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Abstract In this paper, we investigate the following ques-

tion: when performing next best view selection for volumetric

3D reconstruction of an object by a mobile robot equipped

with a dense (camera-based) depth sensor, what formula-

tion of information gain is best? To address this question,

we propose several new ways to quantify the volumetric

information (VI) contained in the voxels of a probabilis-

tic volumetric map, and compare them to the state of the

art with extensive simulated experiments. Our proposed for-

mulations incorporate factors such as visibility likelihood

and the likelihood of seeing new parts of the object. The

results of our experiments allow us to draw some clear con-

clusions about the VI formulations that are most effective

in different mobile-robot reconstruction scenarios. To the

best of our knowledge, this is the first comparative survey

of VI formulation performance for active 3D object recon-

struction. Additionally, our modular software framework is

adaptable to other robotic platforms and general reconstruc-

tion problems, and we release it open source for autonomous

reconstruction tasks.

Keywords Active vision · Information gain ·

3D reconstruction

This is one of several papers published in Autonomous Robots

comprising the Special Issue on Active Perception.

This research was funded by the Swiss National Science Foundation

through the National Center of Competence in Research Robotics

(NCCR).

B Jeffrey Delmerico

jeffdelmerico@ifi.uzh.ch

http://rpg.ifi.uzh.ch

1 Robotics and Perception Group, University of Zurich, Zurich,

Switzerland

1 Introduction

Object reconstruction in three dimensions is an important

step in robust perception and manipulation tasks. In order

to reconstruct an object, a mobile robot must position its

sensors at different viewpoints in order to fully observe the

object. Exhaustive observation is time consuming, so choos-

ing the views that provide the most information is critical in

performing this task efficiently.

This problem has been well studied in the robotics and

computer vision literature Aloimonos et al. (1988), Bajcsy

(1988), Blake and Yuille (1988), Chen et al. (2011), Scott

et al. (2003), but often an a priori model of the object is

assumed, the implementation is robot-dependent, or the sen-

sor pose options are constrained. Based on the current state of

the art, it is not clear that there is an optimal way to quantify

the volumetric information for the object reconstruction task,

with respect to choosing views based on maximizing infor-

mation gain. Therefore, this paper’s primary contribution is

an analysis of many different formulations for this volumetric

information, including the current state of the art Kriegel et al.

(2015), Vasquez-Gomez et al. (2014), and several new met-

rics proposed here. We additionally release a robot-agnostic

software framework for performing autonomous reconstruc-

tion with these formulations.

This paper specifically considers the problem of 3D recon-

struction of an object or scene that is unknown a priori, but

that is spatially bounded. We assume that we obtain dense

3D input data from a camera-based sensor, but do not restrict

to a particular modality. We utilize a probabilistic volumetric

map to represent the reconstruction, and we define the infor-

mation gain (IG) in terms of the information contained in its

voxels, which we denote as volumetric information (VI). We

propose several metrics for quantifying this volumetric infor-

mation based on different ways of measuring model quality
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(e.g. completeness, entropy), which focus the reconstruction

on observing unexplored regions or refining already observed

ones. The reconstruction approach and software framework

described in this paper was originally proposed in Isler et al.

(2016), but the experimental evaluation here is significantly

expanded.

1.1 Related work

Research on the Next-Best-View problem and conceptually

similar problems in Active Vision dates back several decades

Aloimonos et al. (1988), Bajcsy (1988) but remains an active

area of research Forster et al. (2014). The most frequently

referenced surveys of the field include an overview of early

approaches by Scott et al. (2003) and an overview of more

recent work by Chen et al. (2011). We will follow the cate-

gorization introduced by Scott et al. (2003) in distinguishing

between model-based and non-model-based reconstruction

methods.

Model-based methods assume at least an approximate a

priori model of the scene, e.g. from aerial imagery Schmid

et al. (2012). They rely on knowledge of the geometry and

appearance of the object, which may not be available in

many real world scenarios. Non-model based approaches use

relaxed assumptions about the structure of the object, but the

required information for planning the next best view must

be estimated online based on the gathered data Banta et al.

(1995), Forster et al. (2014). We utilize a non-model based

approach since we do not assume anything about the object

aside from its spatial bounds.

The method used to reason about possible next actions

depends on the environment representation in which the

sensor data is registered. Scott et al. (2003) distinguished

between surface-based and volumetric approaches, and more

recently methods have been proposed that employ both

Kriegel et al. (2015). In a surface-based approach, new view

positions are evaluated by examining the boundaries of the

estimated surface, represented by e.g. a triangular mesh Pito

(1999), Chen and Li (2005). The approach from Krainin et al.

(2011) assumes a Gaussian distribution for the uncertainty

of reconstruction along the ray from each pixel in a depth

camera. Information gain is then the sum of the entropy

reduction along all of these rays, weighted by the surface area

represented by the pixels. A surface-based approach can be

advantageous if the surface representation is also the output

of the algorithm because it permits examination of the quality

of the model during its construction. However, it is com-

putationally expensive due to the more complex visibility

operations that come with a surface representation. A vol-

umetric representation, on the other hand, facilitates simple

visibility operations and also allows probabilistic occupancy

estimation Hornung et al. (2013). View positions are evalu-

ated by casting rays into the model from the candidate sensor

pose and examining the traversed voxels, therefore simulat-

ing the image sampling process of a camera. We choose a

volumetric representation for its compactness and efficiency

with respect to visibility, which forms the basis of several of

our VI formulations.

Existing volumetric information metrics fall into two cate-

gories: counting metrics and probabilistic metrics. Connolly

(1985) and Banta et al. (2000) count the number of unknown

voxels. Yamauchi (1997) introduced the concept of fron-

tier voxels, defined as voxels bordering free and unknown

space, and counted those. This approach has found heavy use

in the exploration community, where the exploration of an

unknown environment is the goal, rather than reconstruction

of a single object Wettach and Berns (2010). The research

of Vasquez-Gomez et al. (2014) is a recent example where a

set of frontier voxels is used for reconstruction. They count

what they call occplane voxels (short for occlusion plane),

defined as voxels bordering free and occluded space.

Among probabilistic approaches, one method is to use

information theoretic entropy to estimate expected infor-

mation Kriegel et al. (2015). This necessitates the use

of occupancy probabilities but has the advantage that the

sensor uncertainty is considered. Potthast and Sukhatme

(2014) argue that the likelihood that unknown voxels will

be observed decreases as more unknown voxels are tra-

versed and that this should be considered in the information

gain calculation. They model the observability using a Hid-

den Markov Model and introduce empirically determined

state transition laws to calculate posterior probabilities in a

Bayesian way.

We propose several VI formulations of both the counting

and probabilistic types, and specifically compare to the state

of the art metrics in Kriegel et al. (2015) and Vasquez-Gomez

et al. (2014).

1.2 Contributions and outline

In this paper, we propose a set of volumetric information for-

mulations and evaluate them along with recent formulations

in the literature:

– Occlusion Aware VI Quantifies the expected visible

uncertainty by weighting the entropy within each voxel

by its visibility likelihood.

– Unobserved Voxel VI Restricts the set of voxels that con-

tribute their VI to voxels that have not been observed

yet.

– Rear Side Voxel VI Counts the number of voxels expected

to be visible on the back side of already observed surfaces.

– Rear Side Entropy VI Quantifies the expected amount of

VI as defined for the Occlusion Aware VI, but restricted

to areas on the rear side of already observed surfaces.
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– Proximity Count VI Weighted higher for unobserved vox-

els that are close to already observed surfaces.

We evaluate all of these VIs in synthetic experiments

designed to isolate their performance from any environmen-

tal factors. We consider the following criteria: the amount of

discovered object surface (surface coverage), the reduction

of uncertainty within the map, and the computational cost of

next best view selection. This is the first such comparative

survey of information gain metrics.

We release our modular software framework for active

dense reconstruction to the public. The ROS-based, generic

system architecture enables any position controlled robot

equipped with a depth sensor to carry out autonomous recon-

structions.

The paper is organized as follows: we introduce our pro-

posed volumetric information formulations in Sect. 2, then

give an overview of our software framework in Sect. 3. Exper-

iments comparing the performance of the VI formulations in

a simulated environment are shown in Sect. 4. In Sect. 5, we

discuss the results of our experiments, and finally, in Sect. 6

we summarize our findings.

2 Volumetric information

To find the next best view within a set of candidates, we esti-

mate the obtainable Information gain (IG) for each view by

evaluating the amount of Volumetric information (VI) con-

tained in the visible area of the map. We define VI as the

amount of information a single voxel is expected to provide

when seen from a particular view Isler et al. (2016). The

next best view (NBV) is the view that maximizes this metric,

minus any estimated costs.

For every view v within a set of candidate sensor positions

V , the 3D points from the camera-based range sensor are

projected into the map. The projection is carried out through

ray casting, yielding a set Rv of rays cast for every view.

As each ray traverses the map we accumulate the volumetric

information within the set of visited voxels X . During ray

casting, a ray ends when it is incident on a physical surface

or when it reaches the limit of the map. The predicted IG for

a view v, denoted as Gv , is then the cumulative volumetric

information I collected along all rays r cast from v, such

that:

Gv =
∑

∀r∈Rv

∑

∀x∈X

I. (1)

The formulation of VI in Eq. 1 and the set of views for

which it is evaluated define the behavior of the system. By

choosing a VI formulation that is directly proportional to

voxel uncertainty, we can favor views that observe unknown

areas in our map. If we choose a VI formulation that assigns

Fig. 1 Visualization of the IG function with different VI formulations

in 2D on an exemplary state of the map: The map shows occupied

(black), unknown (grey) and unoccupied (green) regions and a view

candidate (white camera). Additionally frontier voxels (striped white),

unknown object sides (yellow), considered ray sets (red), maximal ray

length (dashed blue circle) and VI weights (opacity of blue triangles)

are shown. Note that the proposed Proximity Count VI behaves like the

Rear Side Voxel VI (bottom left), but with a weight that is dependent

on distance from previously observed surface voxels, which would be

difficult to visualize clearly in this diagram (Color figure online)

high values at the frontiers of unknown areas and previously

observed objects, the system will favor views that explore

these boundaries and gather more information about partly

observed objects within the map. We discuss a set of formula-

tions for VI considering different aspects like uncertainty in

the map or the proximity of known surfaces in the following

sections.

We illustrate several of our proposed VI formulations in

Fig. 1. These diagrams show the state of the map at one point

during the reconstruction, but simplified to 2D for clarity. A

single candidate view is being evaluated under the different

VI metrics, and this view has not yet been taken by the cam-

era, so the camera position is in an unexplored part of the

map. The voxels that are considered by each VI formulation

are illustrated with colors and shading.

2.1 Considering map uncertainty

Uncertainty within a volumetric map that encodes occupancy

probabilities for each voxel can be defined using the voxel’s

entropy:
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H(x) = −Po(x) ln Po(x) − Po(x) ln Po(x), (2)

where Po(x) denotes the probability of voxel x being occu-

pied, while Po(x) is the complement probability of Po, i.e.

P0 = 1−Po. A voxel for which we have no information about

its occupancy (Po = 0.5) has the highest uncertainty (and

hence entropy) with Po(x) = 0.5 and H(x) = 1.0 Shannon.

If we consider that a view observing a map area where we

have high uncertainty is likely to yield more information,

entropy can be used as a metric to maximize the total amount

of new information gathered in each iteration of the recon-

struction. We can therefore define a VI formulation based

purely on entropy:

Ie(x) = H(x). (3)

The corresponding IG that estimates the entropy for a view

v ∈ V is given by substituting Eqs. 3 into 1.

Kriegel et al. (2015) used the entropy as defined in Eq. 2

to propose an entropy-based IG:

Gv,Kriegel(v) =
1

n

∑

∀r∈Rv

∑

∀x∈X

H(x), (4)

where n is the total number of traversed voxels. We therefore

refer to this as Average Entropy VI. While Eq. 3 favors views

for which the cast rays traverse deep into the map and visit

many voxels, Eq. 4 may also yield a high IG for views close

to known surfaces where the rays traverse fewer voxels, but

where their entropy is high.

2.2 Visibility and occlusions

Since our map is a probabilistic voxel grid, we can con-

sider the likelihood of a voxel being visible from a particular

view instead of simply integrating entropy over all traversed

voxels. We call this formulation Occlusion Aware VI. The

visibility likelihood Pv of a voxel xn is given by:

Pv(xn) =

n−1
∏

i=1

Po(xi ), (5)

where xi , i = 0 . . . n − 1 are all voxels traversed along a ray

before it reaches voxel xn . Using Eq. 5 we define:

Iv(x) = Pv(x) H(x). (6)

By substituting Eq. 6 in the IG formulation from Eq. 1, this

IG formulation estimates the visible entropy for a particu-

lar view v ∈ V , thus favoring views with a high visibility

uncertainty. This is a very natural way of dealing with occlu-

sions within the map: a voxel with a large unobserved volume

between its position and the view candidate is less likely to

be visible due to occlusions, and is therefore less likely to

contribute information than voxels that are closer to the sen-

sor position, or that are behind more certain free space. This

VI formulation is illustrated in Fig. 1a.

2.3 Focusing on areas of interest

In goal directed tasks, not all voxels provide the same

amount of information, and intuition about the task can

be exploited to drive the choice of NBV. For example,

when reconstructing an object, views that favor parts of

the object that have not yet been observed can reveal

more of the object’s surface. To favor view candidates

that observe task-specific areas of interest, we can define

a VI formulation that assigns high information content to

voxels that have a high likelihood of belonging to the inter-

est area or a VI that removes areas of no interest from

consideration.

An example of focus by exclusion is to only sum up VI as

defined in Eq. 6 over voxels that are thus far unobserved, and

therefore remove areas with high confidence from considera-

tion. We set up an indicator function based on the observation

state of the voxel:

Iu(x) =

{

1 x is unobserved

0 x is already observed
(7)

In combination with the visible entropy formulation from Eq.

6 we get:

Ik(x) = Iu(x) Iv(x) (8)

We denote this VI the Unobserved Voxel VI. It estimates the

hidden information in unobserved voxels. This VI formula-

tion is illustrated in Fig. 1b.

An example of a class of interest areas is the set of

voxels that have not been observed but are adjacent to an

occupied voxel on a ray, what we refer to as rear side vox-

els, because they represent voxels on the back side of the

occupied voxels that have already been observed. The intu-

ition here is that rays that are incident on the rear side of

an already observed surface are very likely to be incident

on previously unobserved parts of the object. The simplest

formulation for this is an indicator function, which deter-

mines whether a voxel is part of an interest area in a binary

fashion:

Ib(x) =

{

1 x ∈ So

0 x /∈ So
, (9)

where So is the set of rear side voxels, defined as unobserved

voxels such that the next voxel on their ray is estimated to

be occupied. Substituting Eqs. 9 into 1 we obtain an IG that
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counts how many of the rays cast for a particular view are

incident on an unknown side of a previously observed object

surface. Such a ray is necessarily incident on an unknown

surface of the object of interest. We denote this Rear Side

Voxel VI, and visualize it in Fig. 1c.

As an alternative to this count, we reformulate So in Eq.

9 as the set of all unknown voxels between the sensor and

an occupied voxel, combined with the entropy and visibility

based formulation from Eq. 6, such that:

In(x) = Ib(x) Iv(x). (10)

This type of VI estimates the visible uncertainty within the

unknown volume behind known surfaces. We denote it as

Rear Side Entropy VI, and visualize it in Fig. 1d.

A problem with the intuition behind the Rear Side Voxel VI

(Eq. 9) and Rear Side Entropy VI (Eq. 10) is that we consider

all of the voxels behind an observed surface to have the same

weight. For continuous objects, the voxels that are closer to

the rear side of the surface are more likely to be occupied than

those that are farther away. We propose another VI formula-

tion that introduces a weighting factor on the information in a

voxel based on its distance behind these previously observed

surfaces.

When estimating IG from a candidate sensor pose, it

would be computationally expensive to compute the distance

behind the nearest surface for each traversed voxel. Instead,

we augment our map and implement this computation during

the data registration step when the surface is first observed.

Given a point cloud of observations from the most recent

NBV that was chosen, we continue the rays for the observed

points behind the occupied voxel up to a maximum distance

dmax . For each voxel that is traversed beyond the point, we

mark it with the distance d(x) to the surface voxel. If a voxel

is already marked, we keep the smaller distance. We then

define the Proximity Count VI as:

Ip(x) =

{

dmax − d(x) x is unobserved

0 x is already observed
. (11)

This VI functions as a weighted version of the Rear Side

Voxel VI where the weight is higher the closer it is to an

already observed surface voxel.

The Occlusion Aware VI, Unobserved Voxel VI, Rear Side

Voxel VI and the Rear Side Entropy VI are visualized in an

exemplary 2D scenario in Fig. 1. The images show a snap-

shot of a possible state in the map during reconstruction and

how IG is estimated: each voxel has a state that is estimated

based on registered point measurements. Based on this state,

we compute the voxel’s volumetric information. This VI is

then integrated for the voxels along the rays to obtain the

information gain estimate.

3 System overview

We approach the autonomous reconstruction task as an itera-

tive process consisting of the three largely independent parts

(i) 3D model building, (ii) view planning, and (iii) the cam-

era positioning mechanism, as observed in Torabi and Gupta

(2012). The orthogonality of the involved tasks has inspired

us to design our autonomous reconstruction system in a mod-

ular manner to allow for fast reconfiguration of the software

for different applications and robotic setups. We utilize the

Robot operating system (ROS) Quigley et al. (2009) soft-

ware framework, which allows a hardware-agnostic design

through the use of its interprocess communication interfaces.

Within this framework, we use off-the-shelf components for

the 3D model building and camera positioning sub-tasks, and

focus only on view planning based on our proposed IG for-

mulations.

Conceptually, our systems build upon the framework pre-

sented in Isler et al. (2016): it consists of several independent

modules that interact through well-defined interfaces, yield-

ing a very flexible system architecture, as shown in Fig. 2.

Single components can be exchanged without affecting other

parts of the system, and only the sensor and robot interfaces

need to be implemented for use with a new robot platform.

The components that are part of the Perception System

are responsible for data acquisition and processing. The out-

put of this module is a point cloud of observed 3D points

in world coordinates. Our software framework allows addi-

tional information such as color or measurement uncertainty

to be included and incorporated into the reconstruction, but

we do not consider any data other than the geometry in this

work.

Fig. 2 Conceptual system overview: Main modules, important com-

ponents, and their communication interfaces (arrows) are visualized

123



Auton Robot

The Motion Planning and Control components control

the movement of the robot, where the Robot Interface (RI)

defines the interaction between robot specific code and the

other modules. Part of this interface is a service that calculates

the cost to reach candidate views, e.g. based on their distance

from the current position or the estimated energy necessary

to carry out the movement. This component is used to keep

the robot movement bounded. The robot receives commands

to move the sensor to a given new viewpoint but carries out

path planning to reach this position itself using the Robot

Interface.

All perceived data is registered within the map, which is

part of the World Representation Module (WM). This module

gives access to the current map and additionally provides a

service for information gain (IG) evaluation of given views,

as discussed in Sect. 2.

The high level behavior of the robot is controlled from the

two Behavior Planning components. We define the views-

pace as the space of candidate sensor positions, often a

discrete set of 6 DoF poses (position and orientation of the

sensor). The Viewspace Module (VM) provides the current

set of candidates to the View Planner. This may be a static

set that is fixed a priori, or a dynamic set that is recreated

and evaluated at each iteration. Static viewspaces are usu-

ally sampled from simple geometries circumscribed around

the object, such as a cylinder Pito (1999), a sphere Trummer

et al. (2010), or a combination of cylinder and hemisphere

Isler et al. (2016). Dynamic viewspaces are generated based

on the current map and the possible poses of the robot Kriegel

et al. (2015), Wettach and Berns (2010), or may also be sam-

pled from a fixed geometry, but randomly resampled with

every iteration Vasquez-Gomez et al. (2014).

The View Planner evaluates the set of candidate views it

receives from the Viewspace Module and determines the next

best view (NBV), which it commands to the robot as the next

target position. For every view in the viewspace, it requests

the IG Gv from the World Representation Module and the

cost Cv from the Robot Interface, calculating the utility Uv

of the view:

Uv = (1 − γ )
Gv

∑

V G
− γ

Cv
∑

V C
, (12)

where
∑

V G and
∑

V C are the total IG and cost, respectively,

predicted for the current iteration over all view candidates and

γ ∈ [0, 1] is the user defined cost weight. The NBV v∗ in

the current viewspace is found by maximizing Eq. 12:

v∗
= arg maxv Uv. (13)

The robot stops when a predefined termination criterion is

fulfilled. For example, this criterion could be that the highest

expected information gain for any candidate view falls below

a user defined threshold,

Algorithm 1 Active Volumetric Reconstruction

1: repeat

2: Command RI Layer to move the sensor to the NBV.

3: Signal robot to collect data from the sensors.

4: Request the view candidate set from VM.

5: Request cost for each view candidate from RI Layer.

6: Request IG for each view candidate from WM.

7: Calculate the utility function combining IGs and costs.

8: Determine NBV.

9: until Termination Criteria met

10: return Volumetric map and point cloud of object

Gv < gthresh ∀v ∈ V (14)

or that a sufficient amount of the map has been observed.

4 Experiments

We will first discuss how we use the presented approach from

Sects. 2 and 3 to have a simulated mobile robot generate a

complete volumetric model of an object that is unknown a

priori, but spatially bounded. The robot positions the sensor

at different viewpoints, pointing at the volume that contains

the object, with the goal of carrying out the reconstruction

as quickly as possible. Reconstruction proceeds according to

Algorithm 1 within the View Planner module until reaching

the user’s termination criterion.

Information gain based on VI is a metric used as an indi-

cator to estimate which next view will be most informative

to the reconstruction. An informative view maximizes (i)

the amount of new object surface discovered and (ii) the

uncertainty reduction in the map. Additionally, (iii), we are

interested in minimizing the computational cost of evaluating

candidate views. We therefore evaluate our VI formulations

on these three criteria.

Our map representation is a probabilistic volumetric voxel

grid based on OctoMap Hornung et al. (2013). The Viewspace

Module feeds the View Planner a static viewspace, which is

a reasonable choice for these experiments since we know a

priori the volume in which the unknown object is contained.

We report the performance of the reconstruction planning

using the VI formulations presented in Sect. 2. We consider

the amount of object surface discovered over time and the

uncertainty reduction in the map, as a way of quantifying

the progess of the reconstruction. We also measure the com-

putation time for each VI formulation, in order to asses its

efficiency.

4.1 Experimental setup

Our simulated experiments are designed to isolate the per-

formance of the VI formulation in the reconstruction from

any environmental factors. We utilize an uncluttered scene
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and an idealized depth sensor in order to provide optimal

performance from each view. We also use a free-moving sen-

sor as an idealized “robot” without movement constraints or

sensor pose uncertainty. Consequently, the only independent

variable in evaluating the performance is the next best view

chosen by each VI formulation.

The reconstruction scene for the simulation consists of

an object placed in an empty environment with no ground

plane. Each model was adjusted in size to be approximately

0.5 m in length along its largest dimension, so that its extent is

bounded within a 1.0 m cube. Around the object we generate

a set of 48 candidate views, distributed uniformly across a

cylinder with a half-sphere on top, such that they face the

model from different poses. We present results for a total

of 11 models: All of them have been generated from data

available online. Our dataset features the Stanford bunny and

dragon,1 the Armadillo model from TU Munich,2 and eight

models generated from color-tagged 3D range data.3 The

robot is a free-flying, idealized RGB-D sensor that captures

the structure of the scene exactly, and with which we can

carry out unconstrained movements in 6 DoF.

For a simulation environment, we use Gazebo4 in con-

junction with ROS. The generated, Gazebo-ready models are

available online.5

All simulated reconstructions begin by placing the RGB-

D sensor at a randomly chosen view from the view space. The

sensor output is a point cloud that is integrated into the World

Module’s OctoMap Hornung et al. (2013). We use a resolu-

tion of 1 cm for the map, with 0.97 as the likelihood threshold

to consider a voxel to be occupied, and 0.12 as the threshold

to be considered free. Views are removed from the candidate

set once visited in order to only visit novel views during the

reconstruction. We do not use the termination criterion but

instead run 20 iterations for each trial.

4.2 Evaluation

We present the results of our simulated experiments in

Table 1, and more extensive visualizations for a few select

models in Fig. 3. Reconstruction for each model and VI com-

bination was performed 20 times, each with a random starting

view, and the results were averaged over all of the trials.

To quantify the reconstruction progress in terms of sur-

face coverage, we compare the pointcloud models obtained

1 Available from the Stanford University Computer Graphics Lab.

2 Presented in Rodolà et al. (2013); available from TUM Computer

Vision Group.

3 Generated with MeshLab from the multiple view stereo (MVS) dataset

Jensen et al. (2014) from the Image Analysis and Computer Graphics

section at DTU Denmark.

4 http://www.gazebosim.org.

5 http://rpg.ifi.uzh.ch.

during reconstruction with a pointcloud generated from the

ground truth model. For each point in the ground truth model,

the closest point in the reconstruction point cloud is queried.

If this point is closer than a registration threshold6 the sur-

face point of the original model is considered to have been

observed. The surface coverage cs is then the percentage of

observed surface points compared to the total number of sur-

face points of the model:

Surface coverage cs =
Observed surface points

Surface points in original model
.

(15)

To calculate the total entropy we consider a bounding cube

with 1.28 m side length around the object and define the total

entropy to be

Entropy in map =
∑

Entropy of voxels within cube.

(16)

All the models evaluated in simulation have an extent less

than 1 m3. For our OctoMap resolution of 0.01 m, a cube

with (1.28 = 0.01 × 27) m side length is the smallest level

in the octree completely containing our models. The result-

ing maximal entropy within this bounding box, where each

voxel is initialized to an occupancy likelihood of 50%, is

−(27)3 log2 0.5 = 2.097 × 106 Shannon.

For both surface coverage and entropy, we have computed

the area under the curve (AUC) as a way to summarize the

performance of each VI over the course of the full recon-

struction procedure. The view iteration is normalized by the

maximum number of views (20 in our experiments) and the

maximum value of the metric, and then the area is computed

for each VI. Therefore, the AUC varies between 0.0 and 1.0,

with a higher value being better for surface coverage, and a

lower value being better for entropy. Note that since there

are many unobserved voxels in the scene, the entropy AUC

remains high, even for the best performing VIs.

We also measured the time required to evaluate the next

best view for each VI formulation, averaged over each itera-

tion, over all of the 20 trials and all of the 11 models. All trials

were performed on a PC with an 8-core Intel i7-4770K CPU,

operating at 3.50GHz, and using 8 parallel threads for the

ray-casting step in evaluating each view. The timing results

are presented in Table 2.

We compare our formulations to the information gain

methods proposed by Kriegel et al. (2015) (see Eq. 4) and

Vasquez-Gomez et al. (2014). Vasquez-Gomez et al. (2014)

define desired percentages αdes,oc = 0.2 and αdes,op = 0.8 of

occupied and occplane voxels in the view, respectively, and

6 We chose dreg = 0.5 cm.
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Table 1 Simulation results for all tested models and VI formulations, averaged over 20 trials each

Model VI Surface coverage [%] Iteration nr. Entropy in map Model VI Surface coverage [%] Iteration nr. Entropy in map

2 4 6 10 AUC AUC 2 4 6 10 AUC AUC

OA 0.732 0.904 0.960 0.963 0.882 0.9473 OA 0.645 0.882 0.980 0.993 0.893 0.9466

UV 0.741 0.910 0.959 0.963 0.883 0.9473 UV 0.594 0.857 0.980 0.994 0.887 0.9466

RSV 0.686 0.941 0.961 0.964 0.881 0.9471 RSV 0.647 0.833 0.908 0.986 0.876 0.9464

RSE 0.714 0.949 0.961 0.964 0.884 0.9472 RSE 0.636 0.811 0.933 0.988 0.878 0.9464

PC 0.798 0.930 0.954 0.964 0.888 0.9472 PC 0.766 0.950 0.979 0.990 0.908 0.9465

VG 0.844 0.950 0.961 0.963 0.895 0.9471 VG 0.776 0.944 0.973 0.981 0.906 0.9463

Kr 0.742 0.919 0.955 0.961 0.883 0.9470 Kr 0.652 0.903 0.974 0.989 0.896 0.9466

Rand 0.719 0.883 0.922 0.958 0.872 0.9470 Rand 0.643 0.876 0.957 0.986 0.885 0.9464

OA 0.665 0.894 0.955 0.957 0.869 0.9401 OA 0.607 0.810 0.915 0.924 0.829 0.9462

UV 0.657 0.889 0.955 0.956 0.867 0.9401 UV 0.568 0.800 0.915 0.924 0.824 0.9462

RSV 0.669 0.951 0.955 0.958 0.882 0.9402 RSV 0.605 0.721 0.868 0.916 0.812 0.9461

RSE 0.692 0.951 0.954 0.958 0.884 0.9402 RSE 0.622 0.794 0.869 0.920 0.825 0.9461

PC 0.883 0.949 0.954 0.958 0.893 0.9406 PC 0.707 0.861 0.898 0.917 0.839 0.9464

VG 0.815 0.934 0.946 0.952 0.882 0.9403 VG 0.716 0.880 0.908 0.916 0.842 0.9463

Kr 0.718 0.894 0.928 0.950 0.867 0.9400 Kr 0.575 0.870 0.899 0.910 0.827 0.9459

Rand 0.714 0.904 0.935 0.952 0.870 0.9401 Rand 0.583 0.781 0.865 0.903 0.813 0.9460

OA 0.676 0.932 0.963 0.969 0.883 0.9418 OA 0.494 0.717 0.883 0.936 0.820 0.9443

UV 0.718 0.932 0.963 0.969 0.886 0.9418 UV 0.521 0.741 0.907 0.934 0.825 0.9442

RSV 0.683 0.935 0.955 0.967 0.884 0.9419 RSV 0.417 0.615 0.859 0.927 0.798 0.9440

RSE 0.645 0.935 0.961 0.966 0.883 0.9419 RSE 0.461 0.599 0.883 0.930 0.807 0.9437

PC 0.731 0.925 0.952 0.966 0.885 0.9423 PC 0.604 0.789 0.873 0.932 0.836 0.9447

VG 0.724 0.883 0.915 0.953 0.870 0.9417 VG 0.622 0.798 0.858 0.910 0.826 0.9436

Kr 0.670 0.893 0.940 0.963 0.872 0.9415 Kr 0.467 0.795 0.869 0.911 0.812 0.9443

Rand 0.656 0.849 0.919 0.959 0.864 0.9418 Rand 0.524 0.737 0.820 0.899 0.800 0.9439

OA 0.814 0.942 0.957 0.957 0.888 0.9411 OA 0.723 0.871 0.992 0.999 0.901 0.9462

UV 0.836 0.946 0.957 0.957 0.890 0.9410 UV 0.689 0.887 0.994 0.999 0.901 0.9462

RSV 0.812 0.954 0.957 0.959 0.893 0.9409 RSV 0.685 0.717 0.965 0.999 0.886 0.9462

RSE 0.800 0.954 0.957 0.958 0.892 0.9409 RSE 0.651 0.743 0.964 0.999 0.883 0.9462

PC 0.924 0.951 0.956 0.957 0.897 0.9411 PC 0.881 0.993 0.998 0.999 0.929 0.9464

VG 0.874 0.940 0.944 0.949 0.887 0.9409 VG 0.896 0.994 0.998 0.999 0.931 0.9463

Kr 0.798 0.945 0.952 0.955 0.888 0.9410 Kr 0.695 0.991 0.996 0.998 0.917 0.9458

Rand 0.760 0.925 0.945 0.955 0.882 0.9409 Rand 0.739 0.935 0.988 0.998 0.912 0.9459

OA 0.548 0.717 0.879 0.889 0.791 0.9445 OA 0.532 0.766 0.869 0.901 0.807 0.9450

UV 0.617 0.750 0.878 0.889 0.799 0.9446 UV 0.466 0.766 0.868 0.898 0.800 0.9452

RSV 0.549 0.606 0.714 0.876 0.754 0.9445 RSV 0.481 0.623 0.693 0.843 0.750 0.9451

RSE 0.577 0.702 0.801 0.886 0.780 0.9445 RSE 0.527 0.673 0.745 0.861 0.776 0.9448

PC 0.633 0.836 0.881 0.887 0.810 0.9450 PC 0.494 0.722 0.821 0.887 0.788 0.9451

VG 0.734 0.840 0.879 0.885 0.815 0.9448 VG 0.616 0.744 0.827 0.874 0.804 0.9446

Kr 0.573 0.851 0.882 0.888 0.806 0.9433 Kr 0.563 0.751 0.816 0.893 0.804 0.9446

Rand 0.566 0.791 0.867 0.887 0.795 0.9437 Rand 0.473 0.692 0.784 0.878 0.778 0.9445

OA 0.601 0.853 0.888 0.919 0.828 0.9439 OA Occlusion Aware (Sec. 2.2)

UV 0.569 0.853 0.890 0.919 0.827 0.9439 UV Unobserved Voxel (Sec. 2.3)

RSV 0.565 0.665 0.850 0.907 0.797 0.9440 RSV Rear Side Voxel (Sec. 2.3)

RSE 0.638 0.816 0.868 0.904 0.815 0.9439 RSE Rear Side Entropy (Sec. 2.3)

PC 0.636 0.833 0.873 0.894 0.816 0.9446 PC Proximity Count (Sec. 2.3)

VG 0.657 0.830 0.871 0.892 0.819 0.9437 VG Area Factor (Vasquez-Gomez et al. 2014)

Kr 0.570 0.787 0.881 0.907 0.810 0.9433 Kr Average Entropy (Kriegel et al. 2015)

Rand 0.593 0.786 0.848 0.900 0.808 0.9437 Rand Random View

Surface coverage is shown for several iterations during the reconstruction procedure. Additionally, the Area Under the Curve (AUC) is shown for the surface coverage and entropy.

Surface coverage AUC is normalized by total reconstruction steps (20); higher is better, with a maximum of 1.0. Entropy AUC is normalized by the maximum possible entropy in

the map, and total reconstruction steps; lower is better. We compare our proposed formulations to the state of the art (Kriegel et al. 2015; Vasquez-Gomez et al. 2014) as well as

randomized view selection without consideration of IG. The best performing VI is shown in bold for each model and column
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Dragon Owl Rabbit

Fig. 3 Surface completion (top) and total map entropy (bottom) for

selected models. These models illustrate how the Area Factor VI

Vasquez-Gomez et al. (2014) and our proposed Proximity Count VI

formulation perform significantly better in surface completion over the

first five views of an object than the other VIs. The Average Entropy VI

Kriegel et al. (2015) also performs well, but not as consistently in the

first views. The total map entropy plots also illustrate how that metric

is not well correlated with surface completion

Table 2 Timing results for each VI formulation, averaged over all tri-

als, models, and views in the simulated experiments. Differences in

computational cost are negligible across all of the proposed VIs and the

state of the art

Volumetric information Avg. time per view [s]

Occlusion Aware 3.7798

Unobserved Voxel 3.7786

Rear Side Voxel 3.7709

Rear Side Entropy 3.7889

Proximity Count 3.7756

Area Factor (Vasquez-Gomez et al. 2014) 3.7618

Average Entropy (Kriegel et al. 2015) 3.7714

base the IG formulation on the difference in the expected

percentages αoc and αop:

Gv,Vasquez(v) = f (αoc, αdes,oc) + f (αop, αdes,op) (17)

with

f (α, αdes) =

{

h1(α, αdes) if α ≤ αdes

h2(α, αdes) if α > αdes

(18)

where

h1(α, αdes) = −
2

α3
des

α3
+

3

α2
des

α2 (19)

and

h2(α, αdes) = −
2

(αdes − 1)3
α3

+
3(αdes + 1)

(αdes − 1)3
α2

−
6αdes

(αdes − 1)3
α +

3αdes − 1

(αdes − 1)3
(20)

f (·) is equal to one if the estimated percentage matches the

desired percentage. This formulation is referred to as Area

Factor VI.

We also compare all of the VI formulations to a next best

view planner that chooses randomly from the available views

in the view space at each iteration.

5 Discussion

Considering our target scenario—3D reconstruction of a

bounded object by a mobile robot with a camera-based depth

sensor— we evaluated the proposed and state of the art vol-

umetric information formulations based on their ability to
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choose views that efficiently lead to a complete object model.

Based on our simulated experiments, the Area Factor VI pro-

posed by Vasquez-Gomez et al. in Vasquez-Gomez et al.

(2014) and our proposed Proximity Count VI exhibit superior

performance during the first few views of the object. Using

the Area Under the Curve as a metric for the efficiency of the

reconstruction over the full trial, both of these VIs also out-

perform the other formulations, performing best on 4 of the

11 models each. However, other VIs typically achieve com-

parable or superior surface coverage after 4–6 views, and

beyond 6–10 views, depending on the model, the surface

completion is asymptotic.

Choosing random views performs reasonably well when

averaged over many trials, but the variance is much larger

than any of the proposed or state of the art VIs. While this

approach would be computationally less expensive than eval-

uating all of the candidate views for information gain, the

computation time per view in our tests was small enough

(<< 10 s) that taking additional random views would not be

more efficient based on the time for most mobile robots to

move between views.

The Average Entropy formulation from Kriegel et al.

(2015) is most effective at reducing the entropy in the map,

achieving the best AUC for most of the models. However,

measuring the total entropy reduction in the map does not

discriminate between the VIs very well, based on our tri-

als. The ability of a VI formulation to effectively reduce

the entropy in the map is not well correlated with its effec-

tiveness in surface reconstruction. Indeed, this conclusion

is supported by the update procedure for a volumetric rep-

resentation like ours. Since we must observe the same

voxel multiple times to increase our certainty about its

occupancy, and therefore decrease its entropy, we would

therefore fail to optimize our observation of new regions

of the object. Additionally, for many robotic applications

such as the estimation of grasping affordances, map entropy

would be much less informative than surface completion

in completing the task. However, for scenarios in which

the certainty about the occupancy of the volumes is more

important than completeness, Average Entropy is more effec-

tive than any of the other VIs, but the results are not very

conclusive.

Within our software framework, computational cost is

negligibly different between all of the proposed and state

of the art VI formulations. Consequently, the efficiency of

the reconstruction is dependent primarily on the number of

views required to reconstruct the object.

Based on the results of our experiments, in which we

isolated the choice of formulation for volumetric informa-

tion as the primary independent variable, the performance of

the Vasquez-Gomez et al. Area Factor VI and our proposed

Proximity Count VI make them the best choices for efficient

reconstruction.

6 Conclusion

In this work, we have considered the problem of next-best

view selection for 3D reconstruction by a mobile robot

equipped with a camera, where the robot builds a probabilis-

tic map in real time, and quantifies the expected information

gain from a set of discrete candidate views. We proposed

several formulations to quantify this information gain for

the volumetric reconstruction task, including visibility like-

lihood and the likelihood of seeing new parts of an object

when performing volumetric reconstruction. The next best

view is selected by optimizing the expected information gain

over the candidate views of the object.

We evaluated these formulations with extensive simulated

experiments in order to asses the contribution that each VI

formulation makes in the performance at the reconstruction

task. Due to the use of an uncluttered scene containing only

the object, and an idealized sensor with no uncertainty in

its measurements or position, our experiments isolated the

performance of each VI formulation, without effects from

environmental factors. The results of the experiments indi-

cate that our proposed Proximity Count VI and the Area

Factor VI from Vasquez-Gomez et al. (2014) both pro-

vide comparably high levels of reconstruction completeness

during the first few views, as well as over the course of

the whole procedure, on a set of models with a variety of

shapes and degrees of complexity and convexity. However,

the experimental results also showed that in most cases, the

reconstruction is able to achieve most of its model completion

within a small number (<10) of well-chosen views, regard-

less of the choice of VI formulation.

Our active reconstruction framework is adaptable to other

robotic platforms and reconstruction problems, and has been

released open source. The software and videos demonstrating

its performance are available at: http://rpg.ifi.uzh.ch.
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