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ABSTRACT 

The need for a well-structured theory of intact biochemical systems becomes increas- 

ingly evident as one attempts to integrate the vast knowledge of individual molecular 

constituents, which has been expanding for several decades. In recent years, several 

apparently different approaches to the development of such a theory have been proposed. 

Unfortunately, the resulting theories have not been distinguished from each other, and this 

has led to considerable confusion with numerous duplications and rediscoveries. Detailed 

comparisons and critical tests of alternative theories are badly needed to reverse these 

unfortunate developments. In this paper we (1) characterize a specific system involving 

enzyme-enzyme interactions for reference in comparing alternative theories, and (2) 

analyze the reference system by applying the explicit S-system variant within biochemical 

systems theory (BST), which represents a fundamental framework based upon the power-law 

formalism and includes several variants. The results provide the first complete and rigorous 

numerical analysis within the power-law formalism of a specific biochemical system and 

further evidence for the accuracy of the explicit S-system variant within BST. This theory is 

shown to represent enzyme-enzyme interactions in a systematically structured fashion that 

facilitates analysis of complex biochemical systems in which these interactions play a 

prominent role. This representation also captures the essential character of the underlying 

nonlinear processes over a wide range of variation (on average 20-fold) in the independent 

variables of the system. In the companion paper in this issue the same reference system is 

analyzed by other variants within BST as well as by two additional theories within the 

same power-law formalism-flux-oriented and metabolic control theories. The results show 

how all these theories are related to one another. 
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1. INTRODUCTION 

An appropriate language or formalism with which to analyze complex 

biochemical systems has been sought for more than two decades. The 

necessity for such a formalism results from the large number of interacting 

components in biochemical systems and the complex nonlinear character of 

these interactions. (For a brief review see [42].) Two well-known formalisms 

that frequently have been used for analysis of biochemical systems are the 

linear formalism (e.g., [l], [14], [29]) and the Michaeli-Menten formalism’ 

(e.g., [II], wi, [721). 

The linear formalism is among the best understood and best developed 

mathematical structures. A linearized description of a biochemical system 

can be efficiently treated mathematically in many different ways, even when 

there are hundreds of system components. It is a general symbolic formalism 

guaranteed to be valid over at least some restricted range of the concentra- 

tion variables. However, biochemical systems are often highly nonlinear, and 

therefore the linear formalism, which cannot represent known nonlinear 

properties of biochemical systems, is inappropriate. 

The Michaeli-Menten formalism, on the other hand, approximates many 

individual reactions reasonably well in vitro and presumably in vivo. De- 

scriptions in this formalism are readily utilized as long as only one enzyme 

or a system of very few enzymes is being studied. However, under physiolog- 

ical conditions, each enzyme is not isolated but interacts with other enzymes 

and structures embedded in an intricate network of reactions. The 

Michaelis-Menten formalism does not produce a systematically structured 

formalism appropriate for analysis of such complex systems. The central 

assumptions of this formalism restrict its application to systems with inde- 

pendent rates that are linear functions of enzyme levels and activities. The 

resulting formalism leads to ad hoc mathematical descriptions that are not 

easy to study analytically. 

The first formalism to differ significantly from these two is the power-law 

formalism developed in the late 1960s [32-371. This formalism represents the 

interactions of a system in a structured fashion that greatly facilitates 

analysis, and yet it retains the essential character of the underlying nonlinear 

‘By the Michaelis-Menten formalism we do not mean Just the original 

Michaelis-Menten assumptions, derivation, and specific rate law [25] but also the broader 

spectrum of subsequent developments in enzyme kinetics that nonetheless share key 

assumptions and empirical methodology (e.g., [26], [23], [4]). For example, the assumption 

that there are no interactions between the various enzyme forms in a mechanism or 

between forms of other enzymes yields steady-state equations that are linear in the 

concentration of enzyme forms [4]. Solution of these equations produces rate laws that are 

linearly related to the concentration of total enzyme [32, 711. 
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processes [37, 40, 411. (For further discussion of the strengths and weak- 

nesses of this formalism, and comparisons with the linear formalism and the 

Michaelis-Menten formalism, see [37], [40], [49], and [62].) This approach 

was combined by Savageau with the well-established network theory origi- 

nally developed by Bode and others [2, 8, 24, 581, and the result provided the 

basis for a new theory of intact biochemical systems [35-37,40, 501, which is 

now called biochemical systems theory (BST). A particular variant within 

BST has been emphasized because of its greater structural clarity, analytical 

power, and accuracy [33, 37, 40, 42, 49, 50, 621. This is called the S-system 

variant because it involves a mathematical representation, the S-system, 

developed specifically for synergistic and saturable systems. It has been 

successfully applied to a large number of biochemical systems, and specific 

predictions of the theory have been confirmed by independent laboratories 

(for a brief review, see [43]). 

A second new formalism, believed by some to provide a theory that is 

generally applicable and independent of others, was presented in the mid- 

1970s [15, 16, 211. The basic principles of this approach, which has been 

called metabolic control theory (MCI’), are provided by special “summation” 

and “connectivity” relationships. However, the advocates of this second 

formalism have not provided any evidence to document that it differs from 

the power-law formalism. Yet a third new formalism, also considered by 

some to provide a generally applicable and independent theory, was pro- 

posed in the late 1970s [5-71. This formalism has been referred to as a 

flux-oriented approach, so the theory provided by this approach will be 

referred to here as flux-oriented theory (FOT). The advocates of this third 

formalism also have not documented that it differs fundamentally from the 

others. 

The introduction of these alternatives without distinguishing them from 

existing theories has led to considerable confusion in the field, to numerous 

duplications and rediscoveries, and to needless proliferation of notation. 

Progress toward understanding intact biochemical systems is in danger of 

becoming fragmented into a number of seemingly unrelated approaches. In 

an effort to reverse this unfortunate development and to begin establishing 

the relatedness of these approaches, we previously have given a general 

comparison of MCT with BST [49, 50, 62].* The results demonstrated (1) 

*We have chosen to make comparisons of BST with MCT rather than with the 

approach of Crabtree and Newsholme, at least initially, because MCT uses an implicit 

approach that makes its relatedness to other approaches more difficult to discern. Once the 

confusion resulting from implicit rather than explicit methodology is dispelled, the related- 

ness of all three approaches will become more readily apparent. We shall consider the 

approach of Crabtree and Newsholme in part II of this series of papers [54]. 



164 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAALBERT SORRIBAS AND MICHAEL A. SAVAGEAU 

that both BST and MCT are based on the underlying power-law formalism; 

(2) that all results that can be obtained in principle with MCT can be 

obtained in principle with BST, while the converse is not true; and (3) that 

the variant of the power-law formalism implicit in MCT is less accurate than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

the S-system variant represented within BST. As a consequence, MCT is a 

special case within the larger conceptual and analytical framework of BST. 

The implications of these general comparisons based on the logical 

content of alternative theories become clearer when one examines the results 

of specific experimental applications. Previous applications of MCT (sum- 

marized in [22]) have not produced any result that distinguishes this theory 

from BST. Moreover, all of these applications are incomplete. Only changes 

in certain component parameters have been attempted, and the specificity of 

these is difficult to document quantitatively. Conversely, only certain sys- 

temic responses have been examined. In no case has a complete and rigorous 

analysis of an intact system been presented. This is understandable given the 

technical limitations in any experimental approach. Hence, this is not meant 

as a criticism of the experimental work, but as a note of caution regarding 

the acceptance of claims made for a theory that has not been critically 

tested. 

To move forward with a program of clarification, and to make evident the 

consequences of fundamental similarities and differences [49, 50, 621, the 

focus must shift to the results of concrete applications and critical experi- 

ments that discriminate between alternative theories. If FOT or MCT has an 

advantage not possessed by BST, then one should be able to demonstrate 

this by the design and execution of a critical experiment. Conversely, if FOT 

and MCT are simply a subset of BST, then one should be able to propose a 

critical experiment for which BST correctly predicts the outcome while the 

others do not. 

In this series of two papers we present such a critical comparison 

involving a mechanism with enzyme-enzyme interactions. The system se- 

lected is ideal. Its characteristics are well defined theoretically, and it can be 

used to generate all the empirical data needed for testing a complete and 

rigorous analysis of the system. The principal objectives of this first paper 

are (1) to present and characterize the system that will become the reference 

for comparisons among the various theories of intact biochemical systems, 

and (2) to perform a complete analysis of the reference system using the 

S-system variant within BST. 

The results are important in their own right. They provide the first 

analysis of enzyme-enzyme interactions within the class of theories based on 

the power-law formalism, the first example of a complete and rigorous 

analysis of a specific biochemical system, and additional evidence for accu- 

racy of the S-system representation within BST. 
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In the second paper [54] we analyze the same reference system by two 

additional variants within BST and by two other theories based on the 

power-law formalism-FOT and MCT. The results allow one to discrimi- 

nate among the variants and to show how all the theories are related. 

2. ENZYME-ENZYME INTERACTIONS 

There is now abundant evidence for the existence of interactions between 

enzymes and between enzymes and structural elements within the cell. These 

interactions lead to the formation of multienzyme complexes as in the 

well-known cases of the pyruvate dehydrogenase and fatty acid synthetase 

complexes [30]. Two types of rationales have been advanced for such spatial 

organization in vivo: catalytic efficiency and regulatory effectiveness. 

When enzymes carry out a sequence of reactions, complexes among 

consecutive enzymes can promote the catalytic efficiency of the sequence. 

Bulk diffusion is minimized, and local concentrations are enhanced by 

channeling intermediate metabolites from one enzyme surface to the next 

(for reviews, see [9], [lo], [13], [56], [57], [67], [68]). Channeling of metabolites 

can also be promoted among enzymes when they are bound near each other 

on structural elements, as observed in vitro with catalysts bound to carriers 

(e.g., see [66]) and as has been proposed for the tight coupling in vivo 

between ATP produced by glycolysis and ion-specific gates in cardiac muscle 

cells [65]. The rationale of catalytic efficiency provides an appropriate 

explanation for complexes that have been observed among enzymes that 

carry out consecutive reactions. 

When enzymes catalyze key reactions (typically) at the beginnings and 

ends of unbranched pathways, complexes among such nonconsecutive en- 

zymes can enhance the regulation of the entire pathway or system. Dysfunc- 

tional responses in branched pathways are avoided when complexes among 

such regulatory enzymes provide a balanced response among the several 

enzymes affected by a common regulatory molecule [37, 401. Complexes 

among nonconsecutive reactions also can transmit important regulatory 

information via “short circuits” that effectively bypass the cause-effect 

sequence dictated by the intervening reactions [45, 531. The rationale of 

regulatory effectiveness provides an appropriate explanation for complexes 

that have been observed among key enzymes that carry out nonconsecutive 

reactions. 

The demonstration of functional advantages by rigorous analysis has 

gone hand in hand with experimental documentation of the widespread 

occurrence of enzyme-enzyme organization in cells. Far from being exrep- 

tional, one should expect a high degree of such organization to characterize 

the cytoplasm of all cells, and any formalism proposed for representing 



166 ALBERT SORRIBAS AND MICHAEL A. SAVAGEAU 

x,1 x 9 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x0 

I 
x, 1 

I 
Xl 1 

I 
x, m 

x5 

FIG. 1. Reference system that involves enzyme-enzyme interactions and channeling of 

metabolic flux. X, and X, are independent metabolite concentrations; X, and Xz are 

dependent metabolite concentrations: X6. X9, and X,, are concentrations of “free” 

enzyme: X, is the concentration of the multienzyme complex: X, = X, + X9 is the total 

concentration of the first enzyme: and X, = X, + X,, is the total concentration of the 

second enzyme. The numbering of concentration variables in this figure has been chosen to 

make the numbering in the final equations sequential: 1-3 for the dependent variables. and 

4-8 for the independent variables. See text for discussion and Tables 1 and 2 for numerical 

values of parameters and nominal values of the variables in steady state. 

realistic biochemical systems must be capable of dealing with this class of 

phenomena. 

The Michaeli-Menten formalism (see footnote 1) that has dominated 

biochemical kinetics since the turn of the century did not anticipate this type 

of enzyme-enzyme organization. One of its fundamental assumptions has 

been that complexes do not occur between different forms of an enzyme or 

between different enzymes [4, 51, 52, 64, 701. Although specific cases of 

enzyme-enzyme interaction have been treated in recent years by various 

modifications of the Michaeli-Menten formalism, no systematic formalism 

for dealing with this class of mechanisms has resulted from this approach. 

Mechanisms involving such complexes therefore provide an appropriate 

context for critically assessing any new formalism for the realistic character- 

ization of complex biochemical systems. 

As a paradigm for such mechanisms we shall consider the system in 

Figure 1. The enzymes X,, X,, and X, catalyze consecutive reactions that 

convert the initial substrate X, to the final product X,. The enzymes X, and 

X, also can associate to form a multienzyme complex X,, which is capable 

of catalyzing the conversion of the substrate X, to the intermediate X, 

without release of the bound intermediate X, [57]. The equilibrium between 

the free enzymes X, and X, and the complex X, is not influenced by the 
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binding of reactants. Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Keg = k,/k_, = X,/X,X, 
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at equilibrium, where X, is the concentration of enzyme Xi. 

The total concentration of the first enzyme will be distributed between its 

free form, X,, and its complex form, X,. Similarly, the total concentration of 

the second enzyme will be distributed between its free form, X,, and its 

complex form, X,. Since the total amount of each enzyme is conserved, the 

following relationships must hold: 

x7 = x3 + x, (1) 
x*=x,+x,. (2) 

Thus, the system in Figure 1 consists of 10 concentration variables; five of 

these (X4, X5, X,, X,, Xs) can be considered independent variables subject to 

direct experimental manipulation, and five (Xi, X,, X,, X,, X0) are depen- 

dent variables that can be manipulated only indirectly through change in the 

independent variables or parameters of the system.3 In the power-law 

formalism there is one differential equation for each dependent variable. 

However, because of the constraints on total enzyme concentration [Eqs. (1) 

and (2)], only one of the three differential equations involving X,, X,, and 

X0 is independent. Hence, the system’s behavior is determined by the 

following three equations, which represent the conservation of mass: 

dx, -= 
dt 041 - 012 

dx, 
7 = %2 + v42 - O25 

dx,_ 
dt -  003 - 40 

where vlj is the net forward rate of a process utilizing Xi for the production 

of X,. The behavior of the other two dependent variables X, and X0 can be 

obtained in turn from the constraints in Eqs. (1) and (2). The rate laws for 

each of the processes considered in Eqs. (3)-(5) can be derived by assuming 

a specific mechanism for each reaction. As a first approximation we shall 

3The distinction between direct manipulation of an independent variable and indirect 

manipulation of dependent variables is critical. Failure to observe these fundamental 

distinctions can lead to contradictions, as pointed out elsewhere [44]. 
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consider each process to be described by a Michaeli-Menten equation for a 

reversible mechanism involving monomolecular reactants. The equations 

representing the system then become 

(6) 

G X,[(k,/K,)X,-(k-,/K-,)X,] -= 
dt 1+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,/K, + X,/K-, 

_ x,[(k,/K,)X,_(k_,/K~,)X,l 

1+ X,/K, + X,/K-, 

dx, x,[(k,/K,)X,-(k-,/K-,)X,] -= 
dt 1-r X,/K2 + X,/K_, 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,[(k,/ K,)X,_(k_,/ K~,)X,l 
1+ X,/K, + X,/K_, 

_ x,[(wK5w2 -(k-5/Kp5) x,1 
lt X,/K, + X,/K_, (7) 

dX 
-2 = k,X,X, -  kp3X3 

dt (8) 

where 

x, = x, - x, (9) 
x,=x,-x,. (10) 

The nominal values for the independent variables and parameters are given 

in Table I. These were selected to give a reasonable distribution of flux 

between the upper and lower branches and thereby avoid reduction of the 

system to a simple unbranched pathway. The corresponding nominal values 

for the dependent concentration variables and fluxes in steady state are 

given in Table 2. As can be seen, the net flow of material in the reference 

system under these conditions is always from the left to the right. Cases for 

which the direction of net flow changes are treated in detail elsewhere (see 

the paper immediately following this two-part series [55]). 

This reference system will henceforth constitute our empirical reality. One 

could use the mathematical description for an individual process to mimic 

results produced by that process in a real system during a kinetic experiment 

in vitro. From such simulated kinetic data one could estimate the parameter 

values by using conventional methods (e.g., see [4]). Similarly, this reference 

system could be used to mimic results produced by a real system during 
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TABLE 1 

Nominal Values for Independent Variables and Parameters 

of the Reference System in Figure 1” 

K, = 20.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K_, =13.3 

K, = 5.00 

K_ 2 = 30.0 

K4 =l.oO 

Km, = 6.61 

K, = 10.0 

K_, =17.8 

k, = 2.11 

k_,=0.922 

k, = 8.66 

km, =17.3 

k, = 2.14 

k_, = 3.04 

k, = 5.50 

k_, =1.96 

x, = 10.0 

x5 = 2.00 

x, = 10.0 

x, = 20.0 

x, = 15.0 

k, = 0.300 

k -3 =l.OO 

“The units are micromolar (PM) for the Michaelis-Menten 

constants K, and the concentrations X,, sK1 pM_’ for the 

bimolecular elementary rate constant k,, and s-’ for the 

monomolecular elementary rate constants k,. 

TABLE 2 

Nominal Values for the Dependent Variables and Fluxes 

in Steady State for the Reference System in Figure 1” 

x, = 5.00 U‘$l = 5.00 

x, = 10.0 0,x = 5.00 

x, =ll.O ” 4* = 20.0 

~1~~ = 25.0 

“The units are micromolar (PM) for the concentrations X, 

and pM SK’ for the fluxes u,,. 

experiments in vivo. For example, one could perform an experiment in 

which radioactive tracers are added to the system in steady state [69]. By 

measuring the specific radioactivity in each pool as a function of time and 

analyzing the data according to the well-established methods of compart- 

mental analysis [20], one could estimate the steady-state values for the 

concentration variables and the fluxes in the system. One could change an 

independent variable, establish another steady state, and repeat the tracer 

experiment to determine new values for the concentrations and fluxes. In 

this way one could generate all of the systemic steady-state responses to 

changes in each of the independent concentration variables. The results of 

such in vivo experiments would appear as shown in Figure 2. In fact, these 

are simulated in vivo data produced by solving Eqs. (6)-(10). 

This system will be our reference to which other approximate representa- 

tions in the alternative theories will be compared. It has a distinct advantage 

over an actual biochemical system as reference in that we know precisely 
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what the reality is. When discrepancies between different representations 

arise, these can be clearly understood, and there will be no possibility of 

attributing discrepancies to some putative complication that often can be 

postulated for a real biochemical system. 

Finally, it should be noted that the reference system could be altered and 

made more realistic in a variety of ways (e.g., the association/dissociation of 

enzymes could be made to depend upon the concentration of various 

ligands, the rate laws could be made more complex functions of the reactant 

and/or enzyme concentrations, etc.), but the case we are considering is 

sufficient to illustrate the principal characteristics of this class of systems. It 

has the advantage of simplicity and yet it provides for critical experiments 

that clearly distinguish among BST, FOT, and MCT. 

3. ANALYSIS USING BST: THE S-SYSTEM REPRESENTATION 

WITHIN THE POWER-LAW FORMALISM 

The first step in analyzing a biochemical system such as that in Figure 1 

according to BST is to represent the system in the S-system variant of the 

power-law formalism. There are straightforward rules for constructing this 

representation by inspection of the system [37, 40 (Chap 9) 611. 

3.1. MATHEMATICAL REPRESENTATION 

We start from the conservation of mass [Eqs. (3)-(5)]. Next the rate laws 

for the individual processes affecting each dependent variable X, are grouped 

into two aggregate rate laws-one for net synthesis y and one for net 

degradation V_, . 

dx, 
_C” 

dt 41 - “12 = v, - ‘-1 

dx, -= 
dt (012 + Qt2) - 025 = vz - v-2 

dx,_ 
dt - uo3 - u30 = v, - v-3. 

At this point one writes the power-law representation for each of the 

aggregate rate laws; there will be one power-law function for each variable 

that directly influences the aggregate rate law in question. In the case of 
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Figure 1 we find 

ALBERT SORRIBAS AND MICHAEL A. SAVAGEAU 

where 

(17) 

The parameters gi, and h,j are kinetic orders, and the parameters (Y, and j3, 

are rate constants, familiar from chemical and biochemical kinetics. Note 

that because q2 appears both as V_ 1 and as the fraction 012/u25 of I$,, two 

of the kinetic orders in Eqs. (ll)-(13) are dependent upon the others. By the 

definition of kinetic order, these dependencies are seen to be [33, 491: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

g20 = h,o(u,,/u,,)o and g2, = h,,( u12/~25)0. 

The representation in Eqs. (ll)-(13) is constructed about an operating point 

(signified by the additional subscript 0) and is an exact representation of the 

system at this point [33, 491. Moreover, it provides a good approximation to 

the behavior of the system in a local neighborhood of this operating point 

[33, 621. 

Because of the enzyme-enzyme interactions within the system, the en- 

zyme concentrations X,, X,, and X0 are not independent of each other. 

Thus, the power-law functions for these variables cannot be simply absorbed 

into the rate constant parameters ai and 18, as they can in simple cases (see 

[49], [SO]). In the reference system, the total concentrations of each enzyme 

(X, and X8) are the independent variables, and these determine the concen- 

trations of free (X, and X0) and bound (X,) enzymes through the associa- 
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tion/dissociation of X, and X,. Thus, we can represent the constraints [Eqs. 

(9) and (lo)] in the power-law formalism and then use the resulting equa- 

tions to eliminate X, and X0 from Eqs. (ll)-(13). This is standard proce- 

dure in BST [33, 40 (Chap 15), 41, 491 to deal with aggregate variables or 

constraint relationships. In this case, the constraints in Eqs. (9) and (10) can 

be written 

x9=y9x$-xF (18) 

and 

x, =yoxjolx~, (19) 

where the parameters y and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf are analogous to the parameters (Y and g and 

are calculated in the same fashion, as indicated in Eqs. (14) and (16). 

Substituting Eqs. (18) and (19) into Eqs. (ll)-(13) yields the final 

S-system representation 

(22) 

where 

a; = alyp, a$ = a2yp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa; = a3ypyp, 

P; = PIYP 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg19f93 9 a7 = a9f97 3 43 = hOf”3 t 

4, = & If08 3 & 3 = ET23 + g2ofo3 3 g2x = & OS,, ? 

g33 = g39f93 + g3ofo3 9 iz37 = g39f97 9 g3x = g3ofo1(. 

With a little practice, these equations can be written directly from the 

mechanism. One notes which variables influence which aggregate processes 

and then follows the established convention for naming and numbering the 

parameters. 

The parameter values can be determined either from a knowledge of the 

rate laws and the operating values when these are known [33, 36, 491, as is 

the case here, or by measurements of steady-state concentrations and fluxes 

in the intact system [36, 37, 40, 49; Sorribas and Savageau, in preparation], 

as can be simulated here. The resulting numerical characterization of the 
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reference system in BST is the following: 

6 _ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~~~~~~-2~;0.533~;1.21~~.07~~.21 _~~3~5~,2.57~;2.14~;2.71~~.71 

dt 

dX 
2 ~~~~~~~.514~;0.685~,0.258~,0.320~,0.742 _~~~~~~,0.568~,-0.0947~~.00 

dt 

dx, - = 7.52~10-3~;3.92~~.21~~.71 - x:.“. 
dt 

Specification of the independent variables X4 through X8, together with the 

initial values of the dependent variables Xi through X3, allows one to solve 

these equations for the subsequent behavior of the dependent variables. 

3.2. BEHAVIOR OF THE CONCENTRATIONS IN STEADY STATE 

The behavior of a complex biochemical system is characterized by the 

responses of the dependent variables to changes in the independent variables 

and parameter values of the system [37]. The S-system representation used in 

BST allows a complete characterization of the local behavior about the 

operating point for a biochemical system. With this characterization, one can 

predict the behavior of the dependent variables for a local change in any of 

the independent variables or any of the parameters of the model. 

In particular, the steady-state behavior can be obtained directly from the 

steady-state solution. The explicit steady-state solution in symbolic form is 

readily obtained in BST [33, 37, 401. First, set the time derivatives in Eqs. 

(20)-(22) to zero. Then rearrange the resulting algebraic equations and take 

logarithms to obtain the following linear equations in the dependent vari- 

ables Y,, Y,, and Y,. 

where 

ally1 - hl2Y2 + %3Y3 = Bl 

g2,yl + a2,y2 + gG3y3 = B2 

a33y3 = B3 

b, = lad Pi /ai ) 4 = b, - guy4 - gl,y, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby, 

ail = gi, - hi, B2 = b2 - g24Y4 + h25y5 + h26y6 - g2Sy8 

y, = log x, B3 = 4 - g37y7 - g3,ys. 

If the n x n system determinant ]A] is nonzero, i.e., if 

iAl = u33tallu22 + g21h12) + O, (23) 

then one can solve explicitly for y,, y,, and y,. That is, Eq. (23) is a general 
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condition for the very existence of a steady state, and it provides an 

important constraint on the permissible values for the parameters of the 

model [33, 491. 

The solution can be written in standard matrix notation [33, 361, which 

for each of the variables is equivalent to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Yt= Z? Mij$+ fY L,kYk, i=1,2,3, (24) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J=l k=4 

where 

Ml, = %~33/I4 Ml2 = ~,2~33/l4 43 = -(42&3 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~,~,)/ l4 

M21= - g ,,a ,,/ l4 M22 = ~,,~,,/ I4 Mn = (g za ,, - &d / l4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M31 = M32 = 0, M33 = (a,,a22 + g2,~,2)/l~L 

L,4 = -(a,,a,,g,, + h2a33g24)/l-% ‘55 = ~1*~33b,/l‘4l~ 

L,, = h,2”33h2,/lAl, 

LIT = [ - a22a33g1, +(g;3b+ a,3a22)g3,l/lAl 

LM = [ u22”33h,8 - h2a33g2, +(&3hz + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,3a2*)b73*l/lAl 

L24 = ( g21”33&4 - u,,“33g24)/lAl, L25 = %~33~2,/l~L 

L26 = ~,,~33~26/l“% 

The explicit steady-state solution, expressed by Eq. (24) completely 

characterizes the steady-state behavior of the system in the neighborhood of 

the steady state, and it allows one to study the response of the system to 

change in each of its constitutive elements. One can determine three distinct 

types of responses: (1) the changes in the dependent variables (X,, X,, and 

X,) evoked by changes in the independent variables, (2) the corresponding 

changes evoked by changes in the rate constants, and (3) the changes evoked 

by changes in the kinetic orders of the model. 

Logarithmic Gains. The change in any dependent variable (say X,) that 

results from a 1% change in any independent variable (say X,) is given by 
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the appropriate logarithmic gain [36, 40, 5014 

177 

L(x,,x,)=g=L,,= hna33h2, 
IAl 

(25) 

This is calculated from Eq. (24) by taking the appropriate derivative, and the 

result, which can be seen by inspection, is the numerical coefficient preced- 

ing y, in Eq. (24). The logarithmic gain can be interpreted geometrically as 

the slope of y, versus y, at the nominal steady-state operating point of the 

system [36]. (For example, see Figure 3.) 

Rate-Constant Sensitivities. The change in such a variable that results 

from a 1% change in any rate-constant parameter (say &) is given by the 

appropriate parameter sensitivity [35, 40, 501 

ax, b3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S(X,TP,) =as,-=w3=- 

&3h3 + u13”22 

IAl . 
(26) 

This also is calculated from Eq. (24) by taking the appropriate derivative, 

and the result, which can be seen by inspection, is the numerical coefficient 

preceding b3 in Eq. (24). According to the meaning of the parameter b,, it 

follows immediately that 

Kinetic-Order Sensitivities. The change in a dependent variable that 

results from a 1% change in any kinetic-order parameter (say gi3) is given by 

the analogous parameter sensitivity 

ax, id3 
s(x,,g;,) =ag;, 7 ( i 1 

4For simplicity, we shall drop the zero subscript, since it is understood that the 

variables, functions, and derivatives are evaluated at the operating point. 



178 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAALBERT SORRIBAS AND MICHAEL A. SAVAGEAU 

or, as indicated elsewhere [36, 40, 501, one can express the sensitivities with 

respect to kinetic orders in terms of the logarithms of the dependent 

variables 

and then the sensitivity has a convenient interpretation as the weighted 

average of the sensitivities of the M and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL coefficients of the system. These 

sensitivities are readily calculated from the solution in Eq. (24). According to 

the meaning of the parameters u,~( = g,,, - h,,), it also follows that 

S( X, 7 g,p)/gjp = - s( X,7 h~p)/h,p? i,j=1,2,3; p =1,2 ,..‘, 8. 

3.3. BEHA VIOR OF THE FLUXES IN STEADY STATE 

The fluxes through the pools of the system (K and V_ ,) follow directly 

from the solution of the dependent concentration variables [33, 491. From 

Eqs. (20)-(22) and (24) in steady state, one can write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

logy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=lOgl/_, =lOga: + 

8 

+ c 
i 

i=1,2,3, (28) 
k=4 

where g12 = gls = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgl6 = g18 = g2s = g26 = g27 = g31 = &2 = a4 = &5 = g36 = 0, 

and the MJk and LJk factors are given in Eq. (24). 

Logarithmic Gains. The change in any flux (say VI) that results from a 

1% change in any independent variable (say X6) is given by the appropriate 

logarithmic gain, 

Woglf) 
L( q, X6) = a(logx ) = g,,L,, = gllh1;An;3h26 . 

6 
(29) 

By inspection, this is simply the coefficient preceding y, in the first of Eqs. 

(28). Alternatively, since X6 is not present in K [see Eq. (20)], its influence 

on VI must be exerted via the dependent variables XI and X3. This influence 

is the kinetic order with respect to XI times the logarithmic gain L,, plus 

the kinetic order with respect to X3 times the logarithmic gain L,,, or g,, L,, 

since L,, = 0 in this case. 

Rate-Constant Sensitivities. The change in such a flux that results from a 

1% change in any rate-constant parameter (say p3) is given by the appropri- 



VARIANT THEORIES OF BIOCHEMICAL SYSTEMS I 

ate parameter sensitivity 

179 

=g,,M,,+g,,M,,=g,,S(x,,P,)+g,,S(X,,8,). (30) 

This follows by inspection of Eq. (28), or by noting that /?, has no direct 

influence on Vt [see ELq. (20)] and therefore its influence is the kinetic order 

with respect to X, (g,,) times S( X,, &) = MI3 plus the kinetic order with 

respect to X, (g13) times S( X,, &) = Mx3. 

Kinetic-Order Sensitivities. The change in a flux that results from a 1% 

change in a kinetic-order parameter (say g&) is given by the analogous 

parameter sensitivity 

(31) 

Again, this could be expressed as the weighted average of the indirect 

influences of gi3, in this case exerted only via changes in X,. 

The flux relationships in each instance are seen to be simply sums of the 

corresponding concentration relationships multiplied by appropriate kinetic 

orders. Hence, the flux relationships may be considered secondary and can 

be produced easily once the concentration relationships have been deter- 

mined. 

Other Relationships in Steady State. The well-known orthogonality prop- 

erties that are inherent in the explicit symbolic solution of any biochemical 

sy-stem in BST also imply a number of other relationships among the kinetic 

orders of the system and the systemic coefficients-logarithmic gains and 

parameter sensitivities. These relationships, which are described in detail 

elsewhere (see [47]), also are secondary in the sense that one can obtain the 

explicit solution that completely characterizes a biochemical system and 

never explicitly invoke these relationships [33, 501. We shall return to some 

of these relationships in the second paper of this series [54]. 

3.4. BEHAVIOR ABOUT THE NOMINAL STEADY STATE 

BST provides an explicit symbolic condition that is necessary for the local 

stability of the steady state [39, 401; namely, 

(-l)“IA]>O, 

which in the case of the reference system becomes 

as3( alla22 + g21 12 h )<O. 
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TABLE 3 

Logarithmic Gains: Percentage Change in the Dependent Variables 

of the System in Response to a 1% Change in an Independent Variable” 

Independent 
Dependent variable 

variable x, x, x, VI vz v3 

x, 0.126 0.553 0.00 0.683 0.314 0.00 

X5 0.0727 0.105 0.00 - 0.0387 - 0.0348 0.00 

X, - 0.768 - 1.11 0.00 0.410 0.368 0.00 

X, 1.39 0.661 0.449 0.928 0.375 0.449 

x, - 0.440 0.567 0.754 - 0.678 0.322 0.754 

aDetermined for either the reference system or its S-system representation within BST. 

This is essential for interpreting steady-state predictions for complex systems 

(e.g., see [37], [40], [SO]); it also is an important constraint on the permissible 

values for the parameters of the model. One can verify easily that the 

parameter values in the S-system representation are consistent with the 

stable steady state exhibited by the reference system. 

The systematic structure of the S-system representation within BST has 

led to the development of several new methodologies for evaluation and 

analysis of complex biochemical systems [17, 19, 37,40,61]. The most recent 

developments dramatically increase one’s ability to explore the dynamic 

behavior of intact systems. The local dynamic behavior of biochemical 

systems is determined by solving the differential equations that represent the 

system in BST [Eqs. (20)-(22)]. This is routinely accomplished with a 

menu-driven user-friendly program that has been under continuous develop- 

ment since the late 1960s [17, 19, 34, 40, 61; Irvine and Savageau, in 

preparation]. The current version, called ESSYNS (for Evaluation and 

Simulation of Synergistic Systems), runs on an IBM PC/AT. The program 

includes state-of-the-art methods for solving differential equations [19; Irvine 

and Savageau, in preparation], the complete steady-state analysis described 

above, graphical presentation and analysis, as well as full data management 

facilities [Voit, Irvine and Savageau, in preparation]. 

4. RESULTS 

4.1. LOGARITHMIC GAINS 

The changes of the dependent variables Xi, X,, and X, (and conse- 

quently Vi, V,, and V, as well) with respect to changes in the independent 

variables of the system ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,, X,, X,, X,, X8) at the steady state are given by 

the appropriate logarithmic gains and are summarized in Table 3. One sees a 
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trend with the independent variables X, and X, having the greatest effect 

and X, the least effect on any given dependent variable. The values in this 

table are equal to the logarithmic gains as calculated from Eqs. (25) and (29) 

or, in the case of the concentrations, as obtained by inspection of the explicit 

solution [Eq. (24)], and represent the slopes of the steady-state responses at 

the operating point. Clearly these steady-state responses could also be 

determined operationally from the corresponding measurements on the 

intact reference system. Such measurements provide the information neces- 

sary for estimating kinetic orders and rate constants and thus for construct- 

ing the S-system representation. When the logarithmic gains predicted by 

BST are compared with those measured at the operating point for the 

reference system itself, one obtains exactly the same values (e.g., see Figure 

3). The straight lines in Figure 3 are not simply extrapolations of the 

logarithmic gains at the operating point but are in fact the explicit steady- 

state solutions in BST. These solutions and those for the reference system are 

in close agreement, provided the excursions of the independent variables 

from the nominal steady state operating point are not too large. 

Eventually, the discrepancies for large variations become apparent. This 

is inherent in the nature of all representations. The issue in comparing 

alternative representations is which one remains valid over the widest range 

of variations. We shall return to this point in the following papers [54, 551. 

4.2. PARAMETER SENSITIVITIES 

Another important aspect of characterizing biochemical systems is the 

parameter sensitivity of the corresponding model. These quantities are useful 

for predicting changes in system behavior that result from actual changes in 

parameter values, either by mutation or by changes in physical conditions 

[27, 35-37, 40, 46, 501. 

The complete set of parameter sensitivities for the reference system are 

given in Table 4 (rate-constant parameters) and Table 5 (kinetic-order 

parameters). These results can be calculated from Eqs. (26) (27), (30), and 

(31) or in some cases obtained directly from the explicit solution in Eq. (24). 

The results in Table 4 show the tendency for a change in the rate constants 

cy; or ,& to have the greatest effect on the dependent variables, with the 

exception of X, and V,, which are uncoupled from these effects. The results 

in Table 5 indicate the relative importance of the kinetic orders with respect 

to the independent variables X, and X,, while that with respect to X, is 

relatively unimportant. 

Although one can determine mathematically the consequence of a change 

in any individual parameter, physical or genetic alteration of a system 
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TABLE 4 

Rate-Constant Sensitivities: Percentage Change in the Dependent Variables 

of the System in Response to a 1% Change in a Rate Constant 

Rate 

constant 

a; 

P; 

a; 

I32 

0; 

P3 

x, x, 

0.450 0.184 

- 0.450 - 0.184 

0.768 1.11 

- 0.768 - 1.11 

0.177 0.115 

- 0.177 -0.115 

Dependent variable 

x, 4 

0.00 0.760 

0.00 0.240 

0.00 - 0.410 

0.00 0.410 

0.203 - 0.340 

- 0.203 0.340 

v, v3 

0.105 0.00 

-0.105 0.00 

0.632 0.00 

0.367 0.00 

0.0651 0.203 

- 0.0651 0.797 

TABLE 5 

Kinetic-Order Sensitivities: Percentage Change in the Dependent Variables 

of the System in Response to a 1% Change in a Kinetic Order 

Kinetic 

order x, x, 

Dependent variable 

x, VI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

&l 

833 

a4 

a7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 11 

h 12 

h 13 

h 1x 

g21 

g22 

A3 

g24 

g2x 

h 22 

h2, 

h 26 

g33 

g37 

g38 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 33 

- 0.386 -0.158 

- 1.30 - 0.534 

1.11 0.454 

2.98 1.22 

- 1.86 - 0.763 

2.21 0.908 

2.92 1.20 

- 4.52 - 1.85 

0.635 0.922 

- 1.21 - 1.75 

0.474 0.687 

0.566 0.820 

1.54 2.24 

-1.00 - 1.46 

0.0504 0.0731 

- 1.77 - 2.57 

- 1.66 - 1.08 

1.17 0.758 

1.78 1.15 

- 0.424 - 0.274 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.00 - 0.653 - 0.0899 0.00 

0.00 - 2.20 - 0.303 0.00 

0.00 1.87 0.258 0.00 

0.00 5.03 0.693 0.00 

0.00 0.991 - 0.433 0.00 

0.00 - 1.18 0.516 0.00 

0.00 - 1.55 0.680 0.00 

0.00 2.41 - 1.05 0.00 

0.00 - 0.339 0.523 0.00 

0.00 0.645 - 0.997 0.00 

0.00 - 0.253 0.390 0.00 

0.00 - 0.301 0.466 0.00 

0.00 - 0.822 1.27 0.00 

0.00 0.535 0.481 0.00 

0.00 - 0.0269 - 0.0241 0.00 

0.00 0.942 0.845 0.00 

- 1.91 3.19 - 0.611 - 1.91 

1.35 - 2.25 0.431 1.35 

2.04 - 3.42 0.654 2.04 

- 0.487 0.815 -0.156 1.91 
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generally affects several component parameters simultaneously [27, 35-37, 

40, 46, 50].5 There are two steps required for accurate prediction of the 

systemic consequences of a small specific mutation or physical change 

affecting a given process. First one must determine the change in all relevant 

parameters of the affected process, and second one must add the changes 

multiplied by the sensitivities with respect to each of these parameters to 

predict the net change in a systemic property. For example, suppose one 

knows that a mutation has occurred in the structural gene for the enzyme 

X,. One could do experiments, either in vitro or in vivo, to determine how 

the component parameters (&, h,, , h,,, h,,) of the reaction have changed. 

By knowing these changes and the sensitivities in Tables 4 and 5, one can 

predict the net change in a given systemic property, say X,. 

A second use of parameter sensitivities, which is equally important but 

perhaps less emphasized, is in characterizing the quality of a model. Quality 

is measured by the extent to which a model accurately characterizes a 

system. For example, a model with low parameter sensitivities will hold for 

larger variations than one with high sensitivities (for further discussion, see 

Sorribas and Savageau [55]). This can be understood intuitively. When the 

concentration variables of a system vary from one steady-state value to 

another, the operating points change, and hence the values of component 

parameters in the model may change. If the sensitivities of these parameters 

are low, then changes will have only a minor influence on systemic behavior; 

a concentration variable can experience a large change and still the model 

will accurately predict systemic behavior. In other words, the range of 

accuracy for a model is larger when parameter sensitivities are lower. Since 

parameters with high sensitivities exert greater influence on system behavior, 

these sensitivities are important guides to phenomena or processes that merit 

more intense experimental scrutiny (e.g., see [27]). 

The distinction between parameters and variables [37, 401 must be kept 

clearly in mind. This is particularly true because a given quantity considered 

under certain circumstances to be a parameter may under other circum- 

stances be considered a significant variable in the system, and it becomes 

appropriate to change its definition to that of a variable. Any process that is 

influenced by such a variable then will have an additional term in its Taylor 

‘For example, in a simple Michaeli-Menten rate law, change cannot occur in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK,,, 

for substrate alone. Of necessity, change occurs in at least one other parameter-the K,,, 

for product, the maximal velocity in the forward direction, or the maximal velocity in the 

reverse direction-and the changes cannot be unrelated to each other since the Haldane 

relationships must be satisfied. This is well known to enzymologists (e.g., see [4]) but has 

seldom been considered in attempts to account for the systemic consequences of a given 

alteration in a component of the system. 
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series expansion and an additional power law in the corresponding product 

of power laws that constitute its power-law representation [40 (Chap 15)]. In 

some cases, the parameter might become an independent variable. For 

example, in a system with a simple rate law given by 

u,=V,,X,/(X,+K,,,) -cl;xp, 

one can define the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK,,,, as an independent variable X,. Then 

u, = vn,, x, /( x, + x, ) = a, xis” Xkk 

where, as usual, g,, = ( a U, /a X,)( X, /v,). The systemic consequences of a 

change in the independent variable X, can be ascertained in the conven- 

tional manner by calculating the appropriate logarithmic gains. In other 

cases, the parameter might become a dependent variable. For example, 

temperature is considered a physical parameter in many systems, but in 

systems with a strongly exothermic reaction, temperature is more appropri- 

ately considered a dependent variable [59]. Temperature T then is defined as 

a variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, , which appears as a typical dependent variable in the power-law 

formalism [48]. 

4.3. BEHAVIOR ABOUT THE NOMINAL STEADY STATE 

Predicted steady-state responses in the local neighborhood of the nominal 

operating point have been determined analytically as well as numerically by 

using ESSYNS; the same results are obtained in each case. For relatively 

wide variations about the steady state, these results agree with the actual 

responses of the reference system, as determined by numerical solution of 

Eqs. (6)-(lo), again by using ESSYNS. Representative results exhibiting a 

narrow or a wide range of agreement are shown graphically in Figure 3. The 

range over which predicted and actual responses agree to within 10% is 

summarized in Table 6 for all responses to all independent variables. As 

expected from the results in Tables 3-5, the reference system tends to be 

more accurately represented for changes in X, and less accurately repre- 

sented for changes in X, and Xs. The range of validity is greater than 

90-fold in the best cases, and in the worst cases is never smaller than 2- to 

3-fold, with an average range of 20-fold. This range compares well with the 

range of variation exhibited by concentrations in typical in vivo preparations 

(see Section 5). By contrast, typical linear representations have ranges 

measured in percentage rather than fold variation. 

The results in the preceding paragraph demonstrate the accuracy of the 

S-system representation in predicting a final steady state in response to a 

change in independent variables. By using Eqs. (6)-(lo), one also can obtain 
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TABLE 6 

Range of Concentrations Over Which the S-System Representation 

Within BST is Accurate= 

Independent 

variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXl 

Dependent variable 

x2 X3 b v2 v3 

X4 > 91.5 55.6 oob 6.21 13.6 cc 

X5 48.5 27.1 CCI 58.2 61.3 00 

X, 7.44 10.1 w 4.22 4.06 cc 

X7 4.31 2.16 3.34 1.98 3.21 3.34 

x8 2.58 3.38 4.11 1.96 4.10 4.11 

“The range is measured by the ratio of the largest to the smallest values of the 

independent variable that leave the dependent variable within 10% of its 

actual value. The larger this range, the greater the accuracy of the representa- 

tion. 

bThe dependent variables X, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV3 are not influenced by changes in the 

independent variables X,, Xs, X,. 

the transient response between two steady states. A typical dynamic re- 

sponse to a change within the local neighborhood of the steady state is 

shown in Figure 4. Initially the system is in a steady state. At t = 5 s the 

system is perturbed by increasing the independent concentration X, from 15 

to 25 PM (Fig. 4~). This is accomplished by adding free enzyme X,. 

According to the constraints expressed by Eqs. (1) and (2) X, and X0 

increase by the same amount. With time the concentrations X, and X0 

decrease toward equilibrium as the free enzyme molecules combine to form 

the complex, and the concentration X, increases by the corresponding 

amount (Fig. 4b, c, d). Accordingly, the intermediate concentrations Xi and 

X, change to a new steady state determined by the new values of the 

independent variables. The concentration of the first intermediate Xi de- 

creases due to the drop in free enzyme X, and also due to the rise in free 

enzyme X0 (Fig. 4e). The concentration of the second intermediate X, 

increases (Fig. 4f) because the increase in flux from X, (positive logarithmic 

gain for V, - Vi in Table 3) is greater than the decrease in flux from Xi 

(negative logarithmic gain for Vi in Table 3). 

After the system has reached a new steady state, at t =lO s the total 

concentration of the second enzyme Xs is abruptly changed from 25 back to 

15 PM. There is a proportionate drop in the concentrations X0 and X,, and 

the drop in X, is matched by an increase in X,. With time the concentra- 

tions X, and X0 decrease toward equilibrium as the free enzyme molecules 

combine to form a complex, and concentration X, increases by the corre- 

sponding amount (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4b, c, d). The responses of X, and X, follow accord- 

ingly. 
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FIG. 4. Dynamic response to a change within the local neighborhood of the steady 

state. Before time equals 5 s the system is in steady state. At time equals 5 s the 

independent concentration X8 is increased from 15 to 25 pM by the addition of free 

enzyme X,. At time equals 10 s the concentration of X, is decreased from 25 to 15 pM. 

The responses predicted by the S-system variant within BST and the empirically deter- 

mined responses of the reference system are indicated by S and R, respectively. 
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Overshoots in the dynamic response of Xi result from the initial pertur- 

bation in X0 and the overshoot in X, when the perturbation is removed. 

When Xs is increased there is a momentary excess in the concentration of 

free enzyme X, relative to X,, which causes depletion of the intermediate 

Xi. When Xs is decreased there is a momentary excess in the concentration 

of free enzyme X, relative to X,, which causes accumulation of the interme- 

diate Xi. These transient imbalances are eliminated as the enzyme-enzyme 

interactions relax to equilibrium. 

These results are in reasonable agreement with the empirical data ob- 

tained directly from the reference system. The maximum error between 

responses is 5-10%. Similar results are obtained by perturbation of other 

independent variables (data not shown). 

These results illustrate the value of an explicit representation for the 

kinetic equations describing a system. For instance, X2 in the reference 

system was correctly predicted to increase as a result of the perturbation in 

Xs. Without an explicit representation, one cannot predict, even qualita- 

tively, the dynamic responses of a complex system. In fact, X2 can increase 

or decrease depending on the parameter values of the actual system. A 

qualitative analysis of the system in Figure 1 could not have predicted that 

X2 would increase. 

5. DISCUSSION 

If one were to identify the most outstanding characteristic of BST, it 

would be its ability to yield explicit steady-state solutions in symbolic form 

[33]. Such solutions are rare for complex nonlinear systems, but when they 

exist, important consequences follow. 

The existence of symbolic solutions for different systems being compared 

allows one to equate specific systemic responses while exploring the implica- 

tions of alternative values for their component parameters. This provides the 

mathematical equivalent of a “well-controlled” experiment [17, 37, 40, 431. 

Such analyses with symbolic solutions often lead to very general conclusions 

that are independent of the particular numerical values associated with the 

parameters of a specific system (e.g., see [17], [18], [38], [40], [45]). Such 

analyses have succeeded where others requiring numerical values have not 

because numerical values often are unknown and in some cases are difficult 

or impractical to obtain experimentally. Although symbolic analysis is 

generally more difficult, the rewards are correspondingly greater. 

Symbolic analysis of control in biochemical pathways by the use of BST 

has previously led to the prediction of specific enzyme-enzyme interactions 

[37,40,45, 531 that have been confirmed experimentally, which demonstrates 

the power of this approach. However, a complete and rigorous numericul 

analysis of a specific model of enzyme-enzyme interactions has not been 
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published. This paper provides the complete analysis of such a system 

containing enzyme complexes. The results make it evident that BST provides 

a well-structured theory for analysis of complex biochemical systems, includ- 

ing those with enzyme-enzyme interactions. 

Within the framework of the power-law formalism, the steady-state 

analysis using the S-system representation is complete. The influence of 

every independent concentration variable (Table 3) and every parameter 

value (Tables 4 and 5) on every dependent variable of the system has been 

accounted for. These influences are determined not only for the single steady 

state considered in Table 2, but also for all steady states in its local 

neighborhood (Fig. 3). 

The dynamic responses of the system within the local neighborhood of 

the steady state also have been characterized. Although intuitively one could 

anticipate that addition of one of the two enzymes that form a complex 

reduces the free concentration of the other, the consequences of this in the 

intact system are much less certain. Even qualitative behavior-for example, 

whether X, will increase, decrease, or remain unchanged-depends upon the 

numerical values of component parameters (data not shown). Prediction of 

quantitative aspects of the response is nearly impossible without a system- 

atic, quantitative approach such as that provided by BST. As seen in Figure 

4, BST provides reasonably accurate predictions for transient responses of 

the system following changes in the independent variable X8 (average error 

approximately 5%). Comparable results are obtained following changes in 

other independent variables of the system. 

The analysis in this paper has provided further evidence for the accuracy 

of the power-law formalism. Direct comparison with the actual behavior of 

the reference system (Table 6 and Figs. 3 and 4) shows the range of variation 

in the independent concentration variables for which the S-system represen- 

tation within BST is accurate. The range varies from a minimum of about 

2-fold to a maximum greater than 90-fold, with an average range of 20-fold. 

Previous examination of isolated processes has shown a considerable range 

of variation in the independent concentrations for which the power-law 

formalism is accurate [31, 33, 621. Evidence from intact systems, consisting 

of many processes, that have been driven experimentally beyond physiologi- 

cal ranges often shows an even wider range, as large as lOO- to lOOO-fold, 

with accurate representation by the power-law formalism [36, 37, 40, 41, 601. 

Reasons for the increased accuracy within intact systems are discussed in 

[40], [42], and [62]. This degree of accuracy with power-law representation is 

considerably greater than that with linear representations, which is typically 

measured in percentage rather than fold variation. 

The range of accurate representation provided by the power-law formal- 

ism is broad enough to encompass the typical physiological range of varia- 



VARIANT THEORIES OF BIOCHEMICAL SYSTEMS I 189 

tion, and perhaps much of the relevant pathological range as well. Although 

systematically collected data relevant to this point are few, there are abun- 

dant data for many biochemical and cellular variables in humans that have 

been collected in hospitals throughout the world. These variables include 

biochemical concentrations and fluxes, cellular concentrations and turnover 

rates, and concentrations of therapeutic agents. The range of variation seen 

in a few major hospitals has been tabulated for each of these variables (e.g., 

see [28], [63]). For a wide variety of metabolites, the range can be small. For 

example, sodium and fasting glucose variations are no greater that 7% and 

69%, respectively. Examples of metabolites that exhibit a larger range are 

aldosterone (16-fold) and 17-hydroxyprogesterone (30-fold). On average, the 

range is 3.9-fold for 160 variables. Of course, all these ranges may be 

considerably greater than one would find in the normal population, since 

they are biased toward the extremes in a clinical setting. More detailed data, 

including dynamic responses, from clinical studies gives the same general 

picture [3]. Many metabolites have ranges around 2-fold, with hormones 

tending to have the highest normal ranges (typically 5-fold, but occasionally 

as high as lo- to lOO-fold) as well as the highest pathological ranges (up to 

lO,OOO-fold for some tumors). The average range over a wide variety of 

metabolites is about 335-fold. (We thank Dr. D. H. Irvine of The University 

of Michigan Medical School for making these data known to us.) The 

general conclusion that can be drawn by comparing the above experimental 

data with the results for BST in this paper and elsewhere is that the actual 

ranges and the ranges of accurate representation in BST are roughly the 

same. Although there undoubtedly will be cases in which the range of 

variation for a specific metabolite will be larger than can be accurately 

represented by the power-law formalism, this remains to be explored in 

specific cases. Hence, the notion that the power-law representation is an 

inappropriate approximation, too crude to be of use for real biochemical 

systems, is clearly without basis. 

In conclusion, the concepts, theory, and methodology already developed 

in BST provide a very general framework for analyzing complex biochemical 

systems. Their utility has been demonstrated in a broad range of applica- 

tions. In this paper we have shown that the S-system variant within BST also 

represents enzyme-enzyme interactions in a systematically structured fash- 

ion that greatly facilitates analysis of complex biochemical systems in which 

these interactions play a prominent role. This representation captures the 

essential character of the underlying nonlinear processes over a wide range 

of variation in the independent variables of the system. It is important to 

point out that the parameters of the S-system are obtained directly from a 

small number of experimental measurements on the intact system (logarith- 

mic gains for concentrations and fluxes) and that this process does not 
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require detailed characterization of the underlying enzymatic mechanisms 

for each reaction. This methodology can greatly facilitate experimental 

characterization of complex systems. 

In the following paper (Part II) we shall turn to the comparison of 

alternative theories based upon the power-law formalism. The system in 

Figure 1 provides a discriminating test that allows various theories within 

this formalism to be clearly distinguished and evaluated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W e thank Drs. D. H. Irvine and E. 0. Voit for constructive discussion and 

critical examination of the manuscript, and two anonymous reviewers for 

suggesting improvements in the presentation. This work was supported in part 

by grant 135-PIS from the Presidential Initiatives Fund of The University of 

Michigan, U.S. Public Health Service grant GM-30054 from the National 

Institutes of Health, and grant EET-8712756 from the National Science 

Foundation. 

REFERENCES 

1 T. A. Bak, Contributions to the Theory of Chemical Kinetics, Benjamin, New York, 

1963. 

2 H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, Ptince- 

ton, N.J., 1945. 

3 P. K. Bondy and L. E. Rosenberg, Metabolic Control and Disease, 8th ed., Saunders, 

Philadelphia, 1980. 

4 W. W. Cleland, Steady state kinetics, in The Enzymes, 3rd ed., Vol. II, P. D. Boyer, 

Ed, Academic, New York, 1970, pp. l-65. 

5 B. Crabtree and E. A. Newsholme, Sensitivity of a near-equilibrium reaction in a 

metabolic pathway to changes in substrate concentration, Eur. J. Biochem. 89:19-22 

(1978). 

6 B. Crabtree and E. A. Newsholme, A quantitative approach to metabolic control, 

Current Topics Cell. Reg. 25121-76 (1985). 

7 B. Crabtree and E. A. Newsholme, The derivation and interpretation of control 

coefficients, Biochem. J. 247:113-120 (1987). 

8 J. B. Crux (Ed.), System Sensitioity Analysis, Dowden, Hutchinson and Ross, Strouds- 

burg, Pa., 1973. 

9 R. H. Davis, Channeling in Neurospora metabolism, in Organizational Biosynthesis, 

H. J. Vogel, J. 0. Lampen, and V. Bryson, Eds., Academic, New York, 1967, pp. 

303-322. 

10 P. Friedrich, Supramolecular Enzyme Organization, Pergamon, Oxford, 1984. 

11 D. Garfinkel, L. Garfinkel, M. Pring, S. B. Green, and B. Chance, Computer 

applications to biochemical kinetics, Ann. Rev. Biochem. 39:473-498 (1970). 

12 D. Garfinkel and M. C. Kohn, Computer modeling of cardiac energy metabolism, in 

Heart Creatine Kinase, W. E. Jacobus and J. S. Ingwall, Eds., Williams & Wilkins, 

Baltimore, 1980, pp. 48-62. 

13 A. Ginsburg and E. R. Stadtman, Multienzyme systems, Ann. Rev. Biochem. 

39:429-472 (1970). 



VARIANT THEORIES OF BIOCHEMICAL SYSTEMS I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA191 

14 J. Z. Hearon, The kinetics of linear systems with special reference to periodic 

reactions, Bull. Math. Biophys. 15:121-141 (1953). 

15 R. Heinrich and T. Rapoport, A linear steady-state treatment of enzymatic chains, 

Eur. J. Biochem. 42:89-95 (1974). 

16 R. Heimich and T. A. Rapoport, Mathematical analysis of multienzyme systems 2. 

Steady-state and transient control, Biosysremr 7:130-136 (1975). 

17 D. H. Irvine and M. A. Savageau, Network regulation of the immune response: 

alternative control points for suppressor modulation of effector lymphocytes, 

J. Immunol. 134:21OB-2116 (1985). 

18 D. H. Irvine and M. A. Savageau, Network regulation of the immune response: 

modulation of suppressor lymphocytes by alternative signals including contrasuppres- 

sion, J. Immunol. 134:2117-2130 (1985). 

19 D. H. Irvine and M. A. Savageau, Efficient solution of nonlinear ordinary differential 

equations expressed in S-system canonical form, SIAM Journal on Numerical Analysis 

(in press). 

20 J. A. Jacquez, Compartmental Analysis in Biology and Medicine, 2nd ed., Univ. 

Michigan Press, Ann Arbor, 1985. 

21 H. Kacser and J. A. Bums, The control of flux, Symp. Sot. Exp. Biol. 27:65-104 

(1973). 

22 H. Kacser and J. W. Porteous, Control of metabolism: what do we have to measure? 

Trends Biochem. Sci. 12:5-14 (1987). 

23 D. E. Koshland, G. Nemethy, and D. Filmer, Comparison of experimental binding 

data and theoretical models in proteins containing subunits, Biochemisfry 5:365-385 

(1966). 

24 S. J. Mason, Feedback theory-some properties of signal flow graphs, Proc. I. R. E. 

41:11441156 (1953). 

25 L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung, Biochem. 2. 

49:333-369 (1913). 

26 J. Monod, J. Wyman, and J.-P. Changeux, On the nature of allosteric transitions: a 

plausible model, J. Mol. Biol. 12:88-118 (1965). 

27 M. Okamoto and M. A. Savageau, Integrated function of a kinetic proofreading 

mechanism: steady-state analysis testing internal consistency of data obtained in vivo 

and in vitro and predicting parameter values, Biochemisrty 23:1701-1709 (1984). 

28 M. J. Orland and R. J. Saltman, Manual of Medical Therapeutics, 25th ed., Little. 

Brown, Boston, 1986. 

29 B. 0. Palsson and E. N. Lightfoot, Mathematical modelling of dynamics and control 

in metabolic networks I. On Michaelis-Menten kinetics, J. Theoret. Biol. 111:273-302 

(1984). 

30 L. J. Reed and D. J. Cox, Macromolecular organization of enzyme systems, Ann. Reo. 

Biochem. 35:57-84 (1966). 

31 J. A. Reels, Energetics and Kinetics in Biotechnology, Elsevier, Amsterdam, 1983. 

32 M. A. Savageau, Biochemical systems analysis I. Some mathematical properties of the 

rate law for the component enzymatic reactions, J. Theoret. Biol. 25:365-369 (1969). 

33 M. A. Savageau, Biochemical systems analysis II. The steady state solutions for an 

n-pool system using a power-law approximation, J. Theoret. Biol. 25:370-379 (1969). 

34 M. A. Savageau, Biochemical systems analysis III. Dynamic solutions using a power- 

law approximation, J. Theoret. Biol. 26~215-226 (1970). 

35 M. A. Savageau, Parameter sensitivity as a criterion for evaluating and comparing the 

performance of biochemical systems, Nature 229:542-544 (1971). 



192 ALBERT SORRIBAS AND MICHAEL A. SAVAGEAU 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

M. A. Savageau, Concepts relating the behavior of biochemical systems to their 

underlying molecular properties, Arch. B&hem. Biophys. 145:612-621 (1971). 

M. A. Savageau, The behavior of intact biochemical control systems, Current Topics 

Cell. Reg. 6:63-130 (1972). 

M. A. Savageau, Optimal design of feedback control by inhibition: steady-state 

considerations, J. Mol. Evolution 4:139-156 (1974). 

M. A. Savageau, Optimal design of feedback control by inhibition: dynamic consider- 

ations, J. Mol. Evolution 5:199-222 (1975). 

M. A. Savageau, Biochemical Systems Analysis: A Study of Function ond Design in 

Molecular Biology, Addison-Wesley, Reading, Mass., 1976. 

M. A. Savageau, Growth of complex systems can be related to the properties of their 

underlying determinants, Proc. Nat. Acad. Sci. USA 76:5413-5417 (1979). 

M. A. Savageau, Mathematics of organizationally complex systems, Biomed. Biochim. 

Acru 44:839-844 (1985). 

M. A. Savageau, A theory of alternative designs for biochemical control systems, 

Biochim. Biomed. Acta 44:875-880 (1985). 

M. A. Savageau, Control of metabolism: where is the theory? Trends Biochem. Sci. 

12:219-220 (1987). 

M. A. Savageau and G. Jacknow, Feedforward inhibition in biosynthetic pathways: 

inhibition of the aminoacyl-tRNA synthetase by intermediates of the pathway, 

J. Theoret. Biol. 77:405-425 (1979). 

M. A. Savageau and D. S. Lapointe, Optimization of kinetic proofreading: a general 

method for derivation of the constraint relations and an exploration of a specific case, 

J. Theorer. Biol. 93:157-177 (1981). 

M. A. Savageau and A. Sorribas, Constraints among molecular and systemic proper- 

ties: implications for physiological genetics, (submitted). 

M. A. Savageau and E. 0. Voit, Recasting nonlinear differential equations as S-sys- 

tems: a canonical nonlinear form, Math. Biosci. 87:83-115 (1987). 

M. A. Savageau, E. 0. Voit, and D. H. Irvine, Biochemical systems theory and 

metabolic control theory 1. Fundamental similarities and differences, Math. Biosci. 

86:127-145 (1987). 

M. A. Savageau, E. 0. Voit, and D. H. Irvine, Biochemical systems theory and 

metabolic control theory 2. The role of summation and connectivity relationships, 

Math. Biosci. 86:147-169 (1987). 

H. L. Segal, The development of enzyme kinetics, in The Enzymes, 2nd ed., Vol I, 

P. D. Boyer, H. Lardy, and K. Myrback, Eds., Academic, New York, 1959, pp. l-48. 

I. H. Segel, Enzyme Kinetics, Wiley, New York, 1975. 

P. A. Singer, M. Letinthal, and L. S. Williams, Synthesis of the isoleucyl- and 

valyl-tRNA synthetases and the isoleucine-valine biosynthetic enzymes in a threonine 

deaminase regulatory mutant of Escherichia coli K-12, J. Mol. Biol. 175:39-55 

(1984). 

A. Sorribas and M. A. Savageau, A comparison of variant theories of intact biochemi- 

cal systems. II. Flux-oriented and metabolic control theories, Math. Biosci., 

94:195-238 (1989). 

A. Sorribas and M. A. Savageau, Strategies for representing metabolic pathways 

within biochemical systems theory: reversible pathways, Math. Biosci., 94:239-269 

(1989). 

P. A. Srere and K. Mosbach, Metabolic compartmentation: symbiotic, organellar, 

multienzymic, and microenvironmental, Ann. Rev. Microbial. 28:61-83 (1974). 



VARIANT THEORIES OF BIOCHEMICAL SYSTEMS I 193 

51 

58 

59 

60 

61 

62 

63 

64 

65 

66 

61 

68 

69 

70 

71 

12 

D. K. Srivastava and S. A. Bernhard, Metabolite transfer via enzyme-enzyme com- 

plexes, Science 234:1081-1086 (1986). 

J. G. Truxal, Automatic Feedback Control Systems Synthesis, McGraw-Hill, New York, 

1955. 

A. Uppal, W. H. Ray, and A. B. Poore, On the dynamic behavior of continuous stirred 

tank reactors, Chem. Eng. Sci. 29:967-985 (1974). 

E. 0. Voit and M. A. Savageau, Power-law approach to modeling biological systems. 

II. Application to ethanol production, J. Ferment. Technol. 60:229-232 (1982). 

E. 0. Voit and M. A. Savageau, Power-law approach to modeling biological systems. 

III. Methods of analysis, J. Ferment. Technol. 60:233-241 (1982). 

E. 0. Voit and M. A. Savageau, Accuracy of alternative representations for integrated 

biochemical systems, Biochemistry 26:6869-6880 (1987). 

J. Wallach, Interpretation of Diagnostic Tests, 4th ed., Little, Brown, Boston, 1986. 

J. L. Webb, Enzyme and Metabolic Inhibitors, Vol. I, Academic, New York, 1963. 

J. N. Weiss and S. T. Lamp, Glycolysis preferentially inhibits ATP-sensitive K+ 

channels in isolated guinea pig cardiac myocytes, Scrence 238:67-69 (1987). 

P. B. Weisz, Diffusion and chemical transformation, Science 179:433-440 (1973). 

G. R. Welch and T. Keleti, Is cell metabolism controlled by a “molecular democracy” 

or by a “supramolecular socialism”?, Trends Biochem. Sci. 12:216-217 (1987). 

G. R. Welch, T. Keleti, and B. Vertessy, The control of cell metabolism for homoge- 

neous vs. heterogeneous enzyme systems, J. Theoret. Biol. 130:407-422 (1987). 

R. R. Wolfe, Tracers in Metabolic Research: Radioisotope and Stable Isotope/Mass 

Spectrometry Methods, Alan R. Liss, New York, 1984. 

J. T.-F. Wong, Kinetics of Enzyme Mechanisms, Academic, New York, 1975. 

J. T.-F. Wong and C. S. Hanes, Kinetic formulations for enzymatic reactions involving 

two substrates, Can. J. Biochem. Physiol. 40:763-804 (1962). 

B. E. Wright and P. J. Kelly, Kinetic models of metabolism in intact cells, tissues, and 

organisms, Current Topics Cell. Reg. 19:103-158 (1981). 


