances are significantly less than unity (on the order 
of to in most cases) which means the kurtosis 
and higher order moments are very small. This fact is one 
indication of why the UKF does not perform better than the 
EKF. Additionally, this indicates why there is little, if any, 
effect in UKF performance with different values for the UKF 
parameters CY, @, and K .  Sampling rate is another indication 
why the UKF does not provide better performance when 
estimating quaternion motion. In general, if the sampling rate 
is sufficiently high, the quaternion dynamics behave in a quasi- 
linear fashion since, with small timesteps, the integration steps 
propagate the quaternions only small deviations away from the 
unit sphere, making the error in linearization minimal. 

Finally, one of the main advantages of the UKF is that 
it does not require the calculation of Jacobian matrices. In 
many applications, Jacobian matrix evaluation can be non- 
trivial and lead to implementation difficulties[6]. However, 
in our application, the calculation of the Jacobian matrices 
is quite simple based on the structure of the process and 
measurement functions (see equations 1 and 8) and quaternion 
mathematics[20]. Therefore, the UKF does not provide us with 
any additional benefit in this case. In fact, the simplicity of 
the Jacobian calculations for the process model allowed us to 
use the same method for calculating Q k  in both the EKF and 
UKF formulations. 

Although our work has focused on head and hand orien- 
tation tracking in VR applications, we hypothesize that these 
results may extend to other domains, such as robotics and 
underwater vehicle navigation, requiring quaternion motion 
estimation with motion dynamics that behave in a quasi- 
linear fashion. Such motion dynamics would have to have 
the important characteristic of small angle deviations and 
sampled at relatively high rates. Future work can validate this 
hypothesis. 

VI. CONCLUSION 

In this paper, we have presented an experiment which 
compares extended and unscented Kalman filtering of head 
and hand orientation data represented with quaternions. Our 
results indicate that, although the EKF and UKF have roughly 
the same accuracy, the computational overhead of the UKF, 
the simplicity of the Jacobian matrix calculations, and the 
quasi-linear nature of the quaternion dynamics makes the EKF 
a better choice for the task of improving tracking of noisy 
quaternion signals in virtual reality applications. 

ACKNOWLEDGMENTS 
Special thanks to Simon Julier, Gary Bishop, Greg Welch, 

John Hughes, and Andy van Dam for valuable guidance and 
discussion. This work is supported in part by the NSF Graphics 
and Visualization Center, IBM, the Department of Energy, 
Alias/Wavefront, Microsoft, Sun Microsystems, and TACO. 

REFERENCES 
Stanney, Kay M. Handbook of Virtual Environments: Design, Implemen- 
tation, Applications, Lawrence Erlbaum Associates, 2002. 
Azuma, Ronald and Gary Bishop. Improving Static and Dynamic 
Registration in a See-Through HMD. In Proceedings of SIGGRAPH’94, 

Foxlin, Eric. Inertial Head-Tracker Sensor Fusion by a Complementary 
Separate-Bias Kalman Filter. In Proceedings of the Virtual Reality 
Annual International Symposium ’96, 185- 194, 1996. 
Welch, Greg, and Gary Bishop. SCAAT Incremental Tracking with 
Incomplete Information, In Proceedings of SIGGRAPH’97, ACM Press, 

Sorenson, H. W. Kalman Filtering: Theory and Application, IEEE Press, 
1985. 
Julier, Simon J., Jeffery K. Uhlmann, and Hugh E Durrant-Whyte. A 
New Approach for Filtering Nonlinear Systems.In Proceedings of the 
1995 American Control Conference, 1628-1632, 1995. 
Julier, Simon J. and Jeffery K. Uhlmann. A New Extension of 
the Kalman Filter to Nonlinear Systems. In The Proceedings of 
AeroSense: The I l th International Symposium on Aerospace/Defense 
Sensing,Simulation and Controls, Multi Sensor Fusion, Tracking and 
Resource Management 11, SPIE, 1997. 
Julier, Simon J. and H. F. Durrant-Whyte. Navigation and Parameter 
Estimation of High Speed Road Vehicles. In Robotics and Automation 
Conference, 10 1- 105, 1995. 
Wan, E. A., and R. van der Menve. The Unscented Kalman Filter for 
Nonlinear Estimation. In Proceedings of Symposium 2000 on Adaptive 
Systems for  Signal Processing, Communication and Control(AS-SP CC), 
IEEE Press, 2000. 
van der Menve, R. and E. A. Wan, Efficient Derivative-Free Kalman 
Filters for Online Learning, In European Symposium on ArtiJcial Neural 
Networks (ESANN), Bruges, Belgium, 2001. 
Peihua, Li and Tianwen Zhang. Unscented Kalman Filter for Visual 
Curve Tracking. In Proceedings of Statistical Methods in Video Pro- 
cessing, June, 2002. 
Stenger, B., P. R. S .  MendonGa, and R. Cipolla. Model-Based Hand 
Tracking Using an Unscented Kalman Filter. In Proceedings of the 
British Machine Vision Conference, 63-12, September 2001. 
Grassia, F. Sebastian. Practical Parameterization of Rotations Using the 
Exponential Map. In Journal of Graphics Tools, 3(3):29-48, 1998. 
Welch, Greg and Gary Bishop. An Introduction to the Kalman Filter. 
Technical Report TR 95-041, Department of Computer Science, Univer- 
sity of North Carolina at Chapel Hill, 1995. 
Maybeck, Peter S. Stochastic models, estimation, and control. Volume 
1, Academic Press, 1979. 
Zarachan, Paul and Howard Musoff. Fundamentuls of Kalman Filtering: 
A P racfical Approach. Progress in Astronautics and Aeronautics, Volume 
190, American Institute of Aeronautics and Astronautics, Inc., 2000. 
Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William 
T. Vetterling. Numerical Recipes in C: The Art of Scientijic Computing, 
2nd Edition, Cambridge University Press, 1993. 
Wan, E. A., and R. van der Menve. The Unscented Kalman Filter, 
In Kalman Filtering and Neural Networks, S. Haykin (ed.), Wiley 
Publishing, 2001. 
Julier, Simon J., and Jeffrey K. Uhlmann. Reduced Sigma Point Filters 
for the Propagation of Means and Covariances Through Nonlinear Trans- 
formations. In Proceedings of the 2002 American Control Conference, 
887-892, 2002. 
Shoemake, Ken. Animating Rotations with Quatemion Curves. In Pro- 
ceedings of,SIGGRAPH 85, ACM Press, 245-254, 1985. 

197-204, 1994. 

333-344, 1997. 

2440 
Proceedings of the American Control Conference 

Denver, Colorado June 4-6, 2003 


