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Abstract

Explicit solutions are given for the maximum likelihood (ML) and restricted
meximum likelihood (REML) equations under normality for four common variance com-
ponents models with balanced (equal subclass numbers) data. Solutions of the REML
equations are identical to analysis of variance (AOV) estimators. The ratio of

mean squared errors of REML and ML solutions are also given.

Unbalenced (unequal subclass numbers) data are used in a series of numerical
trials to compare ML and REML procedures with 3 other estimation methods using a
2-way crossed classification mixed model with no interaction and O or 1 observation
per cell. Results are similar to those reported by Hocking and Kutner [1975] for
the BIB design. Collectively, these studies and those of Klotz, Milton, and Zacks
[1969] point, with few exceptions, to the greater efficiency of ML estimators under

a range of experimental settings.

1. Introduction

Maximm likelihood (ML) estimators of variance components are solutions of
equations that maximize the likelihood over the positive space of the variance com-

ponents parameters. Direct solutions of the maximizing equations, ignoring this
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positivity requirement, are not necessarily the maximum likelihood estimators.
Teking this positivity requirement into account is not always straightforward
(e.g., Herbach [1959] and Thompson [1961, 1962]), particularly when considering
such properties as blas, sampling variance and mean square error. In order to
study these properties of different estimators, this paper uses the phrase "ML
estimators" to mean "solutions to the ML equations” (and similarly for REML), thus
ignoring the positivity requirement. We acknowledge thet solutions are not true
ML estimators, but since they are when a set of estimates are all positive we see
velue in comparing "solutions" with other estimators; and in doing so, calling

them ML estimators is clearly a convenience.

Miller [1973] points out that closed form ML estimators of variance components
do exist in some cases. We have obtained these and REML estimators (Corbeil and
Searle [197’4]), their biases and sampling variances and mean square errors for L
oft-encountered balanced (equal subclass numbers) data models, and compared them
using the ratio of their mean squared errors. This is of particular interest
because in all 4 models the REML estimators are identical to the long-standing

analysis of variance (AOV) estimators.

For further comparison, with unbalanced data, where REML and AOV estimators
are not the same, and where closed form ML and REML estimators cannot be derived,
nunerical studies were made using a 2-way crossed classification, mixed model.

The results are presented in section L.
2. The Models

The general mixed model can be represented as

e+l

y=Xet LUb (1)
=]
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where Ec 1S 8 vector of error terms, and gc 41 - I, an identity matrix. c is

the number of variance components excluding the error variance, y is an N-vector
of observations, X is en N X k matrix of known constants, p is a k-vector of fixed
effects, gi is ean N X my design matrix of zeros and ones, and, with the usual
assumptions, the E i's are mitually independent random vectors each having a
multivariate normal distribution with mean O and variance ai; fori=1, 2, «-,

¢ +1. It is also assumed that X has full rank k; N 2k +c + 1; and [1"91] has
rerk > k. Thus y is distributed as e multi::riate normal (Xu, of) vhere o2, oi,

c

are used interchangesbly, and K = I y,U,Us for v, = 05/0%.

and o2
¢ i=1

+1

ML estimators Sf are obtained by solving
e @EEYy (2)
a2 = % [g'g'lx - Q'(z‘g'ly)] p (3)
and
trace| ;a7 ] = (y - 305 N0,0;(y - HV/E, (4)

equations which are given for example as (11), (12), and (9) respectively, in

Hemmerle end Hartley (1973]. REML estimators 02 are obtained by solving eguations

1
(17) and (16) of Corbeil and Searle [1974]:
3 = y'ot(THD") MTY/ (N - X) (5)
and
trace|ur" (zr') M1y, | = 37 (mr) I, g () /52, (6)
where
X .
1= )" LI"t - ntlg)\t 3 -n;l;,\t] (7)
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is a matrix of order (N - k) X N and where Z* represents a direct sum of matrices.

¢ is the number of observations on the tt® fixed effect, for t = 1, *°+, k.
k

N= Zn,, A _=n
g T T

unity and 3% is a vector of A + unities.

n

- 1, J) 1is a square matrix of order )‘t with every element
"t

3. The 4 balanced data models and their results

ML and REML estimators for the bslanced data models were obtained by explicitly
solving equations (2) - (4) and (5), (6) raspectively. Equations (4) and (6) in-

volved especislly tedious algebra. Results are shown in Tables 1 and 2.

A brief description of the 4 models is as follows. In all cases the error
terms are represented by e with appropriate subscripts, having zero mean and
variance covariance matrix 0°I; all random elements are uncorrelated with each
other and with error terms, have zero mean and uniform variance 0 with appropriate
subscript: in short, the well-known conditions of traditional varliance components

models [e.g., Searle (1971, Chapters 9-11)J.

{1] The 1-way classification, random model

Yig = et oy tey, (8)

fori=1, -+, @, 8nd j = 1, +++, n, with a's random, and ag and 02 to be esti-

mated. In terms of the general model (1), k = 1, ¢ = 1, my = a, and m, = an. The

sums of squares are, using the familiar dot notation for totals, e.g., ¥y, ® jglyi 3’
a
ssa=2 Yy L2, (8a)
=1
a n a
s ) Lviy-3 LYE. (@)
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As seen in Table 1, ML and REML estimators are very similar in this model,

especially for large a, although on the MSE criterion the ML estimator of UZ is

always more efficient.
(2] The 2-way nested classification
Yij£=u+ai+t313 +eij£’ (9)

fori=1, ***, a, =1, ¢»», b, and £ =1, ¢¢+, n, with ¢'s and B's random and

qg, o2, and 02 to be estimated. In the general model, k =1, ¢c = 2, m = a,

a’
m, = ab, and m3 = ghn. The sums of squares are
a
_ 1 z: 1
SSA == ) Yi - o V.. (%)
i=1
a b a
ssBa) =2 ) ) vE. - )92 (9b)
3. " PR LYi..
i=1l j=1 i=1
a b n & Db
- 1 z
=L L LoEu-i 0 LA e
i=1 j=1 4=1 i=1 j=1
3] Tne 2-way crossed classification, mixed model, no interaction
Vigp =W YO T Byt ey (10)

for i =1, ¢+, a, =1, **+, b, and £ =1, ¢+, n, with the a's fixed and the

B's random, and cg and oi to be estimated. Herek =a, c =1, m =b, and m, = abn.

The sums of squares are

~1o

N
SSB = = y?a. == Vo, (10a)

1

J



b
1 z :
a. an y?J' a‘bn y.., . (lOb)

In this model the ML estimators of both variance components are biased (see

Table 2).

Due primarily to this bias, the ratio MSE(62)/MSE(62) > 1 (Table 1) under
any one of 3 conditions:
(i) vhen a 26 and b >3
or (i1) when a 27 and b>2 (10c)

or (iii) when & 28 and b 22 .

Because [MSE(oE)/MSE(a"-’)] <1, [MSE(G2) + MSE(32)] < [MSE(52) + MSE(&’Z)]

only when the ratio og/ 02 exceeds a constant which is in the neighborhood of 1.

{4] The 2-way crossed class ation ed model, with interaction
yijz =p+ ai + B.j + (oﬁ)ij + eijk’ (ll)

fori=1, ***,a, j=1, ++¢, b, and £ =1, .., n, with the a's fixed, and the
B's and (oB)'s random, and ag,
m, = b, m, = ab, and m3 = abn. The sums of squares are

SB, and 02 to be estimated. Here k = a, ¢ = 2,

b
=2 )Y - g V. (11a)
1
Just as in (10a),

b
yi.. 'E'lﬁ ZV?J. +§%‘ﬁy?.. > (11v)



and

b
nyj, ) (11c)

as in (10b).

Again, two of the ML estimators are biased as seen in Table 2, leading to
the ratio [m(agﬁ)/MSE(EEB)] > 1 in Table 1 for conditions (10c); but
[MSE(GE)/MSE(Eg)] < 1. Using some generalized MSE3criteria sucg as 1§1MSE(8§) it
follows that ML is more efficient than REML when X% MSE(G?) < Iz MSE(Sf) end this

i=1 i=1
is achieved only when o;/ogB exceeds some constant.

For large values of b the biases in 325 and 3; are small and also, variances

of the ML and REML estimators then approach equality.

For balanced data, inversion of H or THT' is trivial, whereas it is not for
unbalanced data; indeed in the then necessarily iterative procedures that are used
it can be an advantage of REML estimators that the matrices to be inverted have
order k less than those for ML estimators, Zmi and ).“.m.i + k respectively (see
Hemmerle and Hartley [1973] and Corbeil and Searle [1974]).

4, Numerical Studies on Unbalanced Data

Data in variance components settings (e.g., genetics) are frequently unbalenced,
thus prompting questions about the relative efficiency of different methods of
estimation from unbalanced data of different degrees of unbalancedness. Because
with balanced data the 2-way crossed classification, mixed model with no interaction
[Eqs. (10)] is in some sense a marginal case insofar as the relative efficiency of
ML or REML estimators is concerned, this model was selected for e numerical study

with unbalanced data of either O or 1 observation per cell. There is, for such data,
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no closed form solution to equetions (2) - (k) and (5), (6) and so the study is
based on iterative solutions using, respectively, procedures of Hemmerle and

Hartley [1973] and Corbeil and Searle [1974].

In order to make comparisons wider than just between ML and REML, we chose
5 methods of estimation: (i) the fitting constants method (Henderson's method 3),
(ii) an iterative method after Thompson [1969), (iii) Henderson's method 2, (iv)
ML, and (v) REML. The reader 1s referred to Searle [1971] for details of methods
(1) - (iii). Further, we confined ourselves to the case of 6 levels of the fixed
effects factor and 10 levels of the random effects factor, choosing these numbers
of levels in order to satisfy conditions (10c). Our study is based on 20 basic
data sets of 6 X 10 = 60 values. From designs having 10%, 30% or 60% of cells
empty ve selected, in each case, 3 designs at random; and for each empty cell in
such designs the corresponding datum of each of the 20 basic data sets was dropped.
Mean square errors (MSE) and variances of the resulting estimators 3; and 62 were
then calculated for each of the 3 designs and averaged over those 3 designs; i.e.,

if 5§ g is the estimate of Gg in the pt® data set for design q, we calculated
2

]

L CARE LL2 (&, pq - °§)2]/l9

(12)

]
™~
M
S

J
W
-

3
o

- og)a/ 57.

Thus MSE(&E) represents an estimate of the mean square error of °§ over 3 different
samplings (insofar as to which cells may be empty) of 20 data sets. The same was

done for MSE(&i).

The study as so far described was repeated for 4 values of o2, namely %, 1, &,

and 9. The error component, 02, was taken as ¢ = 1 on all occasions. The 20 basic
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g differed, naturally, depending on cg.

However, the same seed for the random number generatiQn was used for each value of

data sets for each of the I values of ¢

og, so that if for °§ = % and for 2 pseudo random numbers r, and r, the randonm part

of a datum ves r, + %re, then for o2

B
certainly introduces correlation between the data sets for different values of o2,

= 1 the corresponding part is rl + Toe This
but if the criteria we are interested in, e.g., MSE(&S), depend in any way on cg
then possibly this manner of generating data may exhibit that dependence more

readily than generating data for one value of 02 without reference to those data

B
genersted for some other value.

Results are shown in Tebles 3 and 4. Table 3 shows values of [MSE(&S)-*MSE(&z)]
in the manner of Hocking and Kutner [1975]. Using this expression'as a measure of
efficiency, scrutiny of Table 3 shows that one procedure, ML estimation, stands out
even with such preliminary date as are used here. It is 8% to 21% more efficient
than the next best procedure except when og = % with 60% of the cells having no
datum. In developing this table we started with values for each of the 3 designs
separately and were able to observe that averaging over the 3 designs in each case
had no effect on the ranking of the ML method among the other methods. However,
it is emphasized that the table entries are not independent of one another. Not
only is there correlation between methods, because they were used on the same data,
but there is also correlation between results for the 10%, 30%, and 60% of cells
empty cases since these represent different subsets of the same basic data. In
further support of ML estimation we observed that with snother set of 20 separate
and independent trials at cg/cz = 9 with 15-25% of the cells empty, the ML pro-
cedure was 13% more efficlent than the next best one. Bias plays an important
role in estimating MSE in these relatively small designs and in these few trials
the unblased estimators (fitting constants and REML estimators) cannot be expected

to produce zero deviation from the assigned parameter value.



- 10 -

Expressions for sampling variances are given in Searle [1971, Ch. 11] for the
fitting constants estimators and, under large sample theory, are given in Hartley
and Rao [1967] and Corbeil end Searle [1974] for the ML estimators and REML esti-
mators respectively. Results of calculating these expressions are shown in Table L,
in the form var(ﬁg) + var(&®) and labeled 'theory', alongside results of calculating

simple sample variances of the estimates, labeled 'sample’.

Keeping in mind that the 'theory' sampling variances are exact for the fitting
constants procedure, several comments about Tables 3 and 4 are in order:

(1) Por the fitting constants method, the estimated MSE in Table 3 appears
to be inflated by the frequent overestimates of cg that we observed in
our samples and also by a larger than expected estimated variance
(Table 4). Note that such samples tend to favor the ML procedures.
Recall that in section 3 with balanced data ML characteristically
underestimated as a result of its larger than degrees-of-freedom
divisor.

(i1) Considering that there are only 10 levels of the random factor and
from 24 to 54 observations in each 6 X 10 design of our data, the
sampling variances of the ML estimates calculated from 20 trials are
in reasonably good agreement with the sampling variances calculated
from large sample theory (Table 4).

(1i1i) It can be seen in Table 4 that the ‘'theory' variances calculated for
the REML estimates are always equal to or less than the corresponding
variances for the fitting constants estimates. However, the theory

variances for both ML and REML may well be too low here as a result

of using large sample theory on what are really quite small samples.
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5. Conclusions

The analytic results presented in section 3 for balanced data favor the ML
procedure by the MSE criterion and this appears to carry over to unbalanced data
designs at least to the extent presented in section 4, and also in Hocking and
Kutner [1975]. It is less clear, however, how the five procedures would compare
in larger design settings. Certainly with a large number of random effects, bias
would be expected to play a significantly lesser role than in our results here,
but the effects of severe imbalance in the date is not predictable. Besides the
consideration of efficient estimation, other practical concerns help determine the
feasibility of a method of estimation. The fitting constants method and especially
Henderson's method 2 are appealing for their simplicity and relative ease of use,
particularly in the model dealt with here. Although more cumbersome; the ML and
REML methods are uniquely defined for an arbitrary number of components, but again
they have stricter distributional requirements than methods derived from the calcu-

lations of least squares fitting of data.
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Table 1: ML and REML estimators in 4 balanced data models
REML estimators MSE(ML)
ML estimators (Identical to AOV estimators
in these 4 models MSE(REML
1. The 1l-way, repdom nodel [Eqs. (8)1*
2 - S P 1
azn-ls
52 = 1|85A _ge 52 = 1[SSA g2
% n[a c] % n[a-l a] <1
2. The 2-way pested, random model [Egs. (9)]
g2 = S @ = &2 1
ab(n-1)
Ao 1 {SSB(A)  ~2 ~2 A2
6 = = -0 6 = 0@ 1
g a _aZb-—l) B 3]
se . L [ssA _ssB(a se . L [ssA_ ssmla <
‘@ “%n|s ab-l] %a bn[a-l’ab-l] t
3. The 2-way crossed, mixed model, no interaction [Eqs. (10)]
52 = SSE 32 = . SSE >1 text
blan-1) abn-a-b+1 see
Ao :...:.l:. SSB_"a’ ~o =.l._ SSB""'Q
° an[T @ % ~am b1 °] <3
L. The 2-way crossed, mixed model, with interaction [Eqs. (11)]
g2 - SE 3 = & 1
abn(n-1)
A2 _ 1[ 88AB o ~2 1| SSAB =2 >
g = = -0 G2 = = - g 1 see text
op = n|{a-1)b ] ® 1| {a-1){b-1) }
g2 . 1 [SSB _ _ssAB 52 _ 1 [ssB___SSAB '] <1
B an|p  (a-l)b B an{b-1 (a-1)(b-1)]

* See also Klotz, Milton, and Zacks [1969].
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Table 2: Bias of ML estimators and variances of ML and REML estimators
in 4 balanced data models

ML estimators
b(8) = bias in 6 = E(8) - ©

1. The l-way, random model [Eqs. (8)]

4
An . Ao 20
0 is unbiased c =
8 as V( ) m
Ano2 + g2 . 2 , 422
b(52) _ oot ) @@ =2 (e-t)lnoy + )”, o
an n? a2 a(n-1)
2. The 2-way pested, random model [Eqs. (9)]
A A <
g% is unbiased v(6?) = 29 __
ab(n-1)
(no + o2)2 .
Gg is unbiased v(ag) -2 B + 2
an® b-1 b(n-1)
-(bno® + no® + ¢ 2(a-1)(bno? + no2 + 02)2  2(no® + 02)2
iy o ORI dert)ong e o2 g+ o)
abn 8%0°n? ab?(b-1)n2

3. The 2-way crossed, mixed model, no jinteraction [Eas. (10)]

p(s2) = —lazl)e? w(8®) = 2(abn-a-b+1)c*
b(an-1) v2(an-1)2
cnlanc1Ye? o (no)e2 - 2 . .2)2
b(32) = n(an l)oB (n-1)o o) - 2(b l)(anoB + 02) , v(5)
B bn(an-1) B a?°n? a®n®
4. The 2-wvay crossed, mixed model, with interaction [Eqs. (11)]
A A 4
62 is unbiased v(a®) = 20
ab(n-1)
no2_  + o2 2(b-1)(no2, + ¢2)2 4
b(32,) = B v(52,) = oB + 20
B bn o8 (a-1)v%n® abn®(n-1)
a2 [ (no2, + ¢2)2
v(52) =-E v(62) =2 b-1) (anc? + no2, + ¢2)2 + 2B
B b B a®b®n® B a8 a-1
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Table 2 (continued)

REML estimators (unbiased)
(Identical to AOV estimators in these 4 models)

1. The l-way, rendom model [Eqs. (8)]
v(d2) = v(c®)

v(Gg) 2 [(ncg + 02)2 . a* }

n® a-1 a(n-1)

2. The 2-way nested, random model [Egs. (9)]
v(33) = v(d3)

v(Eg) = v(ag)

2(bna§ + no2 + 02)2  2(no2 + 02)2

v(3@) = B + —E
(a-1)b3n® ab®(b-1)n?
3. The 2-way crossed, mixed model, no interaction [Eqs. (10)]
4
v(#®) = Bl
ebn-a-b+1

242 -
o s BRI
B e®n?(b-1) a®n?

L. The 2-way crossed, mixed model, with interactiop [Eqs. (11)]
v(52) = v(a?)

2(no2, + o2)2 4
v(c2) = op + 2g

B (a-1)(b-1)n®  abn3(n-1)

v(@) = (g2y) v(&2)




- 16 -

Table 3: Calculated values of [MSE(Gg) + MSE(62)) based on equation (12)

Value of ag Proportion of cells empty
Method of Estimation
(6° = 1) 06 | 3% | cod
Fitting constants Ul 197 .510
Iterative .133 171 L1416
% Henderson 2 <134 .189 .623
ML .110 .153 L6k
REML .131 176 456
Fitting constants 448 .525 . 969
Iterative 448 .501 1.037
1 Henderson 2 452 . 548 1.199
ML .353 L3k .890
REML 438 .546 .981
Fitting constants 4.626 h.572 5.816
Iterative 4,637 4.581 6.208
4 Henderson 2 4,512 4,689 6.04T
ML 3.595 3.683 L.965
REML 4,609 L, 64l 6.173
Fitting constants 22,218 21.426 24,997
Iterative 21.987 21.397 26.384
9 Henderson 2 21.985 21.750 23.903
ML 17.141 16.990 19.852
REML 21.177 21.256 25.198
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Table 4: Values of var(ég) + var(§®) from sampling and from theory
for ;ﬁmethods of estimation for which theoretical exg;essions are agvailable

Value of ¢2

B

Method of Estimation

Proportion of cells empty

(2 = 1) 10% 30% 60%

sample | theory | sample | theory | sample | theory

Fitting constants .1%0 .096 .189 .135 L84 407

% ML 100 | .085| .123| .14| .292| .a2u5
REML 127 .096 161 .135 .39% .364

Fitting constants 1438 .372 .508 L5 . 927 847

1 ML 346 .330 A16 .380 .730 . 606
REML 429 «369 .523 436 .913 .827

Fitting constants 4.533 | 4.045{ 4.487| 4.399| 5.697{ 5.88k

N ML 3.547 | 3.559| 3.653| 3.692| hL.779| L.261
REML 4,538 | 3.961| L4.521| 4.136| 5.924 | 5.107

Fitting constants 21.813 {19.296 | 21.107 | 20.641 | 24.649 | 25.934

9 ML 16.693 | 16.941 | 16.862 | 17.21k4 | 19.561 | 18.343
REML 21.009 |18.837 | 20.833 | 19.194 | 24.459 | 21.104




