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ABSTRACT

Motivation: Array comparative genomic hybridization (CGH) allows

detection and mapping of copy number of DNA segments. A challenge

is to make inferences about the copy number structure of the genome.

Several statistical methods have been proposed to determine genomic

segments with different copy number levels. However, to date, no com-

prehensive comparison of various characteristics of these methods

exists. Moreover, the segmentation results have not been utilized in

downstream analyses.

Results: We describe a comparison of three popular and publicly

available methods for the analysis of array CGH data and we demon-

strate how segmentation results may be utilized in the downstream

analyses such as testing and classification, yielding higher power

and prediction accuracy. Since the methods operate on individual

chromosomes, we also propose a novel procedure for merging seg-

ments across the genome, which results in an interpretable set of copy

number levels, and thus facilitate identification of copy number alter-

ations in each genome.

Availability: http://www.bioconductor.org

Contact: jfridlyand@cc.ucsf.edu

Supplementary Information: http://www.cbs.dtu.dk/~hanni/aCGH/

1 INTRODUCTION

Development of solid tumors is associated with acquisition of com-

plex genetic alterations. The particular types of genomic derange-

ment seen in tumors reflect underlying failures in maintenance of

genetic stability, as well as selection for changes that provide

growth advantages. Comparative genomic hybridization (CGH)

is a technique by which it is possible to detect and map genetic

changes that involve gain or loss of segments of genomic DNA.

Microarray formats of CGH provide copy number information at

thousands of locations distributed throughout the genome. For a

review of existing array platforms see Pinkel and Albertson (2005).

Genomic profiles greatly vary in their complexity. Depending on

the instability present in the tumor and the selection environment,

tumor cells may acquire alterations ranging from large segments

with single copy number alterations to narrow homozygous dele-

tions or high level amplifications. In many tumors the magnitude of

measurable changes is reduced because the cell population is het-

erogeneous, thus frequently containing a significant proportion of

normal cells. For a given genomic profile, the initial computational

step is commonly referred to as segmentation and it involves reli-

able identification of locations with copy number transitions or

breakpoints. An example of how a genomic profile may look is

illustrated in Figure 1(A and B). Downstream analyses involve clas-

sifying the samples and finding copy number alterations that are

associated with known biological markers. Thus, additional oppor-

tunities arise in the analysis of array CGH data compared with the

established analyses of gene expression microarrays. In particular,

one has to make efficient use of the physical dependency of nearby

clones.

Several segmentation methods have been proposed for parti-

tioning clones into sets with the same copy number. Performances

of a hidden Markov models (HMM) approach (Fridlyand et al.,
2004), a non-parametric change-point method (DNAcopy)

(Olshen et al., 2004) and a Gaussian model-based approach

(GLAD) (Hupe et al., 2004) are compared in this article and

these approaches are described in the Methods section in detail.

Additional segmentation methods involve building hierarchical

clustering-style trees along each chromosome (CLAC) (Wang

et al., 2005), using a penalized likelihood criterion to estimate

breakpoints (Picard et al., 2005) or applying an expectation–

maximization-based method (Myers et al., 2004). Other proposals
include a Bayesian model that uses parameterized prior distributions

and a prior-less maximum a posteriori (MAP) technique to estimate

the underlying model (Daruwala et al., 2004), a wavelet approach

(Hsu et al., 2005) and use of a genetic local search algorithm to

identify potential breakpoints and perform data smoothing (Jong

et al., 2004).
To date, most proposed segmentation methods have been evalu-

ated on a simple simulation model and/or a small set of karyotyped

Coriell cell lines containing a limited spectrum of one-copy number

alterations. Some approaches to simulate array CGH data were to

randomly and uniformly select breakpoints throughout the genome

(Daruwala et al., 2004); assign loss, normal or gain according to a

fixed probability transition matrix (Hupe et al., 2004) or to draw

lengths of segments from a theoretical distribution and then assign

either normal or one-copy gain (Hsu et al., 2005). Some additional

variations have been used to make the simulation resemble real data,

e.g. adding a trend parameter (Olshen et al., 2004) or simply adding

random Gaussian noise to karyotyped Coriell cell lines (Fridlyand

et al., 2004). However, many of these simulations produce unreal-

istically simple array CGH data involving few copy number�To whom correspondence should be addressed.
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changes. Moreover, until recently, no formal comparisons had been

made among proposed algorithms except for Hsu et al. (2005) who
compare their method with a previous method in terms of its break-

point detection ability. A very recent paper (Lai et al., 2005)

describes an extensive study that compares the ability of a large

number of methods to assign copy number alterations. However,

they did not specifically examine the behavior of aberrations at the

boundaries and their simulation model does not lead to sufficiently

complicated genomic profiles. With the explosion of interest in copy

number microarrays and published computational approaches, there

is a need for establishing a standard for systematic comparison of

computational segmentation approaches. Here we create a simula-

tion schema that generates genomic profiles of comparable com-

plexity with real life data. This is achieved by resampling segments

from a large set of primary tumors. We use the simulated data to

compare three original published segmentation methods that were

chosen on the basis of free access and ability to output appropriate

and comparable segmentation information.

All available methods operate on individual chromosomes. Thus,

as a result of segmentation, profiles are partitioned into numerous

copy number levels with varying means. This presents a problem

when identifying regions of gain or loss. It is currently done on a

clone-by-clone basis either by considering normal range using

normal–normal hybridizations (Veltman et al., 2003; Wang et al.,
2005) or by estimating the level of experimental noise for a given

profile and considering all clones with values outside x times stan-

dard deviation range to be altered (Hodgson et al., 2001; Nakao
et al., 2004) where x is frequently set to 3. In this paper, we present a
novel level-merging algorithm. The merging step does not compro-

mise on the detection accuracy of the breakpoints and is indispens-

able as it allows us to identify a genomic base level, if present, and

thereby easily assigns regions of copy number gain and loss to

characterize individual genomes in terms of the number of copy

number levels and to describe regions with respect to their relative

copy number level.

Similarly, the physical positions of clones are ignored when

identifying regions where the copy number is significantly asso-

ciated with a phenotype of interest, e.g. a cancer subtype. A stan-

dard approach to the problem is to individually test each clone

for the association on a ‘clone-by-clone’ basis. In this paper,

we evaluate the benefits of segmenting data before performing

downstream analyses and introduce a novel idea of segmenting

test statistics to identify entire genomic regions of interest, facili-

tating the interpretation of results. Thus we compare the down-

stream analyses such as testing and classification using simulated

and real datasets by applying clone-by-clone and region-based

approaches.

This paper is organized as follows: in the Methods section, we

provide details on the three methods under comparison and a novel

level-merging algorithm. We also present novel approaches to

incorporate segmentation into downstream analyses such as

genome-wide testing and gain/loss detection. The simulation

model and the primary tumor dataset are described in the Study

Design section. In the Simulation Results section, we compare the

ability of the three segmentation methods to detect breakpoints,

identify altered regions and detect copy number associations

with a phenotype of interest. In the Real Data Example section,

we show a case study using a primary tumor array CGH dataset.

Finally, in the Discussion and Conclusion section, we discuss the

limitations of the study and future work.

2 METHODS

The methods to be compared are available for the R statistical language from

Bioconductor (http://www.bioconductor.org/) and have copy number level

assignments as their main output.

Fig. 1. (A andB) Genomic profiles for oral cancer samples segmented byDNAcopy andmerged byMergeLevels. The observed log2-ratios are ordered according

to their physical mapping along the genome. (C andD) Discretized log2-ratios by segmentation and merging. Log2-ratios are sorted according to predicted log2-

ratios. Observed log2-ratios are shown in black. Log2-ratios predicted by DNAcopy are shown in light grey and log2-ratios following the application of

MergeLevels are shown in dark grey. The merged profiles yield better interpretability.
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aCGH. This package contains a HMM-based method that assigns clones to

underlying states with constant copy number, thus allowing for determina-

tion of breakpoints. It fits an unsupervised HMM in which any state is

reachable from any other state. The state emission distributions are Gaussian

with state-specific means and fixed variance. The re-estimation is done with

a backward–forward algorithm. For a given number of states (k), the ini-

tialization is performed using k-means partitioning and transition probabili-

ties are set to be proportional to the copy number distance between the pair of

states. The number of states, k, is selected using a model selection criterion,

e.g. Akaike information criterion (AIC) (Fridlyand et al., 2004). The HMM

outputs two types of segmented values: predicted and smoothed log2-ratios,

where the predicted values are state medians and smoothed values are state

medians weighted by the estimated probability of being in each state. Here,

we use aCGH version 1.1.4 and refer to the method as ‘HMM’.

DNAcopy. This entirely non-parametric method is based on circular

binary segmentation (CBS), which is a modification of a change-point

approach allowing for tertiary splits by connecting the two chromosomal

ends. It splits the chromosomes into contiguous regions of equal copy num-

ber by modeling discrete copy number gains and losses. Using a permutation

reference distribution, it bypasses parametric modeling of the data for assess-

ing significance of the proposed splits (Olshen et al., 2004). The model

selection is done in the forward way by repeatedly splitting each contiguous

segment until no significant splits are found. As predicted values, DNAcopy

outputs mean log2-ratios of each predicted segment. Here, we use DNAcopy

version 1.1.0 and we refer to the method as ‘DNAcopy’.

GLAD. This Gaussian-based approach detects chromosomal break-

points by estimating a piecewise constant function that is based on adaptive

weights smoothing (AWS). A local constant Gaussian regression model Yi¼
�(Xi) + «i is considered where the «i are independently and identically

distributed as N(0, s2), and �(Xi) is a piecewise constant function, where

the disjoint regions and the total number of regions are unknown. AWS is

based on local-likelihood modeling and is an iterative algorithm that, around

every location Xi, finds the maximal possible neighborhood in which the �

parameter is constant (Hupe et al., 2004). GLAD contains a procedure for

merging segmented levels by iteratively removing excessive breakpoints and

subsequently cluster segments across chromosomes to assign levels of copy

number gain and loss (Hupe et al., 2004). We use the median of the original

log2-ratios of each initial predicted level as unmerged GLAD data; and the

median of the original log2-ratios for each predicted cluster as the GLAD-

merge values. Since we used GLAD version 1.0.1, it was modified slightly to

optimize its performance in our comparison study (see Supplementary

information for details). We refer to this method as ‘GLAD’ and ‘GLAD-

merge’ for its level-merging procedure.

2.1 Merging of the copy number levels

As an alternative to model-based GLADmerge, which is not easily combined

with other segmentation methods, we propose the following novel method

(referred to as ‘MergeLevels’) for merging copy number levels across the

genome. The method merges two segmented levels if the distributions of the

log2-ratios of the clones mapped to those segments are not significantly

different or if the predicted level values are closer than a dynamically

determined threshold. The algorithm performs the following steps:

(1) Order distances between predicted levels using copy number scale

(2level value), where level value is the predicted value of the segment. (2) Start-

ing from the smallest distance, test whether two levels should be

merged according to either of two criteria: (a) Wilcoxon rank sum test

P-value >1e�04 between observed values for two states or (b) distance

less than a given threshold. States with <3 clones in each may only be

merged based on the threshold criterion (b). (3) After a successful merge,

steps 1 and 2 are repeated until no two adjacent levels can be merged.

(4) Steps 1–3 are repeated for increasing thresholds. (5) For each threshold,

we use Ansari–Bradley 2-sample test (Bauer, 1972) to determine whether the

distribution of the current residuals (current merged values minus observed

log2-ratios) is significantly different from the distribution of the original

residuals (original segmented values minus observed log2-ratios).

(6) Optimal threshold is chosen as the largest threshold where the

Ansari–Bradley P-value >0.05, i.e. where two types of residuals do not

differ significantly. The Ansari–Bradley and Wilcoxon rank sum test sig-

nificance thresholds were chosen based on an independent simulation data-

set. See Supplementary information for details.

2.2 Using segmentation results for identifying regions

of gain and loss, testing and classification

We test the application of segmentation followed by merging for identifica-

tion of copy number alterations by defining the level of no alteration as the

level with predicted log2-ratio closest to 0. Thus, all clones belonging to the

remaining segments are either gained or lost. For comparison, we estimate

experimental variability as the median absolute deviation (MAD) of differ-

ence between the observed and predicted log2-ratios and define threshold for

determining gain and loss as three times MAD (factor of 2.5 is used in real

data example).

We also introduce a region-based method for copy number association

studies, which allows us to compute test statistics for entire regions rather

than for individual clones. Student’s t-test (equal variance) was used as a test

statistic. For multiple testing corrections, we use a permutation-based single-

step maxT procedure to control the family wise error rate (FWER) (Westfall

and Young, 1993). Thus, the reference distribution was estimated by repeat-

edly permuting a phenotype with respect to the copy number data,

re-computing relevant statistics and recording a permutation absolute maxi-

mum. A total of 100 permutations were used for simulation data and 1000 for

primary tumor data. Adjusted P-values were derived by comparing an

observed statistic with the distribution of the permutation maxima. The

significance was declared at maxT adjusted P-value <0.05. Finally, we
investigated whether using segmented values improved prediction accuracy

for a phenotype predictor (e.g. TP53 mutational status). For simplicity we

used a linear discriminant analysis classifier with diagonal covariance matrix

(DLDA) which has previously demonstrated very good performance in

microarray studies (Dudoit et al., 2002). Performance was assessed using

leave-one-out cross-validation for a varying number of input variables which

were ranked by their F-statistic within each cross-validation.

3 STUDY DESIGN

3.1 Simulation model

The ratio profiles for array CGH data were simulated to emulate the

complexity of real tumor profiles. To accomplish that, we seg-

mented a primary breast tumor dataset of 145 samples (Chin, K.

et al., unpublished data) using DNAcopy and randomly sampled

copy number levels from the empirical distribution of segment

mean values, where mean values were binned into the intervals

less than �0.4 (0 copies), between �0.2, and �0.4 (one copy),

between �0.2 and 0.2 (2 copies), >0.2 but <0.4, (three copies),

between 0.4 and 0.6 (four copies) and >0.6 (five copies). Note

that defined intervals enrich for more extreme copy number changes

and are not intended to present a realistic log2-ratio-copy number

relationship but rather were constructed to increase complexity of

the simulated genomes allowing for higher copy number diversity.

The lengths for normal levels (copy number 2) were assigned by

sampling from the empirical length distribution of levels falling into

the [�0.2, 0.2] bin. Similarly, we assigned lengths to the altered

segments by sampling from the length distribution for segments

with levels outside that bin, i.e. altered segments, without distin-

guishing among length distributions with different copy numbers.

Thus, the ‘true’ breakpoints were derived and recorded. Each sam-

ple was assumed to be diploid and was assigned a proportion of
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tumor cells (Pt), which was drawn from a uniform distribution

between 0.3 and 0.7 to resemble the proportion of tumor cells

often seen in tumor biopsies and to incorporate this into our simu-

lation model in a controlled way. Consequently, the expected log2-

ratio for each clone was computed as log2[(c · Pt + 2�(1 � Pt))/2]

where c was the assigned copy number.

Finally, Gaussian noise of mean 0 and varying variance were

added to each sample. Appropriateness of the Gaussian distribution

has previously been demonstrated using samples with limited num-

ber of alterations (Hodgson et al., 2001). Since hybridization quality
and thus experimental variability of the samples may vary greatly, a

sample-specific variance was added to each profile by drawing a

standard deviation from a uniform distribution with range between

0.1 and 0.2. This variability reflects what is typically observed in the

lower quality examples of UCSF BAC array hybridizations (data

not shown). A total of 500 samples with 20 chromosomes contain-

ing 100 clones each were simulated with lengths of the edge seg-

ments truncated. This simulation was used to compare sensitivity

and specificity of the three segmentation methods with regard to the

breakpoint detection, to compare the two level-merging algorithms

and to evaluate merging-based approach for identification of copy

number alterations.

We created a different set of simulations to emulate real datasets

with samples from two tumor classes. These datasets were used to

specifically test whether the segmentation approach was more pow-

erful than a univariate clone-by-clone approach for testing of copy

number associations with a phenotype. For this simulation, we

created 500 datasets each consisting of 20 samples drawn at random

from either of two genome templates constructed as described pre-

viously with a few exceptions. Without loss of generality the length

of each genomic profile was reduced to 500 clones placed on just

one chromosome and each sample was only assigned a probability

of 0.7 of having a given aberration (i.e. in all samples �30% of

segments with copy number gains or losses were re-assigned a

normal copy number of 2). Because the proportion of segments

with copy number changes in each sample was decreased thereby,

we doubled the probability of drawing altered segments from the

copy number/segment length distribution. Segments with differ-

ences in copy number between the two classes were recorded.

On average, each dataset had 211 clones in such segments.

3.2 Breakpoint detection and merging

We compared the sensitivity and false discovery rate (FDR) of

HMM, GLAD and DNAcopy to detect and correctly locate break-

points for originally predicted segments as well as merged seg-

ments. Here, the sensitivity is the proportion of true breakpoints

that were identified, whereas the FDR is the proportion of falsely

predicted breakpoints among the predicted ones. Additionally,

MergeLevels and GLADmerge were compared based on the pre-

cision of their predicted values relative to expected log2-ratios and

the accuracy of identifying altered clones. We also considered all

pairwise combinations of the clones and determined the proportion

of clone pairs that were incorrectly assigned to the same or different

states, referred to as discordant pairs.

3.3 Copy number association study: testing for

differential copy number

A standard approach to identifying genomic regions associated with

a particular phenotype, e.g. a cancer subtype, is to individually test

each clone for an association, i.e. on a ‘clone-by-clone’ basis. Here,

comparisons were done between the standard and the ‘region-based’

approaches which included performing t-tests either on segmented

log2-ratios or on the observed log2-ratios followed by segmenting

the resulting statistic. Here, for HMM the segmented values corre-

sponded to the HMM-smoothed values (weighted means of the state

means). The performance of the methods was evaluated by sensi-

tivity and specificity using a multiple testing corrected significance

threshold and by comparing ROC curves.

3.4 Application to primary tumor data

Real array CGH data from BAC arrays with formalin-fixed primary

oral squamous cell carcinomas (SCCs) (Snijders et al., 2005) were
reanalyzed using the approaches introduced in this manuscript. The

dataset consisted of 14 TP53 mutant samples and 61 wildtype sam-

ples. The scientific question of interest was the comparison of

genomic features between TP53 mutant and TP53 wildtype tumor

samples. TP53 status was determined by sequencing. Based on the

methods’ comparative performance assessment on simulated data,

we chose to apply DNAcopy to the tumor data followed by merging

with MergeLevels. The two tumor types were compared in terms of

their overall genomic instability measured using the total number of

breakpoints in each genome. We also assigned gain and loss status

to each clone using threshold and segmentation-based methods, and

displayed an example of a typical disagreement between the two

approaches. Furthermore, we tested for copy number associations

with phenotypes using clone-by-clone and region-based

approaches. Finally, we build a predictor of the TP53 phenotype

and demonstrate that providing segmented data as an input to a

classifier greatly improves prediction accuracy estimated using

leave-one-out cross-validation error rate.

4 SIMULATION RESULTS

4.1 Breakpoint identification and merging

From the output of each method, it is possible to infer predicted

breakpoints. These were compared with the location of known

breakpoints for the simulated data (15 breakpoints per sample on

average). Figure 2 illustrates how the methods perform with regard

to breakpoint detection at the correct position (w ¼ 0) or with an

offset (localization error) of one or two clones, w ¼ {1,2}, within

which a predicted breakpoint was assigned as correctly identified.

As expected, the sensitivity increased while FDR decreased with

larger accepted offsets. By merging, some true breakpoints were

removed and consequently sensitivity decreased slightly. Since

many excessive breakpoints were removed as well, the FDR greatly

decreased, especially for HMM and GLAD.

Of the compared methods, DNAcopy was most sensitive while

having the lowest FDR (P-value <2.2e�16, paired Wilcoxon rank

sum test). GLAD was least sensitive and HMM had the highest

FDR. Not surprisingly, both merging procedures decreased FDR

while reducing sensitivity for DNAcopy and GLAD (P-value
<2.2e � 16, paired Wilcoxon rank sum test). MergeLevels was

less aggressive than GLADmerge in removing breakpoints resulting

not only in higher sensitivity but also in higher FDR. Notice that

DNAcopy is very sensitive and has a low FDR when applied alone,

and thus benefits least from merging with regard to breakpoints. As

an example, when accepting an offset of two clones, DNAcopy has

a median sensitivity of 88% while having a median FDR of 6%.

A comparison study of array CGH analyses methods
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This corresponds to 1.8 missed breakpoints on average and 0.8 false

breakpoints. Both HMM and GLAD had significantly more trouble

identifying precise breakpoint locations than DNAcopy based on

examination of the offset for predicted breakpoints. The compara-

tive performance between methods was independent of the magni-

tude of the signal/noise ratio defined as the ratio of the proportion of

the tumor cells to the variability of noise (Pt/sd), i.e. DNAcopy

consistently performed the best while GLADwas least sensitive and

HMM had the highest FDR (see Supplementary information).

Additional studies indicated that the comparative performance

did not change when introducing a larger proportion of smaller

segments in the simulated data using empirical length distributions

generated by either HMM or GLAD using the same primary breast

tumor dataset as for DNAcopy. However, further examination of the

spatial resolution of the three segmentation methods revealed that

HMM had the greatest power to detect the shortest segments with

DNAcopy surpassing HMM for longer segments. However, DNA-

copy had by far the lowest FDR for all segment lengths. GLAD

consistently performed worse than the other two methods except for

the detection of the longest segments (see Supplementary Informa-

tion for details).

The merging step allows us to identify segments on different

chromosomes corresponding to the same copy number. As an exam-

ple, Figure 3 shows simulated data overlaid with known log2-ratios

and with either HMM segmented log2-ratios before merging (A) or

after application of MergeLevels (B). For this example, merging

clarifies the genomic profile and is able to correctly identify the base

(no change) level as well as other copy number levels. This is also

true for most other samples (see Supplementary Figure S1). Note

that for highly aberrant genomes, such a base level does not exist

and it is not possible to infer gain and loss reliably.

To verify that merging performed reasonably, four different mea-

sures were considered: (1) sum of squared (SSQ) distance; (2) MAD

between predicted log2-ratios and known log2-ratios; (3) accuracy

of assigning copy number gain and loss and (4) the proportion of

discordant pairs (Table 1). Here, the SSQ distance and MAD

were calculated with respect to the residuals between the observed

(predicted, merged) values and the expected log2-ratios computed

as a function of the copy number and the proportion of the tumor

cells. All the clones with the true copy number not equal to 2 were

considered to be ‘altered’ and the ‘accuracy’ was calculated as the

proportion of the clones correctly assigned to altered or unaltered

states. To calculate the proportion of the discordant pairs, all pair-

wise combinations of the clones were considered and the proportion

of clone pairs that were incorrectly assigned to the same or different

copy number levels, referred to as discordant pairs was determined.

Segmentation alone improved all four measures and both types of

merging further decreased MAD, and as expected, further increased

the accuracy of assigning copy number alterations and dramatically

decreased the proportion of discordant clone pairs. No significant

difference was observed between the performance of MergeLevels

(a) (b)

Fig. 2. Results from simulation identifying breakpoints using either HMM, DNAcopy or GLAD or after removal of excessive breakpoints by MergeLevels or

GLADmerge following segmentation. (a) It shows the median sensitivity and corresponding average number of false negatives (FN.) (b) FDR for breakpoint

detection with error bars depicting the interquartile range is shown. Breakpoints were classified as correctly identified at its exact location (w¼ 0) or if within an

offset of 1–2 clones (w¼ 1–2) of a correct breakpoint.

A

B

Fig. 3. An example of simulated array CGH data with 100 clones on each of

20 chromosomes. The figure shows simulated log2-ratios in light grey,

ordered by position and chromosome. ‘True’ log2-ratios were recorded from

the simulations prior to the addition of Gaussian noise and are overlaid in

black. (A) Predicted or merged log2-ratio levels are overlaid in dark grey for

HMM predicted log2-ratios before merging and (B) after applying MergeLe-

vels. Merging brings predicted values closer to their true copy numbers.
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and GLADmerge except for the SSQ distance where the application

of GLADmerge resulted in significantly larger squared error com-

pared with those obtained when only applying segmentation. Thus,

while some merging is beneficial—‘over-merging’ may occur,

which is also reflected in the sensitivity/specificity trade-off in

Figure 2.

The same four measures were used to assess the benefits from

merging DNAcopy and GLAD segmented data and similar overall

results were obtained. Moreover, to ascertain that our results and

conclusions were not an artifact of our data simulation model or the

DNAcopy segmentation results for determination of the empirical

length distribution used in our simulation model, a second set of

simulated data was generated using the model for high-

rearrangement profiles as described by Hupe et al. (2004) without
their outlier addition. Their model led to much simpler datasets than

the data simulated using our model, and consequently improved

results for all methods. However, the comparative performance of

the three methods was similar (see Supplementary information for

details).

4.2 Copy number association power study: testing

We tested copy number associations of individual clones and

genomic segments with the simulated binary phenotype, by testing

whether a clone had a significantly different log2-ratio in samples

from one subgroup (class 1 template) as compared with the log2-

ratio for the same clone in samples from the other subgroup (class 2

template). Thus, we assessed the sensitivity and specificity of the

clone-by-clone approach and the region-based approaches. The

latter used segmented log2-ratios or segmented test statistics as

described in Methods. For segmented test statistics, all clones

assigned to the same segment would have the same test statistics.

Here, the sensitivity is the proportion of known differential clones

that were identified, while the specificity is the proportion of known

non-differential clones identified as such.

ROC curves were used to evaluate the power to detect associa-

tions of the genomic alterations with a phenotype. Thus, in Figure 4,

we plotted the median sensitivity over all datasets for small binned

intervals of ‘1-specificity’ corresponding to a sequence of different

significance thresholds. It shows a combined ROC curve based on

results from all 500 simulations. Application of any of the three

methods resulted in greatly improved performance, which is evident

by a higher sensitivity for any given specificity. Both region-based

approaches are superior to the clone-by-clone (original) approach

for all three segmentation methods with DNAcopy performing sig-

nificantly better than HMM and GLAD (see also Supplementary

Figure S8). For HMM and GLAD, the family wise multiple testing

cutoff was often driven by single extreme values. The levels were

predicted correctly in most cases, but the cutoff derived from the

maxT reference permutation distribution was too conservative,

resulting in many distinct segments being classified as non-

differential. We refer to Westfall and Young (1993) and the

Supplementary information for details on the permutation-based

single-step maxT procedure to control the FWER. Alternatively,

when applying a gFWER(k)-controlling single-step common-cutoff

augmentation procedure to define significance thresholds, the sen-

sitivity increased greatly, especially for HMM and GLAD, whereas

the specificity only decreased slightly (see Supplementary informa-

tion for details).

5 REAL DATA EXAMPLE: ORAL SQUAMOUS
CELL CARCINOMA

Experimental data are inherently variable and segmentation

involves bias/variance trade-off. We used DNAcopy and MergeLe-

vels to re-analyze 75 oral SCC samples from a recently published

study (Snijders et al., 2005) and demonstrated how segmentation

may improve the analysis. The aim was to quantitatively compare

the TP53 mutant and wildtype tumor samples in terms of their

genomic instability as measured by the number of breakpoints,

to identify specific genomic regions associated with the TP53muta-

tion and to use copy number data to predict mutation status of tumor

samples.

Figure 1A and B illustrates profiles of a wildtype and a mutant

sample showing original log2-ratios overlaid by segmented and

merged log2-ratios. Figure 1C and D shows the effect of segmenting

and merging, with merged and original log2-ratios sorted according

to the values of predicted levels. A median of 17 and 28 breakpoints

were identified in TP53 wildtype and mutant samples, respectively.

Thus, TP53 mutant tumors were significantly more unstable

genomically (P-value <0.03). Similar to simulations, merging

only removed a small number of breakpoints for DNAcopy (final

median of breakpoints 16 and 24, respectively).

Fig. 4. ROC curve illustrating the results from the copy number association

power study. For varying thresholds, it shows the sensitivities versus

‘1-specificity’ (false positive rate). Results are based on 500 simulations

and binned median sensitivities are depicted. (A) T-statistics based on seg-

mented log2-ratios. (B) Segmented T-statistics based on raw log2-ratios.

Table 1. Result using four difference performance measures for the array

CGH analyses

Original Predicted MergeLevels GLADmerge

SSQ distance 47.38 5.08 4.88 7.25

MAD 0.104 0.015 0.0044 0.0047

Accuracy 0.93 0.93 0.97 0.98

Proportion of

discordant pairs

— 0.73 0.04 0.04

Medianof eachperformancemeasure for original log2-ratios,HMMpredicted log2-ratios

andHMMpredicted log2-ratiosmerged byMergeLevels or by GLADmerge. Results are

based on 500 simulated samples. SSQ and MAD are calculated with respect to the

residuals between the observed (predicted, merged) values and the expected log2-ratios.

Accuracy refers to the proportion of correctly assigned copy number alterations. The

proportion of discordant pairs is the proportion of clone pairs that were incorrectly

assigned to the same or different states relative to their true state.
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Now recall that assigning alterations could be done either on a

clone-by-clone basis by drawing a genome-specific threshold or by

using merged segments. The difference between the proportions of

autosomal clones declared to be altered was dramatic between these

two approaches: median value of 5 versus 33%, respectively (see

SupplementaryFigureS11).The largedifferencearosepartlybecause

of significant heterogeneity of the SCC samples combined with high

experimental noise forparaffin-embedded tumors suchas the samples

in the SCC study. For these, a threshold-based approach is likely to

missmanycloneswithin real alterations. For instance, if the threshold

is near a true copy number level, half of the clones with that copy

numberwill be incorrectly declared unaltered. Figure 5 demonstrates

the threshold-based and segmentation/merging-based methods for

calling alterations. The dashed horizontal lines indicate the tumor-

specific threshold. Thus, only clones above and below this threshold

would be assigned an altered state.However, following segmentation

and merging, assignment of the breakpoints agreed with the seg-

mentation done using visual inspection and all clones on this chro-

mosome can be assigned to an altered state. Of course, the threshold

for the first method may be decreased; however, this would occur at

the expense of a higher false positive rate as illustrated in Figure 6

(note the figure is based on results frombreakpoint simulation study).

This figure shows an ROC curve for assigning alterations on a clone-

by-clone basis using original log2-ratios or those from a DNAcopy

segmentation, and compares it with the results obtained by applying

each of the level-merging algorithms. Segmentation by DNAcopy

alone improves the results significantly; however, the merging

approach is far superior to any threshold for the clone-by-clone

approach illustrated by points to the left of both ROC curves.

Next clones with significant differences in copy numbers between

TP53 mutants and wildtype samples were identified (see Supple-

mentary Figure S12 for resulting t-statistics). Only 29 clones were

significantly differential for original log2-ratios. Using segmented

log2-ratios for testing 66 clones were found to be significant, and

when using segmented t-statistics a total of 139 clones were iden-

tified as differential. These 139 clones were concentrated in seg-

ments on chromosome 8p, 8q, 11q and 18q. Compared to the 29

clones originally identified, only 4 were missing. They corre-

sponded to a single clone on chromosome 2, and a small cluster

of 3 clones separated by single non-significant clones on chromo-

some 10. Thus, the segments picked by region-based approaches

produced more biologically meaningful results than traditional uni-

variate testing method. Note that segmentation of the test statistic

outputs entire regions of interest and thus eases the interpretation of

the results.

Finally, to investigate whether noise reduction via segmentation

would allow for more accurate classification, we constructed a

predictor for TP53 mutants versus wildtypes based on observed

log2-ratios, predicted segmented log2-ratios, or segmented and

merged log2-ratios as input to the classifier. Figure 7 illustrates

the resulting error rate curve and demonstrates that segmentation

decreases prediction error rate, while use of merged data result in

inferior results compared with use of segmented data alone. How-

ever, this was to be expected as we have observed that merging

occasionally removed a true breakpoint. It is also possible that

DLDA classifier is a suboptimal choice for the merged data

which is discretized.

6 DISCUSSION AND CONCLUSION

Numerous methods have been proposed for segmentation of

array CGH data, thus allowing for identification of copy number

Fig. 5. Identification of gained and lost clones using threshold-based and

region-based approaches. A threshold for calling aberrations is indicated

by dashed horizontal line at �0.31 and 0.31. The solid curves indicate the

segmented values. The baseline is at 0, thus all clones are altered according to

the region-based approach with only small proportion of clones altered with

the threshold-based method.

Fig. 6. Simulation study results: ROC curve of calling gains and losses are

shown for DNAcopy for varying log2-ratio thresholds. Median sensitivity

based on 500 simulated samples is shown for bins of ‘1 minus specificity’.

Dots formerged results are shown formedian sensitivity andmedian ‘1minus

specificity’ for MergeLevels and GLADmerge.

Fig. 7. Misclassification error rate for DLDA classifier using original or

segmented and merged data with an increasing number of variables

re-selected at each leave-one-out cross-validation step.

H.Willenbrock and J.Fridlyand
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transitions. However, no comprehensive comparison or even basic

evaluation of the performance of the proposed methods in terms of

their breakpoint detection ability has been attempted; nor have the

segmentation results been utilized in downstream analyses. Here,

we have presented a realistic simulation study comparing three

popular algorithms designed to segment array CGH data. Moreover,

we have evaluated a novel merging algorithm linking segmentation

output to downstream analyses. Finally, we have proposed a region-

based testing algorithm and demonstrated its superior performance.

Our results have indicated that segmentation by any of the three

methods aids downstream analyses of array CGH data. Of the

methods under comparison, DNAcopy has the best operational

characteristics in terms of its sensitivity and FDR for breakpoint

detection. However, it should be noted that it is not able to identify

single clone aberrations. While our comparison was limited to only

three methods, albeit widely used, our study sets an example as a

reference point for evaluating future algorithms. Also, our simula-

tion model successfully emulates the complexity of real array CGH

data. Moreover, our results agree well with the recently published

results by Lai et al. (2005), where they used a limited number of

simple data simulations to demonstrate that DNAcopy generally

performed better than GLAD and HMM with regard to detection

of copy number alterations. Their results also indicated that

HMM performed the best for small aberrations given a sufficient

signal/noise ratio and GLAD did better than HMM for wider

aberrations.

Merging of the resulting segments is of paramount importance in

downstream use of the segmentation results. This aspect of the

analysis has been largely ignored up to now except for a post-

processing procedure in GLAD. We have introduced a novel merg-

ing algorithm and evaluated its performance against the existing one

obtaining comparable results. We have also demonstrated that level-

merging improves gain/loss detection, quantification of genomic

instability for a tumor and assignment of clones to the same copy

number classes. However, small reductions in sensitivity brought on

by merging may hurt some downstream analyses such as testing and

classification since these analyses are very sensitive to the removal

of even a few true breakpoints. Ideally, a merging step could be

incorporated into the initial segmentation.

Currently, identifying regions with differential copy number is

done using the same approaches as in transcriptional microarray

studies without special consideration for known physical depen-

dence. We have introduced a novel method for identifying such

regions, which explicitly uses segmentation results. The new

approach delivers great improvements in detection power as

demonstrated by our analysis.

In this paper we have demonstrated the superior performance of

DNAcopy. However, an HMM approach is adaptable to perform a

whole genome fit by doing constrained optimization of the segment

means and variances across the entire genome, and thus consistently

improving its performance with more observations. Moreover, in

problems where simultaneous inferences need to be made, e.g. copy

number and methylation, it may be of an advantage to use more

model-based approaches such as an HMM and its extensions.

Several papers on this have already been published (e.g. see

Zhao et al., 2004) and we are continuing to work on evaluating

and extending exciting methods to such problems.
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