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1 Introduction and preliminaries
In , Isbel [] (see also []) posed an interesting problem: If {fn}n∈N is a family of com-
muting continuous self-mappings of [, ] then do there exist common fixed points for
{fn}? It was only in  that Boyce [] and Huneke [] independently proved that there
exist two continuous commuting self-mappings of the unit interval [, ] without a com-
mon fixed point.
The well-known Banach contraction principle states that if a self-mapping f of a com-

plete metric space (X,d) satisfies the condition
(i) d(fx, fy) ≤ kd(x, y),  ≤ k < ,

for each x, y ∈ X, then f has a unique fixed point, that is, there exists a unique z ∈ X such
that f (z) = z.
A fixed point of a self-mapping of a metric space X can also be considered to be a com-

mon fixed point of f with the identity mapping on X. An innate question that comes up
in this context is whether the identity mapping can be replaced by another self-mapping
g of X to obtain common fixed points of f and g . In , Goebel [] studied this problem
and obtained the following coincidence theorem.

Theorem . Let A be an arbitrary set and X be ametric space with the metric d. Suppose,
moreover, that f , g are two mappings defined on the set A with the values in X . If f (A) ⊆
g(A), g(A) is a complete subspace of X and for all x, y ∈ A:
(i) d(fx, fy) ≤ kd(gx, gy),  ≤ k < ,

then f and g have a coincidence point, that is, there exists z ∈ A such that f (z) = g(z).
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The condition (i) of Theorem . appears to have been studied first by Machuca [] in
 under some heavy topological conditions (see also [, ]).
It may be observed that the conclusion of Theorem . is not true (takeA = X) if we drop

completeness of g(A). This can be seen by the following example.

Example . [] Let X = [, ] and let d be the usual metric on X. Define self-mappings
f and g on X as follows:

fx =  if  ≤ x ≤ , fx =
x + 


if x > ,

gx =  if  ≤ x ≤ , gx =
x + 


if x > .

Then f and g satisfy the following conditions of Theorem ., but they do not have a co-
incidence point:

(i) fA = (, ]∪ {}, gA = (, ]∪ {} and fA ⊆ gA, for A = X ;
(ii) f and g satisfy contraction condition d(fx, fy) ≤ 

d(gx, gy).

Fixed point theorems are statements containing sufficient conditions that ensure the
existence of a fixed point. Therefore, one of the central concerns in fixed point theory is to
find aminimal set of sufficient conditionswhich guarantee a fixed point or a commonfixed
point as the case may be. Common fixed point theorems for contractive type mappings
necessarily require a commutativity condition, a condition on the ranges of the mappings,
continuity of one ormoremappings besides a contractive condition. And every significant
fixed point or common fixed point theorem attempts to weaken or obtain a necessary
version of one or more of these conditions [].
In , using condition (i) of Theorem ., Jungck [] obtained common fixed point

for commuting mappings by using a constructive procedure of sequence of iterates.

Theorem . [] Let (X,d) be a complete metric space and let f and g be commuting
self-maps of X satisfying the conditions:

(i) fX ⊆ gX ;
(ii) d(fx, fy) ≤ kd(gx, gy), for all x, y ∈ X and some  ≤ k < .

If g is continuous then f and g have a unique common fixed point.

The essence of Jungck’s theorem has been used by several workers to obtain interesting
common fixed point theorems for both commuting and noncommuting pairs ofmappings
satisfying contractive type conditions. The constructive technique of Jungck’s theoremhas
been further improved and extended by various researchers to establish common fixed
point theorems for three mappings, four mappings and sequence of mappings (see also
[–]).
Generalizations of Jungck’s contraction condition have been extensively used to study

common fixed points of contractivemappings. If f and g are two self-mappings of ametric
space (X,d), general contractive conditions assume the following form.
(a) φ-type contractive condition (in the sense of Boyd and Wong []);

d(fx, fy) ≤ φ
(
d(gx, gy)

)
,
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where φ :R+ →R+ is such that φ is upper semi-continuous from the right and
φ(t) < t for each t > .

(b) Given ε >  there exists a δ >  such that

ε ≤ d(gx, gy) < ε + δ ⇒ d(fx, fy) < ε.

Condition (b) is also referred to as a Meir-Keeler type (ε, δ) contractive condition [].
It can easily be seen that if f and g satisfy (b) then f and g also satisfy the contractive
condition

d(fx, fy) < d(gx, gy).

In some results the contractive condition (b) has been replaced by a slightly weaker con-
tractive condition of the following form.
(c) Given ε >  there exists a δ >  such that

ε < d(gx, gy) < ε + δ ⇒ d(fx, fy) ≤ ε.

Jachymski [] has shown that the contractive condition (c) implies (b) but not con-
versely.
In the setting of common fixed point theorems, the Meir-Keeler type (ε, δ) contractive

condition alone is not sufficient to guarantee the existence of a commonfixed point.While
assuming the (ε, δ) contractive condition, the existence of a commonfixed point is ensured
either by imposing some additional restriction on δ or by assuming some additional con-
dition besides the (ε, δ) contractive condition or by imposing strong conditions on the
continuity of mappings (for references see [, –]).
In , Sessa gave the weaker version of the commutativity condition, namely the

weakly commuting condition. In subsequent years Jungck [, ], Tivari and Singh [],
Pathak [, ], Jungck et al. [], Jungck and Pathak [], Pant [], Pathak et al. [],
Al-Thagafi and Shahzad [], Hussain et al. [], Pant and Bisht [], Bisht and Shahzad
[], and many others have considered several generalizations of commuting mappings or
weaker notions of commutativity, see Table . Now, it has been shown that weak compat-
ibility is the minimal noncommuting condition for the existence of common fixed points
of contractive type mapping pairs. In recent works several authors claimed to introduce
some weaker noncommuting notions and showed that their introduced noncommuting
conditions contain weak compatibility as a proper subclass. This is, however, of no use
when searching for common fixed points. In fact most of the generalized commutativity
notions fall in the subclass of weak compatibility in the setting of a unique common fixed
point (or unique point of coincidence). These generalizations are novel but for their actual
applications one should go beyond contractive conditions, since contractive conditions do
not allow for more than one point of coincidence or fixed point.
In , Haghi et al. [] presented the following lemma, which is a consequence of the

axiom of choice, and they showed that some coincidence point and common fixed point
generalizations in fixed point theory are not real generalizations as they could easily be
obtained from the corresponding fixed point theorems. Therefore, one should take care
in obtaining real generalizations in fixed point theory (for more details see []).
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Table 1 Some weaker forms of commutingmappings

S. No. Forms Year References

1. weakly commuting mappings 1982 Sessa [42]
2. asymptotically commuting mappings 1986 Tivari and Singh [31]
3. compatible mappings 1986 Jungck [30]
4. weakly∗ commuting mappings 1986 Pathak [32]
5. weakly uniformly contraction mappings 1990 Pathak [43]
6. weakly∗∗ commuting mappings 1992 Pathak [33]
7. compatible mappings of type (A) 1993 Jungck et al. [34]
8. preorbitally commuting mappings 1994 Singh and Mishra [44]
9. R-weakly commuting mappings 1994 Pant [36]
10. pointwise R-weakly commuting mappings 1994 Pant [36]
11. biased and weakly g-biased mappings 1995 Jungck and Pathak [35]
12. semi-compatible mappings 1995 Cho et al. [45]
13. compatible mappings of type (B) 1995 Pathak and Khan [46]
14. compatible mappings of type (P) 1995 Pathak et al. [47]
15. compatible mappings of type (f ) or type (g) 1995 Pathak et al. [48]
16. weakly compatible mappings 1996 Jungck [29]
17. f -compatible or g-compatible mappings 1997 Pathak and Khan [49]
18. R-weakly commuting mappings of type (Af ) or (Ag) 1997 Pathak et al. [50]
19. g-biased mappings of type (A) 1998 Pathak et al. [51]
20. compatible mappings of type (C) 1998 Pathak et al. [52]
21. biased mappings of type (Af ) or (Ag) 1999 Fisher and Murthy [53]
22. coincidentally commuting mappings 1999 Dhage [54]
23. partially commuting mappings 2000 Sastry et al. [55]
24. compatible mappings of type (N) 2000 Srivastava et al. [56]
25. intimate mappings 2001 Sahu et al. [57]
26. compatible mappings of type (C) 2002 Singh [58]
27. weakly compatible mappings of type (f ) or type (g) 2007 Pathak and Ume [59]
28. occasionally weakly compatible mappings 2008 Al-Thagafi and Shahzad [38]
29. Banach operator pairs 2007 Chen and Li [60]
30. conditionally commuting mappings 2009 Pant and Pant [61]
31. subcompatible mappings 2009 Bouhadjera and Godet-Thobie [62]
32. P-operators 2010 Pathak and Hussain [63]
33. almost compatible and almost biased mappings 2010 Suzuki and Pathak [64]
34. φ-weakly compatible of type (f ,g) 2011 Pathak and Tiwari [65]
35. JH-operators 2011 Hussain et al. [39]
36. conditionally compatible mappings 2012 Pant and Bisht [40]
37. occasionally weakly biased pairs 2011/

2012
Hussain et al. [39] and Bouhadjera and
Djoudi [66]

38. pseudo compatible mappings 2013 Pant and Bisht [67]
39. PD-operators 2013 Pathak and Rai [37]
40. faintly compatible 2013 Bisht and Shahzad [41]

Lemma . [] Let X be a nonempty set and f : X → X a function. Then there exists a
subset E ⊂ X such that f (E) = f (X) and f : E → X is one-to-one.

2 Comparison of weaker forms of commutingmappings
Let f and g be self-mappings of a set X. If w = fx = gx for some x in X, then x is called a
coincidence point of f and g , and w is called a point of coincidence (POC) of f and g . The
set of coincidence points (CP) of f and g will be denoted by C(f , g). Let PC(f , g) represent
the set of points of coincidence of f and g . A point x ∈ X is a common fixed point of f and
g if x = fx = gx. The set of all common fixed points of f and g is denoted by F(f , g).
Two self-mappings f and g of a metric space (X,d) are said to be commuting iff fgx = gfx

for all x in X.
The study of common fixed points of pair of self-mappings satisfying contractive type

conditions becomes interesting in view of the fact that even commuting continuous map-
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pings on such nicely behaved entities as compact convex setsmay fail to have a coincidence
or common fixed point. When we extend such studies to the class of noncommuting con-
tractive type mapping pair, it becomes still more interesting [].
The first ever attempt to relax the commutativity of mappings to a smaller subset of

the domain of mappings was initiated by Sessa [] who in  gave the notion of weak
commutativity.

Definition . (Sessa []) Two self-mappings f and g of a metric space (X,d) are called
weakly commuting iff d(fgx, gfx) ≤ d(fx, gx) for all x in X.

Notice that commuting mappings are obviously weakly commuting. However, a weakly
commuting mappings need not be commuting.

Example . Let X = [, ] be equipped with the usual metric d on X. Define constant
mappings f and g : X → X by

fx = a and gx = b, a 
= b.

Then f and g are weakly commuting but not commuting since d(fgx, gfx) = |a – b| =
d(fx, gx).

In order to enlarge the domain of noncommuting mappings, Pathak [, ] obtained
several new classes of noncommuting notions, namely, weak∗ commuting, weak∗∗ com-
muting mappings.

Definition . (Pathak []) Two self-mappings f and g of a metric space (X,d) are called
weak∗ commuting iff d(fgx, gfx) ≤ d(f x, gx) for all x in X.

Definition . (Pathak []) Two self-mappings f and g of a metric space (X,d) are called
weak∗∗ commuting iff fX ⊂ gX and, for any x ∈ X,

d
(
f gx, gf x

) ≤ d
(
f gx, gf x

) ≤ d
(
fgx, gfx

) ≤ d(fgx, gfx) ≤ d
(
f x, gx

)
.

It is easy to check that commuting mappings are weak∗ commuting and weak∗∗ com-
muting. The following example shows that the reverse implication does not hold.

Example . [] Consider X = [, ] with the usual metric d on X. Define f , g : X → X
by

fx =
x

x + 
for all x and gx =

x


for all x.

Then f and g areweak∗ commuting andweak∗∗ commuting but f and g are not commuting
mappings.

Remark . Notice that if f  = f and g = g , then weak∗ commutativity or weak∗∗ com-
mutativity reduces to weak commutativity.

http://www.fixedpointtheoryandapplications.com/content/2014/1/38
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Definition . (Pathak []) Two self-mappings f and g of a metric space (X,d) are called
weakly uniformly contraction mappings iff d(fgx, ggx)≤ d(fx, gx) and d(ffx, gfx)≤ d(fx, gx)
for all x in X.

In view of Example ., we remark that commutingmappings are weakly uniformly con-
traction mappings. However, weakly uniformly contraction mappings need not be weakly
commuting.
In , Jungck generalized the concept of weak commutativity by introducing the no-

tion of compatible mappings [] also called asymptotically commuting mappings by
Tivari and Singh [] in an independent work. In [] it has been shown that two contin-
uous self-mappings of a compact metric space are compatible iff they commute on their
set of coincidence points.

Definition . (Jungck [], Tivari and Singh []) Two self-mappings f and g of a metric
space (X,d) are called compatible or asymptotically commuting iff limn d(fgxn, gfxn) = ,
whenever {xn} is a sequence in X such that limn fxn = limn gxn = t for some t in X.

Clearly, weakly commuting mappings are compatible, but in view of Example . the
converse does not hold.

Example . [] Let X = [,∞) and d be the usual metric on X. Define f , g : X → X by

fx = x for all x and gx = x for all x.

Then d(fgx, gfx) > d(fx, gx). Therefore f and g are not weakly commuting mappings. How-
ever, f and g are compatible mappings.

Remark . Notice that the notions of weak commutativity and compatibility differ in
one respect. Weak commutativity is essentially a point property, while the notion of com-
patibility uses the machinery of sequences.

Remark . In a review of [] Singh (Math. Rev. h:, see also []) has shown
that for a pair of weakly commutingmappings on ametric space (X,d), theremay not exist
even a single sequence {xn} in X for which limn fxn = limn gxn = t for some t in X. In this
case the mappings f and g are still compatible. The following example shows that in this
situation they can be weakly commuting.

Example . Let X = [,∞) and d be the usual metric on X. Define f , g : X → X by

fx = x for all x and gx = x +  for all x.

Then f and g are weakly commuting mappings but there does not exist even a single se-
quence for which the condition of compatibility is satisfied. However, fgx = gfx = + x, i.e.,
d(fgx, gfx) = . Hence f and g may be called vacuously compatible mappings.

Singh and Tomar [] has also shown by an example that weak commutativity of a pair of
self-mappings f and g on a metric space (X,d) depends on the choice of the metric. This
is true for compatibility as well.
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Example . [] Let X = [,∞) be endowed with the usual metric. Define f , g : X → X
by

fx =  + x and gx =  + x.

Then d(fgx, gfx) = x and d(fx, gx) = (x – x + ). One may observe that f and g are not
weakly commuting on X with respect to the usual metric. But if X is endowed with the
discretemetric d, then d(fgx, gfx) =  = d(fx, gx) for x > . So, f and g areweakly commuting
on X when endowed with the discrete metric.

Ever since the introduction of compatibility, the study of commonfixed points has devel-
oped around compatible maps and its weaker forms and it has become an area of vigorous
research activity. However, fixed point theory for noncompatible mappings is equally in-
teresting and Pant [] has initiated some work along these lines. One can establish fixed
point theorems for such mappings pairs not only under nonexpansive conditions but also
under Lipschitz type conditions evenwithout using the usual contractivemethod of proof.
The best examples of noncompatible maps are found among pairs of mappings which are
discontinuous at their common fixed point []. It may be observed that the mappings f
and g are said to be noncompatible if there exists a sequence {xn} in X such that for some
t in X but limn d(fgxn, gfxn) is either non-zero or nonexistent.

Definition . [] Two self-mappings f and g of a metric space (X,d) are said to satisfy
the (E.A.) property if there exists a sequence {xn} in X such that

lim
n→∞ fxn = lim

n→∞ gxn = t for some t ∈ X.

It may be observed that the (E.A.) property is equivalent to the previously known notion
of tangential mappings introduced by Sastry et al. [].

If f and g are both noncompatible then they do satisfy the (E.A.) property. In fact the
notion of the (E.A.) property circumvents the most crucial part of fixed point theorems
consisting of constructive procedures yielding a Cauchy sequence. On the other hand the
(E.A.) property enables us to study the existence of common fixed point of nonexpansive
or Lipschitz type conditions in the setting of noncomplete metric spaces.
Sintunavarat and Kumam [] introduced an interesting property, namely the common

limit in the range property (in short CLRg ) which completely buys the condition of closed-
ness of the ranges of the involved mappings and has an edge over the (E.A.) property (see
also [–]).

Theorem . [, ] Two self-mappings f and g of a metric space (X,d) are said to be
satisfy the common limit in the range of g property (in short CLRg ) if there exists a sequence
{xn} in X such that

lim
n→∞ fxn = lim

n→∞ gxn = gx for some x ∈ X.

It is important to note that in the setting of metric spaces, there is no general method
for the study of common fixed points of nonexpansive or Lipschitz type mappings. The
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notions of noncompatibility, the (E.A.) property and (CLRg ) property are well suited for
studying common fixed points of strict contractive conditions, nonexpansive type map-
ping pairs or Lipschitz type mapping pairs in ordinary metric spaces, which are not even
complete.

Definition . (Singh and Mishra []) If for x ∈ X there exists a sequence {xn} in X
such that fxn+ = gxn, n = , , , . . . , then O(g, f ;x) = {fxn : n = , , , . . .} is an orbit for g
and f . Maps f and g are weakly x-preorbitally commuting iff there exists a positive integer
N such that d(fgxn, gfxn) ≤ d(fxn, gxn) for every {xn} (n≥N ) occurring in O(g, f ;x).

Weakly commuting mappings are preorbitally commuting but the converse is not true
in general.

Example . [] Let X = [,∞) and d be the usual metric on X. Define f , g : X → X by

fx = x for all x and gx = x for all x.

Then d(fgx, gfx) > d(fx, gx), i.e., f and g are not weakly commuting but f and g are preor-
bitally commuting mappings (e.g., take {xn} = ).

Definition . Two self-mappings f and g of a metric space (X,d) are called:
(i) compatible of type (A) (Jungck et al. []) iff

lim
n
d(ffxn, gfxn) =  and lim

n
d(fgxn, ggxn) = ,

(ii) compatible of type (B) (Pathak et al. []) iff

lim
n
d(fgxn, ggxn) ≤ 



[
lim
n
d(fgxn, ft) + lim

n
d(ft,ffxn)

]

and

lim
n
d(gfxn,ffxn) ≤ 



[
lim
n
d(gfxn, gt) + lim

n
d(gt, ggxn)

]
,

(iii) compatible of type (C) (Pathak et al. []) iff

lim
n
d(fgxn, ggxn) ≤ 



[
lim
n
d(fgxn, ft) + lim

n
d(ft,ffxn) + lim

n
d(ft, ggxn)

]

and

lim
n
d(gfxn,ffxn) ≤ 



[
lim
n
d(gfxn, gt) + lim

n
d(gt, ggxn) + lim

n
d(gt,ffxn)

]
,

whenever {xn} is a sequence in X such that limn fxn = limn gxn = t for some t in X .

Proposition . [] Let f and g be continuous mappings from ametric space (X,d) into
itself. Then the following are equivalent:

(i) f and g are compatible of type (A),

http://www.fixedpointtheoryandapplications.com/content/2014/1/38
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(ii) f and g are compatible of type (B),
(iii) f and g are compatible of type (C),
(iv) f and g are compatible.
It is clear to see that compatible mappings of type (A) 
⇒ compatible of type (B) 
⇒

compatible of type (C), but the converse is not true in general.

Example . [] Let X = [, ] and d be the usual metric on X. Define f , g : X → X as
follows:

fx =  if x = , fx =  if  < x≤ , gx = x –  if  < x≤ ,

gx =  if x ∈ {} ∪ (, ], gx =  if  < x ≤ .

It may be observed that f and g are compatible of type (C) but neither compatible nor
compatible of type (A) nor compatible of type (B) (consider the sequence {xn} given by
xn =  + 

n : n > ).

Example . [] Let X = [, ] and d be the usual metric on X. Define f , g : X → X as
follows:

fx =  if x =  or x > , fx =  if  < x≤ ,

g = , gx =  if  < x≤ , gx =
x + 


if x > .

It may be observed that f and g are compatible mappings of type (A), but neither commut-
ing nor compatible mappings. To see this let us consider the sequence {xn} given by xn =
+ 

n : n > . Then fxn → , gxn → , fgxn = ggxn → , gfxn = ffxn → , limn d(fgxn, ggxn) =
limn d(ffxn, gfxn) =  and limn d(fgxn, gfxn) = limn d(ffxn, ggxn) 
= .

Examples . and . (below) show that the notions of compatiblemappings and com-
patible of type (A) are independent to each other.

Example . [] Let X = R equipped with the usual metric d. Define self-mappings f
and g as follows:

f (x) = x and g(x) =

{
 if x is an integer,
 if x is not an integer.

Then for the sequence {xn} =  + 
n+ we get limn fxn = limn gxn = , limn d(fgxn, gfxn) = ,

but limn d(ffxn, gfxn) 
= , limn d(gfxn, ggxn) 
=  and limn d(ffxn, ggxn) 
= . Therefore f and g
are compatible but not compatible of type (A).

Definition . (Pant []) Two self-mappings f and g of a metric space (X,d) are called
R-weakly commuting iff there exists some positive real number R such that d(fgx, gfx) ≤
Rd(fx, gx) for all x in X.

Notice that weak commutativity of a pair of self-mappings implies their R-weak com-
mutativity and the converse is true only when R≤ .
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Example . [] Let X = [,∞) be endowed with the usual metric. Define f , g : X → X
by

fx = x –  and gx = x for all x ∈ X.

Then d(fgx, gfx) = d(fx, gx). Thus f and g are R-weakly commuting (R = ) but are not
weakly commuting.

Definition . (Pathak et al. []) Two self-mappings f and g of a metric space (X,d)
are called:

(i) R-weakly commuting of type (Af ) iff there exists some positive real number R such
that d(fgx, ggx)≤ Rd(fx, gx) for all x in X .

(ii) R-weakly commuting of type (Ag) iff there exists some positive real number R such
that d(ffx, gfx)≤ Rd(fx, gx) for all x in X .

It may be observed that definition (ii) can be obtained from definition (i) by inter-
changing the role of f and g . Further, R-weakly commuting pair of self-mappings are in-
dependent of R-weakly commuting of type (Af ) or type (Ag). Example . shows that
d(fgx, ggx) > Rd(fx, gx) for each x >  and some R >  (e.g., say R = ). Thus f and g are
R-weakly commuting but not R-weakly commuting of type (Af ).
The next example shows that f and g are R-weakly commuting of type (Af ) but not

R-weakly commuting mappings.

Example . [] Let X = [–, ] equipped with the usual metric d. Define self-
mappings f and g on X as follows:

f (x) =

⎧⎪⎨
⎪⎩
 if x ∈ [–, ],

 if x ∈ (,  ),
 + 

x
 if x ∈ [  , ],

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
 + 

x
 if x ∈ [–, ),

 if x = ,
 if x ∈ (,  ),
 – 

x
 if x ∈ [  , ].

In this example f and g are R-weakly commuting pair (Af ) for R =  but not R-weakly
commuting mappings []. Thus R-weakly commuting mappings and R-weakly commut-
ing of (Af ) or (Ag) mappings are independent to each other.

It may be noted that both compatible and noncompatible mappings can be R-weakly
commuting of type (Ag) or (Af ).

Example . [] Let X = [,∞) be endowed with the usual metric. Define f , g : X → X
by

fx = x –  and gx = x –  for all x ∈ X.

Then it can be verified in this example that f and g are compatible. Furthermore, f and
g are R-weakly commuting of type (Af ) with R =  and R-weakly commuting of type (Ag)
with R = .
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Example . [] Let X = [, ] and d be the usual metric on X. Define f , g : X → X as
follows:

fx =  if x =  or x > , fx =  if  < x≤ ,

g = , gx =
x + 


if  < x≤ , gx =
x + 


if x > .

It may be observed that f and g are R-weakly commuting of type (Ag) since d(gfx, ggx) ≤
d(fx, gx) for all x ∈ X. To see that f and g are noncompatible, let us consider a sequence
{xn} given by xn =  + 

n : n > . Then fxn → , gxn → , fgxn → , gfxn → , and
limn d(fgxn, gfxn) 
= .

Definition . [] Two self-mappings f and g of a metric space (X,d) are called
R-weakly commuting of type (P) iff there exists some positive real number R such that
d(ffx, ggx)≤ Rd(fx, gx) for all x in X.

The next example depicts when twomappings representing parallel straight lines on the
real plane shall be commuting, weakly commuting, R-weakly commuting or analogous
definitions of R-weakly commuting mappings.

Example . [] Let X = R equipped with the usual metric d. Define self-mappings f
and g as follows:

fx =mx + a and gx =mx + b, a 
= b.

Then d(fgx, gfx) = d(ffx, ggx) = |m–| · |a–b|, d(ffx, gfx) = d(fgx, ggx) = |a–b| and d(fx, gx) =
|a – b|. Thus f and g will be:

(i) commuting if m = ,
(ii) weakly commuting if  ≤m ≤ ,
(iii) R-weakly commuting or R-weakly commuting of type (P) if |m – | ≥ .

Remark . If f and g are R-weakly commuting or R-weakly commuting (Af ) or R-
weakly commuting of type (Ag) or R-weakly commuting (P) and if z is their coincidence
point, i.e., fz = gz, then we get ffz = fgz = gfz = ggz. Thus at a coincidence point, all the anal-
ogous notions of R-weak commutativity including R-weak commutativity are equivalent
to each other and imply their commutativity.

Definition . (Jungck and Pathak []) Two self-mappings f and g of a metric space
(X,d) are called f -biased iff

α lim
n
d(fxn, fgxn) ≤ α lim

n
d(gxn, gfxn),

where α limn stays for lim supn or lim infn, whenever {xn} is a sequence in X such that
limn fxn = limn gxn = t for some t in X.

Similarly, the definition of g-biased can be obtained from the definition of f -biased by
interchanging the role of f and g .
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Jungck and Pathak [] have shown that if f and g are compatible then they are both
f -biased and g-biased, but the converse is not true.

Example . Let X = [, ] and d be the usual metric on X. Define f , g : X → X by

fx =  – x, gx = x for x ∈
[
,




]
,

fx = , gx =  for x ∈
(


, 

]
.

Then f and g are both f -biased and g-biased but not compatible.

Definition . (Jungck and Pathak []) Two self-mappings f and g of a metric space
(X,d) are called weakly f -biased iff

fx = gx implies d(fgx, fx)≤ d(gfx, gx).

Clearly, every biased mappings are weakly biased mappings (see Proposition . in [])
but the converse is false in general.

Sahu et al. [] have shown that intimate mappings are more general than compatible
mappings.

Definition . (Sahu et al. []) Two self-mappings f and g of a metric space (X,d) are
called f -intimate iff

α lim
n
d(fxn, fgxn) ≤ α lim

n
d(gxn, ggxn),

where α limn stays for lim supn or lim infn, whenever {xn} is a sequence in X such that
limn fxn = limn gxn = t for some t in X.

Next example [] shows that intimate mappings need not be compatible.

Example . LetX = [, ] and d be the usualmetric onX. Define f , g : X → X as follows:

fx =


x + 
and gx =


 + x

for x ∈ [, ].

For this let us consider the sequence {xn} given by xn = 
n : n > . Then fxn → , gxn → 

and limn d(fgxn, fxn) < limn d(ggxn, gxn), i.e., f and g are f -intimate but limn d(fgxn, gfxn) 
= .

Definition . (Cho et al. []) Two self-mappings f and g of a metric space (X,d) are
called semi-compatible iff

(i) ft = gt implies fgt = gft;
(ii) limn fxn = limn gxn = t for some t in X implies limn d(fgxn, gt) = .

It may be noted that semi-compatible mappings need not be compatible mappings.
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Example . [] Let X = [, ] and d be the usual metric on X. Define f , g : X → X as
follows:

fx =  if x < , fx =  if x = , fx =
x + 


if  < x ≤ ,

g = , gx = x if  < x≤ , gx =
x


if  < x ≤ .

Then f and g are semi-compatible, but noncompatible mappings. To see this let us con-
sider a decreasing sequence {xn} given by  < xn <  and limn xn = . Then fxn → ,
gxn → , fgxn →  = g, gfxn → , limn d(fgxn, gt) = , fg = gf  and limn d(fgxn, gfxn) 
= .

In , Pathak et al. [] weakened the notion of compatible of type (A) by splitting it
into two parts, namely f -compatible and g-compatible.

Definition . Two self-mappings f and g of a metric space (X,d) are called f -compat-
ible (Pathak et al. []) iff

lim
n
d(fgxn, ggxn) = ,

whenever {xn} is a sequence in X such that limn fxn = limn gxn = t for some t in X.

The definition of g-compatible can be obtained from the definition of f -compatible by
interchanging the role of f and g .
The following propositions have been proved in [].

Proposition . [] Let f , g : (X,d) → (X,d) be mappings with g continuous. Then f
and g are compatible iff they are f -compatible.

Proposition . [] Let f and g be continuous mappings from ametric space (X,d) into
itself. Then the following are equivalent:

(i) f and g are compatible,
(ii) f and g are f -compatible,
(iii) f and g are g-compatible.
If f and g are discontinuous mappings then the concepts compatible, f -compatible,

g-compatible are independent to each others.

Example . [] Let X = R and d be the usual metric on X. Define f , g : X → X as
follows:

fx =

x

if x 
= , fx =  if x = ,

gx =

x

if x 
= , gx =  if x = .

Then f and g are compatible but not f -compatible nor g-compatible. To see that, let us
consider a sequence {xn} given by xn = n. Then fxn → , gxn → , limn d(fgxn, gfxn) =  but
limn d(fgxn, gfxn) = limn d(fgxn, gfxn) = ∞, as n→ ∞.
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Example . [] Let X = [, ] equipped with the usual metric d. Define self-mappings
f and g as follows:

f (x) = x and g(x) =

{
 – x if  ≤ x < 

 ,
 if 

 ≤ x≤ .

Then f and g are compatible and g-compatible but not f -compatible.

Example . [] Let X = [,∞) and d be the usual metric on X. Define f , g : X → X as
follows:

fx = x if  ≤ x < , fx =  if ≤ x < ∞,

gx =  – x if  ≤ x < , fx =  if ≤ x < ∞.

Then f and g are both f -compatible and g-compatible but not compatible.

Definition . Two self-mappings f and g of a metric space (X,d) are called:
(i) compatible of type (P) (Pathak et al. [, , ]) iff

lim
n
d(ffxn, ggxn) = ,

(ii) compatible of type (C) (Singh []) iff

lim
n
d(ffxn, ggxn) =  and lim

n
d(fgxn, gfxn) = ,

whenever {xn} is a sequence in X such that limn fxn = limn gxn = t for some t in X .

Proposition . Let f , g : (X,d) → (X,d) be mappings. If f and g are either compatible
or compatible of type (A) or f -compatible, or g-compatible or compatible of type (P) or
compatible of type (C) and fz = gz for some z ∈ X then ffz = fgz = gfz = ggz.

Proof Let {xn} be a sequence in X defined by xn = z, n ∈ N and fz = gz for some z ∈ X.
Then we have limn fxn = limn gxn = fz = gz. Since f and g are either compatible or compat-
ible of type (A) or f -compatible, or g-compatible or compatible of type (P) or compati-
ble of type (C), we have d(fgz, gfz) = limn d(fgxn, gfxn) =  or d(ffz, gfz) = limn d(ffxn, ggxn) =
 = d(ggz, gfz) = limn d(ggxn, gfxn) or d(ffz, gfz) = limn d(ffxn, ggxn) = . Therefore, ffz = fgz =
gfz = ggz. �

Definition . Two self-mappings f and g of a metric space (X,d) are called compatible
mappings of type (f ) (Pathak et al. []) iff

lim
n
d(gfxn, gxn) + lim

n
d(fgxn, gfxn) = lim

n
d(fgxn, fxn),

whenever {xn} is a sequence in X such that limn fxn = limn gxn = t for some t in X.

In , Jungck generalized the notion of compatible mappings.
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Definition . (Jungck [], Sastry et al. [] and Dhage [], Shrivastava et al. [])
Two self-maps f and g of a metric space (X,d) are called weakly compatible (partially
commuting or coincidentally commuting, compatible type (N)) iff f and g commute on
the set of coincidence points.

In , Pant investigated existence of common fixed points for noncompatible map-
pings and pointwise R-weak commutativity, which he defined in  [] without giving
any name.

Definition . (Pant []) Two self-mappings f and g are called pointwise R-weakly
commuting on X iff given x in X there exists R >  such that d(fgx, gfx)≤ Rd(fx, gx).

It is obvious from the definition that f and g can fail to be pointwise R-weakly commut-
ing only if there exists some x in X such that fx = gx while fgx 
= gfx, i.e., only if they posses
a coincidence point at which they do not commute.

Remark . [] Compatible mappings are pointwise R-weakly commuting. To see
this, let fx = gx. Consider the constant sequence {xn : xn = x}. Then limn fxn = fx = gx =
limn gxn = t. Compatibility of f and g implies that limn d(fgxn, gfxn) = , i.e., d(gfx, fgx) = 
or fgx = gfx. However, pointwise R-weakly commuting mappings need not be compatible
(see Example .).

Remark . [] Pointwise R-weak commutativity is a necessary condition for the ex-
istence of common fixed points of contractive type mapping pairs. Suppose f and g be
a contractive type pair of self-mappings of a metric space (X,d) having a common fixed
point, say z then z = fz = gz and fgz = gfz = fz = gz = z. If possible, suppose that f and g are
not pointwise R-weakly commuting. Then there exists a point w in X such that fw = gw
while fgw 
= gfw. We thus have fw = gw and fz = gz with fw 
= fz. This is not possible in view
of contractive conditions. For example, if f and g satisfy the contractive condition
d(fx, fy) < max{d(gx, gy),d(fx, gx),d(fy, gy),d(fx, gy),d(fy, gx)}, which is one of the most

general contractive conditions, then we get
d(fw, fz) < max{d(gw, gz),d(fw, gw),d(fz, gz),d(fw, gz),d(fz, gw)} = d(fw, fz), a contradic-

tion. This shows that existence of a common fixed point satisfying contractive conditions
implies pointwise R-weakly commuting.

(It is also well known that pointwise R-weak commutativity is equivalent to commuta-
tivity at coincidence points and in the setting of metric spaces this notion is equivalent to
weak compatibility.)
If f and g are compatible or f -compatible or g-compatible or compatible of type (A) then

they are obviously weakly compatible but as shown in Example . converse is not true.

Example . Let X =R equipped with the usual metric d. Define self-mappings f and g
as follows:

f (x) = [x] and g(x) =

⎧⎪⎨
⎪⎩
– if x≤ ,
 if  < x < ,
 if x≥ ,

where [x] denotes the integral part of x.

http://www.fixedpointtheoryandapplications.com/content/2014/1/38


Agarwal et al. Fixed Point Theory and Applications 2014, 2014:38 Page 16 of 33
http://www.fixedpointtheoryandapplications.com/content/2014/1/38

Then for the sequence {xn} = 
n we get limn fxn = limn gxn =  and limn d(fgxn, gfxn) 
= ,

limn d(ffxn, gfxn) 
=  and limn d(gfxn, ggxn) 
= . Therefore f and g are neither compatible
nor f -compatible nor g-compatible nor compatible of type (A) nor compatible of type
(P) nor compatible of type (C) but they are weakly compatible as they commute at their
coincidence points x = –, .

In order to obtain new common fixed point theorems, one should be careful to use non-
trivial noncommuting conditions. For example see the following result.
In [] the authors obtained Corollary . as a particular case of their main theorem

(see Theorem . in [] and take A = f and S = g):

Corollary . Let f and g be weakly compatible self-mappings of a completemetric space
(X,d) satisfying

(i) fX ⊆ gX ;
(ii) d(fx, fy) ≤ kd(gx, gy), for all x, y ∈ X and some  ≤ k < .

Then f and g have a unique common fixed point in X .

In some cases the condition of completeness mentioned in the above corollary may be
replaced by the (E.A.) property besides some condition on the ranges of the involvedmap-
pings [, ].

Corollary . Let f and g be weakly compatible self-mappings of a metric space (X,d)
satisfying the (E.A.) property, and

(i) fX ⊆ gX ;
(ii) d(fx, fy) ≤ kd(gx, gy), for all x, y ∈ X and some  ≤ k < .

If the range of f or g is a complete subspace of X then f and g have a unique common fixed
point in X.

It may be observed that the conclusions of above corollaries are not true. This can be
seen from the following counter example [].

Example . [] Let X = [, ] and d be the usual metric on X. Define self-mappings f
and g on X as follows:

fx =  if  ≤ x ≤ , fx =
x + 


if x > ,

gx =  if  ≤ x ≤ , gx =
x + 


if x > .

Then f and g satisfy the following conditions of above corollaries, respectively, but do
not have a common fixed point.

(i) fX = (, ]∪ {}, gX = (, ]∪ {} and fX ⊆ gX ;
(ii) f and g satisfy a particular contraction condition d(fx, fy) ≤ 

d(gx, gy);
(iii) f and g are trivially weakly compatible;
(iv) f and g are also tangential mappings. To see this let {xn} be the sequence in X given

by xn =  + εn where εn →  as n→ ∞. Then limn→∞ fxn = limn→∞ gxn = .

One can see in Example . (above) that both the mappings f and g satisfy weak com-
patibility condition vacuously, yet f and g are common fixed point free mappings. We can
redefine the notion of weak compatible mappings in the following way.
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Definition . Two self-mappings f and g of ametric space (X,d) are called nontrivially
weakly compatible if they commute on the set of coincidence points whenever the set of
their coincidences is nonempty.

Definition . (Pathak et al. []) Two self-mappings f and g of a metric space (X,d)
are called compatible of type (I) iff

d(t, gt)≤ lim supd(t, fgxn),

whenever {xn} is a sequence in X such that limn fxn = limn gxn = t for some t in X.

The following examples show that weakly compatible mappings and compatible map-
pings of type (I) are independent from each other.

Example . [] Let X = [,∞) and d be the usual metric on X. Define f , g : X → X by

fx =

{
cosx if x 
= ,
 if x = 

and

gx =

{
ex if x 
= ,
 if x = .

Then fx = gx iff x =  and x = . Also at these points fgx = gfx. It means the mappings f and
g are weakly compatible. It can also be noted that f and g not compatible of type (I). To
see this, let {xn} be a sequence in X such that fxn → t, gxn → t. Then for t = , d(t, gt) >
d(t, fgxn).

Example . [] Let X = [, ) be endowed with the usual metric. Define f , g : X → X
by

fx = x +  and gx = x +  for all x ∈ X.

Then at x = , fx = gx. But fgx 
= gfx, which shows that f and g are notweakly compatible but
compatible of type (I). To see this, let {xn} be a sequence in X such that fxn → t, gxn → t.
Then for t = , d(t, gt) < d(t, fgxn).

Definition . (Pathak et al. []) Two self-mappings f and g of a metric space (X,d)
are called:
(i) g-biased of type (A) iff

α lim
n
d(gxn, ggxn) ≤ α lim

n
d(fxn, fgxn),

where α limn stays for lim supn or lim infn, whenever {xn} is a sequence in X such
that limn fxn = limn gxn = t for some t in X .
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Definition . (Pathak et al. []) Two self-mappings f and g of a metric space (X,d) are
said to be weakly compatible mappings of type (f ) with index p at a point x in X iff there
exists p >  such that fx = gx implies

d(fgx, fx)p + d(fgx, gfx)p ≤ d(gfx, gx)p.

Definition . (Fisher and Murthy [] (see also [])) Two self-mappings f and g of a
metric space (X,d) are called biased mappings of type (Af ) iff

fx = gx implies d(gfx, fx) ≤ d(ffx, gx) for some x in X.

Definition . (Pathak and Tiwari []) Let f and g be mappings from a metric space
(X,d) into itself. The pair of mappings f , g is said to be φ-weakly compatible of type (f , g)
at x ∈ X, iff for every p > , fx = gx implies

φ

(
d(fgx, fx)p+ + d(fgx, gfx)p+

d(fgx, fx) + d(fgx, gfx)

)
≤ d(gfx, gx)p,

where φ : [, )→ [, ) is upper semi-continuous, non-decreasing and φ(t) < t for all t > ,
and d(fgx, fx) + d(fgx, gfx) 
= .

If φ(t) = ht, where  < h < , then the pair of mappings (f , g) is said to be h-weakly com-
patible of type (f , g).

Example . [] Consider X = [, ) with the Euclidean metric d on X and φ(t) = 
 t.

Define f , g : X → X by

fx =  + x and gx =  + x.

Here for x =  and p > , (f , g) is φ-weakly compatible of type (f , g) but (f , g) is not
φ-weakly compatible of type (g, f ) for p > .Moreover the pair (f , g) is neither weakly com-
muting nor weakly compatible.

In ,Al-Thagafi and Shahzad [] introduced the notion of occasionallyweakly com-
patible (OWC) mappings as a generalization of weakly compatible mappings. While the
paper [] was under review, Jungck and Rhoades [] used the concept of OWC and
proved several results under different contractive conditions. In view of the paper of Bisht
and Pant [], under contractive conditions proving existence of common fixed points by
assuming OWC as presented in [] is equivalent to proving the existence of common
fixed points by assuming the existence of common fixed points.
Moreover, it was shown by Dorić et al. in [] that in the presence of a unique point of

coincidence, the OWC condition reduces to weak compatibility. Hence, a lot of general-
izations obtained by using the OWC and similar conditions are not real generalizations
(see also [–]).

Definition . (Al-Thagafi and Shahzad []) Two self-mappings f and g of a metric
space (X,d) are said to be occasionally weakly compatible (OWC) if fgx = gfx for some
x ∈ C(f , g).
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In [] Jungck andRhoades presented the following variant ofOWC:Two self-mappings
f and g of a metric space (X,d) are said to be occasionally weakly compatible (in the sense
of Jungck and Rhoades []) if there exists at least one coincidence point at which f and
g commute, i.e., if fx = gx for some x ∈ X, then fgx = gfx. This definition may be termed as
non-trivial OWCmappings.
In [] Al-Thagafi and Shahzad have shown that if (X,d) is a discrete metric space and

C(f , g) 
= ∅ then f and g are weakly compatible iff they are weakly commuting.

Remark . Besides commutativity of the mappings the notion of non-trivial OWC re-
quires the mappings to have a coincidence point and, therefore, imposes a very strong
condition on the mappings. By assuming the existence of a coincidence point the notion
of non-trivial OWC circumvents the most crucial part of fixed point theorems consisting
of constructive procedures yielding coincidence points. Conditions or constructive proce-
dures yielding coincidence points are important parts of fixed point theorems and strong
assumptions like non-trivial OWCdonot and should not obviate the need for constructive
procedures.

Definition . (Chen and Li []) Two self-mappings f and g of metric space (X,d) are
said to be Banach operator pair iff the set F(g) is f -invariant, namely f (F(g))⊂ F(g).

It is easy to check that the commuting pair (f , g) is a Banach operator pair but the con-
verse is not true in general.

Example . Let X = [,∞) and d be the usual metric on X. Define f , g : X → X by

fx = x for all x and gx = x –  for all x.

Then F(g) = {}. Here (f , g) is a Banach operator pair but f and g are not commuting.

Definition . (Pathak and Hussain []) Two self-mappings f and g of a metric space
(X,d) are said to be P-operators iff there is a point x ∈ X such that

x ∈ C(f , g) and d(x, fx)≤ δ
(
C(f , g)

)
,

where δ(A) = sup{max{d(x, y),d(y,x)} : x, y ∈ A} for A ⊂ X.

Pathak and Hussain [] have shown by means of an example that OWC mappings are
P-operators. If the self-mappings f and g of X are weakly compatible, then g(C(f , g)) ⊂
C(f , g), and hence f and g are P-operators.

Definition . (Hussain et al. []) Two self-mappings f and g of a metric space (X,d)
are said to be JH-operators iff there is a point w = fx = gx in PC(f , g) such that d(w,x) ≤
δ(PC(f , g)).

Example . [] ConsiderX = [, ) with the Euclideanmetric d onX. Define f , g : X →
X by

fx = x and gx = x for all x 
= ,

f  = g = .
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Then C(f , g) = {, } and PC(f , g) = {, }. Obviously f and g are P-operators and JH-
operators but neither OWCmappings nor weakly compatiblemappings. Further note that
Ff = {} and g() = F(f ), which show that (g, f ) is not a Banach operator pair.

Definition . (Bouhadjera and Djoudi [], Hussain et al. []) Two self-mappings f
and g of a metric space (X,d) are said to be occasionally weakly f -biased iff there is a point
x ∈ X such that fx = gx and d(fgx, fx) ≤ d(gfx, gx).

The definition of occasionally weakly g-biased can be obtained from the definition of
occasionally weakly f -biased by interchanging the role of f and g .
Bouhadjera and Djoudi [] have shown that if f and g are OWC mappings then f and

g are both occasionally weakly f -biased and g-biased. Hence OWCmappings is a subclass
of occasionally weakly biased mappings.
It may be noted that nontrivially (C(f , g) 
= φ) weakly f -biased and g-biased mappings,

respectively, are occasionally weakly f -biased and g-biased, respectively. However, the re-
verse implications are not true.

Example . [] Let X = [,∞) and d be the usual metric on X. Define f , g : X → X as
follows:

fx = x if  ≤ x≤ , fx =

x

if  < x < ∞,

gx =  if  ≤ x ≤ , gx = x if  < x < ∞.

Then we have fx = gx if and only if x = / or x =  and d(fg(
√
), f (

√
)) ≤ d(gf (

√
),

g(
√
)), that is, the pair {f , g} is occasionally weakly f -biased. But,  = d(fg(  ), f (


 )) �

d(gf (  ), g(

 )), i.e., the pair {f , g} is not weakly f -biased. Similarly we can show that

g-occasionally weakly biased mappings may not be g-weakly biased mappings.

Definition . (Hussain et al. []) Let d : X × X → [,∞) be a mapping such that
d(x, y) =  iff x = y. Two self-mappings f and g on X are said to be JH-operators iff there
is a point w = fx = gx in PC(f , g) such that d(w,x) ≤ δ(PC(f , g)) and d(x,w) ≤ δ(PC(f , g))
where δ(A) = sup{max{d(x, y),d(y,x)} : x, y ∈ A} for A ⊂ X.

Definition . (Pathak and Rai []) Let d : X × X → [,∞) be a mapping such that
d(x, y) =  iff x = y. Two self-mappings f and g on X are said to be PD-operator pair
if there is a point u ∈ X such that u ∈ C(f , g) and d(fgu, gfu) ≤ δ(PC(f , g)) where δ(A) =
sup{max{d(x, y),d(y,x)} : x, y ∈ A} for A⊂ X.

Example . [] Let X = [, ] and let d = |x – y| be the metric. Define f , g : X → X
by fx = x and gx = x

 , for all x 
=  and f  = g = . Since C(f , g) = {, /} and PC(f , g) =
{, /}, diam(C(f , g)) = / and diam(PC(f , g)) = 

 . Clearly, (f , g) is PD-operator pair, but
not commuting, not weakly compatible and not OWC.

Definition . (Pant and Pant []) Two self-mappings f and g of a metric space (X,d)
are called conditionally commuting if they commute on a nonempty subset of the set of
coincidence points whenever the set of their coincidences is nonempty.
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Example . [] Let X = [, ] and d be the usual metric on X. Define self-mappings f
and g on X as follows:

f (x) =
(√

 – (x – ) – 


)
,

g(x) =
 – x


.

Then C(f , g) = {,  } and fg 
= gf . Hence f and g are conditionally commuting but not
weakly compatible. Further f and g are noncompatible mappings. To see this let us con-
sider a sequence {xn} given by xn =  – 

n . Then fxn → , gxn → , fgxn → , gfxn → 
 and

limn d(fgxn, gfxn) 
= .

Remark . In this remark we highlight the difference (in terms of applicability) be-
tween the three concepts: weak compatibility, occasionally weak compatibility and condi-
tionally commutativity. A generalized Lipschitz type pair (f , g) of self-mappings of a met-
ric space (X,d) may exhibit any of the conditions: (i) f and g do not possess a coincidence
point, (ii) f and g possess coincidence points and commute at each coincidence point, and
(iii) f and g possess more than one coincidence points and commute on a proper subset
of the set of their coincidence points. The notions of commuting, weak commuting, com-
patible, pointwise R-weak commuting, or weak compatible mappings apply in conditions
(i) and (ii) but do not apply in condition (iii). The notion of non-trivial OWC mappings
applies in conditions (ii) and (iii) but does not apply in condition (i) as it presupposes the
existence of a coincidence point. The notions of OWC and conditional commutativity are
applicable in each of the three conditions mentioned above.

In , Bouhadjera and Godet-Thobie [] introduced the notion of subcompatibile
mappings.

Definition . (Bouhadjera and Godet-Thobie []) Two self-mappings f and g of a
metric space (X,d) are called subcompatible iff there exists a sequence {xn} such that
limn→∞ fxn = limn→∞ gxn = t and limn→∞ d(fgxn, gfxn) = .

Example . [] Let X = [,∞) and d be the usual metric on X. Define f , g : X → X as
follows:

fx = x for all x ∈ X,

gx = x +  if ≤ x ≤  and  < x < ∞, gx = x +  if  < x≤ .

Then f and g are subcompatible but notOWC.To see this consider the sequence {xn} given
by xn =  + 

n . Then fxn → , gxn → , fgxn → , gfxn →  and limn d(fgxn, gfxn) = . On
the other hand, we have fx = gx iff x =  and fg 
= gf , hence mappings f and g are not
OWC.

Remark . Above Example . shows that subcompatible mappings need not imply
commutativity at the coincidence point. It may be observed that subcompatible mappings
are independent from the compatible mappings and in the setting of a unique common

http://www.fixedpointtheoryandapplications.com/content/2014/1/38


Agarwal et al. Fixed Point Theory and Applications 2014, 2014:38 Page 22 of 33
http://www.fixedpointtheoryandapplications.com/content/2014/1/38

fixed point (or unique point of coincidence), subcompatibility does not reduce to the class
of compatibility. The following examples illustrate these facts.

Example . Let X = [,∞) and d be the usual metric on X. Define f , g : X → X by

fx = x for all x and gx = x for all x.

Then f and g are compatible but not subcompatible.

Example . LetX = [, ] and d be the usualmetric onX. Define f , g : X → X as follows:

fx =  if x≤ , fx =  if x > ,

gx =  – x if x≤ , gx =  if x > .

It may be observed that f and g are subcompatible mappings. To see that f and g are
subcompatible, let us consider the constant sequence {xn} given by xn = . Then fxn → ,
gxn → , fgxn → , gfxn → , and limn d(fgxn, gfxn) = . Further, if we consider {yn} given
by yn =  – 

n : n > , then fyn → , gyn → , and limn d(fgyn, gfyn) 
= . Thus f and g are
subcompatible but not compatible.

Remark . The notion of subcompatibility imposes a strong condition on the map-
pings f and g by requiring the existence of a sequence {xn} such that fxn → t, gxn → t.
Such a precondition is not required in order that f and g be compatible. In [] Pant and
Bisht introduced the notion of conditional compatibility which does not require such a
precondition and yet is a proper generalization of both nontrivial compatibility and sub-
compatibility.

Definition . (Pant and Bisht []) Two self-mappings f and g of a metric space (X,d)
are called conditionally compatible if and only if whenever the set of sequences {xn}
satisfying limn→∞ fxn = limn→∞ gxn is nonempty, there exists a sequence {yn} such that
limn→∞ fyn = limn→∞ gyn = t (say) and limn→∞ d(fgyn, gfyn) = .

In [], Pant and Bisht introduced a new notion of pseudo compatible mappings, which
is a stronger version of conditionally compatible mappings.
Let f , g be self-mappings of ametric space (X,d). Then for a sequence {yn} inX satisfying

limn→∞ fxn = limn→∞ gyn, a sequence {zn} is called an associated sequence if fyn = gzn or
gyn = fzn and limn→∞ fzn = limn→∞ gzn.

Definition . (Pant and Bisht []) Two self-mappings f and g of a metric space (X,d)
are called pseudo compatible iffwhenever the set of sequences {xn} satisfying limn→∞ fxn =
limn→∞ gxn is nonempty, there exists a sequence {yn} such that limn→∞ fyn = limn→∞ gyn =
t (say), limn→∞ d(fgyn, gfyn) =  and limn→∞ d(fgzn, gfzn) =  for any associated sequence
{zn} of {yn}.

Suzuki and Pathak [] also extended the class of compatible typemappings and several
analogous notions to almost compatible mappings and analogous notions, respectively.
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Definition . Two self-mappings f and g of ametric space (X,d) are called to be almost
compatible iff f and g are compatible and the following hold for every sequence {xn} in X:
(C) fxn+ = gxn for n ∈ N.
(C) {fxn} converges.
(C) {gfxn} is bounded.

In , Bisht and Shahzad [] redefined the notion of conditionally compatible map-
pings by faintly compatible mappings.

Definition . (Bisht and Shahzad []) Two self-mappings f and g of a metric space
(X,d) are called to be faintly compatible iff f and g are conditionally compatible and f and
g commute at the subset of coincidence points, whenever the set of coincidence points is
nonempty.

Example . Let X = [, ] and d be the usual metric on X. Define self-mappings f and
g on X as follows:

f (x) =


–

∣∣∣∣  – x
∣∣∣∣,

g(x) =


( – x).

Then f and g are faintly compatible but neither compatible nor weakly compatible.

Remark. In recentworks several authors claimed to introduce someweaker noncom-
muting notions and pretended to show, weak compatibility as a proper subclass of their
weaker notions. This is, however, not true. In view of the results ofDorić et al. [] (see also
Alghamdi et al. [], Kadelburg et al. [], Pant and Bisht [] and Bisht and Rakocević
[]) most of the generalized commutativity notions fall in the subclass of weak compat-
ibility in the setting of a unique common fixed point (or unique point of coincidence).

The following lemma was presented by Abbas and Jungck [].

Lemma . [] If a weakly compatible (WC) pair (f , g) of self-mappings on X has a
unique POC, then it has a unique common fixed point.

Jungck and Rhoades [] established the following lemma.

Lemma . [] If an OWC pair (f , g) of self-mappings on X has a unique POC, then it
has a unique common fixed point.

The following result is due to Dorić et al. [].

Proposition . [] Let a pair of mappings (f , g) have a unique POC. Then it is WC if
and only if it is OWC.

Proposition . [] Let d : X × X → [,∞) be a mapping such that d(x, y) =  if and
only if x = y. Let a pair of mappings (f , g) have a unique POC. If it is a pair of JH-operators,
then it is WC.

http://www.fixedpointtheoryandapplications.com/content/2014/1/38


Agarwal et al. Fixed Point Theory and Applications 2014, 2014:38 Page 24 of 33
http://www.fixedpointtheoryandapplications.com/content/2014/1/38

Proposition. [] Let d be symmetric on X . Let a pair ofmappings (f , g) have a unique
POC which belongs to F(f ). If it is a pair of occasionally weakly g-biased mappings, then it
is WC.

Proposition . [] Let d be symmetric on X, and let a pair of mappings (f , g) have a
unique CP, that is, C(f , g) is a singleton. If (f , g) is P-operator pair, then it is WC.

Proposition . [] Let d be symmetric on X, and let a pair of mappings (f , g) have a
unique POC. Then it is weakly g-biased if and only if it is occasionally weakly g-biased.

Proposition . [] Let d : X × X → [,∞) be a mapping such that d(x, y) =  if and
only if x = y. Let a pair of mappings (f , g) have a unique POC. If it is a pair of PD-operators,
then it is WC.

Let φ : R+ → R+ be a non-decreasing function satisfying the condition φ(t) < t, for each
t > .

Proposition . [] Let d : X × X → [,∞) be a mapping such that d(x, y) =  if and
only if x = y. Suppose (f , g) is PD-operator pair and satisfy the condition:

d(fx, fy) ≤ φ
(
max

{
d(gx, gy),d(gx, fy),d(fx, gy),d(gy, fy)

})
(.)

for each x, y ∈ X. Then f and g are WC.

Theorem . [] Under the contractive condition (.) assumed in the above proposi-
tion, the assumption of PD-operators and the existence of a unique common fixed point are
equivalent conditions.

More recently, Kadelburg et al. [] have shown that some of noncommuting conditions
which are formally distinct from each other, actually coincide in the case when the given
mappings have a unique point of coincidence. Hence, many new common fixed point re-
sults cannot be incurred in this way. The following proposition was proved in [].

Proposition . Let (X,d) be ametric space, and let f , g : X → X. Let the pair (f , g) have
exactly one point of coincidence.Then the noncommuting conditionsweakly compatible, oc-
casionally weakly compatible, conditionally commuting and PD-operators are equivalent,
and equivalent with the condition that the pair (f , g) has a unique common fixed point.

Remark . It is important to note that majority of the noncommuting conditions be-
fore weak compatibility do not presume the existence of a coincidence point but actually
establish the existence of a coincidence point by using these conditions. In fact, it can eas-
ily be established that some of these conditions, e.g., weakly commuting etc. not only imply
commutativity at coincidence points but in combination with other sufficient conditions
also imply the existence of the coincidence point. Thus we can say that with the inception
of the definition of non-trivial OWC mappings more focus would be given to those non-
commuting conditions which directly assume the existence of coincidence point, which is
relatively strong condition in comparison to weakly compatible mappings.
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Remark . If there are just two mappings involved, and they only have one coinci-
dence point (which turns out to be the unique fixed point), then, of course,most of the gen-
eralizations of commutativity coincide with weak compatibility. Recently, Pant and Bisht
[] (see also [, ]) have shown that under contractive conditions proving existence of
common fixed points by assuming several weaker noncommuting notions is equivalent to
proving the existence of common fixed points by assuming the existence of common fixed
points. Hence such type of results are merely redundant exercises.

3 Applications
Fixed point theory has played central role in the problems of nonlinear analysis. Common
fixed point theorems have provided powerful tools in demonstrating the existence solu-
tions to large variety of problem in applied mathematics. In this section we give some of
the areas where common fixed point theorems are applicable.

3.1 Applications in differential equations
In [] Goebel gave a nice application of the coincidence theorem (Theorem .) for the
solution of differential equation. He considered the following differential equation:

ẋ = s(t,x)

(cf. []). Suppose that the function {s(t,x)} is defined in the half plane t ≥ , –∞ < x < +∞
and satisfies Caratheodory’s conditions (cf. []) and Lipschitz inequality

∣∣s(t,x) – s(t, y)
∣∣ ≤ L(t)|x – y|,

where {L(t)} is locally integrable on the interval 〈,∞).
If

∫ t
 s(τ , )dτ =O(exp

∫ t
 L(τ )dτ ) and p >  then the transformations f and g defined by

(fx)(t) =
{∫ t


s
(
τ ,x(τ )

)
dτ + ξ

}
exp

{
–p

∫ t


L(τ )dτ

}
,

(gx)(t) = x(t) exp
{
–p

∫ t


L(τ )dτ

}

mappings the set A = [{x(t)} : x(t) =O(exp
∫ t
 L(τ )dτ )] into the Banach space B of continu-

ous functions on 〈,∞) with the norm |x| = sup〈,∞) |x(t)|, then Theorem . assures that
there exists a function {x̄(t)} ∈ Awhich satisfies f x̄ = gx̄ and x̄(t) =

∫ t
 s(τ , x̄(τ ))dτ + ξ is the

unique solution in the sense of Caratheodory [] with the initial condition x̄() = ξ for
every ξ .

3.2 Applications in approximation theory
Fixed point theorems have been extensively used in the existence and uniqueness of in-
variant approximations. In , Meinardus [] utilized the Schauder fixed point the-
orem [] to prove the very first result regarding invariant approximation. Afterwards,
Brosowski [] and Subrahmanyam [] generalized the result of Meinardus under dif-
ferent settings. Further significant contribution in this area was made by a number of au-
thors. They all considered one mapping or a pair of commuting mappings to show the
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existence of invariant approximation. In , the study of invariant approximations for
noncommuting mappings was initiated by Shahzad [] (see also [, ]). Since then
this area has been flourished further and many interesting results appeared for noncom-
muting mappings.
Let D be a nonempty subset of a normed space X, f and g self-mappings of D, and F(f )

(respectively F(g)) the set of fixed points of f (respectively g). The self-mapping g is called:
(i) f -contraction if ‖gx – gy‖ ≤ k‖fx – fy‖ for all x, y ∈D and some k ∈ [, );
(ii) f -nonexpansive if ‖gx – gy‖ ≤ ‖fx – fy‖ for all x, y ∈D;
(iii) nonexpansive if ‖gx – gy‖ ≤ ‖x – y‖ for all x, y ∈D.

For p ∈ X, let δ(p,D) := infz∈D ‖z – p‖. The set D is called:
(iv) q-starshaped if kx + ( – k)q ∈ D for all x ∈D and all k ∈ [, ];
(v) convex if kx + ( – k)y ∈ D for all x, y ∈ D and all k ∈ [, ].

The self-mapping f is called:
(vi) affine if D is convex and f (kx + ( – k)y) = kfx + ( – k)fy for all x, y ∈D and all

k ∈ [, ];
(vii) q-affine if D is q-starshaped and f (kx+ ( – k)q) = kfx + ( – k)q for all x ∈D and all

k ∈ [, ].
Note that fq = q whenever f is a q-affine self-mapping of a q-starshaped set D.
(viii) R-subweakly commuting (w.r.t. q) [] if D is q-starshaped with q ∈ F(f ) and

‖gfx – fgx‖ ≤ Rδ(fx, [gx,q]) for all x ∈D and some R > ;
(ix) R-subcommuting (w.r.t. q) [, ] if D is q-starshaped with q ∈ F(f ) and

‖gfx – fgx‖ ≤ R
k ‖kgx + ( – k)q – fx‖ for all x ∈D, k ∈ (, ] and some R > .

In fact, R-subcommutativity (w.r.t. q) is equivalent to ‖gfx – fgx‖ ≤ Rδ(fx, [gx,q)) for all
x ∈ D and some R > . Hence, R-subweak commutativity implies R-subcommutativity.
However, R-subweak commutativity is implied by R-subcommutativity whenever δ(fx, [gx,
q)) = δ(fx, [gx,q]) (for more details see []).
LetD be a q-starshaped subset of a normed spaceX, f and g self-maps ofDwith q ∈ F(f ),

andCq(f , g) :=
⋃{C(f , gk) : ≤ k ≤ }where gkx := kgx+(–k)q. The self-mappings f and g

are called Cq-commuting [] if fgx = gfx for all x ∈ Cq(f , g). Clearly, Cq-commuting self-
mappings are weakly compatible. In general, the converse does not hold as the following
example shows.

Example . [] Let X =R with the usual norm and D = [,∞). Define f , g :D→D by

f (x) = x and g(x) =

{
x if x 
= ,
 if x = .

Then D is q-starshaped with q = , C(f , g) = {} and Cq(f , g) = {} ∪ [,∞). Moreover, f
and g are weakly compatible but not Cq-commuting.

Note that R-subweakly commuting and R-subcommuting self-mappings are Cq-com-
muting, but the converse does not hold in general. The following two examples show that
Cq-commuting and R-weakly commuting self-mappings are different classes.

Example . [] Let X =R with the usual norm and D = [,∞). Define f , g :D →D by

fx = x/ if  ≤ x < , fx = x if x ≥ ,

gx = / if  ≤ x < , gx = x if x ≥ .
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Then D is q-starshaped with q =  and Cq(f , g) = [,∞). Moreover, f and g are Cq-com-
muting but not R-weakly commuting for all R > . Hence, f and g are neither R-subweakly
commuting nor R-subcommuting.

Example . [] Let X =R with the usual norm and D = [,∞). Define f , g :D→D by

fx = x –  and gx = x for all x ∈ D.

Then D is q-starshaped with q =  and Cq(f , g) = [,∞). Moreover, f and g are R-weakly
commuting with R =  (see []) but not Cq-commuting.

For a nonempty subset M of X and p ∈ X, let BM(p) := {x ∈ M : ‖x – p‖ = δ(p,M)},
CI
M(p) := {x ∈ M : Ix ∈ BM(p)} and Mp := {x ∈ M : ‖x‖ ≤ ‖p‖}. The set BM(p) is called

the set of best M-approximants to p. Let C (respectively Cw
 ) denote the class of closed

(respectively weakly closed) convex subsets of X containing . Note that BM(p) ⊆Mp ∈ C
whenever M ∈ C. A self-mapping g : X → X is said to be compact on M if whenever A is
a nonempty bounded subset of M, then g(A) is compact. A mapping h : D → X is said to
be demiclosed at y ∈ X if whenever {xn} is a sequence in D such that xn → z ∈ D weakly
and hxn → y strongly, then hz = y. A Banach space X is said to satisfy Opial’s condition if
whenever {xn} is a sequence in X such that xn → z ∈ X weakly, then

lim inf
n→∞ ‖xn – z‖ < lim inf

n→∞ ‖xn – x‖

holds for all x 
= z. Note that Hilbert and lp ( < p < ∞) spaces satisfy Opial’s condition.
In , Brosowski [] proved the following result.

Theorem . Let f be a contractive linear operator on a normed linear space X. Let M be
an f -invariant subset of X and p an f -invariant point. If the set of best M-approximants to
p, i.e., BM(p) is nonempty, compact, and convex, then it contains an f -invariant point.

In [] Subrahmanyam superseded the necessity of nonemptyness of BM(p) by the as-
sumption thatM is a finite-dimensional subspace of X.

Theorem . (Subrahmanyam []) Let X be a normed space, f a nonexpansive self-
mapping of X, M a nonempty subset of X, f (M) ⊆ M, and p ∈ F(f ). Then F(f ) ∩ BM(p) is
nonempty provided M is a finite-dimensional subspace of X.

In , Singh [] demonstrated that the Brosowski [] result remains true if linear-
ity of the operator f is dropped and convexity is replaced by starshaped property. Singh’s
[] result remains true when contractive nature of f is replaced by nonexpansiveness of
f on BM(p)∪ {p}.

Theorem. (Singh []) Let f be a contractive operator on a normed linear space X. Let
f (M) ⊆ M and p ∈ F(f ). If BM(p) is nonempty, compact, and starshaped, then it contains
an f -invariant point.

Hicks and Humphries [] observed that Theorem . of Singh is also true if the as-
sumption f (M) ⊆M is replaced by f (∂M) ⊆M, where ∂M denotes the boundary ofM.
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Theorem . (Hicks and Humphries []) Let f be a contractive operator on a normed
linear space X. Let f (∂M) ⊆ M and p ∈ F(f ). If BM(p) is nonempty, compact, and star-
shaped, then it contains an f -invariant point.

Smoluk [] observed that the finite-dimensionality ofM in Subrahmanyam’s result can
be replaced by the assumptions that f is linear and that f (D) is compact for every bounded
subset D ofM.

Theorem . (Smoluk []) Let X be a normed space, f a nonexpansive self-mapping of
X, M a nonempty subset of X, f (M) ⊆ M, and p ∈ F(f ). Then F(f ) ∩ BM(p) is nonempty
provided f is linear,M is a closed subspace of X, and f is compact on M.

Habiniak [] dropped the linearity of f from Smoluk’s result (see also []).

Theorem . (Habiniak []) Let X be a normed space, f a nonexpansive self-mapping
of X, M a nonempty subset of X , f (M) ⊆ M, and p ∈ F(f ). Then F(f ) ∩ BM(p) is nonempty
provided M is a closed subspace of X and f is compact on M.

Following [, ], we summarize above invariant approximation results as follows.

Theorem . Let X be a normed space, f a nonexpansive self-mapping of X, M a
nonempty subset of X and p ∈ F(f ). Then F(f ) ∩ BM(p) is nonempty provided one of the
following conditions is satisfied:
(a) f is linear, f (M) ⊆M and BM(p) is nonempty, compact, and convex (Brosowski

[]),
(b) f (M) ⊆M andM is a finite-dimensional subspace of X (Subrahmanyam []),
(c) f (M) ⊆ M, BM(p) is compact and q-starshaped (Singh []),
(d) f (∂M) ⊆M, BM(p) is compact and q-starshaped (Hicks and Humphries []),
(e) f (M) ⊆ M, f is linear,M is a closed subspace of X , and f is compact onM

(Smoluk []),
(f ) f (M) ⊆ M,M is a closed subspace of X and f is compact onM (Habiniak []).

In , Sahab et al. [] initiated the study of approximation results for a pair of self-
mappings and extended the results of Hicks and Humphries [] and Singh [] to com-
muting mappings.

Theorem . (Sahab et al. [], see also O’Regan and Shahzad []) Let f and g be self-
mappings of a normed space X, M ⊂ X such that f (∂M) ⊂ M, and p ∈ F(f , g). Suppose f
is g-nonexpansive on BM(p) ∪ {p}, g is linear and continuous on BM(p), and f and g are
commuting on BM(p). If BM(p) is nonempty, compact, and q-starshaped with q ∈ F(g), and
if g(BM(p)) = BM(p), then BM(p)∩ F(f , g) is nonempty.

In , Jungck and Sessa [] proved the following theorem in best approximation
theory, which improves and extends several theorems summarized in Theorem ..

Theorem . (Jungck and Sessa []) Let f and g be self-mappings of a Banach space X ,
M ⊂ X such that f (∂M) ⊂ M, and p ∈ F(f , g). Suppose f is g-nonexpansive on BM(p)∪ {p},
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g is affine and continuous in the weak topology on BM(p), and f and g are commuting
on BM(p). If BM(p) is nonempty, q-starshaped with q ∈ F(g), and g(BM(p)) = BM(p), then
BM(p)∩F(f , g) is nonempty, provided either (i) BM(p) is weakly compact, and g – f is demi-
closed; or (ii) BM(p) is weakly compact and X satisfies Opial’s condition.

The following results of Al-Thagafi and Shahzad [] extend parts (a), (b), (c), and (d)
of Theorem ., results of Sahab et al. [], Singh [], and Jungck and Sessa [].

Theorem. (Al-Thagafi and Shahzad []) Let X be a normed space, f and g self-maps
of X with p ∈ F(f , g), and M ⊆ X with f (∂M ∩ M) ⊆ M. Suppose that BM(p) is closed and
q-starshaped, f and g are Cq-commuting on BM(p), g(BM(p)) = BM(p), g is q-affine on
BM(p), f is continuous on BM(p) and g-nonexpansive on BM(p)∪ {p}, and f (BM(p)) is com-
pact. Then BM(p)∩ F(f , g) is nonempty.

Theorem . (Al-Thagafi and Shahzad []) Let X be a Banach space, f and g self-
maps of X with p ∈ F(f , g), andM ⊆ X with f (∂M∩M) ⊆M. Suppose that BM(p) is weakly
closed and q-starshaped, g(BM(p)) = BM(p), g is q-affine and weakly continuous on BM(p),
f and g are Cq-commuting on BM(p), f is g-nonexpansive on BM(p) ∪ {p}, f (BM(p))

w
is

weakly compact, and either g – f is demiclosed at zero, or X satisfies Opial’s condition.
Then BM(p)∩ F(f , g) is nonempty.

The following results of Al-Thagafi and Shahzad extend parts (e) and (f ) of Theo-
rem ., results of Al-Thagafi [] and Shahzad [].

Theorem . (Al-Thagafi and Shahzad []) Let X be a normed space, f and g selfmaps
of X with p ∈ F(f , g), and M ∈ C with f (Mp) ⊆ g(M) ⊆ M. Suppose that ‖gx – p‖ = ‖x –
p‖ for all x ∈ M, f is g-nonexpansive on Mp ∪ {p}, and g(Mp) is compact. Then BM(p)
is nonempty, closed, and convex and f (BM(p)) ⊆ g(BM(p)) ⊆ BM(p). If, in addition, g is
nonexpansive on BM(p), then BM(p) ∩ F(g) and BM(p) ∩ F(f ) are nonempty. If, for some
q ∈ BM(p), g is q-affine, f and g are Cq-commuting on BM(p), and f (BM(p)) ⊆ g(BM(p)),
then BM(p)∩ F(f , g) is nonempty.

Theorem . (Al-Thagafi and Shahzad []) Let X be a normed space, f and g selfmaps
of X with p ∈ F(f , g), and M ∈ C with f (Mp)⊆ g(M) ⊆M. Suppose that ‖gx– p‖ = ‖x– p‖
for all x ∈ M, f is g-nonexpansive on Mp ∪ {p}, and f (Mp) is compact. Then BM(p) is
nonempty, closed, and convex and f (BM(p)) ⊆ g(BM(p)) ⊆ BM(p). If, in addition, f is nonex-
pansive on BM(p), then BM(p)∩F(f ) is nonempty. If, for some q ∈ BM(p), g is q-affine, f and
g are Cq-commuting on BM(p), and f (BM(p)) ⊆ g(BM(p)), then BM(p)∩F(f , g) is nonempty.

Several other approximation results including invariant approximations results for star-
shaped sets and convex sets can be found in [, , –, , –].
Some applications of the fixed point theorems to best simultaneous approximation are

given in [–]. Some other applications of approximation theory can be found in [,
, , –].

3.3 Several other applications
Several authors, have used common fixed point techniques, to obtain the existence and
uniqueness of common solutions for certain class of the functional equations arise in dy-
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namic programming [, , , , ]. The solutions of variational inequalities arise in
the two point obstacle problem, and they have been studied by several authors as an ap-
plication of several common fixed point theorems [, , , ]. Common fixed point
theorems have also been utilized to find solutions of nonlinear integral equations [, ,
] and continuous solutions for nonlinear integral inclusions [].
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