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Explicit solutions are given for the maxi111tm likelihood (ML) and restricted 

maximm likelihood (RDn.) equations under normality for four conn:non variance com­

ponents mdels with balanced (equal subclass numbers) data. Solutions of the REML 

equations are identical to anazysis of variance (AOV) estimators. The ratio of 

mean squared errors of REML and ML solutions are also given. 

Unbalanced (unequal subclass numbers) data are used in a series of numerical 

trials to compare ML and REML procedures with 3 other estimation methods using a 

2-way crossed classification mixed model with no interaction and 0 or 1 observation 

per cell. Results are similar to those reported by Hocking and Kutner [1975] for 

the BIB design. Collectively, these studies and those of Klotz, Milton, and Zacks 

[1969] point, with few exceptions, to the greater efficiency of ML estimators under 

a range of experimental settings. 

1. Introduction 

Maxi:rmm likelihood (ML) estimators of variance components are solutions of 

equations that maximize the likelihood over the positive space of the variance com-

ponents parameters. Direct solutions of the maximizing equations, ignoring this 
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positivity requirement, are not necessarilJr the maxim.un likelihood estimators. 

Taking this positivity requirement into account is not always straightforward 

(e.g., Herbach [1959] and Thompson [1961, 1962]), particularly when considering 

such properties as bias, sampling variance and mean square error. In order to 

study these properties of different estimators, this paper uses the phrase "ML 

estimators" to mean "solutions to the ML equations" (and similarly for REML), thus 

ignoring the positivity requirement. We acknowledge that solutions are not true 

ML estimators, but since they are when a set of' estimates are all positive we see 

value in comparing "solutions" with other estimators; and in doing so, calling 

them ML estimators is clearly a convenience. 

Miller (1973) points out that closed form ML estimators of' variance components 

do exist in some cases. We have obtained these and REML estimators (Corbeil and 

Searle (lg-(4] ), their biases and sampling variances and mean square errors for 4 

oft-encountered balanced (equal subclass numbers) data models, and compared them 

using the ratio of' their mean squared errors. This is of' particular interest 

because in all 4 models the REML estimators are identical to the long-standing 

analysis or variance (AOV) estimators. 

For further comparison, 1~ith unbalanced data., where REML and AOV estimators 

are not the same, and where closed form ML and REML estimators cannot be derived, 

numerical studies were made using a. 2-way crossed classification, mixed model. 

The results are presented in section 4. 

2. The Models 

The general mixed m:>del can be represented as 

c+l 

z = ~ + I ~i~i , (1) 
i=l 
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where b +1 = e, a vector of error terms, and U +1 = I, an identity matrix. c is 
-c - -c -

the number of variance components excluding the error variance, y is an N-vector -
of observations, ~ is an N X k matrix of known constants, e is a k-vector of fixed 

effects, £i is an N X ~ design matrix of zeros and ones, an~ with the usual 

assumptions, the '2i 's are IIJl.tually independent random vectors ea.ch having a 

multivariate normal distribution vlith mean ~ and variance a~_! for i = l, 2, • • ·, 

c + l. It is also assumed that ~ has full rank k; N :<: k + c + l; and E!h!i] has 

rank > k. Thus l is distributed as a multivariate normal (!J:' o~) 
c+l 

and o2 +l are used interchangeably, and H = t v1uiui for y. = o~/o2 • 
c - i=l - - 1 

ML estimators o~ are obtained by solving 

~2 l [ -1 ~ ( -1 >] a =- v'H v- ~· X'H v N ~ - ~ ~ - - ~ , 

and 

(2) 

(3) 

(4) 

equations which are given for example as (11), (12), and (9) respectively, in 

Hemmerle and Hartley (1973]. REML estimators a~ are obtained by solving equations 

(17) and (16) of Corbeil and Searle [1974]: 

(5) 

and 

(7) 
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is a matrix of order (N - k) x N and where E+ represents a direct sum of matrices. 

ntis the number of observations on the tth fixed effect, fort= 1, ···, k. 
k 

N = t:lnt' ~t = nt - 1, ~~t is a square matrix of order ~t with every element 

unity and !~t is a vector of ~t unities. 

3· The 4 balanced data models and their results 

ML and REML estimators for the balanced data models were obtained by explicitly 

solving equations (2) - (4) and (5), (6) respectively. Equations (4) and (6) in-

volved especially tedious algebra. Results are shown in Tables 1 and 2. 

A brief description of the 4 m::>dels is as follows. In all cases the error 

terms are represented by e with appropriate subscripts, having zero mean and 

variance covariance matrix o2I; all random elements are uncorrelated with each .... 

other and with error terms, have zero mean and uniform variance o2 with appropriate 

subscript: in short, the well-known conditions of traditional variance components 

models [e.g., Searle (1971, Chapters 9-11)). 

(8) 

for 1 = 1, ···,a, and j = 1, ···, n, with a's random, and o~ and o2 to be esti­

mated. In terms of the general nx:>del (1), k = 1, c = 1, ~ = a, and ~ = an. The 
n 

sums of squares are, using the familiar dot notation for totals, e.g., yi· = .I: yij' 
J=l 

SSA 1 y2: --an • • ' (Sa) 

a n 

SSE= L LYij (8b) 

i=1 j=l 
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As seen in Table 1, ML and REML estimators are very similar in this model, 

especially for large a, although on the MSE criterion the ML estimator of o~ is 

always more efficient. 

(9) 

fori= 1, ···,a, j = 1, •••, b, and t = 1, •••, n, with a's and ~'s random and 

o~, o~, and o2 to be estimated. In tbe general model, k = 1, c = 2, ~ = a, 

~ = ab, and m3 = abn. The sums of squares are 

a 

SSA = in L J'f • · - a€n i; • • ' (9a) 

i=l 

a b a 

SSB(A) = ~ I I yfj· -ln I~ .. (9b) 

i=l j=l i=l 

a b n a b 

SSE = I L I ~j t - * I I ~j. • (9c) 

i=l j=l b=l i=l j=l 

(10) 

fori= 1, ···,a, j = 1, ···, b, and t = 1, •••, n, with the a's fixed and the 

~ 's random, and cr~ and cr: to be estimated. Here k = a, c = 1, Ill:l = b, and ~ = abn. 

The sums of squares are 

b 

SSB = ..!_ \ -2 l -2 
an 1- Y • j • - abn Y • • • ' 

(lOa) 
j=l 
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a b n a b 

SSE = I I I yfj t - ?n L yf .• ~ L Y7 j • + a~n Y: • · (lOb) 

1=1 j=l .t=l i=l j=l 

In this model the ML estimators of both variance components are biased (see 

Table 2). 

Due primarily to this bias, the ratio MSE(a2 )/MSE(o2 ) > 1 (Table 1) under 

any one of 3 conditions: 

or 

(1) when a ~ 6 and b > 3 

(ii) when a :c:. 7 and b > 2 

or (iii) when a :::: 8 and b ~ 2 • 

(lOc) 

Because [MSE(a~)/MSE(a~)J < 1, [MSE(a2 ) + MSE(~)] < [MSE(o2 ) + MSE{o~)J 

only when the ratio a~/a2 exceeds a constant which is in the neighborhood of 1. 

(ll) 

for 1 = 1, ···,a, j = 1, ···, b, and t = 1, ·•·, n, with the a's fixed, and the 

~ 's and (~) 1 s random, and a~, a~, and a2 to be estimated. Here k = a, c = 2, 

~ "" b, ~ = ab, and ~ = abn. The sums of squares are 

b 

sSB=.!. \r -~r an 1- • j • aon • • • ' 

just as in (lOa), 

a b 

SSAB z: ~ I L ~j. 
i=l j=l 

j=l 

a 
1 \ . .2 

-Dn 1.. 3 1 .. 
1=1 

(lla) 

+ 1 . .2 
abn 3 • • • ' 

(llb) 
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and 

a b n a b 

SSE = 2: I I ~j t - * I I y~j • ' 
(llc) 

i=l j=l .£=1 i=l j=l 

as in (lOb). 

Again, two of the ML estimators are biased as seen in Table 21 leading to 

the ratio [MSE(~)/MSE(a~)J > 1 in Table 1 for conditions (lOc); but 

[MSE(o~)/MSE(a~)] < 1. Using some generalized MSE criteria such as t MSE(of) it 
3 3 i=l 

follows that ML is more efficient than REML '-Then t MSE(af) < t MSE(af) and this 
i=l i=l 

is achieved only when aafa~ exceeds some constant. 

For large values of b the biases in a~ and ~ are small and also, variances 

of the ML and REML estimators then approach equality. 

Fbr balanced data, inversion of ~ or ~!' is trivial, whereas it is not for 

unbalanced data; indeed in the then necessarily iterative procedures that are used 

it can be an advantage of REML estimators that the matrices to be inverted have 

order k less than those for ML estimators, tmi and tmi + k respectively (see 

Hemmerle and Hartley [1973] and Corbeil and Searle [1974]). 

4. Numerical Studies on Unbalanced Data 

Data in variance components settings (e.g., genetics) are frequently unbalanced, 

thus prompting questions about the relative efficiency of different methods of 

estimation from unbalanced data of different degrees of unbalancedness. Because 

with balanced data the 2-way crossed classification, mixed model with no interaction 

[Eqs. (10)] is in some sense a marginal case insofar as the relative efficiency of 

ML or REML estimators is concerned, this model was selected for a numerical study 

with unbalanced data of either 0 or 1 observation per cell. There is, for such data, 
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no closed form solution to equations (2) - (4) and (5), (6) and so the study is 

based on iterative solutions using, respectively, procedures of Hemmerle and 

Hartley [1973] and Corbeil and Searle [1974). 

In order to make comparisons wider than just between ML and REML, we chose 

5 methods of estimation: (i) the fitting constants method (Henderson's method 3), 

{ii) an iterative method after Thompson (1969], (iii) Henderson's method 2, {iv) 

ML, and ( v) mML. The reader is referred to Searle [1971] for details of methOds 

( i) - (iii). FUrther, we confined ourselves to the ca.se ot 6 levels of the fixed 

effects factor and 10 levels of the random effects factor, choosing these numbers 

of levels in order to satisfy conditions (lOc). Our study is based on 20 basic 

data sets of 6 X 10 = 6o values. From designs having lc:>%, 3~ or 6o1o of cells 

en:q:lty we selected, in ea.ch case, 3 designs at random; and for each empty cell in 

such designs the corresponding datum of each of the 20 basic data sets was dropped. 

Mean square errors (MSE) and variances of the resulting estimators a~ and c2 were 

then calculated for each of the 3 designs and averaged over those 3 designs; i.e., 

if o2 is the estimate of a2 in the pth data set for design q, we calculated 
~,pq ~ 

{12} 
3 

= L 

Thus MSE( a~) represents an estimate of the mean square error of a~ over 3 different 

samplings (insofar as to which cells may be empty) of 20 data sets. The same was 

done for MSE(c¥!). e 

The study as so far described was repeated for 4 values of a~, namely t, 1, 4, 

and 9. The error component, a2 , was taken as o2 = 1 on all occasions. The 20 basic 
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data sets for each of the 4 values of ae differed, naturally, depending on a~. 

However, the same seed for the random number generation was used for each value of 

a~, so that if for a~ = 1 and for 2 :pseudo random numbers r 1 and r 2 the random part 

of a datum llas r 1 + -b-2, then for a~ = 1 the corresponding part is r 1 + r 2• This 

certainly introduces correlation between the data sets for different values of ae, 
but if the criteria we are interested in, e.g., MSE(&~), depend in any way on a~ 

then possibly this manner of generating data may exhibit that dependence more 

readily than generating data for one value of a~ without reference to those data 

generated for some other value. 

Results are shown in Tables 3 and 4. Table 3 shows values of (MSE(a~) + MSE(a2 )] 

in the manner of Hocking and Kutner (1975]. Using this expression as a measure of 

efficiency, scrutiny of Table 3 shows that one procedure, ML estimation, stands out 

even with such preliminary data. as a:t'e used here. It is 8~ to 21% more efficient 

than the next best procedure except when a~ = t with 60% of the cells having no 

datum. In developing this table we started with values for each of the 3 designs 

separately and were able to observe that averaging over the 3 designs in each case 

had no effect on the ratlking of the ML method among the other methods. However, 

it is emphasized that the table entries are not independent of one another. Not 

only is there correlation between methods, because they were used on the same data, 

but there is also correlation between results for the 10%, 3o%, and 60% of cells 

empty cases since these represent different subsets ot the same basic data. In 

further support of ML estimation we observed that with another set of 20 separate 

and independent trials at o~a2 = 9 with 15-25% of the cells empty, the ML pro­

cedure was 13% more efficient than the next best one. Bias plays an important 

role in estimating MSE in these relatively small designs and in these few trials 

the unbiased estimators (fitting constants and REML estimators) cannot be expected 

to produce zero deviation from the assigned parameter value. 
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Expressions for sampling variances are given in Searle [1971, Ch. ll] for the 

fitting constants estimators and, under large sample theory, are given in Hartley 

and Rao [1967] and Corbeil and Searle [1974J for the ML estimators and REML esti­

mators respectively. Results of calculating these expressions are shown in Table 4, 

in the form var(a~) + var(a2 ) and labeled 'theory', alongside results of calculating 

simple sample variances of the estimates, labeled 'sample'. 

Keeping in mind that the 'theory' sampling variances are exact for the fitting 

constants procedure, several comments about Tables 3 and 4 are in order: 

(i} For the fitting constants method, the estimated MSE in Table 3 appears 

to be inflated by the frequent overestimates of a~ that we observed in 

our samples and also by a larger than expected estimated variance 

(Table 4). Note that such samples tend to favor the ML procedures. 

Recall that in section 3 with balanced data ML characteristically 

underestimated as a result of its larger than degrees-of-freedom 

divisor. 

(11) Considering that there are only 10 levels of the random factor and 

from 24 to 54 observations in each 6 X 10 design of our data, the 

sampling variances of the ML estimates calculated from 20 trials are 

in reasonably good agreement with the sa.n:q>ling variances calculated 

from large sample theory (Table 4). 

(iii) It can be seen in Table 4 that the 'theory' variances calculated for 

the REML estimates are always equal to or less than the corresponding 

variances for the fitting constants estimates. However, the theory 

variances for both ML and REML may well be too low here as a result 

ot using large sample theory on what are really quite small samples. 
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5. Conclusions 

The ana~~ic results presented in section 3 for balanced data favor the ML 

procedure by the MSE criterion and this appears to carry over to unbalanced data 

designs at least to the extent presented in section 4, and also in Hocking and 

Kutner [1975]. It is less clear, however, how the five procedures would compare 

in larger design settings. Certain:cy with a large number of random effects, bias 

would be expected to play a significantly lesser role than in our results here, 

but the effects of severe imbalance in the data is not predictable. Besides the 

consideration of efficient estimation, other practical concerns help determine the 

feasibility of a method of estimation. The fitting constants method and especially 

Henderson's method 2 are appealing for their simplicity and relative ease of use, 

particularly in the model dealt with here. Although more cumbersome, the ML and 

REML methods are uniquely defined for an arbitrary number of components, but again 

they have stricter distributional requirements than methods derived from the calcu-

lations of least squares fitting of data. 
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Table 1: ML and REML estimators in 4 balanced data JOOdels 

(12 

"'2 
O'Ct 

ML estimators 

= 

= 

SSE 
a(n-1) 

~ [s~ _ 02] 

SSE 
ab(n-1) 

"'2 = ! [SSB(A) ... 02] 
af3 n a(b-1) 

(12 = 1 [~ _ sr(A~J 
a bri a a b-1 

"'2 SSE 
0 = b(an-1) 

SSE 
abn(n-1) 

1 [ SSAB ~] n (a-1)b -

"'2 1 [SSB SSAB ] 
af3 = iii b - (a-l)b 

REML estimators 
(Identical to AOV estimators 

in these 4 JOOdels 

(;2 = 02 

-2 l; [~- (12] a a = n a-1 

a = -----... 2 1 (SSA SC(A~] 
a bn a.-1 a b-1 

SSE 
abn-a-b+1 

-2 l l"' SSAB -2] 0'~ = n (a-1)(b-1) - 0 

(12 =1_[~- SSAB l 
~ an b-1 (a-l){b-1) _ 

* See also Klotz, Milton, and Zacks (1969]. 

MSE(ML) 
MSE(REML) 

1 

<l 

1 

1 

<1 

> 1 see text 

<1 

1 

> 1 see text 

<1 
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Table 2: Bias of ML estimators and variances of ML and REML estimators 

in 4 ba.lanced data models 

d'2 is unbiased 

-(na2 + a2 ) 
b(a~) = __ ex __ _ 

an 

a2 is unbiased 

o~ is unbiased 

b(22) = -(a-1)o2 
b(an-1) 

ML estimators 
"' "' "' b(e) =bias in e = E(e) - e 

v(a2 ) = 
ab(n-1) 

v(~) = _g_ [(ncr~ + a2
)

2 
+ 04 ] 

an2 b-1 b(n-1) 

2(abn-a-b+l)c/* = _.... ___ _.__ 

b 2 (an-1)2 

= -n(an-l)o~- (n-l)o2 v(02) = 2(b-1)(ano~ + o2 ) 2 + v(o2 ) 

bn(an-1) e a2b2n2 a2 n2 

"'!:> o- is unbiased 2o4 
v(cr2 ) = 

ab(n-1) 

2(b-l)(no2 + o2 ) 2 
v(o2 ) = ~ + 2a4 

as (a-1)b2n2 abn2 {n-l) 
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Table 2 (continued) 

REML estimators (unbiased) 

(Identical to AOV estimators in these 4 models) 

l. !1!~-k~a.L..~ (Eqs. (8)] 

v(o2 ) = v(Ga) 

2. :!l!«t~~~ [Eqs. (9)] 

v(?) = v(a2 ) 

abn-a-b+l 

v(?) = v(l12) 
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Table 3: Calculated values of (MSE(o~)_: MSE(a2 )] based on equation (12) 

Value of a~ Proportion of cells empty 
Method of Estimation 

(a2 = 1) 1~ 30~ 6o'f; 

Fitting constants .144 .197 -510 
Iterative .133 .171 .416 

1 Henderson 2 .134 .189 .623 4 
ML .110 .153 .464 
REML .131 .176 .458 

Fitting constants .448 .525 .969 
Iterative .448 .501 1.037 

1 Henderson 2 .452 .548 1.199 
ML ·353 .434 .890 
REML .438 .546 .981 

Fitting constants 4.626 4.572 5.816 
Iterative 4.637 4.581 6.208 

4 Henderson 2 4.512 4.689 6.047 
ML 3·595 3-683 4.965 
REML 4.609 4.644 6.173 

Fitting constants 22.218 21.426 24.997 
Iterative 21.987 21.397 26.384 

9 Henderson 2 21.985 21.750 23-903 
ML 17.141 16.990 19.852 
REML 21.177 21.256 25.198 
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Table 4: Values of var(o~) + var(o2 ) from sampling and from theory 

:for 3 methods o:f estima.tion :for which theoretical expressions are available 

Value of a~ Proportion of cells empty 
Method o:f Estimation 10% 3odp 6CY{o 

(a2 = 1) 
sample theory sample theory sample theory 

Fitting constants .140 .096 .1.89 .135 .484 .407 
1 

ML .100 .o85 .123 .114 .292 .245 4 
REML ·127 .og6 .161 .135 ·394 ·364 

Fitting constants .438 ·372 .50S .445 ·927 .847 
1 ML .346 ·330 .416 .380 ·730 .606 

REML .429 -369 .523 .436 .913 .827 

Fitting constants 4.533 4.045 4.487 4.399 5.697 5.884 
4 ML 3· 54~( 3·559 3-653 3.692 4.TI9 4.261 

REML 4.538 3·961 4.521 4.136 5.924 5.l(J( 

Fitting constants 21.813 19.296 21.107 20.641 24.649 25.934 
9 ML 16.893 16.941 16.862 rr.214 19.561 18.343 

~ 21.009 1.8.837 20.833 19.194 24.459 21.104 


