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An algorithm for use with several meshless schemes is presented based on a local ex-

tremum diminishing property. The scheme is applied to the Euler equations in two dimen-

sions. The algorithm is suitable for use with many meshless schemes, three of which are

detailed here. First, a method based on Taylor series expansion and least squares is high-

lighted. Next, a similar least squares method is used, but using polynomial basis functions

with fixed Gaussian weighting. A third method makes use of the Hardy multiquadric radial

basis functions on a local cloud of points. Results indicate that all three methods perform

essentially equally well for flows without shocks. For flows with shocks, the least squares

methods perform significantly better than the radial basis method, which displays discrep-

ancies in shock location and magnitude. All methods are compared to an established finite

volume method for validation purposes.

I. Introduction

A
s computer power increases, researchers tackle problems of increasing complexity. A major bottleneck
in computing flow over complex geometry is the ability to generate high quality meshes in a timely

manner. Such difficulties have prompted great interest recently in meshless schemes. Meshless schemes
differ from tradtional finite volume, finite difference, and finite element methods in that they do not require
rigid domain discretization. Instead, meshless methods rely only on clouds of points, either local or global,
upon which partial differential equations may be discretized. Full relief of mesh generation difficulties has
not yet been shown by using a meshless method, although the work of Löhner,1, 2 in which efficient point
generation schemes were developed, appears promising.

Two of the most popular classes of meshless schemes that have been applied to fluid simulation are based
on least squares and radial basis functions. One of the earliest meshless works is that of Batina3 in which he
used least squares to compute inviscid and viscous flows in two and three dimensions. A much more extensive
algorithm was soon developed by Oñate, Löhner, and others,4–6 called the finite point method (FPM). The
FPM method used a polynomial basis, echoing themes from the classical finite element method. Least
squares methods based on Taylor series expansions have been used extensively by Deshpande and others7–15

in the context of kinetic schemes for the Euler equations. They have developed extensive capabilities with
the least squares kinetic upwind method (LSKUM). In a more traditional Riemann solver approach, Sridar
and Balakrishnan16, 17 have developed an upwind scheme based on least squares, highlighting the order of
accuracy of their scheme. Both the polynomial and Taylor series approaches have become quite popular to
compute boundary conditions for non-body-conforming meshes.18–23 Katz and Jameson24 have also used a
meshless method as a means of grid communication for overset grid systems.

While radial basis functions appear much more sparsely in the literature for compressible flow compu-
tations, they have found widespread use for incompressible flows and elliptic problems. Kansa25, 26 was the
first to apply radial basis methods to computational fluid dynamics. Subsequently, Divo and Kassab27, 28

used radial basis methods to compute natural convection and heat transfer problems. Chinchapatnam29 has
computed steady incompressible flows with a radial method. Power and Barraco30 compared symmetric and
unsymmetric variants of radial basis methods. One of the few compressible flow applications of radial basis
functions was that of Shu,31 in which he computed flow in converging channels and shock tubes.
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While many meshless schemes for compressible flow have been proposed, a comprehensive comparison
of major algorithms appears to be lacking in the literature. This work serves as a beginning for such a
comparison. An important aspect of the present work is to formulate a flexible framework for various
meshless schemes, which we use to solve the Euler equations. In this manner, valid comparisons between
meshless methods may be made. We also compare the meshless schemes with traditional methods. The
outline proceeds as follows: in section II, we formulate a common framework for meshless schemes based
on a local extremum diminishing property. In section III, we present three different meshless procedures to
compute partial derivatives on a cloud of points. In section IV, we compare the results of the three schemes
for subsonic and transonic flows. Finally, in section V, we draw certain conclusion from the results obtained
thus far.

II. An LED-based Algorithm for Meshless Schemes

A convenient basis for the construction of non-oscillatory schemes for gas dynamics is the Local Extremum
Diminishing (LED) prinicple32 for discrete approximations to conservation laws. Given a two-dimensional
scalar conservation law of the form

∂v

∂t
+

∂f(v)

∂x
+

∂g(v)

∂y
= 0, (1)

nearly any spatial discretization at a node j may be cast into the following form:

∂vj

∂t
=

∑

k

cjkvk, (2)

where the summation is over the nearest neighbors, k. A consistent approximation which meets the minimal
requirement to approximate a constant function exactly should possess the property that

∑

k

cjk = 0. (3)

It follows with no loss of generality, that Equation 2 may be written as

∂vj

∂t
=

∑

k 6=j

cjk(vk − vj). (4)

By constructing discrete schemes which ensure the coefficients, cjk, are positive, a local minimum cannot
decrease and a local maximum cannot increase. This is the essential principle of LED schemes. The LED
principle assures positivity and leads to the class of TVD schmes in one dimension proposed by Harten.33

The requirement to produce positive coefficients has led to a variety of schemes with additive artificial
diffusion terms. Jameson32 showed that a variety of popular diffusion schemes including JST,34 scalar, and
matrix schemes satisfy the LED criterion. The majority of LED schemes to date have been constructed for
traditional mesh-based discretizations including finite volume, finite element, and finite difference.

In this work we show that the LED principle is flexible and general enough to extend to many meshless
schemes. Given a global cloud of points conforming to some aerodynamic shape of interest, as shown in
Figure 1(a), one may define for each point a set of nearest neighbors. These n nearest neighbors form a
local cloud of points and constitute the connectivity for the meshless discretization, as shown in Figure 1(b).
Suppose for now that a meshless discretization procedure may be used to approximate partial derivatives of
a function, φ = φ(x, y), at (x0, y0) as

∂φ0

∂x
≈

n
∑

j=0

a0jφj ,
∂φ0

∂y
≈

n
∑

j=0

b0jφj , (5)

where a0j and b0j are metric weights, which only depend on the mesh. Again, suppose that

n
∑

j=0

a0j = 0,

n
∑

j=0

b0j = 0. (6)
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Figure 1. Point clouds for meshless schemes.

This zero sum property is actually a result of all partition of unity schemes, elaborated by Duarte and
Oden.35 All the meshless schemes in this work may be considered partition of unity schemes. With no loss
of generality, Equation 5 may be expressed as

∂φ0

∂x
≈

n
∑

j=1

a0j∆φ0j ,
∂φ0

∂y
≈

n
∑

j=1

b0j∆φ0j , (7)

where ∆φ0j = φj − φ0.
The meshless method above may be used to discretize Equation 1, resulting in

∂v0

∂t
+

n
∑

j=1

(a0j∆f0j + b0j∆g0j) =
∂v0

∂t
+

n
∑

j=1

∆F0j = 0, (8)

where F = af + bg is a directed flux along the metric weight vector (a, b). Assuming the existence of a
relation ∆F = α∆v, Equation 8 may be recast as

∂v0

∂t
+

n
∑

j=1

α0j∆v0j = 0, (9)

which is of the form of Equation 4.
The LED criterion may be satisfied by adding an artificial diffusion term to the right hand side of Equation

9 of the form

n
∑

j=1

d0j , (10)

where

dij = βij∆vij , βij ≥ |αij |. (11)

Schemes of this sort are far too diffusive and may be made more accurate by the addition of anti-diffusive
terms. Anti-diffusion may be conveniently added via the reconstruction of left and right states at the
midpoint of the line connecting points i and j. A proven reconstruction method is the symmetric limited
positive (SLIP) scheme of Jameson,32 which leads to high order accuracy in smooth regions and reverts
to first order accuracy in the vicinity of discontinuities to avoid oscillations. While the SLIP scheme was
originally designed for structured grids, it has also proven effective for unstructured meshes. Here the SLIP
scheme is extended to meshless methods.
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Figure 2. Aspects of the meshless discretization.

The use of left and right reconstructed states replaces dij with dLR = βLR∆vLR, where

vL = vi +
1

2
s(∆v+, ∆v−)∆v, vR = vj −

1

2
s(∆v+, ∆v−)∆v. (12)

Here, ∆v = ∆v++∆v−

2
is the average of the change in the solution on either side of the edge connecting

points i and j, as shown in Figure 2(a). First, points I and J , the points in the local clouds of i and j

which are most closely aligned with the edge in question are identified. Estimates with ∆v+ = vJ − vj and
∆v− = vi − vI may be used. However an increase in accuracy is observed by making corrections of the form

∆v+ = vJ − vj + lj · ∇vJ , ∆v− = vi − vI − li · ∇vI , (13)

where the gradients of v are computed using the same meshless scheme of Equation 5 and li and lj are the
position vectors from I and J to the psuedo-points past the edge.

The ∆v estimates obtained in this way lead to sharp capturing of discontinuities, turning on the limiter,

s(u, v) = 1 −

∣

∣

∣

∣

u − v

|u| + |v|

∣

∣

∣

∣

q

, (14)

in the presence of shocks. Here q is a positive integer, usually taken to be q = 3. With the limiter turned on,
the left and right states revert back to the i and j states, maintaining the LED quality at a local extremum.
The key is the accurate detection of local extrema and shocks, which the above procedure performs quite
well in practice.

The LED principle may be enforced at domain boundaries by using the same interior scheme for boundary
points. At domain boundaries, interior points are reflected across tangent boundary planes to form ghost
points, as shown in Figure 2(b). The ghost points serve two purposes. First, they balance the local clouds of
the boundary points, improving the condition of meshless discretization procedures. Second, solution values
at ghost points may be set consistent with any number of physical boundary conditions to obtain a solution.

The above method for discretizing interior and boundary points completes the meshless spatial discretiza-
tion for a scalar conservation law. Integration in time may be performed via any number of well established
ODE methods. In this work, we acheive steady-state solutions using the modified Runge-Kutta scheme of
Mavriplis, Jameson, and Martinelli.36 In addition local time-stepping and the multicloud procedure of Katz
and Jameson37 has been used to accelerate convergence.

This work highlights the application of the meshless procedure to the Euler equations:

∂w

∂t
+

∂f

∂x
+

∂g

∂y
= 0, (15)

where

w =











ρ

ρu

ρv

ρE











, f =











ρu

ρu2 + P

ρuv

ρuH











, g =











ρv

ρvu

ρv2 + P

ρvH











,
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Figure 3. Two meshless approaches based on least squares.

and the equation of state and enthalpy definition are

E =
P

(γ − 1)ρ
+

1

2
(u2 + v2), H = E +

P

ρ
.

In the above notation, ρ, u, v, P , E, and H are the density, velocity components, pressure, total energy, and
total enthalpy.

Since the Euler equations are a system of conservation laws, it is necessary to generalize the scalar
diffusion of Equation 11 to vectors. Many diffusion schemes have been proposed for the Euler equations
including scalar, matrix, and mixed schemes. Here, the convective upwind split pressure (CUSP) scheme
of Jameson38 is used. The CUSP scheme is highly accurate, obtaining one-point shocks in one dimension,
while minimizing computational cost. The CUSP scheme may be cast as

dLR = α∗c(wR − wL) + β(FR − FL). (16)

Details of computing the coefficients α∗ and β may be found in the work on artificial diffusion schemes
by Jameson.38 The CUSP scheme may be formulated to produce a steady state which admits constant
stagnation enthalpy, a defining characteristic of steady inviscid flow. Moreover, enthalpy damping34 may be
used in such a scheme to accelerate convergence to steady state.

No slip boundary conditions were prescribed at the ghost nodes by a simple reflection of the velocity at the
corresponding field node. Pressure and density at ghost nodes were extracted from the local boundary node.
At the far field, ghost nodes were set via one-dimensional Riemann invariants, while maintaining constant
stagnation enthalpy.39 Extrapolation from the interior was facilitated by using the reflected interior point.

III. Three approaches to Meshless Discretization

The meshless scheme described in section II made use of certain metric weights to obtain the partial
derivative estimates of Equation 5. This section details three methods to obtain these weights. The first is a
least squares method based on Taylor series expansions. The second method is also a least squares method,
but based on polynomial basis functions. The third method is a local radial basis collocation method. It
will be shown that all three methods may be used to estimate partial derivatives and possess the zero sum
property of Equation 6.

III.A. Taylor Series Least Squares Method

The Taylor series least squares method (TLS) involves expanding a function from the cloud center, (x0, y0),
to the jth member of its local cloud. In the TLS, any number of terms may be retained in the Taylor series,
with increasing matrix size as the number of retained terms increases. Truncating after the linear terms, we
obtain

∆φ0j = ∆x0j
∂φ0

∂x
+ ∆y0j

∂φ0

∂y
, j = 1, . . . , n (17)

The weighted least squares problem to obtain the unknown partial derivatives may be expressed as40

minimize

n
∑

j=1

w0j

[

∆φ0j − ∆x0j
∂φ0

∂x
− ∆y0j

∂φ0

∂y

]2

, wrt
∂φ0

∂x
,
∂φ0

∂y
(18)
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A simple inverse distance weighting function of the following form may be used to improve accuracy and
conditioning:41

w0j =
1

(∆x2
0j + ∆y2

0j)
p/2

, p ≥ 0. (19)

In this work, a value of p = 1 was used. By constraining n > 2 for a two-dimensional linear fit, a non-square
system of equations arising from Equation 18 results. In practice, the normal equations have been used to
solve the least squares problem, which leads to simple explicit formulas for the derivative weight coefficients:

∂φ0

∂x
≈

n
∑

j=1

a0j∆φ0j , a0j =
w0j∆x0j

∑

w∆y2 − w0j∆y0j

∑

w∆x∆y
∑

w∆x2
∑

w∆y2 − (
∑

w∆x∆y)
2

(20)

∂φ0

∂y
≈

n
∑

j=1

b0j∆φ0j , b0j =
w0j∆y0j

∑

w∆x2 − w0j∆x0j

∑

w∆x∆y
∑

w∆x2
∑

w∆y2 − (
∑

w∆x∆y)
2

, (21)

Here, the summations are all j = 1, . . . , n.
The TLS weights are the cheapest computationally to obtain of the three methods described here. Only

the inverse of a 2x2 matrix is needed, which is trivially computed. It can be seen from Equations 20-21 that
the TLS method does not require the use of the coefficients at the cloud center, (a00, b00). This is a result
of the fact that the approximation passes directly through the node at the cloud center, as shown in Figure
3(a). Therefore, we may set these weights to obtain the zero sum property of the form of Equation 6 if we
like. This is done by setting

a00 = −

n
∑

j=1

a0j , b00 = −

n
∑

j=1

b0j. (22)

III.B. Polynomial Basis Least Squares Method

The polynomial basis least squares method (PLS) also uses least squares to obtain derivative weights, but
makes use of polynomial basis functions instead of a Taylor series expansion. While the formulation of the
PLS and TLS methods are conceptually different, they result in very similar approximations. The TLS
approach solves directly for the partial derivatives, while the PLS approach fits a function to discrete data,
which is then differentiated to compute partial derivatives. The PLS method is easily visualized in one
dimension, as shown in Figure 3(b). Note that the computed polynomial is not required to pass through the
function values at the nodes, including the cloud center at node 0. This is a subtle difference from the TLS
approach.

The PLS method begins by selecting a polynomial basis, which determines the order of accuracy of the
method. Here, a basis up to linear terms in two dimensions is used. The polynomial basis is then used to
generate an approximate solution, φ̂(x, y), over a local cloud of points:

φ̂(x, y) = α1 + α2x + α3y. (23)

It is helpful to define a local origin at (x0, y0) = (0, 0). The weighted least squares problem we seek to solve
is

minimize

n
∑

j=1

w0j [φj − α1 − α2xj − α3yj]
2

wrt α1, α2, α3. (24)

While many weighting schemes have been used,4 here a fixed weighting based on a normalized Gaussian
function is used:

w0j =
e−(

rj

c )
2

− e−( rm
c )2

1 − e−( rm
c )2

. (25)

Here, rj is the Euclidean distance of point j from the local origin, rm = (1 + ǫ)rmax is a multiple of the
maximum nodal distance in the cloud, and c = κrm. In practice, ǫ = 1 and κ = 1

2
have been used.
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Figure 4. Multiquadric radial basis function.

Unlike the solution to the TLS least squares problem, the solution to the PLS least squares problem is
tedious to write explicitly since it involves the inversion of a 3x3 matrix. However, it may be solved quite
easily using Cramer’s rule. The derivatives for which we seek are obtained easily by noting that

∂φ0

∂x
= α2,

∂φ0

∂y
= α3, (26)

and may be cast into the form of Equation 5. Oñate4 showed that the approximation, φ̂(x, y), can represent
all the functions in the chosen polynomial basis exactly. This implies that for constant φ,

∂φ0

∂x
= φ0

n
∑

j=1

a0j = 0.

Since φ0 is arbitrary, this implies that the zero sum property of Equation 6 is satisfied. The same applies to
the coefficients b0j .

III.C. Radial Basis Function Collocation Method

Both the TLS and PLS methods rely on least squares to obtain derivative weights, but the Radial Basis
Function (RBF) method does not. Instead, it seeks to fit a function which passes through all points in the
local cloud. Many RBF methods attempt to fit the function through a single global cloud, but this results in
a very large, non-sparse matrix for CFD problems with large numbers of unknowns. This work utilizes the
RBF method on local clouds of points. While there are many types of radial basis functions, multiquadric
functions are used here. The multiquadric function centered at node i may be expressed as

θi(x, y) =
√

(x − xi)2 + (y − yi)2 + c2, (27)

where c is a free parameter. Unfortunately, there exists no analysis to guide in the selection of c. Usually it
is empirically determined based on accuracy and convergence considerations. Surface and contour plots of
the multiquadric function of Equation 27 are shown in Figure 4.

The radial basis approximating function, φ̂(x, y), takes the form

φ̂(x, y) = tT (x, y)λ + pT (x, y)α, (28)

where t and p are the vectors of radial basis functions and optionally appended polynomials respectively:

tT (x, y) =
[

θ0(x, y) θ1(x, y) · · · θn(x, y)
]

,

pT (x, y) =
[

p1(x, y) p2(x, y) · · · pm(x, y)
]

.
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The appended polynomials are necessary in some cases to ensure a non-singular approximation, and improve
consistency. For a partition of unity scheme with the zero-sum property, a polynomial of at least degree 0
must be added. However, Schaback and Wendlend42 showed at least a linear polynomial should be added to
the multiquadric approximation to ensure an invertible system.

The unknown weights, λ and α, may be obtained by invoking the following n + 1 equations and m

orthogonality constraints:

φ̂(xi, yi) = φi, i = 0, . . . , n,

n
∑

i=1

λipj(xi, yi) = 0, j = 1, . . . , m. (29)

The equations in 29 may be recast as

[

T PT

P 0

]{

λ

α

}

=

{

φ

0

}

, (30)

where the submatrices, T and P , are defined as

T T =
[

t(x0, y0) t(x1, y1) · · · t(xn, yn)
]

,

P =
[

p(x0, y0) p(x1, y1) · · · p(xn, yn)
]

,

and the vector of nodal values, φ, is defined as

φT =
[

φ0 φ1 · · · φn

]

.

Writing the inverse of the symmetric matrix in Equation 30 as

[

T PT

P 0

]−1

=

[

A BT

B C

]

, (31)

the approximation of Equation 28 becomes

φ̂(x, y) =
(

tT (x, y)A + pT (x, y)B
)

φ. (32)

Once again, since we are interested in derivatives for PDE discretization, we seek the derivatives of φ̂,
which may be obtained from

∂φ̂(x0, y0)

∂x
=

(

∂tT (x0, y0)

∂x
A +

∂pT (x0, y0)

∂x
B

)

φ = aT φ,

∂φ̂(x0, y0)

∂y
=

(

∂tT (x0, y0)

∂y
A +

∂pT (x0, y0)

∂y
B

)

φ = bT φ,

where a and b are the vectors of the derivative metric terms for which we seek.
Thus, we arrive at the same form for the derivatives as the PLS and TLS methods. Because all methods

fit into the same convenient summation form for derivatives, we can easily compare the performance the
schemes.

IV. Comparison of Meshless Schemes for Subsonic and Transonic Flow

All three meshless schemes of section III were implemented into the common algorithm of section II.
The meshless schemes were compared with an inviscid structured finite volume code based on the CUSP
algorithm of Jameson,32, 38 denoted “FV” in the following tables. The finite volume code uses a conservative
approach of numerical fluxes, taking on the form,

Vij
dwij

dt
+ hi+ 1

2
,j − hi− 1

2
,j + hi,j+ 1

2
− hi,j− 1

2
= 0, (33)
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where

hi+ 1
2
,j =

1

2
(fi,j + fi+1,j) −

1

2
(di+ 1

2
,j) (34)

is the numerical flux. The numerical flux, h, is based on the average of the directed Euler fluxes, f ,
augmented with a diffusive flux, d, which is based on the CUSP formulation. Similar procedures were used
for the finite volume algorithm to reach steady state, including explicit Runge-Kutta local time stepping,
implicit residual smoothing, enthalpy damping, and multigrid. Similar point densities for both the finite
volume and meshless schemes were used, with 160 points on the surface of airfoils, and roughly 6400 nodes
in the interior of the domain. The point clouds were extracted from unstructured meshes obtained with the
Delaundo43 package.

Figures 5-6 show meshless pressure curves overplotted with the finite volume results for shock-free so-
lutions. All methods perform essentially equally well, computing lift and drag closely to the finite volume
results, as shown in Tables 2-3. Figure 5 shows flow over a NACA 0012 at M = 0.5, α = 3o, which is com-
puted quite accurately by all methods. Additionally, Figure 6 includes the KORN airfoil, which is designed
to be shock free at M = 0.75, and α = 0o. The least squares methods give a shock free upper surface, while
the radial basis method produces a very weak shock. Still all meshless methods performed well for this case.

However, discrepancies arise in the presence of shock waves, as shown in Figures 7-8 and Tables 4-5. The
least squares methods appear to give the correct shock locations and jumps. However, significant differences
in both shock location and magnitude are present with the radial basis method. Instead of differences of less
than 3% in lift and drag coefficients as with the least squares methods, the RBF method produces differences
in the 10-15% range. A close examination of the pressure curves reveals discrepancies at shocks. A variety
of shape parameters in Equation 27 were tested to try to improve the accuracy of the shock capturing with
the RBF method with little success.

It is possible that the incorrect shock capturing may be due to the non-conservative nature of the radial
basis scheme. To investigate this, a study was performed to assess the ability of the scheme to satisfy the
Rankine-Hugoniot shock jump conditions:

(ρu)L = (ρu)R,

(P + ρu2)L = (P + ρu2)R,

HtL = HtR

Here the left (L) and right (R) states must satisfy these conditions on either side of the shock. The error
in each of these conditions for the FV method, the TLS method, and the RBF method was examined. The
results for a transonic case are shown in Table 1.

Table 1. Error in Rankine-Hugoniot condtions, NACA 0012, M = 0.8, α = 1.25o.

|(ρu)L − (ρu)R| |(P + ρu2)L − (P + ρu2)R| |HtL − HtR|

FV 0.0023 0.0035 0.0000

TLS 0.0026 0.0036 0.0000

RBF 0.0015 0.0047 0.0000

As the table shows, there is no clear evidence that the radial basis method is actually miscapturing shocks.
The error in the Rankine-Hugoniot conditions is on the same order for all methods. Tests with other transonic
cases showed similar results. Therefore, it is possible that some source other than non-conservation is the
cause of the misplaced shocks. After all, the least squares methods are also non-conservative, but consistently
capture shocks correctly. Possible explanations may include a failure to properly satisfy the Kutta condition
or boundary conditions. Further tests are needed to determine the cause of the poor accuracy for transonic
flow using the radial basis method.

V. Conclusions

The results obtained so far indicate that for transonic flows with shocks, least squares methods give more
accurate results than radial basis methods. The RBF method showed significant discrepancies in both shock
location and magnitude when compared with finite volume solutions. The most accurate of the schemes
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tested was the PLS method, which performed extremely well compared with the finite volume results. For
smooth flows without shocks, all schemes performed essentially equally well.

Future work will include the addition of higher order terms for use in the PLS and TLS methods. While
these schemes are generally considered “meshless”, they may also be used transparently on arbitrary grid
types. Thus, these methods may present an avenue towards high order grid-based methods, especially on
unstructured grids. These schemes also have applications for reconstruction with upwind finite volume
schemes on meshes. Additionally, all schemes tested here can easily be extended to three dimensions.
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Figure 5. Surface pressure coefficient NACA 0012, M = 0.5, α = 3.0o.

Table 2. Lift and drag coefficients, NACA 0012, M = 0.5, α = 3.0o.

cl % difference cd % difference

FV 0.4313 - 0.0000 -

TLS 0.4312 0.0 0.0007 -

PLS 0.4326 0.3 0.0005 -

RBF 0.4340 0.6 0.0002 -
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X

-C
P

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.5

-1

-0.5

0

0.5

1

1.5

FLO82
MESHLESS

(b) PLS

X

-C
P

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.5

-1

-0.5

0

0.5

1

1.5

FLO82
MESHLESS

(c) RBF

Figure 6. Surface pressure coefficient KORN airfoil, M = 0.75, α = 0.0o.

Table 3. Lift and drag coefficients, KORN airfoil, M = 0.75, α = 0.0o.

cl % difference cd % difference

FV 0.6308 - 0.0000 -

TLS 0.6178 2.1 0.0009 -

PLS 0.6164 2.3 0.0011 -

RBF 0.6200 1.7 0.0010 -
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Figure 7. Surface pressure coefficient NACA 0012, M = 0.85, α = 1.0o.

Table 4. Lift and drag coefficients, NACA 0012, M = 0.85, α = 1.0o.

cl % difference cd % difference

FV 0.3891 - 0.0582 -

TLS 0.3830 1.6 0.0565 2.9

PLS 0.3883 0.2 0.0593 1.9

RBF 0.3343 14.1 0.0570 2.1
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Figure 8. Surface pressure coefficient RAE 2822, M = 0.75, α = 3.0o.

Table 5. Lift and drag coefficients, RAE 2822, M = 0.75, α = 3.0o.

cl % difference cd % difference

FV 1.1481 - 0.0486 -

TLS 1.1319 1.2 0.0481 1.0

PLS 1.1347 0.9 0.0491 1.0

RBF 1.1744 2.3 0.0545 12.1
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