
Probab. Theory Relat. Fields (2012) 153:759–769
DOI 10.1007/s00440-011-0360-9

A comparison principle for functions of a uniformly
random subspace

Joel A. Tropp

Received: 2 February 2011 / Revised: 24 March 2011 / Published online: 7 April 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract This note demonstrates that it is possible to bound the expectation of an
arbitrary norm of a random matrix drawn from the Stiefel manifold in terms of the
expected norm of a standard Gaussian matrix with the same dimensions. A related
comparison holds for any convex function of a random matrix drawn from the Stiefel
manifold. For certain norms, a reversed inequality is also valid.
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1 Main result

Many problems in high-dimensional geometry concern the properties of a random
k-dimensional subspace of the Euclidean space R

n . For instance, the Johnson–
Lindenstrauss Lemma [7] shows that, typically, the metric geometry of a collection of
N points is preserved when we project the points onto a random subspace with dimen-
sion O(log N ). Another famous example is Dvoretsky’s Theorem [1,3,9], which states
that, typically, the intersection between the unit ball of a Banach space with dimension
N and a random subspace with dimension O(log N ) is comparable with a Euclidean
ball.

In geometric problems, it is often convenient to work with matrices rather than
subspaces. Therefore, we introduce the Stiefel manifold,

V
n
k := { Q ∈ M

n×k : Q∗ Q = I},
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760 J. A. Tropp

which is the collection of real n ×k matrices with orthonormal columns. The elements
of the Stiefel manifold V

n
k are sometimes called k-frames in R

n . The range of a k-frame
in R

n determines a k-dimensional subspace of R
n , but the mapping from k-frames to

subspaces is not injective.
It is easy to check that each Stiefel manifold is invariant under orthogonal transfor-

mations on the left and the right. An important consequence is that the Stiefel manifold
V

n
k admits an invariant Haar probability measure, which can be regarded as a uniform

distribution on k-frames in R
n . A matrix Q drawn from the Haar measure on V

n
k is

called a random k-frame in R
n .

It can be challenging to compute functions of a random k-frame Q. The main reason
is that the entries of the matrix Q are correlated on account of the orthonormality con-
straint Q∗ Q = I. Nevertheless, if we zoom in on a small part of the matrix, the local
correlations are very weak because orthogonality is a global property. In other words,
the entries of a small submatrix of Q are effectively independent for many practical
purposes [6].

As a consequence of this observation, we might hope to replace certain calcu-
lations on a random k-frame by calculations on a random matrix with independent
entries. An obvious candidate is a matrix G ∈ M

n×k whose entries are independent
N(0, n−1) random variables. We call the associated probability distribution on M

n×k

the normalized Gaussian distribution.
Why is this distribution a good proxy for a random k-frame in R

n? First, a normal-
ized Gaussian matrix G verifies E(G∗G) = I, so the columns of G are orthonormal on
average. Second, the normalized Gaussian distribution is invariant under orthogonal
transformations on the left and the right, so it shares many algebraic and geometric
properties with a random k-frame. Furthermore, we have a wide variety of methods for
working with Gaussian matrices, in contrast with the more limited set of techniques
available for dealing with random k-frames.

These intuitions are well established in the random matrix literature, and many
authors have developed detailed quantitative refinements. In particular, we mention
Jiang’s paper [6] and its references, which discuss the proportion of entries in a random
orthogonal matrix that can be simultaneously approximated using independent stan-
dard normal variables. Subsequent work by Chatterjee and Meckes [2] demonstrates
that the joint distribution of r (linearly independent) linear functionals of a random
orthogonal matrix is close in Wasserstein distance to an appropriate Gaussian distri-
bution, provided that r = o(n).

We argue that there is a general comparison principle for random k-frames and nor-
malized Gaussian matrices of the same size. Recall that a convex function is called sub-
linear when it is positive homogeneous. Norms, in particular, are sublinear. Theorem 1
ensures that the expectation of a nonnegative sublinear function of a random k-frame
is dominated by that of a normalized Gaussian matrix. This result also allows us to
study moments and, therefore, tail behavior.

Theorem 1 (Sublinear Comparison Principle) Assume that k = ρn for ρ ∈ (0, 1].
Let Q be uniformly distributed on the Stiefel manifold V

n
k , and let G ∈ M

n×k be a
matrix with independent N(0, n−1) entries. For each nonnegative, sublinear, convex
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A comparison principle for random subspaces 761

function |·| on M
n×k and each weakly increasing, convex function � : R → R,

E �(| Q|) ≤ E �((1 + ρ/2) |G|).

In particular, for all k ≤ n,

E �(| Q|) ≤ E �(1.5 |G|).

Note that the leading constant in the bound is asymptotic to one when k = o(n).
Conversely, Sect. 2 identifies situations where the leading constant must be at least
one. We establish Theorem 1 in Sect. 3 as a consequence of a more comprehensive
result, Theorem 5, for convex functions of a random k-frame.

A simple example suffices to show that Theorem 1 does not admit a matching lower
bound, no matter what comparison factor β we allow. Indeed, suppose that we fix a
positive number β. Write ‖·‖ for the spectral norm (i.e., the operator norm between
two Hilbert spaces), and consider the weakly increasing, convex function

�(t) := (t − 1)+ where (a)+ := max{0, a}.

For a normalized Gaussian matrix G ∈ M
n×k , we compute that

E �(β ‖G‖) = E (β ‖G‖ − 1)+ > 0

because there is always a positive probability that β ‖G‖ ≥ 2. Meanwhile, the spectral
norm of a random k-frame Q in R

n satisfies ‖ Q‖ = 1, so

E �(‖ Q‖) = E �(1) = 0.

Inexorably,

E �(β ‖G‖) ≤ E �(‖ Q‖) �⇒ β ≤ 0.

Therefore, it is impossible to control �(β |G|) using �(| Q|) unless we impose addi-
tional restrictions. Turn to Sect. 4 for some conditions under which we can reverse the
comparison in Theorem 1.

One of the anonymous referees has made a valuable point that deserves amplifica-
tion. Note that a random orthogonal matrix with dimension one is a scalar Rademacher
variable, while a normalized Gaussian matrix with dimension one is a scalar Gaussian
variable. From this perspective, Theorem 1 resembles a noncommutative version of
the classical comparison between Rademacher series and Gaussian series in a Banach
space [8, Sec. 4.2]. Let us state an extension of Theorem 1 that makes this connection
explicit.

Theorem 2 (Noncommutative Gaussian Comparison Principle) Fix a sequence of
square matrices {A j : j = 1, . . . , J } ⊂ M

n×n. Consider an independent family
{ Q j : j = 1, . . . , J } ⊂ M

n×n of random orthogonal matrices and an independent
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family {G j : j = 1, . . . , J } ⊂ M
n×n of normalized Gaussian matrices. For each non-

negative, sublinear, convex function |·| on M
n×n and each weakly increasing, convex

function � : R → R,

E �

(∣∣∣∣
∑J

j=1
Q j A j

∣∣∣∣
)

≤ E �

(
1.5

∣∣∣∣
∑J

j=1
G j A j

∣∣∣∣
)

.

We can complete the proof of Theorem 2 using an obvious variation on the argu-
ments behind Theorem 1. We omit further details out of consideration for the reader’s
patience.

2 A few examples

Before proceeding with the proof of Theorem 1, we present some applications that
may be interesting. We need the following result [8, Thm. 3.20], which is due to
Gordon [4].

Proposition 3 (Spectral Norm of a Gaussian Matrix) Let G ∈ M
n×k be a random

matrix with independent N(0, n−1) entries. Then

E ‖G‖ ≤ 1 + √
k/n.

2.1 How good are the constants?

Consider a uniformly random orthogonal matrix Q ∈ V
n
n . Evidently, its spectral norm

‖ Q‖ = 1. Let G ∈ M
n×n be a normalized Gaussian matrix. Theorem 1 and Proposi-

tion 3 ensure that

1 = E ‖ Q‖ ≤ 1.5 E ‖G‖ ≤ 3.

Thus, the constant 1.5 in Theorem 1 cannot generally be improved by a factor greater
than three.

Next, we specialize to the trivial case where k = n = 1. Let Q be a Rademacher
random variable, and let G be a standard Gaussian random variable. Theorem 1 implies
that

1 = E |Q| ≤ 1.5 E |G| = 1.5

√
2

π
< 1.2.

Therefore, we cannot reduce the constant 1.5 below
√

π/2 ≈ 1.253 if we demand a
result that holds when n is small.

Finally, consider the case where k = 1. Let q be a random unit vector in R
n , and

let g be a vector in R
n with independent N(0, n−1) entries. Applying Theorem 1 with
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the Euclidean norm, we obtain

1 = E ‖q‖2 ≤
(

1 + 1

2n

)
· E ‖g‖2 ≤ 1 + 1

2n
.

This example demonstrates that the best constant in Theorem 1 is at least one when
k = 1 and n is large. Related examples show that the best constant is at least one as
long as k = o(n).

2.2 Maximum entry of a random orthogonal matrix

Consider a uniformly random orthogonal matrix Q ∈ V
n
n , and let G ∈ M

n×n be a
normalized Gaussian matrix. Using Theorem 1 and a standard bound for the maximum
of standard Gaussian variables, we estimate that

E max
i, j

∣∣ Qi j
∣∣ ≤ 1.5 E max

i, j

∣∣Gi j
∣∣ ≤ 1.5

√
2 log(n2) + 1

n
= 3

√
log(n) + 1/4

n

Jiang [5] has shown that, almost surely, a sequence { Q(n)} of random orthogonal
matrices with Q(n) ∈ V

n
n has the limiting behavior

lim inf
n→∞

√
n

log n
· max

i, j

∣∣ Q(n)
i j

∣∣ = 2 and lim sup
n→∞

√
n

log n
· max

i, j

∣∣ Q(n)
i j

∣∣ = √
6.

We see that our simple estimate is not sharp, but it is very reasonable.

2.3 Spectral norm of a submatrix of a random k-frame

Consider a uniformly random k-frame Q ∈ V
n
k , and let G ∈ M

n×k be a normalized
Gaussian matrix. Define the linear map L j that restricts an n × k matrix to its first
j rows and rescales it by

√
n/j . As a consequence, the columns of the j × k matrix

L j ( Q) approximately have unit Euclidean norm. We may compute that

E
∥∥L j ( Q)

∥∥ ≤ (1 + (k/2n)) E
∥∥L j (G)

∥∥ ≤ (1 + (k/2n))(1 + √
k/j)

because of Theorem 1 and Proposition 3.
This estimate is interesting because it applies for all values of j and k. Note that

the leading constant 1 + (k/2n) is asymptotic to one whenever k = o(n). In contrast,
we recall Jiang’s result [6] that the total-variation distance between the distributions
of L j ( Q) and L j (G) vanishes if and only if j, k = o(

√
n). A related fact is that,

under a natural coupling of Q and G, the matrix �∞-norm distance between L j ( Q)

and L j (G) vanishes in probability if and only if k = o(n/ log n).
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764 J. A. Tropp

3 Proof of the sublinear comparison principle

The main tool in our proof is a well-known theorem of Bartlett that describes the
statistical properties of the QR decomposition of a standard Gaussian matrix, i.e.,
a matrix with independent N(0, 1) entries. See Muirhead’s book [10] for a detailed
derivation of this result.

Proposition 4 (The Bartlett Decomposition) Assume that k ≤ n, and let � ∈ M
n×k

be a standard Gaussian matrix. Then

�n×k ∼ Qn×k Rk×k .

The factors Q and R are statistically independent. The matrix Q is uniformly distrib-
uted on the Stiefel manifold V

n
k . The matrix R is a random upper-triangular matrix of

the form

R =

⎡
⎢⎢⎢⎢⎢⎣

X1 Y12 Y13 . . . Y1k

X2 Y23 . . . Y2k
. . .

. . .
...

Xk−1 Yk−1,k

Xk

⎤
⎥⎥⎥⎥⎥⎦

k×k

.

The diagonal entries are nonnegative and X2
i ∼ χ2

n−i+1; the super-diagonal entries
Yi j ∼ N(0, 1). Furthermore, all these random variables are mutually independent.

We may now establish a comparison principle for a general convex function of a
random k-frame.

Theorem 5 (Convex Comparison Principle) Assume that k ≤ n. Let Q ∈ M
n×k be

uniformly distributed on the Stiefel manifold V
n
k , and let � ∈ M

n×k be a standard
Gaussian matrix. For each convex function f : M

n×k → R, it holds that

E f ( Q) ≤ E f (α−1�) where α := α(k, n) := 1

k

∑k

i=1
E(Xi )

and X2
i is the nonnegative square root of a χ2

n−i+1 random variable. Similarly, for
each concave function g : M

n×k → R, it holds that

E g( Q) ≥ E g(α−1�).

Proof The result is a direct consequence of the Bartlett decomposition and Jensen’s
inequality. Define �, Q, and R as in the statement of Proposition 4. Let P ∈ M

k×k

be a uniformly random permutation matrix, independent from everything else.
First, observe that

E(P R PT ) = (E t̄r(R)) · I = αI where α := 1

k

∑k

i=1
E(Xi ).
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The symbol t̄r denotes the normalized trace. Since the function f is convex, Jensen’s
inequality allows that

E f ( Q) = E f (α−1 Q(E P R PT )) ≤ E f (α−1 Q P R PT ).

It remains to simplify the random matrix in the last expression.
Recall that the Haar distribution on the Stiefel manifold V

n
k and the normalized

Gaussian distribution on M
n×k are both invariant under orthogonal transformations.

Therefore, Q ∼ QS and � ∼ �ST for each fixed permutation matrix S. It follows
that

E[ f (α−1 Q P R PT ) | P] = E[ f (α−1 Q R PT ) | P]
= E[ f (α−1� PT ) | P] = E f (α−1�),

where we have also used the fact that Q and R are statistically independent. Combin-
ing the last two displayed formulas with the tower property of conditional expectation,
we reach

E f ( Q) ≤ E E[ f (α−1 Q P R PT ) | P] = E f (α−1�).

The proof for concave functions is analogous. ��
For Theorem 5 to be useful, we need to make some estimates for the constant

α(k, n) that arises in the argument. To that end, we state without proof a simple result
on the moments of a chi-square random variable.

Proposition 6 (Chi-Square Moments) Let X be the nonnegative square root of a chi-
square random variable with p degrees of freedom. Then

E(	) =
√

2 · 
((p + 1)/2)


(p/2)
.

Given the identity from Proposition 6, standard inequalities for this ratio of gamma
functions allow us to estimate the constant α in terms of elementary operations and
radicals.

Lemma 7 (Estimates for the Constant) The constant α(k, n) defined in Theorem 5
satisfies

1

k

∑k−1

i=0

√
n − (i + 1/2) ≤ α(k, n) ≤ 1

k

∑k−1

i=0

√
n − i .

Proof We require bounds for

α = 1

k

∑k

i=1
E(Xi ) where X2

i ∼ χ2
n−i+1 and Xi ≥ 0.
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Proposition 6 states that

E(Xi ) =
√

2 · 
((pi + 1)/2)


(pi/2)
for pi = n − i + 1.

This ratio of gamma functions appears frequently, and the following bounds are avail-
able.

√
p − 1/2 <

√
2 · 
((p + 1)/2)


(p/2)
<

√
p for p ≥ 1/2.

Combine these relations and reindex the sums to reach the result.
The upper bound can be obtained directly from Jensen’s inequality and the basic

properties of a chi-square variable: E(Xi ) ≤ [E(X2
i )]1/2 = √

n − i + 1. In contrast,
the lower bound seems to require hard analysis. ��

For practical purposes, it is valuable to simplify the estimates from Lemma 7
even more. To accomplish this task, we interpret the sums in terms of basic integral
approximations.

Lemma 8 (Simplified Estimates) The constant α(k, n) defined in Theorem 5 satisfies

2

3k

[
n3/2 − (n − k)3/2

]
≤ α(k, n)≤ 2

3k

[
n3/2 − (n − k)3/2

]
+ 1

2k

[√
n − √

n − k
]
.

The minimum value for the lower bound occurs when k = n, and

2

3

√
n ≤ α(n, n) ≤ 2

3

√
n + o(1) as n → ∞.

Furthermore, when we express k = ρn for ρ ∈ (0, 1], it holds that

1

α(ρn, n)
≤ 1√

n
· (1 + ρ/2).

Proof Fix the parameters k and n. Define the real-valued function h(x) = √
n − x ,

and observe that h is concave and decreasing on its natural domain. The lower bound
for α from Lemma 7 implies that

α ≥ 1

k

∑k−1

i=0
h(i + 1/2) ≥ 1

k

k∫
0

h(x) dx .

To justify the second inequality, we observe that the sum corresponds with the
midpoint-rule approximation to the integral. Because the integrand is concave, the
midpoint rule must overestimate the integral. Evaluate the integral to obtain the stated
lower bound.
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To see that the minimum value for the lower bound occurs when k = n, notice that

k �−→ 1

k

k∫
0

h(x) dx

is the running average of a decreasing function. Of course, the running average also
decreases.

Next, we use the relation k = ρn to simplify (the reciprocal of) the lower bound,
which yields

1

α(ρn, n)
≤ 1.5 · n−1/2 · ρ

1 − (1 − ρ)3/2 ≤ n−1/2 · (1 + ρ/2).

The second inequality holds because the fraction defines a convex function of ρ on
the interval (0, 1], so we may bound it above by the chord ρ �→ (2 +ρ)/3 connecting
the endpoints.

The proof of the upper bound follows from a related principle: The trapezoidal rule
underestimates the integral of a concave function. Lemma 7 ensures that

α ≤ 1

k

∑k−1

i=0
h(i) ≤ 1

k

⎡
⎣

k∫
0

h(x) dx + 1

2
(h(0) − h(k))

⎤
⎦ .

Here, we have applied the trapezoidal rule on the interval [0, k] and then redistributed
the terms associated with the endpoints. Evaluate the integral to complete the bound.

��
We are now prepared to establish the main result.

Proof of Theorem 1 Let Q be a random matrix distributed uniformly on the Stiefel
manifold V

n
k , and let G ∈ M

n×k be a normalized Gaussian matrix. We can write
G = n−1/2� where � is a standard normal matrix.

Suppose that |·| is a nonnegative, sublinear, convex function and that � is a weakly
increasing, convex function. Then the function M �→ �(|M|) is also convex. Theo-
rem 5 demonstrates that

E �(| Q|) ≤ E �
(∣∣∣α−1�

∣∣∣) = E �
(
α−1√n · |G|

)
.

For k = ρn, Lemma 8 ensures that the constant α satisfies

α−1√n ≤ 1 + ρ/2.

Given that the function � is increasing and |G| ≥ 0, we conclude that

E �(| Q|) ≤ �
(
α−1√n · |G|

)
≤ �((1 + ρ/2) · |G|).
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768 J. A. Tropp

This argument establishes the main part of the theorem. To establish the remaining
assertion, we simply assign ρ = 1, the maximum value allowed. ��

4 Partial converses

There are at least a few situations where it is possible to reverse the inequality of
Theorem 1. To develop these results, we record another basic observation about Gauss-
ian matrices [10].

Proposition 9 (Polar Factorization) Assume that k ≤ n. Let � ∈ M
n×k be a standard

Gaussian matrix. Then

�n×k ∼ Qn×k Wk×k .

The factors Q and W are statistically independent. The matrix Q is uniformly dis-
tributed on the Stiefel manifold V

n
k , and the matrix W is the positive square root of

a k × k Wishart matrix with n degrees of freedom.

The first converse concerns a right operator ideal norm; that is, a norm |||·||| that
satisfies the relation |||AB||| ≤ |||A||| · ‖B‖, where ‖·‖ is the spectral norm.

Theorem 10 (Partial Converse I) Assume that k = ρn for ρ ∈ (0, 1]. Let Q be uni-
formly distributed on the Stiefel manifold V

n
k , and let G ∈ M

n×k be a normalized
Gaussian matrix. For each right operator ideal norm |||·|||, it holds that

E |||G||| ≤ (1 + √
ρ) · E ||| Q||| .

Proof The proof uses the polar factorization of the Gaussian matrix described in
Proposition 9. For a standard Gaussian matrix � ∈ M

n×k ,

E |||G||| = n−1/2
E |||�||| = n−1/2

E ||| QW ||| ≤ n−1/2
E(||| Q||| · ‖W‖)

= n−1/2(E ||| Q|||) · (E ‖W‖).

The last relation relies on the independence of the polar factors. To continue, we note
that the Wishart square root W has the same distribution as (�∗�)1/2. Therefore,

n−1/2
E ‖W‖ = n−1/2

E

(∥∥�∗�
∥∥1/2

)
= n−1/2

E ‖�‖ = E ‖G‖ ≤ 1 + √
k/n,

where the last bound follows from Gordon’s result, Proposition 3. ��
A version of Theorem 10 also holds for higher moments:

E(|||G|||m) ≤ E(‖G‖m) · E(||| Q|||m) ≤ C
√

m · (1 + √
ρ) · E(||| Q|||m) when m ≥ 1.

The second inequality holds because moments of a Gaussian series are equivalent
[8, Cor. 3.2].
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We have a second result for other types of operator norms. We omit the proof,
which, by now, should be obvious.

Theorem 11 (Partial Converse II) Assume that k ≤ n. Let Q be uniformly distributed
on the Stiefel manifold V

n
k , and let G ∈ M

k×n be a normalized Gaussian matrix.
Suppose that ‖·‖Y is a norm on R

k and ‖·‖Z is a norm on R
n. Then

E ‖G‖Y→Z ≤ (n−1/2
E ‖T‖Y→Y ) · (E ‖ Q‖Y→Z )

where T is either the upper-triangular matrix R defined in Proposition 4 or the Wishart
square root W defined in Proposition 9.
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