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A COMPARISON OF VARIOUS DEFINITIONS
OF CONTRACTIVE MAPPINGS
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B. E. RHOADES

Abstract. A number of authors have defined contractive type mappings
on a complete metric space X which are generalizations of the well-known
Banach contraction, and which have the property that each such mapping
has a unique fixed point. The fixed point can always be found by using
Picard iteration, beginning with some initial choice jc0 E X. In this paper we
compare this multitude of definitions.

X denotes a complete metric space with distance function d, and / a
function mapping X into itself.

1. Definitions of contractive type mappings.
(1) (Banach) There exists a number a, 0 < a < 1, such that, for each

x,y E X,

d(f(x),f(y)) < ad(x,y).

(2) (Rakotch [21]) There exists a monotone decreasing function a: (0, co)
-» [0,1) such that, for each x, y E X, x ¥= y,

d(f(x),f(y)) < ad(x,y).

(3) (Edelstein [10]) For each x, y G X, x # y,

d(f(x),f(y)) < d(x,y).
(4) (Kannan [18]) There exists a number a, 0 < a < \, such that, for each

x,y EX,
d(f(x),f(y)) < a[d(x,f(x)) + d(y,f(y))\.

(5) (Bianchini [3]) There exists a number h, 0 < h < 1, such that, for each
x, y E X,

d(f(x),f(y)) < h max{d(x,f(x)),d(y,f(y))).
(6) For each x, y G X,x ¥= y,
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258 B. E. RHOADES

d(f(x),f(y)) < m<ix{d(x,f(x)),d(y,f(y))}.
(7) (Reich [24]) There exist nonnegative numbers a, b, c satisfying a + b + c

< 1 such that, for each x, v E A',

d(f(x),f(y)) < ad(x,f(x)) + bd(y,f(y)) + cd(x,y).
(8) (Reich [25]) There exist monotonically decreasing functions a, b, c from

(0, oo) into [0,1) satisfying a(t) + b(t) + c(t) < 1 such that, for each x, y E X,
x±y,

d(f(x),f(y)) < a(d(x,y))d(x,f(x))
+b(d(x,y))d(y,f(y)) + c(d(x,y))d(x,y).

(9) There exist nonnegative functions a, b, c satisfying

sup {a(x,y) + b(x,y) + c(x,y)) < X < 1
x,yBX

such that, for each x, v E X,

d(f(x),f(y)) < a(x,y)d(x,f(x))
+b(x,y)d(y,f(y)) + c(x,y)d(x,y).

(10) (Sehgal [31]) For each x, v E X, x # y,

d(f(x),f(y)) < mzx{d(x,f(x)),d(y,f(y)),d(x,y)}.

(11) (Chatterjea [5]) There exists a number a, 0 < a < \, such that, for each
x,y EX,

d(f(x),f(y)) < a{d(x,f(y)) + d(y,f(x))}.

(12) There exists a number A, 0 < A < 1, such that, for each x,y E X,

d(f(x),f(y)) < h max{d(x,f(y)),d(y,f(x))).

(13) For each x,y e X,x ¥> y,

d(f(x),f(y)) < mM{d(x,f(y)),d(y,f(x))}.
(14) There exist nonnegative numbers a, b, c satisfying a + b + c < 1 such

that, for each x, y EX,

d(f(x),f(y)) < ad(x,f(y)) + bd(y,f(x)) + cd(x,y).
(15) There exist monotone decreasing functions a, b, c from (0, oo) into

[0, 1) satisfying a(t) + b(t) + c(t) < 1 such that, for each x, v E X, x ¥= y,
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VARIOUS DEFINITIONS OF CONTRACTIVE MAPPINGS 259

d(f(x),f(y)) < a(d(x,y))d(x,f(y))
+b(d(x,y))d(y,f(x)) + c(d(x,y))d(x,y).

(16) There exist nonnegative functions a, b, c satisfying

sup [a(x,y) + b(x,y) + c(x,y)) < \ < 1
x,ySX

such that, for each x,yEX,

d(f(x),f(y)) < a(x,y)d(x,f(y))
+b(x,y)d(y,f(x)) + c(x,y)d(x,y).

(17) For each x, y E X, x ¥= y,

d(f(x),f(y)) < max{d(x,f(y)),d(y,f(x)),d(x,y)).

(18) (Hardy and Rogers [15]) There exist nonnegative constants a, satisfying
2JLi a¡ < 1 such that, for each x, y E X,

d(f(x),f(y)) < axd(x,y) + a2d(x,f(x)) + a3d(y,f(y))

+a4d(x,f(y)) + a5d(y,f(x)).

(19) (Zamfirescu [37]) There exist real numbers a, ß, y, 0 < a < 1, 0 < ß,
y < \, such that, for each x, y E X, at least one of the following is true:

(i) d(f(x),f(y)) < ad(x,y),
(ii) d(f(x),f(y)) < ß[d(x,f(x)) + d(y,f(y))\,
(iii) d(f(x),f(y)) < y[d(x,f(y)) + d(y,f(x))].
(20) For each x, y E X, x =£ y,

d(f(x),f(y)) < max{d(x,y),[d(x,f(x)) + d(y,f(y))]/2,

[d(x,f(y)) + d(y,f(x))]/2).

(21) (Ciric [7]) There exist nonnegative functions q, r, s, t satisfying

sup [q(x,y) + r(x,y) + s(x,y) + 2t(x,y)) < X < 1
x.yex

such that, for each x, y G X,

d(f(x),f(y)) < q(x,y)d(x,y) + r(x,y)d(x,f(x)) + s(x,y)d(y,f(y))

+t(x,y)[d(x,f(y)) + d(y,f(x))].
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260 B. E. RHOADES

(22) For each x, y E X, x # y,

d(f(x),f(y)) < max{d(x,y),d(x,f(x)),d(y,f(y)),

[d(x,f(y)) + d(y,f(x))]/2).
(23) There exist monotonically decreasing functions a¡: (0,oo) -» [0,1)

satisfying 2?=i o¡(t) < 1 such that, for each x, y E X, x # y,

d(f(x),f(y)) < ax(d(x,y))d(x,f(x)) + a2(d(x,y))d(y,f(y))

+a,(d(x,y))d(x,f(y)) + a4(d(x,y))d(y,f(x))

+a5(d(x,y))d(x,y).

(24) (Ciric [8]) There exists a constant A, 0 < A < 1, such that, for each
x,y EX,

d(f(x),f(y)) < A mzx{d(x,y),d(x,f(x)),

d(y,f(y)),d(x,f(y)),d(y,f(x))}.
(25) For each x, y E X, x # y,

¿(/to./W) < max{¿0c,y),¿(x,/(;t)),

¿(y./(y)),¿(*,/(y)).¿(y,/to)}.
We observe that the definition in Roux and Sardi [28] is a special case of

(9), and that of Massa [19] is a special case of (19).
There exist functions / with the property that some iterate of / satisfies one

of the preceding definitions, thereby giving rise to an additional twenty-five
definitions, which we shall number 26-50.

For example,
(29) (Singh [32]) There exists a positive integer p and a number a, 0 < a

< \, such that, for each x,yEX,

d(fp(x),f»(y)) < a[d(x,f(x)) + d(y,f(y))].
Chatterjea [5, p. 729] is (36); (48) and (49) appear in Ciric [7, p. 23] and [8,

p. 271].
Let p, q be fixed positive integers. We shall use 51-75 to identify those

functions with the property th&tf(x) and/?(y) satisfy one of the contractive
conditions.

For example,
(51) (Yen [35]) There exist positive integers p, q and a number a, 0 < a

< 1, such that, for each x, v E X,
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VARIOUS DEFINITIONS OF CONTRACTIVE MAPPINGS 261

d(fp(x),f(y)) < ad(x,y).
Gupta and Srivistava [12, p. 94] is (64) with c = 0.
It may happen that the particular iterate of / depends on the point in the

space. These are Definitions 76-100.
For example,
(76) (Guseman [14]) There exists a number a, 0 < a < 1, such that for each

x E X there exists an integer p(x), such that for each y E X,

dUÁX\x\fÁX\y)) < ad(x,y).

The iterate of/may depend on both x and y, giving us definitions 101-125.
For example,
(103) (Bailey [1]) For each x,yEX,0< d(x,y), implies there exists an

integer p = p(x,y) such that

d(fp(x),f"(y)) < d(x,y).

2. Comparison of the definitions. Some of the above contractions, as
originally defined by their respective authors, have additional hypotheses on/,
such as continuity, and structure properties on X such as compactness or
uniform convexity. We shall make no such restrictions at this point. At the end
of this section we shall impose additional restrictions as needed in order to
establish the existence of a fixed point.

A statement like (a) => (b) means that any function which satisfies condition
(a) also satisfies condition (b).

From the way in which the definitions have been listed, it is obvious that,
for 1 < m < 25,

(m) =* (25 + m) =* (50 + m)   and   (25 + m) => (75 + m) =¡> (100 + m).

We shall first establish a partial ordering for definitions (1)—(25), thereby
giving immediately the corresponding partial orderings for (26)-(50), (51)—(75),
(76)-(100), and (101)-(125).

Theorem 1. (i) (1) =» (2) => (3) => (10); (2) # (1), (3) * (1), and (10)
*P).

(ii) (2) m (8) -> (23); (8) * (2).
(iii) (4) and (n) are independent, n = 1, 2, 3.
(iv) (4) =» (5) => (6) => (10), but not conversely.
(v) (4) ̂ (7) =^(8) ^(10); (7) * (4).
(vi) (7) =* (9) => (10); (10) *> (9).
(vii) (6) and (n) are independent, n = 7, 8, 9.
(viii) (5) =* (9), but not conversely.
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262 B. E. RHOADES

(ix) (n) *> (5), n = 7, 8.
(x) (11) ■» (12) =* (13) ■» (17), but not conversely.
(xi) (11) =» (14) -» (15) -> (17); (14) * (11).
(xii) (14) => (16) -» (17); (17) * (16).
(xiii) (6) and (13) are independent.
(xiv) (1) => (18), (4) =» (18), and (II) => (18), 6«/ not conversely.
(xv) (12) =* (16), but not conversely.
(xvi) (13) and (14) are independent.
(xvii) (13) * (/i),/or n - 16, 18-21, 24.
(xviii) (10) and (13) are independent.
(xix) (10) 4* (n), n = 11, 12.
(xx) (10) => (25) and (13) =* (25), ¿«/ /»o/ conversely.
(xxi) (9) =* (21) and (6) =* (22).
(xxii) (15) -> (23) and (16) => (24).
(xxiii) (16) and (21) are independent.
(xxiv) (17) => (25), ¿>wr not conversely.
(xxv) (18) =» (19) =* (20) => (22) => (25); (20) =£ (19) and (25) * (22).
(xxvi) (19) => (21) => (24) => (25); (24) =*> (21) and (25) =£ (24).
(xxvii) (18) => (23) => (25).
(xxviii) (21) =* (22), but not conversely.
(xxix) (m) ■> (25 + m), but not conversely, 1 < m < 25.
(xxx) (25 + m) => (75 + m), but not conversely, 1 < m < 25.

Most of the implications are obvious from the definitions. The nonobvious
ones will be proved.

(i) The example on p. 8 of [10] shows that (3) =£ (1).
To show that (2) =f> (1), define a: (0, oo) -> [0,1) by a(d) = l/(d + 1). Let

f(x) = l/(x + 1), 0 < x < 1. Then/: [0,1] -» [0,1] and has a fixed point at
(■^5 - l)/2. For any fixed a, 0 < a < 1, choose y < -1 + \/a and
y£ (0,(0-l)/2). Then

d(f(0)J(y)) = y/( v + 1) > ay = ad(0,y),

and does not satisfy (1).
On the other hand, for 0 < x < y < 1,

www - (x +v(;+ d < j^ti - ****
and / satisfies (2).

Example 2, p. 574 of [31] shows that (10) =*> (3).
(ii) Let/(x) = x/3, 0 < x < 1,/(1) = ¿. Then/satisfies (8) but not (2).
(iii) Define f(x) = J, 0 < x < 1,/(1) - ¿. / E (4), but </(/(*),/(!)) - ¿
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VARIOUS DEFINITIONS OF CONTRACTIVE MAPPINGS 263

> d(x, I) for any x E (f, 1), so that/does not satisfy (l)-(3).
With/(x) = x/3, 0 < x < 1,/ G (1), hence (2) and (3), but/ G (4).
(ív)/(jc) = x/3, 0 < x < 1, satisfies (5) but not (4).
Letf(x) - x2/2(x + I), 0 < x < co. For 0 < x < y,

d{f{x),f(y)) - (xy + x + y)(y - x)/2(x + l)(y + 1)< y\y + 2)/2(y + 1)
- max{d(x,f(x)),d(y,f(y))),

so that / G (6). However, d(f(0),f(y)) = >>2/2(y + 1). For any fixed h,
0 < h < 1, one can find values of y large enough so that y/(y + 2) > h,
and/G (5).

To show that (10) =t> (6) use Example 2 of [31, p. 574]; i.e., f(x) = x/2,
0"< x < 4,f(x) = -2* + 10, 4 < jc < 5. For 0 <y < 4,

d(f(0),f(y)) -y/2 = iM¿(0,/(0)),¿(*/(;0)},
and/ G (6).

(v) The example on p. 122 of [24] shows that (7) =fr (4).
(vi) We note that (9) is equivalent to the following:
(9') There exists a constant h, 0 < h < 1, such that for each x, y E X,

d(f(x),f(y)) < h max{d(x,f(x)),d(y,f(y)),d(x,y)).

To show that (9) => (9'), let

M(x,y) = max(d(x,f(x)),d(y,f(y)),d(x,y)).

Suppose/G (9). Then

d(f(x),f(y)) < a(x,y)d(x,f(x) + b(x,y)d(y,f(y)) + c(x,y)d(x,y)
< (a(x,y) + b(x,y) + c(x,y))M(x,y) < \M(x,y),

and/satisfies (9') with h = X.
Conversely, suppose / G (9'). At each point where M(x,y) — d(x,f(x)),

define a(x,y) = h, b(x,y) = c(x,y) = 0. At each point where M(x,y) =
d(y,f(y)), define b(x,y) = X, a(x,y) = c(x,y) = O.and if M(x,y) = d(x,y),de-
fine c(x,y) = X, a(x,y) = b(x,y) = 0. Then/ G (9).

To show that (10) ¥> (9), we shall show that (10) *> (9'). Let /(jc)
= x2/(x + 1), 0 < x < oo. Then

d(f(x),f(y)) = (xy + x+ y)(y - *)/(* + l)(j; + 1)< y - *

and / G (10). However, d(f(0),f(y)) = y2(y + 1)"' > hy for any fixed A
less than 1, and y large enough.
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(vii) To show that (n) ¥> (6), n = 7, 8, 9, choose /(x) = x/2, 0 < x < 1.
Then/E (7), but

d(f(0),f(y))=y/2 = max{¿(0,/(0)),¿(.y,/(y))}.
To show that (6) * (n), let f(x) - |, 0 < x < J,/(x) = 0, \ < x < 1,/

E (6).  For   i < x < 1, d(f(\,f(x)) = \.  Let

g(x) = ad(\,f(\)) + bd(x, f(x)) + cd(\,x)-= bx + c(x- J).

As   x -* i +, g(x) -► 6/2 < X/2 < J, and/ $ (9).
(viii) Using an argument similar to that which established the equivalence

between (9) and (9') in (vi), one can show that any/ E (5) has a representa-
tion of the form (9) with c m 0.

Let/(x) - x/2, 0 < x < 1. Then/ E (9), but

d(f(0),f(y)) = y/2 = max{¿(0,/(0)),¿( v,/(v))} > Ay/2

for any 0 < A < 1.
(ix) Let n = 7, 8. To show that (n) 4> (5), use the example from (vii) that

(«) * (6).
(x) Let/(x) - 0, 0 < x < 1,/(1) = i. Then/ E (12), but

¿(/Ü),/(D) = i - WJID) + d(l,f(\))]/2,
and/g (11).

To show (13) =r> (12), define / by f(x) = x2/(x + 1), x > 0. / E (13).
d(f(x),f(2x)) - x2(2x + 3)/(2x + l)(x + 1). For x > 1,

max{¿(x,/(2x)),¿(2x,/(2;c))} . x(x + 2)/(x + 1).

Thus, given any 0 < A < 1 there exist values of x large enough so that
x(2x + 3)/(2x + l)(x + 2) > A.

Let/(x) = 1 - x/2, 0 < x < 1. Then/ E (17), but/ g (13) for x - 0, v
= 1.

(xi) To show (14) =£• (11), use the / in (x) for which (12) 4> (11). This
/ e (14).

(xii) Using the technique in (vi) that (9) and (9') are equivalent, we can show
that (16) is equivalent to

(16') There exists a constant A, 0 < A < 1, such that, for all x, y E X,

d(f(x),f(y)) <hmzx{d(x,f(y)),d(y,f(x)),d(x,y)}.

To show that (17) =£> (16) pick the/in (x) for which (13) * (12). Then
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/ G (17). But

max{d(x,f(2x)),d(2x,f(x)),d(x,2x)) = x(x + 2)/(x + 1),

and for x sufficiently large/ G (16').
(xiii) Let /(x) = o(l - x), J < a < 1, 0 < x < 1. Then / G (6), but /

does not satisfy (13) for x = 0, v = 1.
The/in (x) for which (17) * (13) satisfies (6).
(xiv) To show that (18) =A (1), pick the/in (iii) for which (4) =* (1).
To show that (18) =£ (4), pick the/in (v) for which (7) =*> (4). For (18) =*

(11), use the/in (x) for which (12) * (11).
(xv) The/in (x) for which (17) =¿> (13) also satisfies (16).
(xvi) To show that (13) 4> (14), pick the/in (xii) for which (17) #> (16). That

/satisfies (13), but not (16), hence not (14).
From (xiii), the/in (x) for which (17) =/> (13), satisfies (14).
(xvii) Using (xxv) and (xxvi), it will be sufficient to show that (13) =£ (16),

(13) ** (22), and (13) * (24). Use the/in (x) for which (13) =*> (12). From
(xi), that/does not satisfy (16).

max{d(x, 2x), d(x,f(x)), d(2x,f(2x)), d(x,f(2x)), d(2x,f(x)))

= x(x + 2)/(x + 1)

so that, for x large enough,/ G (24). For (13) 4> (22), use the/in (xviii) which
satisfies (13) but not (10).

(xviii) To show that (10) # (13), choose the/in (xiii) for which (6) 4> (13).
This/satisfies (10).

Let/(jc) = 0, 0 < jc < \,f(x) - ¿, ¿ < jc < 1. Then/ G (13), but/does
not satisfy (10) for x = \, y = 1.

(xix) From (x) it is sufficient to show that (10) =fr (13), which follows from
(xviii).

(xx) Let f(x) = 0, 0 < jc < i,/(jc) = i, | < jc < 1. Then / satisfies (25)
but not (10). That (25) ¥> (13) follows from (xviii).

(xxiii) Let f(x) = e, 0 < jc < \,f(x) - 0, | < x < 1, where \< e < ¿.
Then/does not satisfy (16) for jc = e, y = 2e.

Let/(jc) - 0, 0 < jc < 1,/(1) = ¿. Then/ G (16), but/does not satisfy
(21)forx = i,y= 1.

(xxiv) Use /(jc) = i, 0 < jc < \,f(x) = 0, \ < jc < 1. / does not satisfy
(17)forjc = ¿,y= 1, but/G (22).

(xxv) In [15, p. 202] it is shown that (18) implies
(18') There exist nonnegative constants a, b, c satisfying a + 2b + 2c < 1

such that, for each x,y E X,
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d(f{x),f(y)) < ad(x,y) + b[c(x,f(x)) +d(y,f(y))]
+c[d(x,f(y)) + d(y,f(x))\.

It is obvious that (18') => (18).
We shall now show that (19) is equivalent to
(19') There exist nonnegative functions a, b, c satisfying

sup (a(x,y) + 2b(x,y) + 2c(x,y)} < X < 1
x.yex

such that, for each x, v E X,

d(f(x),f(y)) < a(x,y)d(x,y) + b(x,y)[d(x,f(x)) + d(y,f(y))]
+c(x,y)[d(x,f(y)) + d(y,f(x))},

and
(19") There exists a constant A, 0 < A < 1, such that for each x, y E X,

d(f(x),f(y)) < h mzx{d(x,y),[d(x,f(x)) + d(y,f(y))]/2,
[d(x,f(y)) + d(y,f(x))]/2).

(19) =» (19'). At each pair x, y for which / satisfies (19)(i), define
o(x,y) — a, b = c = 0. At each pair x, y for which / satisfies (19)(ii), define
b(x,y) — ß, a = c = 0, and similarly for (iii).

(19') => (19"). Let

M(x,y) = max{d(x,y),[d(x,f(x)) + d(y,f(y))]/2,

[d(x,f(y)) + d(y,f(x))]/2).

Let/ E (19'). Then

d(f(x),f(y)) < [a(x,y) + 2b(x,y) + 2c(x,y)]M(x,y) < \M(x,y),

and/ E (19").
(19") =» (19). At each pair x,y for which M(x,y) - d(x,y),f satisfies (19)0)

with« - A.WheneverA/(x,y) = [¿(x,/(x)) +rf(y,/(y))]/2,/satisfies(19)(ii)
with ß = A/2, and / satisfies (19)(iii) with y = A/2 whenever M(x,y)
- [¿(JC/W) + ^(>»,/W)]/2.

(20) ̂  (19). Let /(x) - x2/(x + 1), x > 0. Then d(f(x),f(y)) < d(x,y)
and/ E (20). Forx > 1, ¿(/(x),/(2x)) = x2(2x + 3)/(x + l)(2x + 1), and

max{d(x,2x),[d(x,f(x)) + d(2x,f(2x))]/2,[d(x,f(2x)) + ¿(2x,/(x))]/2) = x.
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Given any h satisfying 0 < h < 1, one can find values of jc large enough so
that x(2x + 3)/(x + l)(2;c + I) > h, and/ G (19").

(25)* (22). Use the /of (xx).
(xxvi) Using an argument similar to that in (xxv), one can show that (21) is

equivalent to
(21') There exists a constant h, 0 < h < 1, such that for each jc, y EX,

d(f(x),f(y)) < hmax{d(x,y),d(x,f(x)),d(y,f(y)),

[d(x,f(y)) + d(y,f(x))]/2),
and

(21") (Zamfirescu [36]) There exists a constant a, 0 < a < 1, such that for
each distinct jc, y E X, at least one of the following holds:

(0 d(f(x),f(y)) < ad(x,y),
(ii) d(f(x),f(y)) < ad(x,f(x)),
(iii) d(f(x),f(y))<ad(y,f(y)),
(iv) d(f(x),f(y)) < (a/2)[d(x,f(y)) + d(y,f(x))}.
(24) =*• (21). Use the / of (x) for which (12) =f* (11). Then / G (24), but

/ e (21).
(25)* (24). Use the /of (xx).
(xxviii) Letf(x) = \, 0 < jc < \,f(x) = 0, \ < x < 1. Then/ G (22), but

/does not satisfy (21) for jc = \, y > \ and near J.
(xxix) The inclusions are obvious. To show that (25 + m) =£ (m) for

1 < m < 25, let /(*) = 0, 0< jc < 1, jc * \,f(\) = 1. Then / G (25),
hence/ G (m) for 1 < m < 25, but/2 a 0 so that/ G (n) for all w > 25.

(xxx) To show that (75 + m) * (25 + m), use the/in the example on p. 105
of [1], / does not satisfy (50), since, for each n, one can choose jc
= (l/n + 1,0),y = (l/n,0). It is possible to show that, for each jc one can
choose an integerp(jc) such that/ G (76), (80), and (97), hence/ G (75 + m),
1 < m < 25.

Although Theorem 1 has not exhausted all of the possible comparisons, it is
complete enough to demonstrate that Definitions (124) and (125) are the most
general.

It is interesting to note that, for each of the 125 definitions, if/has a fixed
point, it is unique. We shall demonstrate this fact for Definitions (124) and
(125).

Lemma. Let f satisfy (124) or (125). If f has a fixed point, then the fixed point
is unique.

Suppose u and v are fixed points off, u ¥* v. Then, from (124), there exists
an integer p = p(u, v) such that
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d(u,v) - d(f(u),f(v))
< A m&x{d(u,v),d(ujp(u)),d(v,fp(v)),d(u,r(v)),d(v,f^(um
< hd(u,v),

a contradiction. The corresponding proof for (125) is similar.
The following demonstrates that one must add continuity and the existence

of a cluster point for {/"(x0)} in order to ensure that /, in some of the
definitions, possesses a fixed point.

Theorem 2. Let f satisfy any of the definitions (3), (10), (13), (17), (22),
or (25) (or one of their analogues in (26) - (125)). Then the conditions (i) /
continuous and (ii) there exists a cluster point of{f"(x0)}for some x0 E X, are
needed in order to ensure that every such f possesses a fixed point.

Proof. As a result of (i), (iv), (x), (xxi), and (xxv) of Theorem 1, it is
sufficient, for (i) of Theorem 2, to construct functions satisfying (3), (6), or
(13).

For (3), let X = {xn « ny/2 + 2"| n = 0,±1,±2,...}, and define / by
f(x„) = xn_x. Then/ E (3), but/has no fixed point. (This example appears
in [4].)

For (6), let X - {x„ = 1 - 2~"-x\n > 0} U (1},/(1) - \,f(xn) - x„+I.
Then/ E (6), but/has no fixed points.

For (13), let X - [0, oo),/(x) = [x] + 1. Then / E (13), but has no fixed
points.

For (ii), let X = [1, oo),/(;c) = x + x"1. Then / E (3) and (13). /"(x) is
monotone increasing in n. Sincefk+l(x) - fk(x) = l/fk(x), we obtain

/fl+1(x)-/(x)=  î  l/fk(x)>n/fn(x).

Replacing fn+l(x) withf"(x) + l/f"(x) yields

n~K U"(x))2[f"(x) -f(x)] < (f"(x))\
Thus/"(x) > (n - 1)'  and/has no fixed points.

If/satisfies (6) then {/"(x)} is bounded for each x E X. For, iifN+1(x)
- f(x) for some integer W, then f"(x) = f(x) for all n > N and {f"(x)) is
convergent, hence bounded. Assume fm(x) =£ f(x) for all m, n > 0, m =¿ n.
Then

d(f"+](x),f"+2(x)) < d(f"(x),f"+l(x)) <       < d(x,f(x)),

so that d(f(x),f"(x)) < d(x,f(x)) and hence {/"(x)} is bounded. Thus, in
any finite dimensional space {f"(x)} will automatically have a cluster point.
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Throughout the rest of the paper we shall assume that any/, satisfying any
of the definitions referred to in Theorem 2, is continuous on X, and that there
exists a cluster point of {f"(x0)) for some jc0 G X.

3. Fixed point theorems. Since we do not have any fixed point theorem for
definition (25), we shall list the best fixed point theorem we can obtain for the
definitions in each of the strata (l)-(25), (26H50), etc.

Theorem 3. Let f be continuous and satisfy (22). If z is a cluster point of
{fn(xü))for some Xn G X, then z is the unique fixed point qffandf"(xQ) -* z.

Theorem 3 is the special case of Theorem 6 with p = 1. Special cases of
Theorem 3 appear in [10] and [31].

Theorem 4. Let f E (23), x0 E X. Then f has a unique fixed point z and
fn(x0) -> *•

Proof. Define   the   sequence   {x0,xx =/(jc0).xn+x = /(*„),...,}.
Since/G (23),

d(xn,xn+x) - d(f(xn_x),f(xn))

< a\d(xn-\>x„) + a2d(xn,xn+x)

+«id(x„_x,xn+x) + a5d(xn_x,xn),

where, for brevity, we let a¡ = a¡(d(xn_x,xn)). Because of the symmetry in
Definition (23),

d(xn+x,x„) < axd(xn,xn+x) + a2d(x„_x,x„)

+a4d(x„_x,xn+x) + a5d(xn,x„_x).

Adding we have

2d(x„,xn+x) < (ax +a2 + 2a5)d(xn_x,x„) + (a2 + ax)d(xn,xn+l)

+(ai + a4)d(xn_x,xn+x).

But d(xn_x,xn+x) < d(xn_x,xn) + d(xn,xn+x), so that

d(x„,xn+x) < (ax + a2 + a3 + a4 + 2as)d(xn_x,x„)/(2 -ax-a2-a2- a4)

< d(xn_x,x„),

since 2?-i«,-0) < I-
Thus [d(xn,xn+x)) is monotone decreasing in n. Call the limitp, and assume

thatp > 0.
Let
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(A _ <*i(0 + »2(0 + "3(0 + "4(0 + 2«s(0
W) 2-ax(t)-a2(t)-a3(t)-ct4(t)    '

Then bn = d(xn,xn+l) < p implies q(bn) < q(p) < 1, for all «, so that

d(xn+\>xn) < ?(/>W(*«>*/i-i) < ••• < (i(p))nd(xx,xQ) -> 0

as n -» 00.
We shall now show that {xn} is Cauchy. For each pair of integers m, n, and

assuming that d(xm_x,xn_x) # 0,

d(xm,xH) < axd(xm_x,xm) + a2d(xn_x,xn) + a3d(xm_x,xH)

+a4d(x„_x,xm) + a5d(xm_x,xn_x),

which can be written in the form

d(x     x)^ 0*1 + «3 + as)d(xm-\'xm) + (g2 + a4 + <*s)d(xn-\>xn)
*■ m' "' 1 - úf3 - a4 - a5

Let r(r) = /?(/)/£(/), *(/) - y(/)/£(0, where ß(t) = ax(t) + a3(r) + a5(t),
y(0 = «2(0 + a4(') + «si').and £(') = 1 - a3(f) - a4(0 - a5(/). Note that r
and s are monotone decreasing in t.

Fix e > 0. If ß(e) # 0 and y(e) # 0, there exists an N such that, for
m, n > TV,

¿frm-i«*«) < i min{e/r(e/2),£}

and d(xn_x,xn) < | min{e/s(e/2),e). If r(e) = 0, for example, then choose N
so that m > A/ implies ¿(*,„_i,*m) < e/2.

For each m, n such that d(xm_x,xn_x) > e/2, it follows that

d(xm,xn) < r(e/2)</(xm_,,xm) + s(i/2)d(xn_x,xn) < e/2 + e/2 - e.

For each m, n such that ¿(xw_!, x„_, ) < e/2, and again using the symmetry
property of the a¡s along with the triangular inequality, we can express

d(xm,xn) < i(a, +a2 + a3 + a4)[d(xm_x,xm) + d(xn_x,xn)]

+(a3 + a4 + as)d(xm_vxn_x)

< (ax + a2 + 2a3 + 2a4 + a5)e/2 < e.

Let z — limnjc„. It remains to show that z is a fixed point of/. We shall first
show that xn+x -*f(z).
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Assuming that z ¥= xn for any «,/ G (23) implies that

d(x„+x,f(z))

(ax + a3)d(x„,xn+x) + («2 + a4)d(z,x„+x) + a^x^z)
1 - «2 * «3

From the symmetry of the a/s,

d(f(z),xn+x)

s («i + a3)d(z,xn+x) + (g2 + a4)d(xn,xn+x) + a5d(z,xn)
1 - a, - o4

Since a2 + a3 and a, + a4 are both evaluated at d(xn,z), and since
2f-i «,-(0 < 1 for each / > 0, it follows that at least one of the sums, say
a2 + a3, must be less than J for an infinite number of choices n¡ of n. Thus
\vm¡d(f(z),x +x) = 0. Since ¿(jc^jc,,.,.,) is monotone decreasing in n, we can
conclude that jc„+1 ->/(z). Since jc„ -» z, z = /(z). Uniqueness follows from
the Lemma.

Special cases of Theorem 4 appear in [5], [10], [15], [18], [21], [24], [25], and
[31].

Theorem 5. Let f G (24), x0 G X. Then f has a unique fixed point z and
f"(x0)^z.

Theorem 5, which appears in [8], is the special case of Theorem 8 forp = 1.
Special cases of Theorem 5 appear in [3], [5], [7], [15], [18], [24], and [37].

For definitions (26)-(50) we have the following.

Theorem 6. Letf G (47), / continuous. If z is a cluster point of{fpn(xn))for
some xQ E X, then z is the unique fixed point offandf(x0) -* z.

Theorem 6 follows immediately from Theorem 9 by setting q = p.

Theorem 7. Let f G (48), jc0 G X. Then f has a unique fixed point z and
f"(x0) -» z.

Proof. Let jc0 G X and define the sequence {jc„} by jc„+1 — /(jc„), n > 0.
Let w be any fixed integer satisfying 0 < w < p, and consider the subse-
quence {xw,xw+p.xw+np,...}. Employing the argument of Theorem 4 on
this subsequence, with/replaced byfp, we conclude thatf"p(xw) -* zw and zw
is a fixed point of fp. Let y and z denote the values of zw for two different
choices of w. Suppose y =£ z. Then
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d(y,z) = d(f(y),fP(z)) < axd(y,f(y)) + a2d(z,fp(z))

+<*3d(y,fp(z)) + a4d(z,f(y)) + a5d(y,z)

= (a3 + a4 + a5)d(y,z) < d(y,z),

a contradiction. Therefore each of the subsequences {x^-J^o converges to
the same limit. Call it z. Consequently {x„} converges to z, and z is a fixed
point oifp.f(f(z)) =f(fp(z)) = /(z), so that/(z) is also a fixed point of
fp. But the above argument shows that/'' has a unique fixed point. Therefore
f(z) = z and z is a fixed point of /. Uniqueness follows from the Lemma.

Theorem 8. Let f E (49), x0 E X. Then f has a unique fixed point z and
f(x0)-»z.

Theorem 8 is the special case of Theorem 11 for which p — q.

Theorem 9. Let f be continuous and satisfy (72). If z is a cluster point of
{pp+9>"(x0)} for some x0 E X, then z is the unique fixed point of f and
f(x0)->z.

Proof. From Theorem 15, replacing/by /', and g by/', we get that z is
the unique fixed point of /, and pp+q'"(x0) -* z. For any m > p + q,m
— r(p + O) + s» where r > 1, 0 < í < p + #.

Since / is continuous,
d(fm(x0),z) = d(fr^+1(x0),z) -» d(f(z),z) - 0.

The presence of f and f for different values of p and q, in Definitions
(51 )—(75) wipes out the symmetry relationships that held, for example, in (18)
and (23). Consequently, Theorem 10 has stronger hypotheses and a weaker
conclusion than Theorem 7.

Theorem 10. Letf E (73), with the added restriction that the a¡ satisfy

,., M    fA     ax(t) + a3(t) + as(t)   a2Q) + a4(t) + a5(t)
« r(,)-i(')=    l-a2«)-«3(0    •    l-«,(0-««(O    <1

for each t > 0. Let x0 E X. Then either f orf has a fixed point. If, in addition

(ii) lim a,(0 + aJl) < 1   and    lim ax(l) + a4(t) < 1,v /-»o+   z t-*o+   ' H

then f has a unique fixed point z andf"(xQ) -* z.

Proof. Define the sequence {xQ,xx = /(j:0), ... ,xn+x = /(x„),...}, and
consider the subsequence {xw,xq+w,... ,x„(p+q)+w,xnip+q)+q+w,...}, where w
is any fixed integer satisfying 0 < w < p + 7. Assume x„ # *„, for each
n ¥= m. Since/ E (73),
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d(xn(p+q)+w>Xn(p+q)+q+w' ~ "(/  (x(n-\)(p+q)+q+w)'f (Xn(p+q)+w))

< otxd(xrn_x^p+q^+a+w,xn/p+q^+w) + a2d(xl^p+q^+w,xnrp+q^+a+w)

+a3d(X(„-i)(p+q)+q+w> xq+n(p+q)+w) + asd(x(n-i)(p+q)+q+w, xn(p+q)+w)'

Thus
d(xn(p+q)+w>xn(p+q)+q+w) < r(bn)d(x(n-l)(p+q)+q+w>xn(p+q)+w)>

where bn = d(xln_xtp+q)+w,xntp+q)+w). Similarly,

d(x(n-l)(p+q)+q+w>Xn(p+q)+w) < i(*/iV(JC(n-l)(|i+?)+M'>x(/i-lX^+?)+?+w)#

Combining these two inequalities and using condition (i), the sequence {cn},
where cn - </(jcn(p+9)+w.*„(^+9)+?+w) is monotone decreasing in n. Let u
denote the limit, and assume u > 0.

Set 1/ = /"(m)j(m). Then cn > u implies r(cfl)i(cn) < g for all n. Therefore
c),<i^l<.-.<i/"c0-*0.

Using the fact that/ G (73), and the triangular inequality, we may write

d(xn(p+q)+q+w>xm(p+q)+w) < Wmn^m + MíwKI/ÉÍ^wi)'

where 4™ = d(x{m_x)Lp+q)+q+w,xnip+q)+w), and fi, y, £ are defined as in the
proof of Theorem 4.

Fix e > 0 and assume dmn ̂  0 for each m and n. Then, as in the proof of
Theorem 4, we can find an integer such that m,n>N imply cn < e and
^(^«(i+îJ+î+iv'^mi^+îJ+H.) < e- "H"18 rf(*«(/»+?)+H.»*«(,+,)+*) < 2e-

d(xn(p+q)+q+w'xm(p+q)+q+w) ^ "(-^(¿H-?)-!-?+M>»*m(/>+?)+M<) + cm < **•

SimUarly, d(xn{p+q)+w,xm{p+q)+q+w) < 2e. Therefore the sequence {xw,xq+w,
xp+q+w> ■ • •} is Cauchy, hence convergent. Call the limit zw.

In a similar manner we can show that the sequence{xw,xp+w,xp+q+w,....
xn(p+q)+w>xn(p+q)+p+w--) is Cauchy, hence convergent. Call the limit y^.
Note that the two sequences {xw,xq+w,xp+q+„,...} and {xw,xp+w,
xp+q+w> •••)nave tne subsequence {x„/p+q)+w}in common, so thatjj„ = zw.

Using (73) and the triangular inequality we may write, provided zw
* Xn(p+q)+w for any "•

d(fP(:w),fq(xn(p+q)+»))

(251) . («1 + "l^Vri^J + ("2 + a*)cn + a5d(2w,x„{p+q)+w)
1 - a, - a4

and
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à(f(x<p+ll)+w,fi(zw))
(252)

'        («| + a3)<H.X«p+q)+w,X4P+tl)+p+w) + («2 + aM2w>^p+g)+f+w) + «Sd(x4r«i)+w<*w)
S I - a2 - «j

where the a¡ are evaluated at d(zw,xn^p+ ̂ w). It then follows, as in Theorem
4, that at least one of the sums ax + a4 or a2 + a3 is less than or equal to J
for an infinite number of values n¡ of n.

Thus, from (251) and (252), either xn(p+q)+q+w -» fp(zw) or x<p+q)+p+w
->f9(zw), so that zw is a fixed point of eitherfp oxf.

If condition (ii) is satisfied, then, from (251) and (252) both/'' and/* have
zw as a fixed point.

Let v, z be two values of zw for different values of h», and assume v # z.
Then

d(y,z) = d(f(y),f(z)) < axd(y,fp(y)) + a2d(z,f(z))
+a3d(y,f*(z)) + a4d(z,fp(y)) + a5d(y;z)

= (a3 + a4 + as)d(y,z) < i/(y,z),

a contradiction. Therefore each of the subsequences of {x„} has the same limit,
and {x„} converges to this limit. Call it z. Moreover, z is the unique fixed point
of/'. Then fp(z) = z, so th&t fp(f(z)) - /(z), which implies/(z) - z. The
uniqueness follows from the lemma.

Let 0(x,n) = (x,/(x),... ,f"(x)}. For any set A let

8(A) - sup{¿(*,>>)|x,y E ¿}.

Theorem 11. Le// E (74), x0 E A'. Then f has a unique fixed point z and
fn(xQ)-*z.

Proof. Define the sequence {xQ,xx - /(x0),... ,xn+1 = f(xn),...}. Let/,
k be positive integers,/ > k > p + q. Then there exist integers m, n, r, s with
r, j satisfying 0 < r, s < p + q, such that / = m(p + q) + r and A: =
«(p + $) + j. Since/E (74)>

<*(*>**) I < A max{¿/(x(m_1)(;)+9)+?+,,x(n_lX/,+9)+p+í),

"(x(m-l)(p+?)+î+r' xm(p+q)+r)>

(253) ^(^(n-lXp+îî+p+i' */.(/>+?)+*)•

^(■^(m-lXp+îl+î+r' xn(p+q)+s''

d(x(n-lXp+q)+p+s>xm(p+q)+r)i'
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d(x(m- \)(p+q)+q+r ' X(n- l)(p+q)+p+s )

< A max{</(x(n_lXp+9)+J,x(m_lKp+i)+,.),

d(X{n-\)(p+q)+s>x(n-l)(.p+q)+p+s)>

d(x(m-l){p+q)+r'x(m-\)(p+q)+q+ry"

d(x(n-\)(p+q)+s'x(m-l)(.p+q)+q+r)'

d(x(m-\)(p+q)+r>x(n-l)(p+q)+p+s)}'

d(x(m-l)(p+q)+q+r> Xm(p+q)+r>

< A max{</(x(m_,)(/,+í)+?+l„X(lll_,)(/,+í)+r),

(255) d(X(m-\)(p+q)+q+r> Xm(p+q)+r)>

d(X(m-l)(p+q)+r' X(m-l)(p+q)+q+r)>

d(x(m-\)(p+q)+r>xm(p+q)+r)}>

d\x(n-l)(p+q)+P+s'Xn(p+q)+s)

< A m&x{d(xi:n_x^p+q)+s,x^_x^p+q)+p+s),

(256) d(X(n-\)(p+q)+s'X(n-l){p+q)+p+s)'

d(X(n-\)(p+q)+p+s>Xn(p+q)+s)>

d(x(n-\)(p+q)+s>Xn(p+q)+s)}>

d(X(m-\)(p+q)+q+r<xn(p+q)+s)

< A max{í/(x(rt_1)(;,+9)+?+í,x(m_1)(í+í)+r),

</(JC(«-lXl'+í)+?+í ' Xn(p+q)+s)>

d(x(m-\)(p+q)+r>x(m-\)(p+q)+q+r)>

d(x(n-\)(p+q)+q+s'x(m-\)(p+q)+q+r)>

d(x(m-l)(p+q)+r' xn(p+q)+s))<

and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



276 B. E. RHOADES

d(x(n- lXp+q )+/>+*' xm(p+q)+r)

< h max{d(x,n_x)(p+q)+s,xim_lxp+q)+p+r),

.     . d(x,n_x^p+q)+¡, x,n_xtp+q)+p+¡),

dyx(m-\y.p+q)+p+r> xm(p+q)+r)'

d(X(n-l)(p+q)+s>xm(p+q)+r)>

d(x(m-l}(p+q)+p+r' X/„-iXp+q)+p+t)}.

An examination of the right-hand sides of inequalities (254)-(258) shows
that the smallest and largest subscripts present are (n — \)(p + q)
+ s and m(p + q) + r, respectively. Therefore (253) can be written

d(xpxk) < A25(0CvlX/,+î)+1,(m - n + l)(p + q) + r - s)).

There exist integers a and b satisfying (n - l)(p + g) + j<a<6<
mip + a) + r such that

*(.0(x(n_x)(p+q)+i,(m -n+ T)(p + q) + r-s)) = d(xa,xb)

= d{x,(p+q)+utXvip+q^+w),

where a = t(p + q) + u, b = v(p + q) + w.
Repeating the argument which developed inequalities (253)-(258) we obtain

d{x,tp+q)+u,xvlp+q)+w) < h2S(0(x(l_x)(p+q)+u,(v - / + l)(p + q) + w - u).

But (/ - l)(/> + q) + u>(n- 2)(p + q) + s and (v - t + l)(p + q) + w
- u < (m - n + 2)(p + q) + r - s, so that

S(0(x(l_x)(p+q)+u,(v - t + l)(p + q) + w-u))

< &(0(xin_2)(p+q)+s,(m -n + 2)(p + q) + r - s)).

Therefore

d(Xj,xk) < h2nS(0(xs,m(p + q) + r-s))< h2nS(0(xQ,(m + l)(p + q)).

Consider S(0(xn, n)) for any integer n. There exist integers c and d such that
S(O(x0,n)) — d(xc,xd), where 0 < c < </ < n. If c > max(p.g) an argu-
ment similar to that of (253) shows that d(xc,xd) < hS(0(xe,m)) where e
satisfies 0 < e < max(p.g) and m - e < d - c. Consequently b\0(xn,n))
= d(xc,xd), where c now satisfies 0 < c < max(p,g).

Suppose d > niax(p, g). If g < p, then
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d(xc,xd) < d(xc,xp) + d(xp,xd).

d(xp,xd) = d(fp(xQ),f(xd_q))

< A Tn&x{d(x0,xd_q),d(x0,xp),d(xd_q,xd),d(xQ,xd),d(xd_q,xp)}

< h8(O(x0,d)) < h8(O(x0,n)) . hd(xc,xd).

Therefore d(xc,xd) < d(xc,xp)/(l -A), and for any integer n, 8(0(xQ,n))
< d(xc,xp)/(l - A).

If q >p, then we obtain 8(O(x0,n)) < d(xc,xq)/(l - A). In either case,
8(O(x0,n)) < d(xc,xr)/(l - A), where r = max(p,q).

Therefore {xn} is Cauchy, hence convergent. Call the limit z. We shall first
show that z is a fixed point of fp.

d(fp(z),z) < d(fp(z),f(xn{p+q))) + d(Xn{p+q)+q,z).

dUp{z),f(Xlip+q)) < A max{</(z,xn(;,+?)),í/(z,/'(z)),í/(x„(/,+?),x/l(/)+í)+?),

d(*> Xn(p+q)+q)> d(Xn(p+q)JPb))}>
Taking the limit as n -* oo  in both inequalities we obtain d(fp(z),z)
< hd(z,fp(z)), a contradiction unless fp(z) = z. Similarly we can show that z
is also a fixed point of/'.

Let z and w be two fixed points of fp. Then d(z,w) = d(fp(z),f(w))
< hd(z,w), so that z = w and the fixed point of fp is unique. But fp(f(z))
— f(fp(z)) — f(z) so that z = f(z). Uniqueness follows from the lemma.

For (76H100), (76) appears in [14]. (78) is a special case of (103), which
appears in [1]. We can establish the following.

Theorem 12. LetfE (91) or (94), let B C X withf(B) C B. If there exists
a z E B and a positive integer n = n(z) such thatf"(z) = z, then z is the unique
fixed point of fin B, andfn(x0) -» z for each x0 E B.

Proof. Uniqueness follows from the lemma.
Let r(x0) - mix{d(z,fp(x0)\l < p < n}. For all m > n, m = qn + s,

where q > 1, 0 < s < «. Let x0 £ B, and assume /m(x0) =£ z for each m.
Let/E (91). Then

¿(/m(*o)>*) < Ä maxO/(/(í-,)n+í(x0),z),

d(f(«-^(xQ)J"(z)),d(z,fm(*o))}'
Since/m(x0) # z for any m,

d(fm(xQ),z) < hd(f(*~l)n+i(x0),z) < AMx0) ^0   as   q -> oo.

If/ E (94), then
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d(fm(x0,z) = d(r+s(xn),fn(z))

<,hmax{d(fb-x^(xn),z),

[dU(q-')n+S(Xn),fm(Xn)) + 0]/2,

[d(fi-x^*(xn),r(z)) + d(z,fm(x0))]/2}

= hM(xn,m,z), say.

Note that

d(f^n+s(x0),r(x0))/2 < [d(f^n+'(x0),z) + d(z,r(xn))\/2.

If

M(x0,m,z) = [d(f(q-»"+*(xn),z) + d(z,fm(x0))]/2,

then

d{fm{xQ),z) < d(fb-»n+°(x0),z) < M(xn,m,z),

which leads to the contradiction d(fm(z0),z) < d(fm(x0),z). Therefore
M(xn,m,z) - a'(/(«-1)',+,(^0),z), so that d(fm(x0),z) < A*r(jc0) -» 0 as g
-» oo.

The special case of this lemma for/ G (76) appears in [14].
For definitions (101)—(125) the best result is (103), which appears in [1].

4. Locally contractive mappings. A mapping is called locally contractive if,
in each of the definitions, one adds the restriction that jc and y be close to each
other. For example, for (3) (see [9]) the definition would read: there exists an
e > 0 such that 0 < a"(jc, y) < e implies d(f(x),f(y)) < a*(jc,.y).

Theorem 13. Except possibly for (11), (36), (61), (86), and (111), the concept
of locally contractive is not extendable beyond definition (3) and its counterparts
(28), (53), (78), and (103).

Proof. Reich [25, p. 8] has shown that (4) is not extendable to locally
contractive mappings.

Define /:/?-»• 7? by /(jc) - x + e. Then d(f(x),f(y)) - ¿(jc, y) < e
- d(x,f(x)) = d(y,f(y)), and/ G (6), but has no fixed points.

Now let /(jc) = jc + X, x E R, X = 2e(l - h)/h, for some A satisfying
\ < h < 1. Then d(f(x),f(y)) = d(x,y). We wish to show

d(x,y) < h max{d(x,f(y)),d(y,f(x))} - ¿(oW) + X);
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i.e., (1 - h)d(x,y) < AX. Since d(x,y) < e, it will be sufficient to show that
(1 - A)e < AX. This last inequality holds for the above choice of X. Thus
/ E (12). / also satisfies (13), (14), and (18), but / has no fixed points. An
examination of Theorem 1 shows that the remaining definitions have been
taken care of.

5. Pairs of mappings. A number of definitions exist, in the literature, which
define a contractive type condition between a pair of functions f,g:X-* X.
Applying this principle yields definitions (126H250). For example, (129) (see
[17]) takes the form

(129) There exists a number a, 0 < a < {-, such that for each x,y E X,

d(f(x),g(y)) < o[d(x,f(x)) + d(y,g(y))].

(126) appears in [23], (136) in [5], (140) in [26], (143') in [29], (148) in [34], (182)
in [35], and (182) with c = 0 in [12].

We now list the most general fixed point theorems for each of the classes
(126H150), etc.

Theorem 14. Let f, g E (146), x0 E X. Then fand g have a common unique
fixed point z and (fg)"(x0) -* z and (gf)"(x0) -» z.

Proof. Let xQ E X. Define the sequence {x„} by x2n+x = f(x2n), x2„+2
= g(x2n+x). Assume xn ¥= xn+x for each n.

¿(*2«+i>*2n+2) = ¿(/(*2n)>g(*2*+i))

< h mnx{d(x2n,x2n+x),d(x2n,x2n+x),

d(x2n+l>x2n+Md(x2n>x2n+l) + °D

= hM(x2n,X2n+x).

M(x2n>x2n+i) " d(x2n'x2n+2)/2 leads to the contradiction d(x2n+x,x2n+2)
< hd(x2n+i>x2n+2)-   Therefore   d(x2n+x,x2n+2) < hd(x2n,x2n+x).   Similarly,
d(x2n>x2n+\) < hd(x2n-l>x2n)>    s0    that    d(x2n+l>x2n+2) < h d(x2n-l>x2n)
< ••• < h2"d(xx,x2) &nd d(x2n,x2n+x) < h2"d(xQ,xx).

Let r(x0) = max{í/(x0,x1),í/(x,,x2)}. For any m > n,

m-n-l
d(xm,Xn) =     2     d(xn+k<xn+k + \)

k—0

< ""f h*"+k)r(x0) < h2"r(xQ)(l - A2)"1.
*=0

{x„} is Cauchy, hence convergent. Call the limit z,
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d(f(z),z) < d(f(z),X2n+2) + d(X2n+2,z)

d(f(z),X2„+2) < h max{d(z,x2lt+l),d(z,f(z)),d(x2n+x,x2n+2),

i[d(z,x2tt+2) + d(x2n+l,f(z)]).

Taking the limit as n -» oo we obtain d(f(z),z) < hd(f(z),z), which implies
f(z) = z. Similarly, g(z) — z. Suppose z and w are two fixed points of /and g.
Then

oYz.w) = </(/t»,g(w)) < h max{d(z,w),0,0,{[d(z,w) + d(w,z)]),

and d(z, w) < Miz, w), which implies z =■ w.
Define {^} by>-0 - x0,y2n+x = £?(^)>>,2n+2 =/(^+i)- T*"511 il can be

shown that {yn) is Cauchy, hence convergent.^, -* z by the uniqueness of the
fixed point.

Theorem 15. Letf, g be continuous and satisfy (147). If either {(/g)"(jc0)} or
{(g/)"(jc0)} has a cluster point z, then z is the unique fixed point of fand g, and
(&)"(*<,)•+* or (gf)H(x0)->z.

Proof. For each jc # f(x),

d(f(x),g(f(x))) < max{d(x,f(x)),d(x,f(x)),d(f(x),g(f(x))),

[d(x,g(f(x))) + d(f(x),f(x))]/2).
If the maximum of the right-hand side is d(x,g(f(x)))/2, we are led to the

contradiction d(f(x),g(f(x))) < d(f(x),g(f(x))). Therefore d(f(x),g(f(x)))
< d(x,f(x)). Similarly, jc # g(jc) implies d(f(g(x)),g(x)) < d(x,g(x)). Thus

(259)        d(f(g(f(x))),g(f(x))) < d(f(x),g(f(x))) < d(x,f(x)).
Let z be a cluster point of {(gf)n(x0)). We shall assume that (gf)n(x0)

=£ (gf)n+ (x0) for each n > 0 and that z # f(z), z ¥= g(z), and z # g(f(z)).
If we define K(jc) - d(x,f(x)), then from (259), V(g(f(x))) < K(jc) and, for
jc # z we have strict inequality. By Lemma 1 of [31], g(f(z)) = z.

Suppose/(z) * z. Then d(f(z),z) = ¿(/«.¿(/(z))) < d(z,f(z)), a con-
tradiction. Similarly, g(z) = z. Uniqueness of z is easy.

Assume (g/TCxrj) # z for any «. Then

d{{gf)"(xQ),z)  -  d(g(f(gfr\xn)),f(z))

< max{d(z,f((gf)"-l(x0))), d(z,f(z)\

d(Mgfr](xn)),(gf)"(x0)),
[d{z,(gf)n(Xn)) + d(f((gfrX(Xn)):z]/2),
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or

d((gf)"(x0),z) < max{d(z,f((gf)n-i(x0))),

d(A(gfr\xQ),(gf)n(Xo))},

d(:,f((gfrl(x0))) < max{¿((g/r'(x0),z),

d((gfrl(x0),f((gfrl(x0))),o,

[d((gfr\x0),z)+d(z,f((gfri(xQ)))]/2),

which leads to

d(z,f((gfrl(x0)))

< max{</(z, (g/)"'1 (x0)), d((gf)n-x (x0),/((g/r '(;t0)))}.

Since

d(f((gfr\x0)),(gf)n(x0)) < d((gfrx(x0)f((gfri(x0))),
we have

d(z,(gf)n(xQ)) < m¡ix{d(z,(gf)n-x(xQ)),d((gfrx(xQ),f((gfrl(x0)))}.

Since (gf)ni(xQ) -* z, and /and g are continuous,

d((gf)ni(x0),f((gfnxQ))) -* </(z,/(z)) = 0.
Fix e>0, and pick ny so that ¿Mg/f^X e and d((gf)"J(x0),

/((g/)"7(^o))) < e- Then, for n > n},

d{z,(gf)\x¿)) < max{í/(z,(gA)""2(x0)),í/((g/)',-2(x0),/((g/)',-2(x0))),

d((gfr\x0),f((gfrx(xQ)))}

= max{¿/(z,(g/r2(x0)),í/((g/r2(x0),/((g/r2(x0)))}

<••

< max^z.íg/rxxoíj^ag/r^xouag/r^xo)))} < £.
A similar argument applies when {(/g)"(x0)} has a cluster point.
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Theorem 16. Let f E (148) with the a¡ satisfying (i) of Theorem 10. Let
x0 E X. Then (fg)"(x0) and (gf)n(xn) converge. If, in addition, condition (ii) of
Theorem 10 is satisfied, then f and g have a common unique fixed point z arid
(fg)n(Xn)-*Z,(gf)n(Xn)^Z.

Proof. Define the sequence {jc„} by j:0 G X, x^ = f(X2n), jc^
= g(x2n+x), n > 0. Let bH — d(xn,xn+x) for each n, and assume bn > 0 for
each n.

As in the proof of Theorem 10, we obtain b2n+x < rib^b^ and ¿2fl+2
^ s(b2n+i)b2n+i ' Thus ib2n+\) &n^ ib2n) are monotone decreasing, hence
convergent. Call the limits cx and c2, respectively.

Assume   cx > 0,   and   set   q = r(C|)i(cj).   Then   ¿»^+1 ̂  ci   implies
r(62n+i)J(*2n+i) < ? for a11 "' and 62n+i < i*2n-i < * * * < i"*! ""♦ 0- Simi-
larly, c2 =* 0.

The same argument as that of Theorem 4 shows that {jc„} is Cauchy, hence
convergent. Call the limit z. Similarly {yn) converges, where y0 = -*o» >*2«-t-i
= 8(y2n)>y2n+2 =/(>Vrl)> " > °-

If (ii) is satisfied, then, as in (251), assuming jc„ =¿ z for any n,
d(f(z),x2n+2)

< (") + <*3)d(z,x2n+2) + («2 + «4V(-,c2/l-ri'-t2>.+2) + ajd(z,x2n+x)
1 - ax - a4

Taking the limit as n -» oo yields z = f(z). Similarly, d(x2n+x,g(z)) -* 0 as
« -* oo, so that z = g(z).

Suppose z = f(z), w — g(w), z # w. Then, from (148), d(z,w) < (a3 + a4
+ ajMzitv) < aXz.w), a contradiction.

Therefore / and g have the same fixed points. Suppose / has two distinct
fixed points z and w. Then d(z,w) = ¿(/(zJ.gOv)) < (a3 + a4 + a5)d(z,w)
< d(z, w), a contradiction.

A similar argument applies to {yn).
Theorem 16 is an improvement over [34, Theorem 2].

Theorem 17. Letf, g G (171). Then f and g have a common fixed point z and
Upgq)n(xQ) -> z, (gqfp)"(x0) -* zfor each x0 E X.

Theorem 18. Let f, g E (172), /, g continuous. If z is a cluster point of
{(fPgq)"(xo)} or {(gqfp)n(xr¡)}for some x0 E X, then z is the unique fixed point
off and g, and (fpgq)"(xQ) -* z or (gqfp)"(x0) - z.

Theorem 19. Let f,gE (173), with the a¡ satisfying Theorem 10. Then
(fpgq)"(x0) and (gqfp)"(x0) converge. If, in addition, condition (ii) of Theorem
10 is satisfied, then fand g have a common unique fixed point z and(fpgq)"(x0)
-**,(*W(*o)-*-
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These three theorems are proved by replacing/by/', g by gq in Theorems
14-16.

6. Sequences of mappings. There are three types of theorems for sequences
of mappings. The first assumes that each pair/, fj satisfies the same contractive
condition, and concludes that {/,} has a common fixed point. The second
assumes that each fa satisfies the same contractive condition and that {/,}
tends pointwise to a limit function/. The conclusion is that/has a fixed point
z which is the limit of each of the fixed points z„ of/,. The third type assumes
that each fn has a fixed point z„, and that {/,} converges uniformly to a
function / which satisfies a particular contractive condition. With z the fixed
point of/, the conclusion is that zn -» z.

Theorem 20. Let 0 < A < 1. Let {fn} be a sequence of functions satisfying

d{fl'(x),ff(y)) < hm&x{d(x,y),d(x,fip(x)),d(y,f/(y)),

[d(x,f/(y)) + d(y,fip(x))]/2)

for each x,yEX, and some fixed integer p. Then {/,} has a unique common
fixed point z.

Proof. Set S = f¡p,T = ff. Then S and F satisfy Theorem 14, so that S
and F have a unique common fixed point z. Since each pair of functions/', ff
has a unique common fixed point, the sequence {fp} has this property. But z
a fixed point of fp implies z is a fixed point of fn, so that z is the unique
common fixed point.

Theorem 1 of [6] is a special case of Theorem 20. Theorem 20 shows that
the hypotheses of continuity and pairwise commuting of / and / can be
omitted from Theorem 1 of [6]. Theorem 1 of [22] and Theorem 1 of [16] are
also special cases of Theorem 20.

Theorem 21. Let a¡(t) be decreasing functions, a¡: (0, oo) -» [0,1) satisfying
2/_ i a,(0 < 1 for each t > 0, and condition (i) and (ii) of Theorem 10. Let {/,}
be a sequence of functions satisfying

dUiP(x),f/(y)) < axd(x,fp(x)) + a2d(y,f/(})) + a3d(x,f/(y))

+a4d(y,fip(x)) + asd(x,y)

for each pair x, y E X, x # y, where a¡ — a¡(d(x,y)). Then {/,} has a unique
common fixed point z.

Set S = f¡p, T = f/. Then S and F satisfy Theorem 16. The rest of the
argument is the same as that for Theorem 20.

Theorem 4 of [25] is a special case of Theorem 21.
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Theorem 22. Let [fn)be a sequence of functions satisfying (23).,. each n,for
the same functions a¡(t), and such that {/,} tends pointwise to a function f. Ther
fhas a unique fixed point z and zn -* z, where zn are the fixed points of fn.

Proof. Since/ G (23), for each pair jc, y G X, x ^ y,

d(Ux),fn(y)) < «xd(x,fn(x)) + a2d(y,fn(y)) + a3d(x,fn(y))

+<*4d(y,fn(x)) + a5d(x,y),

where a¡ = a¡(d(x,y)). Taking the limit as n -» oo shows that/ G (23). From
Theorem4,/has a unique fixed point z. It remains to show that zn -* z.

zH¥>z      implies      d(zn,z) = d(jn(zn),f(z)) < (a3 + a4 + as)d(zn,z)
<.d(zn,z), a contradiction.

Theorem 3 of [15] and Theoicm 6 of [24] are special cases of Theorem 22.

Theorem 23. Let {/,} be a sequence of functions satisfying (24) for each n and
the same h, such that {fn} tends pointwise to a function f. Then fhas a unique fixed
point z, and zn -* z, where the z„ are fixed points of fn.

Proof. For each x, y EX, and each n,

d(fn(x),fn(y))< h max{d(x,y),d(x,fn(x)),d(y,fn(y)),

d(x,fn(y)),d(y,f„(x))).

Taking the limit as n -* oo, and using the fact that d is continuous it follows
that/ G (24), and hence has a unique fixed point. Call it z.

d(z„,z) = d(fn(zn),f(z)) < d(f„(zn),f„(z)) + d(fn(z),f(z)).

But d(fn(z„),fn(z)) < h max{d(zn,z),d(z,f„(z))}. Therefore

d(zn,z) < max{(l - h)~\ 1 + h)d(z,fn(z)) -» 0   as n -» co.

Theorem 24 ([15, Theorem 4]). Let {/,} be a sequence of self-mappings ofX
with fixed points zn,n~ 1, 2, ..., and such that fn-* f uniformly, where
f: X -» X and satisfies (23) with fixed point z. Then zn -* z.

[24, Theorem 4] is a special case of Theorem 24.

Theorem 25. Let {/,} be a sequence of self-mappings of X with fixed points
zn,n= 1,2,..., such thatf, -* f uniformly, where f: X -* X andf satisfies (24)
with fixed point z. Then zn -* z.

Proof. Fix e > 0. From the uniform convergence of {/,}, there exists an
integer JV such that, for all n > N, d(fn(x),f(x)) < t/M for all x E X, where
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M - max{l + A,(l - A)"1}.       d(zn,z) = d(fn(zn),f(z)) < d(fn(zn),f(zn))
+ d(f(zn),f(z)). Since/ E (24),

d(f(zn),m) < h mzx{d(zn,f(zn)),d(zn,z)}.

For each n such that the maximum equals d(zn,f(zn)), it follows that
d(z„,z) < (1 + h)d(zn,f(zn)). For each n such that thé maximum equals
d(zn,z), it follows that ¿(z„,z) < d(zn,f(zn))/(l - A). In either case, n > N
implies d(zn,z) < e.

[5, Theorem 7], [16, Theorem 2], [20, Theorem 2], and [32, Theorem 3] are
special cases of both Theorems 24 and 25.

7. Some extensions. In certain instances it is possible to extend some of the
contractive definitions to allow equality. For example, Kannan [17] extended
(4) to allow a = \. With the added hypotheses that/be continuous and X be
compact, he showed that/has a fixed point. Reich [27] and Soardi [28] showed
that the assumption of continuity is superfluous. The most general theorem of
this type is the following, which includes nonexpansive mappings as a special
case.

Theorem 27. Let X be a uniformly convex Banach space, K a nonempty,
closed, convex subset ofX such thatf: K -* K andf E (21) with X = 1. If there
exists a point x E Kwith bounded orbit, andifsupxyeKs(x,y) < 1, then f has
a fixed point.

Proof. Let 0(x) = {x,f(x),... ,/"(*),...}.
We shall first show that

S(0(x)) = sup d(x,f"(x)) = g(x),
n

say. For each n > 0,

d(fn(x),r+\x)) < qd(r\x\r(x)) + ̂ cr-ww)
+sd(f"(x),r+i(x)) + t[d(f"-l(x),r+\x)) + o],

so that

d(f(x),f"+x(x)) <(q + r + 0(1 - í - t)~Xd(rx (x),f"(x))

< d(f"-\x),f"(x)),
provided s\xpxyeK(s + t) < 1.

If sup{i(jc,y) + r(x,>>)|x,y E X) » 1, then one can find xn,yn E X for
each n E N such that s(x„,yn) + t(xn,yn) -* 1 as n -*■ oo. Thus r(x„,y„)
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+?(W«) + '(*■»#) -* °>so that '(W„) -» °- But then <*«•*) - 1 -* 0, a
contradiction.

By induction, one can show that d(f(x),f+x(x)) < g(jc), and then that
d(fn(x),fm(x)) < g(*) for each n> 0, each m > n.

Define C0(jc) - 0(x), Cn(x) = co/(Cn_,(x)), n > 0.
We wish to show that, for each n > 0, 5(Cn(x) U Cn+,(x)) < g(jc). The

proof will be by induction. The proof for n = 0 differs little from that for
general n, and will therefore be omitted. Assume the induction hypothesis.

Let z G Cn(x),y G C„(jc) U Cn+X(x). Fix e > 0. If y G CJjc), then there
exist y,,^,- • • •,yN G C„_,(jc) and X,,..., XN, X,. > 0, 2,í| \ - 1 such
that 0X2^! X,/(>>.),.y)<e.

</(*/(*)) < « + ¿(.2 \f(y,)J(')) < e + rf(.2 VU). J, V«)
< e +  m« d(J(y¡),ñ')) < * + d(f(yj),f(z))

< e + grfty.z) + rd(yj,f(yj)) + sd(z,f(z))

+t[d(yj,f(z)) + d(z,f(yj))],
where g, r, j, / are evaluated at (yj,z).

d(y,f(z)) < e + (q + r + t)g(x)

+ s   sup   d(y,f(z)) + t   sup   tfWiz)).
yeCn(x) yecn(x)

The right-hand side of the above inequality is now independent of y so that
we have, since e is arbitrary,

sup   d(y,f(z)) <(q + r + t)(l - s - /)_1g(x) < g(x).
y£C„(x)

IfyE Cn+X(x), then for each e > 0 there exist yx, ...,yN E Cn(x), X, > 0,
2,-i \ - 1 such that rfCSi, VOiXjy) < «.

d(y,f(z)) < e + ¿( 2 X,./(.y,.),/(z))

< e + grfijj.z) + rd(yj,f(yj)) + sd(z,f(z))

+t[d(yj,f(z)) + d(z,f(yj))].

d(z,f(y,)) < g(x) by what we have just proved. Thus

d(y,f(z)) < e + (q + r + t)g(x) + (s + t)    sup     d(y,f(z)).
j>ec„+1to

Since e is arbitrary,
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sup     d(y,f(z)) <(q + r + t)(l - s - t)~Xg(x) < g(x).
>ec„+1(*)

Therefore
SUP d(y,f(z)) < g(x).

yeC„(x)UC„+l(x)
zec„W

Now let z E cof(Cn(x)),y E Cn(x) U Cn+X(x). For each e > 0 there exist
zx,..., zN E Cn+X(x) and scalars X, > 0, 2/11 X, = 1 such that
¿(S/!, X¿z(.,z)<e. Then

d(y,z) < e + </( 2 \*,,n < t + d(zj,y) < e + g(x).

Since e is arbitrary, the result is proved.
Let x0 E K be a point with bounded orbit. As in the proof of Theorem i oí

[28], it is possible to construct a Cauchy sequence {xn}. Call the limit z. It then
follows from [28] that/(x„) -» z,

¿(z,/(z)) < d(z,f(x„)) + d(f(xn),f(z))

< ¿(z,/(x„)) + qd(xn,z) + rd(xn,f(xn)) + sd(z,f(z))

+t[d(xn,f(z)) + d(z,f(x„))].

Taking limn we get d(z,f(z)) < (s + t)d(z,f(z)), which implies z = f(z).
Theorem 27, with r = s, appears in [19]. With t = 0,r — s,q,r,s constants,

Theorem 27 reduces to Theorem 1 of [28]. For q, r, s, t constants, r = s, we
get a generalization of Theorem 2 of [11], demonstrating that the hypothesis
in [11] of continuity of/is superfluous. Also the boundedness of K can be
weakened to having a point in K with bounded orbit.

A companion theorem is the following.

Theorem 28. Let X be a Banach space, K weakly compact, fa continuous self-
mapping of K satisfying (21) with X = 1, and

sup  q(x,y) < 1,        sup s(x,y) < 1.
x,yEK x,yeK

Then f has a fixed point.

The proof of Theorem 28 parallels that of Theorem 2 in [28].

Theorem 29. Let X be a strictly convex space, f: K -* K,f E (19') vw'/A
X = 1, and inix yeKa(x,y) > 0. Then the set of fixed points offis closed and
convex.

Proof. Let U be the set of fixed points of/in K, {xn} a Cauchy sequence
in U, with limit x. For e > 0 there exists an integer «0 such that n > nQ implies
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d(x,f(x)) < e + d(f(xn),f(x))

< e + ad(xn,x) + b[d(xn,f(xn)) + d(x,f(x))]

+c[d(xn,f(x)) + d(x,f(xn))]

< 2e + (b + c)d(x,f(x)).

Therefore (1 - b - c)d(x,f(x)) < 2e and x = /(x).
Let x,, x2 E U, x = (x, + x2)/2.

d(x,f(x)) < *[</(/(*,),/(*)) + d(f(x2),f(x))]

< ¿M(x„x) + W*l./(*l)) + d(x,f(x))}
+cx{d(xx,f(x)) + d(x,f(xx))) -• a2d(x2,x)

+b2{d(x2,f(x2))ld(x,f(x))}

+c2{d(x2,f(x)) + d(x,f(x2))}].

Therefore

d(x,f(x))
¿ (fli + cx)d(x,xx) + c,</(xlt/(x)) + (a2 + c2)d(x,x2) + c2d(x2,f(x))
s 2-bx-b2

It can be shown that d(x¡,f(x)) < d(xx,x2)/2, so that d(x,f(x)) <
</(x,,x2)/2.

But i/(x1,x2) < i/(x,,/(x)) + ¿(x2,/(*)) < ¿/(x,,x2). Since A' is strictly
convex, x, - f(x), hence /(x) must lie on the line segment joining x, and x2.
The inequalities d(x¡,f(x)) < d(xx,x2)/2 imply that/(x) is the midpoint.
Therefore x = f(x).

Theorem 3 of [28] is the special case of this theorem with c = 0.
Replacing / by /' in Theorems 26-28 yields corresponding results for the

mappings (46) and (34).
A theorem similar to Theorem 26, for a pair of continuous mappings

satisfying (129) for a = \, appears in [30].

8. Conclusion. We conclude this paper by indicating, in the form of open
questions, directions for further work.

1. If/ E (25), is continuous on X, and {/"(x0)} has a cluster point for some
x0 E X, does / possess a fixed point?

2. If the answer to 1 is no, then what additional hypotheses on / or X are
needed in (25) to guarantee the existence of a fixed point?

3. If/satisfies any of the definitions (95)-(100), does/have a fixed point?
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4. If/satisfies any of the definitions (104)-(125), does/have a fixed point?
5. Is the concept of locally contractive extendable to (11), (36), (61), (86), or

(111)?
6. What are the answers to 1-4 for the corresponding definitions for a pair

of mappings /, g? a sequence of mappings?
Added in proof. 1. L. Khazanchi [Math. Japon. 19 (1974), 283-289] has

proved a fixed point theorem for functions satisfying (89) with 2(a + b) + c
< 1. The author, in a paper submitted for publication, has extended this result
to functions satisfying (94).

2. Preprints of this paper were circulated prior to publication. Dr. M. Maiti
has made the observation that, with respect to the definitions mentioned in
Theorem 2,/need not be continuous over all of X. It is sufficient to require/,
and some iterate off, to be continuous at a cluster point of {/"(jc0)}.
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