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Abstract

The objective of this report is to evaluate the performances of different data assimilation
schemes with the aim of designing suitable assimilation algorithms for short-range ozone
forecasts in realistic applications. The underlying atmospheric chemistry-transport models
are stiff but stable systems with high uncertainties (e.g., over 20% for ozone daily peaks,
Hanna et al. [1998]; Mallet and Sportisse [2006b], and much more for other pollutants like
aerosols). Therefore the main difficulty of the ozone data assimilation problem is how to
account for the strong model uncertainties. In this report, the model uncertainties are ei-
ther parameterized with homogeneous error correlations of the model state or estimated by
perturbing some sources of the uncertainties, e.g. the model uncertain parameters. Four as-
similation methods have been considered, namely optimal interpolation, reduced-rank square
root Kalman filter, ensemble Kalman filter, and four-dimensional variational assimilation.
These assimilation algorithms are compared under the same experimental settings. It is
found that the assimilations significantly improve the one-day ozone forecasts. The compar-
ison results reveal the limitations and the potentials of each assimilation algorithm. In our
four-dimensional variational method, the low dependency of model simulations on initial con-
ditions leads to moderate performances. In our sequential methods, the optimal interpolation
algorithm has the best performance during assimilation periods. Our ensemble Kalman filter
algorithm perturbs the uncertain parameters to approximate model uncertainties and has
better forecasts than the optimal interpolation algorithm during prediction periods. This
could partially be explained by the low dependency on the uncertainties in initial conditions.
The sensitivity analysis on the algorithmic parameters is also conducted for the design of
suitable assimilation algorithms for ozone forecasts.



1 Introduction

A typical Eulerian atmospheric chemistry-transport model (CTM) computes the concentrations
c of a set of chemical species by solving the system of advection-diffusion-reaction equations:

∂ci

∂t
= −div(Vci) + div(ρD∇ci

ρ
) + χi(c, t) + Ei , ∀i, (1)

where ci is the concentration of the i-th species, V is the wind velocity, ρ is the air density, D
is the turbulent diffusion matrix, χi(c, t) stands for the species production and loss due to the
chemical reactions, and Ei stands for the elevated emissions. At ground the boundary condition
is given by

−ρD∇ci

ρ
· n = Si − vdep

i ci , (2)

where n is the upward unitary vector, Si stands for the surface emissions and vdep
i is the dry

deposition velocity.

In the numerical model (the CTM), the dimension of the discretized system is usually 106–
107. The model computes ozone hourly concentrations over Europe (for instance) given the
initial conditions and the input data (also designated herein as parameters).

Data assimilation can be considered as the determination of the initial conditions or of
model uncertain parameters by coupling the heterogeneous available information, e.g. model
simulations, observations, and statistics for errors. Data assimilation methods are roughly cat-
alogued into variational and sequential ones [Le Dimet and Talagrand, 1986; Evensen, 1994].
The objective of the former can be defined as state estimation by minimizing the quadratic dis-
crepancy between model simulation and a block of observations, usually combined with a priori
background knowledge. This can be formalized and solved efficiently with the optimal control
theory. The sequential methods make use of observations as soon as they are available. Since
this is a filtering process, filter theory (linear or nonlinear) applies.

Both methods have found their applications for CTMs. The pioneering work dates back to
Fisher and Lary [1995]. On the variational side, Elbern and Schmidt [2001] use a comprehensive
model rather than an academical model in order to assimilate real observations with assessment
of ozone forecast. Chai et al. [2007] follow with assimilation of new types of observations, and
several practical issues, e.g. background error modeling, are investigated with details. Very few
work deals with the assimilation of initial conditions jointly with uncertain parameters [Elbern
et al., 2007]. By contrast, Segers [2002] conducts in-depth studies on the applications of efficient
filtering methods, in which emissions, photolysis rates and deposition are considered to be un-
certain. The model state as well as uncertain parameters are estimated. Constantinescu et al.
[2007b] report the filtering results obtained with perturbations on emissions and on boundary
conditions, and with distance constraints on the spatial correlations.

All these efforts are part of the recent diffusion of data assimilation expertise from numer-
ical weather prediction (NWP) to air quality community. For a review see Carmichael et al.
[2008]. The CTMs are stiff but stable systems; the perturbations on initial conditions tend to be
smoothed out rather than amplified. Therefore the conclusions from meteorological experiences
[Lorenc, 2003; Kalnay et al., 2007] cannot be applied directly.

The objective of this report is to evaluate different assimilation algorithms for ozone forecasts
in the same experimental settings. Hopefully this could serve as a base point for the design of
assimilation algorithms suitable for ozone forecasts in realistic applications. Four algorithms,
namely optimal interpolation (OI), ensemble Kalman filter (EnKF), reduced-rank square root
Kalman filter (RRSQRT) and four-dimensional variational assimilation (4DVar) were imple-
mented.

2



We note that this comparison study has its limitations in that: i) Only model state is adjusted
and uncertain model parameters remain unchanged. ii) The treatment of uncertainties are
different. OI parameterizes aggregate uncertainties using the homogeneous Balgovind correlation
function. In 4DVar the uncertainties are taken into account, in a way similar to OI (Balgovind
correlation), but only at the initial date of the assimilation period. The underlying model is
assumed to be perfect, that is, we consider a strongly constrained 4DVar. By contrast, EnKF
and RRSQRT represent model uncertainties with ensemble generated by Monte Carlo samplings
of uncertain parameters. The reasons for the first limitation are that (1) the adjoint model with
respect to model parameters is not available, and (2) correlations between the model state and
parameters are unknown. Clearly this should be a research task in near future. The second
limitation stems from the unsettled formulation of model error. A novelty of our EnKF and
RRSQRT implementation is the perturbation method, originally employed in uncertainty studies
for air quality models [Hanna et al., 2001].

The report is organized as follows. Section 2 documents the assimilation algorithms and
their implementations. The experiment setup concerning the model and observations is detailed
in Section 3. We report the comparison results in Section 4. Therein sensitivity studies with
respect to the assimilation algorithm settings are also conducted. Conclusions and discussions
can be found in Section 5.

2 Assimilation Algorithms

We rewrite the CTM dynamical differential equation in discrete form from time tk−1 to tk,

xt(tk) = Mk−1

(
xt(tk−1)

)
+ ǫf (tk−1) , (3)

where xt denotes the true state vector of dimension n, Mk−1 corresponds to the (nonlinear)
dynamical operator from k − 1 to k, and ǫf is the model error vector assumed to have a normal
distribution with zero mean and covariance matrix Q. In this study, the state is chosen to be
the vector of concentrations for the concerned species. For simplicity we drop tk to subindex k,
e.g. xt

k for xt(tk) and Qk−1 for Q(tk−1). At each time tk, one observes,

yk = Hk

(
xt

k

)
+ ǫo

k , (4)

where ǫo
k is the observation error vector assumed to have a normal distribution with zero mean

and covariance matrix R, and Hk is the (possibly nonlinear) operator that maps the state to the
observation space at time tk. The vector yk is of size p, and usually p ≪ n. The error vectors
ǫf
k−1 and ǫo

k are supposed to be independent.

Let xb be the a priori state estimation (background) with error ǫb = xb − xt of zero mean
and covariance matrix B, and let xa be the posterior state estimation (analysis) with error
ǫa = xa − xt of covariance matrix A. The data assimilation problem is to determine the
optimal analysis xa and its statistics A given background xb, observation y, and the statistical
information in error covariance items R and B.

2.1 Optimal Interpolation

Optimal interpolation [Daley, 1991] searches for an optimal linear combination between back-
ground and innovation by minimizing the state-estimation variance. The innovation d is the dif-
ference between the observation vector and the state vector, i.e. d = y−H(xb). Under linearity
assumption of the observation operator close to the background, i.e. H(x)−H(xb) = H(x−xb)
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where H is the linearized operator, the estimation formulae are given according to best linear
unbiased estimator theory as follows,

xa = xb + K(y − H(xb)) , (5)

K = BHT (HBHT + R)−1 . (6)

In practice, setting the background error covariance remains problematic. In this study B is
either diagonal or in Balgovind form. In the latter case, the error covariance between two points
is given by

f(d) =

(

1 +
d

L

)

e−
d

L v , (7)

where L is a characteristic length, d is the distance between the two points, and v is the a priori
variance [Balgovind et al., 1983].

2.2 Ensemble Kalman Filter

Ensemble Kalman filter [Evensen, 1994, 2003] differs from optimal interpolation in that the error
covariance matrix is time-dependent. The assimilation process follows the cycling of two steps
of forecast and analysis. At forecast step, the model is applied to the r−member ensemble

{xa,(i)
k−1 , i = 1, . . . , r}, and produces the forecast {xf,(i)

k , i = 1, . . . , r}. The forecast error covari-

ance matrix Pf can be approximated by the ensemble statistics. Whenever observations are

available, the cycling enters into analysis step, and each ensemble member x
f,(i)
k is updated to

x
a,(i)
k according to the OI formula (5-6), with background error covariance matrix B replaced

by forecast error covariance matrix Pf . Although not necessary in the algorithm, the analysis
error covariance matrix Pa can then be approximated with the analyzed-ensemble statistics.

We summarize the algorithm as follows,

• Initialization: given the probability density function (PDF) of the initial concentrations,
an ensemble of initial conditions is generated. In our experiments, except for the cycling
context in Section 4.4 where initial ensemble members are ensemble forecasts from the
previous cycle, we skip this step: all members in the ensemble start with the same initial
condition. The first integration steps are therefore a spin-up period during which the
ensemble spread is essentially increasing as a result of the perturbations on uncertain
parameters.

• Forecast step:

x
f,(i)
k = Mk−1

(

x
a,(i)
k−1

)

+ ǫ
f,(i)
k−1 , (8)

Pf
k =

1

r − 1

r∑

i=1

(

x
f,(i)
k − x̄f

k

) (

x
f,(i)
k − x̄f

k

)T

, (9)

where x̄f
k is the mean of the forecast ensemble: x̄f

k = 1
r

∑r
i=1 x

f,(i)
k .

• Analysis formula:

x
a,(i)
k = x

f,(i)
k + Kk

(

y
(i)
k − Hk

(

x
f,(i)
k

))

, (10)

Pa
k =

1

r − 1

r∑

i=1

(

x
a,(i)
k − x̄a

k

) (

x
a,(i)
k − x̄a

k

)T

, (11)
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where x̄a
k is the mean of analysis ensemble {xa,(i)

k , i = 1, .., r}, y(i)
k is the observation vector,

and the Kalman gain is approximated by

Kk = Pf
kH

T
k

(

HkP
f
kH

T
k + Rk

)−1
. (12)

The ensemble initialization and the determination of the model error ǫ
f,(i)
k−1 are entangled

problems. In our implementation, we take identical initial samples, and the model error is
approximated by perturbing model input data and model parameters:

ǫ
f,(i)
k−1 ≃ Mk−1

(

x
a,(i)
k−1 ,w(i)d

)

− Mk−1

(

x
a,(i)
k−1 ,d

)

, (13)

where d is the vector of parameters to be perturbed, and for i−th sample, w(i) is the diago-

nal matrix whose diagonal elements are perturbation coefficients (see Section 2.5). Let e
f,(i)
k

be x
f,(i)
k − x̄f

k , one (approximate) direction of the forecast error, and let Ef
k be the matrix

[e
f,(1)
k e

f,(2)
k . . . e

f,(r)
k ]. By formula (9), we have

Pf
k =

1

r − 1
EET . (14)

In this way, the error covariance matrix is approximated by ensemble statistics.

In the original EnKF algorithm, the observation vector y
(i)
k is perturbed for consistent analy-

sis statistics [Burgers et al., 1998]. In this report, we present only the assimilation results without
observation perturbations, since the variances of observation errors are in general much smaller
than those of model errors. However, in our implementation, the observation perturbation is an
option, and preliminary tests showed that, at least for the reference setting in Section 3, there
are improvements in forecast performance with this option on.

2.3 Reduced-Rank Square Root Kalman Filter

Reduced-rank square root Kalman filter [Heemink et al., 2001] uses a low-rank representation
LLT of error covariances matrix P. L = [l1, . . . , lq] is the mode matrix whose columns (modes)
are the dominant directions of the forecast error. The evolution of a mode can be approximated
by the differences of the forecasts based on the mean (analyzed) state and its perturbation by
this mode, that is,

l
f,(i)
k = Mk−1

(

xa
k−1 + l

a,(i)
k−1

)

− Mk−1

(
xa

k−1

)
, (15)

where xa
k−1 is given by

xa
k−1 = xf

k−1 + Kk−1

(

yk−1 − Hk−1

(

xf
k−1

))

. (16)

The forecast xf
k−1 is calculated from previous analyzed state by

xf
k−1 = Mk−2

(
xa

k−2

)
. (17)

Assuming that at time tk−1 the error covariance Pa
k−1 has the square root form La

k−1L
a,T
k−1,

the propagation of Pa
k−1 is tractable. The forecast error covariance matrix at time tk is calculated

by

Pf
k = Mk−1P

a
k−1Mk−1

T + Qk−1

=

[

Mk−1L
a
k−1 Q

1

2

k−1

] [

Mk−1L
a
k−1 Q

1

2

k−1

]T

,
(18)
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where Mk−1 is the tangent linear model, that is the Jacobian matrix of Mk−1, Q
1

2

k−1 is the

square root of model error covariance matrix. Considering square root form Lf
kL

f,T
k for Pf

k , we
have the forecast formula for mode matrix Lf :

L̃f
k = [Mk−1L

a
k−1 Q

1

2

k−1], Lf
k = Πf

kL̃
f
k , (19)

where Πf
k projects L̃f

k onto the q leading eigenvectors of L̃f
kL̃

f,T
k using the singular value decom-

position. Recall that analysis error covariance matrix Pa can be calculated by (I−KH)Pf (I−
KH)T +KRKT for arbitrary gain K, then rewriting it in square root form we obtain the analysis
formula for mode matrix La:

L̃a
k = [(I − KkHk)L

f
k KkR

1

2

k ], La
k = Πa

kL̃
a
k , (20)

where Πa
k projects L̃a

k onto the q leading eigenvectors of L̃a
kL̃

a,T
k .

We do not use the tangent linear model, but employ (15) to simulate Mk−1L
a
k−1 at forecast

step. The columns of Q
1

2

k−1 are obtained in the same manner as the model error formula (13)
in EnKF. The above treatments make the RRSQRT implementation similar to our variant of
EnKF. The difference is that RRSQRT employs square root formulae. In addition, the error
covariance is approximated in dominant eigenvectors in RRSQRT whereas EnKF bears no such
process.

2.4 Four-Dimensional Variational Algorithm

Four-Dimensional Variational Algorithm [Le Dimet and Talagrand, 1986] finds the optimal initial
condition x∗ by minimizing a cost function:

J(x) =
1

2
(x − xb)TB−1(x − xb)

︸ ︷︷ ︸

Jb

+

1

2

N∑

k=0

(yk − Hk(xk))
T R−1

k (yk − Hk(xk))

︸ ︷︷ ︸

Jo

(21)

under the constraint xk = M0→k(x) = Mk−1 (Mk−2 (. . .M1 (M0(x)) . . .)). The assimilation
period is from t0 to tN . The gradient for Jo is calculated by the backward integration of the
adjoint model [Bouttier and Courtier, 1999]:

• x̃N = 0 ,

• For k = N, . . . , 1, calculates x̃k−1 = MT
k−1

(
x̃k − HT

k dk

)
, where dk = R−1

k (yk − Hk(xk)) ,

• x̃0 := x̃0 − HT
0 (d0) gives the gradient of Jo with respect to x.

Assimilations are performed by model integrations starting from the optimal initial condition
x∗. Further integrations from time step N based on the analyzed model state provide the predic-
tions. The inverse of B is calculated online or, for high dimensional model configurations, B−1

can also be approximated using SVD truncations and saved on disk for later computations. The
adjoint operator MT

k−1 is obtained using the automatic differentiation software O∂yssée [Faure
and Papegay, 1998]. The forward model simulations are saved for the backward integrations of
the adjoint model. No checkpointing technique is employed in our implementation.
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2.5 Uncertainties and Model Error

The corrections of the analysis scheme lie in the subspace spanned by covariance matrix of
forecast or background errors, i.e., the space induced by the columns of the square root of the
matrix B [Kalnay, 2003]. Unrealistic error structure produces spurious corrections, and probably
results in unbalanced physical model state. Therefore the design of the error structure is of great
importance.

There are mainly three approaches for error modeling: i) modeling uncertain sources and
then perturbing them in the model [Segers, 2002; Constantinescu et al., 2007a]; ii) using the
statistics of model states, e.g. NMC method [Chai et al., 2007] and ensemble methods; iii) using
parameterizations, e.g. Balgovind correlations for background error covariance [Hoelzemann
et al., 2001; Elbern et al., 2007]. Each of the three should be flow-dependent, that is, adapting
to the “error of the day”. The spatial and temporal heterogeneities of the chemistry-transport
problem make the last two approaches difficult issues.

The numerical models are usually assumed unbiased. In our case, we assume that the model
uncertainties only result from the misspecification of model parameters. In our EnKF and
RRSQRT implementation, the ensemble is generated by the model integrations with perturbed
parameters. The uncertainties and the distributions are introduced for model parameters that
are mainly bidimensional or tridimensional fields under space coordinates. These parameters
are modeled as random vectors. In practice, for a field p̂ (a random vector) whose median value
is p, a perturbation is applied to the whole field so that every component p̂i

k has the prescribed
distribution. For instance, for a lognormal distribution, one writes

p̂i
k = pi

k ×
√

α
γ

, ∀k, i (22)

where γ is sampled according to a standard normal distribution. The quantity γ is independent
of the time index k and of the space index i, so that the perturbations increase the ensemble
spread. The same sample of γ is used to perturb all values of the field p̂. The quantity

√
α

γ

is the perturbation coefficient for the corresponding parameter in matrix w(i) in formula (13).
For normal distributions, perturbations bigger than certain given quantity (by default two times
of the standard deviation) are discarded so that no unrealistic parameters are produced, for
instance, the negative emissions.

A delicate point is having temporal and spatial correlations between the different values of
the field. With the perturbation applied in (22), the correlation between two field values ln p̂i

k

and ln p̂j
l is equal to 1. But the uncertainty sources at these two points are not the same; hence

the perturbation should be different. A fine modeling of the uncertainty should lead to have
γ depending on time and position (producing γi

k). Such a fine description of uncertainties is
mostly beyond available knowledge.

Examples for continental air quality simulations extracted from Hanna et al. [2001] are shown
in Table 1. For many fields (associated with α = 2), a confidence interval that includes 95% of
the probability density integral is [m2 , 2m] if m is the mean of the field. Uncertainty levels must
be adjusted to the simulation scale (domain size and temporal discretization). In particular,
uncertainties decrease as data is averaged over a larger domain or over a longer period of time.

3 Experiment Setup

3.1 Model and Input Data

The ozone forecasts and the assimilation experiments are performed in the framework of the
air quality modeling system Polyphemus [Mallet et al., 2007] whose version 1.2 includes all
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Field Distribution Uncertainty

Top ozone boundary conditions log-normal α = 1.5
Top NOx boundary conditions log-normal α = 3
Lateral ozone boundary conditions log-normal α = 1.5
Lateral NOx boundary conditions log-normal α = 3
Major NOx point emissions log-normal α = 1.5
Wind velocity log-normal α = 1.5
Wind direction normal ±40◦

Temperature normal ±3 K
Vertical diffusion (night) log-normal α = 3
Precipitations log-normal α = 2
Cloud liquid water content log-normal α = 2
Biogenic emissions log-normal α = 2
Photolysis constants log-normal α = 2

Table 1: Uncertainties associated with several input fields of a chemistry-transport model at
continental scale. The uncertainty of a parameter p̂ is measured with a confidence interval that
includes 95% of the probability density integral. For a log-normal distribution, this interval is
defined by a factor α so that p̂ is in the interval [ p

α
, αp] with a probability of 95% (p is the

median value of p̂). All estimates were derived from Hanna et al. [2001].

algorithms in use in this report and is freely available at http://cerea.enpc.fr/polyphemus/.
For this study, the Polyphemus model in use is Polair3D [Boutahar et al., 2004] for which

an adjoint version is available (for gas-phase chemistry). The configuration of the model may
be roughly described as follows:

1. raw meteorological data: ECMWF†1 fields (resolution of 0.36◦ × 0.36◦, 60 vertical levels,
time step of 3 hours, 12 hours forecast-cycles starting from analyzed fields);

2. land use coverage: GLCF†2 land cover map (14 categories, 1 km Lambert);

3. chemical mechanism: RACM [Stockwell et al., 1997];

4. emissions: the EMEP†3 inventory, converted according to Middleton et al. [1990];

5. biogenic emissions: computed as proposed in Simpson et al. [1999];

6. deposition velocities: the revised parameterization from Zhang et al. [2003];

7. vertical diffusion: the Troen and Mahrt parameterization [Troen and Mahrt, 1986] (in the
unstable boundary layer) and the Louis parameterization [Louis, 1979] (elsewhere);

8. boundary conditions: typical concentrations from the global chemistry-transport model
Mozart 2 [Horowitz et al., 2003];

9. numerical schemes: a first-order operator splitting, the sequence being advection–diffusion–
chemistry; a direct space-time third-order advection scheme with a Koren flux-limiter; a
second-order order Rosenbrock method for diffusion and chemistry [Verwer et al., 2002].

†1European Centre for Medium-Range Weather Forecasts
†2Global Land Cover Facility
†3Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in

Europe
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The model domain essentially covers Western Europe ([35.0◦N, 10.5◦W] × [57.5◦N, 22.5◦E]).
Two meshes are considered. The reference mesh has a 0.5◦ horizontal resolution, and the altitude
of the tops of the vertical layers are 50 m, 600 m, 1200 m, 2000 m and 3000 m. The top layer
is high enough to enclose the planetary boundary layer. A time step of 600 s is used. The
coarse mesh has a 2◦ horizontal resolution and it includes three levels whose top heights are
50 m, 600 m and 1200 m. The time step is set to 1800 s. Both models have 72 chemical species
(with RACM) mechanism. Hence the dimension of the state vector is about 1.1 × 106 for the
full-resolution model and 3.8 × 104 for the coarse-resolution model.

An analysis of the simulations with the coarse mesh demonstrates that the main physical
phenomena (at least for ozone) are reasonably reproduced in the context. The model retains
good predictive capabilities (see the comparisons with observations in Section 4). The coarse
case is used to perform intensive tests. For instance, in the Kalman algorithms that we use,
the results depend on random numbers. Thus, they can only be assessed from a large number
of trials, which is not tractable with the full resolution model. Nevertheless the full resolution
study will be carried out later to verify some key findings in the coarse case.

The horizontal domain and its coarse discretization are shown in Figure 1.
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Figure 1: Horizontal coarse discretization of model domain. The squares show the locations of
EMEP monitoring stations, and the disc shows the location of the monitoring station Montandon
(east of France).

3.2 Observations

The observations to be assimilated are ozone hourly concentrations. These observations are
provided by the EMEP†4 network (Figure 1). The network is made of 151 ground stations among
which 80–90 stations are actually available during the assimilation periods. They deliver point
measurements integrated over one hour, but we assume that the observations are instantaneous
– as it better fits the algorithms implementation.

The EMEP network includes only regional stations, which ensures a proper comparison
between the continental-model outputs and the observations. The model outputs are linearly
interpolated (on the horizontal, not on the vertical) at the station locations – the observation
operator Hk is therefore linear and its adjoint is easily derived.

†4Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in
Europe
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It is assumed that the error covariance matrix for ground ozone observations is diagonal,
which is reasonable as the measurements from two stations are performed by distinct instru-
ments. The standard deviation of the observation error is set to 10 µg m−3 [Flemming et al.,
2003]. Note that the mean of ozone observations is about 70 µg m−3.

3.3 Reference Settings of the Assimilation Algorithms

In this section, we list our default settings of the assimilation algorithms. Sensitivity studies will
be performed by alternating algorithm settings in later sections. The experiments consist of two
steps: assimilation and prediction. During the assimilation period, say [t0, tN ], the observations
are assimilated, and during the subsequent prediction period, say [tN+1, tT ], the ozone forecasts
are the model simulations starting from the analyzed model state at tN . In the reference setting
the assimilation period is one day from 1st July 2001 at 01:00 UT to 2nd July at 00:00 UT. The
prediction period is one day from 2nd July 2001 at 01:00 UT to 3rd July at 00:00 UT.

The model nonlinearity imposes an upper limit on the time length of the assimilation period
(hereafter referred to as assimilation window). Previous perturbations out of this upper limit
are ignored. In fact, driven by the winds, the pollutants may be transported out of the modeling
domain after a few days. There is also a lower limit during which the impact of the assimilated
observations propagates over the whole model domain. In meteorology, the assimilation time
interval is about 6 hours extendable to 12 hours. In this study, the assimilation window is set
to one day.

In the reference setting the state vector includes only ozone concentrations of the first two
levels in the model domain. The correlations are supposed to expand gradually, through model
simulations, to the complete model domain and to the species other than ozone.

In the Balgovind parameterization of the background error covariance matrix, the standard
derivation

√
v is set to 20 µg m−3 (derived from usual rmse for ozone forecast and from Mallet

and Sportisse [2006b]), and the characteristic length is set horizontally to 3◦ (Lh), vertically
to 200 m (Lv). The details about the uncertain parameters to be perturbed for EnKF and
RRSQRT will be given in Section 4.2.2.

The EnKF ensemble number r is chosen to be 30. For a comparable computational cost,
in RRSQRT, the number of columns q of the mode matrix is set to 20, the number of columns
of the square root Q

1

2 is set to 10, and the number of columns of the square root R
1

2 is set to
10. In 4DVar, we employ the L-BFGS optimization solver [Byrd et al., 1995]. In this study, the
computational cost of the adjoint model is about 5–7 times larger than that of the forward model,
consequently the number of iterations is set to 6 so that the 4DVar cost may be comparable. Note
that less iterations make 4DVar sub-optimal. However, we checked the evolution of the 4DVar
cost function against iteration numbers, and found no considerable decrease in cost function
values after 6 iterations (results omitted here).

4 Results

4.1 Coarse-Resolution Case

Let s be the vector of model outputs along space and time and o the vector of corresponding
observations, the performance of ozone forecasts or assimilations can be assessed by the root
mean square error (rmse) calculated as

√
√
√
√

1

n

n∑

i=1

(si − oi)2 (23)
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where n is the total number of available observations. The rmse over a certain period with
respect to all available observations is called score. In this paer, the rmse will always be given
in µg m−3 · Hereafter this unit will be omitted for convenience.

The four assimilation algorithms provide better forecast scores compared to the reference
simulations (model solutions without assimilation of observations), of course during the assimila-
tion period (hourly forecasts for sequential assimilations), but also in the subsequent prediction
steps (see Figure 2). OI has the best overall score, probably because the Balgovind parameter-
ization of model error applies well to this coarse test case. From Figure 3, 4DVar has better
scores during the early assimilation period but performs worse during the prediction period.
The main reason may be that the underlying 4DVar is strongly constrained, that is, there is no
model error term in its cost function. Only initial concentrations are controlled. The correction
on the initial concentrations tends to be forgotten by the stable chemistry-transport system.
EnKF provides the best performances during the late prediction period. It might benefit from
its manner of perturbations on uncertain parameters. In OI, it can be considered that the
model uncertainties are parameterized by the correlation in model states (which will be the
initial conditions for following forecasts). The impact of model uncertainties in these initial
conditions gradually fades out, when the model uncertainties in uncertain parameters (listed
in Section 4.2.2) play an increasingly important role during the prediction period. RRSQRT
shows poor performance against EnKF. This is probably due to the projection of mode matrices
onto the leading eigenvectors of error covariance matrices. For a comparison of the assimilation
performance between EnKF and RRSQRT, we refer to Hanea et al. [2004]. Note that in that
paper, colored gaussian noises were added on several uncertain parameters, which is different
from our perturbation method. The ozone forecasts at EMEP stations are plotted in Figure 4
and Figure 5. Most forecasts are between the reference simulations and the observations. All
forecasts during the predictions period approach to the reference in the end. This shows again
the rather low dependency of the short-range predictions on the initial conditions.

Caution has to be paid to the conclusions since the assimilation results can still be improved
by optimal tuning of algorithm parameters.

Reference OI EnKF 4DVar RRSQRT
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Figure 2: Scores of ozone concentrations during the assimilation period (day #1) and the pre-
diction period (day #2).

4.2 Sensitivity Studies for the Coarse Case

The first set of tests is carried out in the coarse case. Modifications of configurations on each
component of the data assimilation systems, i.e. model, observation and algorithm, may influ-
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Figure 3: Time evolution of the rmse for the ozone forecasts. The score over two days is 27.76 for
reference, 19.90 for OI, 23.11 for EnKF, 21.98 for 4DVar, and 24.63 for RRSQRT. The vertical
lines delimits the assimilation period from the prediction period.
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Figure 4: Time evolution of average ozone forecasts over all available stations. The error bar
shows the average spread of the EnKF forecast ensemble calculated over these stations.
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Figure 5: Time evolution of ozone forecasts against available observations over two days at
EMEP station Montandon.
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ence the assimilation performance. The main difficulty to interpret the results is that the error
covariance structures B and Pf are unsettled subjects.

As for model component, we examine different state vectors to be controlled, alternative
model physical parameterizations, Balgovind parameterization of background error covariance,
and various perturbation settings for model error approximations. As for observation compo-
nent, the error variance ratio between observations and background concentrations is examined.
Different observation networks are tested. As for algorithm component, we evaluate the impact
of the assimilation time length and EnKF ensemble issues, i.e. ensemble size and randomness.
Hopefully some clues can be drawn for error modeling from the results of this sensitivity study.
If not mentioned, only one factor is changed in each sensitivity study, and all other algorithm
settings remain the same as those in Section 3.3.

4.2.1 Ensemble Randomness and Size

An important parameter for EnKF is its ensemble size. The directions of model error are
approximated by the samples deviations from the ensemble mean. Recall formula (13), these
directions are related to the outcomes of the parameters perturbations. A key question for this
approach is how fast the assimilation results converge as the ensemble size increases. The spread
of the model error space is determined not only by the ensemble size but also by the definition
of the parameters set to be perturbed. The latter is addressed in the following section.

In this section, we conduct EnKF assimilations with ensembles of sizes 5, 10, 20, 30, 50, 70,
90 and 120. For each ensemble, the randomness of Monte Carlo sampling is accounted for by
employing 10 different seeds for the random number generation. This means that 10 ensembles
are generated for each ensemble size.

The forecast scores over both the assimilation period and prediction period are shown in Fig-
ure 6. Both converge as the ensemble size increases. The influence of the ensemble randomness
decreases with ensemble size (see the errorbars). The augmentation of sample numbers improves
forecast scores, but the improvements are modest probably due to the fast convergence of the
procedure.
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Figure 6: Forecast scores of EnKF against the ensemble size. The score for reference simulation
without assimilation is 29.55 over day #1, and 25.87 over day #2. The curve shows mean scores
and the errorbar shows the standard derivations over 10 random seed numbers.

The computational cost is proportional to the number of samples in the ensemble. The
balance between computational cost and assimilation performance helps the specification of the
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ensemble size. For realistic model grids, there is usually a constraint of 30 ∼ 100 ensemble
samples due to computational considerations.

4.2.2 Uncertain Parameters Setting

Different parameters sets and perturbation magnitudes are listed in Table 2. The uncertain
parameters are input data to the model. The perturbation magnitudes are kept reasonable
(within the confidence interval at the 95% level), so that no instabilities may be produced due
to the physically unrealistic parameter values. Notice that these parameters are only perturbed
in Polair3D which chiefly carries out the numerical time integration. For instance, the per-
turbation of the temperature has no impact on the deposition velocities which are computed
in preprocessing steps. The forecast scores with respect to uncertain parameters settings are
shown in Figure 7. The results in the prediction period are slightly sensitive to the different
uncertain parameters sets, which is consistent with the finding in Mallet and Sportisse [2006b]
that the turbulent closure introduces the highest uncertainty. The results are more sensitive to
the uncertain parameters sets than to the perturbation magnitudes. This probably indicates
that the dimensionality of the bases of the perturbation parameter space are more important
than the lengths of these bases for assimilations.

The perturbation magnitudes are spatiotemporally homogeneous in this study:
√

α
γ

in equa-
tion (22) does not depend on spatial coordinates, and temporal correlations are not taken into
account. However this hypothesis is not necessarily true. Refined perturbations might improve
the forecast performances. Furthermore, additional uncertain parameters may be included for
a larger model error spread.

Parameter name α0 α1 α2

Ω0

Boundary condition 3. 3. 3.
Deposition velocity 1.5 2. 3.
Photolysis rate 1.3 1.5 2.
Surface emission 1.5 2. 3.
Attenuation 1.3 1.5 2.
Vertical diff. coef. 1.3 1.5 2.

Ω′

Cloud height 1.3 1.5 2.
Vertical wind 1.3 1.5 2.
Meridional wind 1.3 1.5 2.
Zonal wind 1.3 1.5 2.
Specific humidity 1.3 1.5 2.

Ω′′

Pressure 1.3 1.5 2.
Air density 1.3 1.5 2.
Merid. diff. coef. 1.3 1.5 2.
Zonal diff. coef. 1.3 1.5 2.
Temperature 0.005 0.01 0.015

Table 2: Definition of uncertain parameters. Let Ω0 be the set of parameter names for the
reference setting in Section 3.3. Let Ω′ and Ω′′ be the two sets of additional parameter names.
We denote Ω1 as {Ω, Ω′}, and Ω2 as {Ω, Ω′, Ω′′}. The perturbation magnitude is characterized
by α defined as in equation (22). The reference magnitudes are listed in α0 column. In α1

and α2 columns, enlarged magnitudes are defined. Note that the distribution of temperature is
supposed to be normal, and its magnitude should be interpreted as relative standard derivation.
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Figure 7: Forecast scores for EnKF against different uncertain parameter definitions. The
parameter sets and perturbation magnitudes are defined in Table 2; {Ω0; α0} is the reference
setting. The EnKF sample number is chosen to be 30 (white columns) and 90 (dark columns)
respectively. The two columns of scores for each case show the forecast scores during the
assimilation and prediction periods. The bar values are mean scores, and the errorbar shows
the standard derivations over 10 random seed numbers.

4.2.3 Assimilation Window

This determination of an optimal assimilation window is essentially linked with model nonlin-
earity, but should be treated separately according to sequential or variational context. In the
variational case, the model nonlinearity makes the cost function nonconvex, and thus the op-
timization may suffer from the presence of local minima. Clearly there are constraints on the
assimilation window, and for better performance the assimilation window has to be short [Pires
et al., 1996]. In the sequential case, the observations are assimilated spontaneously. There are
corrections on the state vector until the end of the assimilation window, which is an advantage
for the subsequent prediction steps. Elegant analysis demands in-depth investigations on how
the information (from observation) propagates among state components.

We perform brute-force tests. In the sequential case, the prediction period is fixed from 8th

July 2001 at 01:00 UT to 9th July at 00:00 UT, whereas the assimilation window varies from 1
day to 7 days and always ends at 00:00 UT 8th July. The algorithm settings are the same as
those for the reference case. For EnKF, the random seed is fixed with an ensemble size set to 30
and 90. The forecast scores over the prediction period are compared in Figure 8. We observe a
considerable improvement in forecast scores with a window of 2 days against that with one day
window. The first day of assimilation could be interpreted as an ensemble initialization, since the
initial conditions of all members are identical in our implementation. We performed ensemble
forecasts starting from identical samples and checked the ensemble spread (results not presented
here), and we found out that the spread reached its maximum within 10 hours. This explains
why a one-day assimilation with EnKF may be unsatisfactory. EnKF with longer assimilation
windows (more than 2 days) outperforms OI in this experiment. Larger assimilation windows
(more than 5 days) tend to be unnecessary long since the corrections are rapidly forgotten by
the model.

In the variational context, we perform an experiment with the setting as that of the sequential
case. The assimilation windows varies from 1 to 4 days, followed by one day of prediction. The
start date of the prediction period is fixed at 01:00 UT 8th July 2001. The forecast scores are
shown in Figure 9. The performances over prediction period decrease with longer assimilation
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Figure 8: Forecast scores of OI and EnKF (with 30 and 90 members) against the number of
assimilation days.

periods and approach the score of reference simulation without assimilation. These results
clearly indicate the limitation of strongly constrained 4DVar in which only initial conditions are
controlled. Model error has to be taken into account to form the weakly constrained 4DVar for
better forecast performance.
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Figure 9: Forecast scores against the number of assimilation days for the two experiments using
4DVar.

4.2.4 Physical Parameterization

In order to assess the robustness of the assimilation, we apply EnKF to modified models which
differ in their physical parameterizations. Several alternatives to the reference parameterizations
are listed in Table 3, and the corresponding assimilation results are shown in Figure 10. The
assimilations are performed using reference EnKF algorithm with 30 samples. The forecast
scores are highly sensitive to the chemical mechanism, as in the uncertainty investigations of
Mallet and Sportisse [2006b].
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Parameterization Reference Alternative

Deposition velocities Zhang Wesely [Wesely, 1989]
Vertical diffusion Troen and Mahrt Louis [Louis, 1979]
Chemistry RACM RADM2 [Stockwell et al., 1990]

Table 3: Physical parameterization settings.

Ref. Dep. Vert. Diff. Chem.
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Figure 10: Forecast scores of EnKF, for modified models over the assimilation and the prediction
periods.

4.2.5 State Component

It is not straightforward to control all model components, primarily because the correlations
among them are unavailable. Investigations are needed to determine the most relevant state
vector. In this section, we test the impact when including different vertical levels of ozone
concentrations and different chemical species in the state vector. In Figure 11 we show the time
evolution of the rmse when controlling different vertical levels of ozone concentrations. Only
including the first model level in the state vector is a fairly limited approach as the vertical
transport plays a crucial role in ozone evolution. Consequently it is not surprising that the
advantage of assimilating the first two levels over assimilating only ground level is enormous
for all assimilation algorithms. However, in OI, the improvement of assimilating all levels over
the first two levels is slight. By contrast, in 4DVar the improvement is still considerable during
the assimilation period when assimilating all levels. This is probably because OI is a local
assimilation algorithm in the sense that observations are assimilated instantaneously, whereas
4DVar searches global optima over the assimilation period that best fit the observations. In
EnKF, the improvement is even considerable during the prediction periods when assimilating
all levels. This might be due to the difference in error modeling. For OI and 4DVar, the
vertical correlations are parameterized by the Balgovind correlation function. For EnKF, the
vertical correlation structure is represented by the statistics of an ensemble generated by the
perturbation method.

Because the correlation among different species is a priori unknown, only EnKF is employed
to test the impact of assimilating different species. The ensemble size is 30, and the same
random seed is used for all experiments. Only the first two levels of the domain are controlled.
The species included in the state vector are combinations of O3, NO, and NO2. The results in
Figure 12 show modest impact when assimilating different species. It is hard to interpret these
results in depth. For further investigations, the interactions among model components have to
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Figure 11: Time evolution of the rmse against different vertical levels of ozone concentration to
be controlled.

be quantified, for instance, by relative entropy [Liang and Kleeman, 2005].
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Figure 12: Forecast scores against different state components over assimilation and prediction
periods.

4.2.6 Parameters in Balgovind Correlation Function

Balgovind characteristic lengths Lh and Lv determine the spatial structure of the background
error covariances. We perform assimilations (OI and 4DVar) with different lengths listed in
Table 4. The corresponding covariance structures vary from small to large scale correlations.
Other experimental settings are the same as those of Section 3.3. The ozone forecast scores are
shown in Figure 13 and Figure 14.

The assimilation is quite sensitive to the Balgovind characteristic lengths. For OI, the worst
scores over the prediction period are those with the smallest vertical scale parameter (Lv = 30m).
In this case, the vertical correlation is too weak. The worst scores over the assimilation period are
those with largest horizontal scale parameter (Lh = 10◦). There might be spurious correlations
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Lh (◦) Lv (m)

a 0.1 30
b 0.1 200
c 0.1 500
d 1.5 30
Reference 1.5 200
e 1.5 500
f 10 30
g 10 200
h 10 500

Table 4: Different configurations for Balgovind scale parameters.
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Figure 13: Forecast scores using OI against different configurations in Table 4.
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Figure 14: Forecast scores using 4DVar against different configurations in Table 4.
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from distant observations. It seems that the medium scale correlation in the reference setting is
a proper choice. The forecast scores, especially those over the assimilation periods, deteriorate
when vertical scale parameter increases.

4.2.7 Observation Effect

The quantity and the quality of the observations are important factors for assimilation/prediction
systems. There might be an optimal relationship between model resolutions and observation
availabilities described implicitly by the optimality system [Le Dimet and Shutyaev, 2005; Boc-
quet, 2005]. Preliminary experiments are designed to address the model-observation relation-
ships.

In a first experiment, we examine the impact of the observation network on ozone forecast
performance. The original 151 EMEP stations are catalogued into three partitions: i) the center
stations vs. around ones, ii) west stations vs. nonwest ones, and iii) randomly selected stations
vs. the unselected ones. The observations from the center, west and randomly chosen stations
are assimilated respectively. We take their counterparts as validation stations. Two assimilation
algorithms, i.e. OI and EnKF, are employed with the reference settings. The forecast scores
over the assimilation and the prediction periods given different observation networks are listed
in Table 5. The corresponding scores without assimilations are listed for comparison in Table 6.
The score gains are all positive. There is no clear winner for the two algorithms. OI has better
overall performance. EnKF shows less disparities and better forecast performance over the
prediction period. This may mainly result from the different correlation structures employed by
the two methods (detailed in Section 4.3).

obs. net.
day #1 day #2

assim. stations valid. stations assim. stations valid. stations
OI EnKF OI EnKF OI EnKF OI EnKF

center
15.80

13.74

19.65

9.89

26.78

2.77

26.67

2.88

19.69

2.12

20.00

1.80

27.79

0.88

26.90

1.78

west
13.39

10.50

20.94

2.95

30.63

2.77

26.33

7.07

24.84

2.36

24.02

3.18

23.14

1.64

22.31

2.47

uniform
14.92

14.56

23.06

6.42

23.50

6.11

23.67

5.94

22.31

3.55

22.90

2.95

23.52

2.35

23.38

2.50

Table 5: Forecast performances for different observation networks. The numerators are the
forecast scores with assimilations, and the denominators are the gains in scores over the cor-
responding simulations without assimilation. The scores without assimilation are shown in
Table 6.

center around west nonwest uniform rest

day #1 29.54 29.55 23.89 33.40 29.48 29.61
day #2 21.81 28.67 27.20 24.78 25.85 25.88

Table 6: Forecast scores of reference simulation without assimilation for different observation
networks.

The inverse of the observation variance can be interpreted as the measurement accuracies.
The assimilation is an optimization process with the objective weighted by the relative accuracies
between observations and model simulations. In a second experiment, we examine the forecast
performance using OI and 4DVar with a range of ratios between observation and background

20



error variances. The observation/background ratios, R/B ratio in short, are shown in Table 7.
The results are plotted in Figure 15. The assimilation performance is improved by increasing
observation accuracies. However, there are little gains when decreasing the R/B ratio below
0.05. 4DVar is less sensitive to the R/B ratio, since the background errors are only considered at
initial conditions. For OI, when the observations are supposed to be extremely accurate (R/B
ratio at 0.01) there are artificial fluctuations at some stations where the observations are not
compatible with the chemical state of the model.

R/B R B

R + + 0.01 100 10000
R+ 0.05 100 2000
Reference 0.25 100 400
B+ 1 400 400
B + + 10 4000 400

Table 7: Different ratios between observation (R) and background (B) error variances; ’+’
means more accuracy.

No assim. 10 1 0.25 0.05 0.01

R/B radio

15

20

25

30

35

F
o
re

c
a
s
t 

s
c
o
re

s

OI: day #1

OI: day #2

4DVar: day #1

4DVar: day #2

Figure 15: Forecast scores against different R/B ratios shown in Table 7.

4.3 Model Error Covariance Structure for Coarse Case

The model error covariance structure (B or P) is decisive to the assimilation behavior. In many
occasions we resort to them for explanations of our results. The covariance between the error at
the station Montandon and the error in all ground cells is shown in Figure 16. The covariance
field obtained by the statistics of the EnKF forecast ensemble shows an irregular structure which
brings detailed information compared to the isotropic Balgovind parameterization. However,
spurious correlations may be produced by the homogeneous perturbations (see equation (22)).

In Figure 17, we show the assimilation/prediction performances at several randomly chosen
stations. Except for three stations (St. Koloman, Heidenreichstein, and Bottesford), the en-
semble predictions fail in the sense that the observations (with their standard deviations set to
10 µg m−3) are not within the range of model errors represented by the EnKF ensemble spread.
The ensemble spread during the assimilation period is dramatically decreased after assimilating
observations. In our EnKF implementation, no additional inflations are conducted on the state
error covariance Pf

k (see equation (14)) as in Constantinescu et al. [2007b].
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Figure 16: The covariance between the error at the station Montandon and the error in all
ground cells at 13:00 UT, 2nd July 2001.

The ensemble relative standard derivations averaged over time are shown in Figure 18. As
expected, the ensemble spread decreases when the assimilation is applied. One may notice high
uncertainties around the coasts, although is not as clear as in Mallet and Sportisse [2006b] where
the uncertainties were generated by statistics over several months. Our ensemble spread de-
scribes an accidental uncertainty configuration that depends not only on the chemistry-transport
processes, e.g. turbulence, but also on the meteorological scenarios.

4.4 Cycling Forecast for Coarse Case

It is expected that the findings in the previous sections are independent of the assimilation
dates. To this end, we perform assimilation/prediction processes consecutively for one week.
The length of the assim./predict. periods is chosen to be one day. The first assimilation period
is from 1st July 2001 at 01:00 UT to 2nd July at 00:00 UT, followed by the prediction from 2nd

July at 01:00 UT to 3rd July at 00:00 UT. The assimilation period of the second assim./predict.
process is the same as the prediction period of the first assim./predict. process. The second
prediction period is from 3rd July at 01:00 UT to 4th July at 00:00 UT. The cycling continues
until the final assim./predict. process. The last prediction period is from 8th July at 01:00 UT
to 9rd July at 00:00 UT. The initial conditions for the subsequent assimilation periods are the
hourly forecasts based on previously controlled states after assimilations. The performance of
OI, EnKF and 4DVar forecasts over the prediction periods are shown in Figure 19.

The improvement of forecast performance with assimilation is obvious. The Balgovind pa-
rameters for OI and 4DVar are constant, so are the perturbation magnitudes for the EnKF
samples. The lesser performance of 4DVar is probably due to the absence of model error during
assimilation. EnKF surpasses OI in forecasts longer than twelve hours. The approximation of
model error by refined perturbations is promising for longer forecasts.

4.5 Full-Resolution Case

The previous results are obtained with coarse models at a resolution of 2◦ × 2◦ × 1800s with
3 vertical levels. In this section, the reference resolution at 0.5◦ × 0.5◦ × 600s with 5 levels is
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Figure 17: EnKF assimilation/prediction performances at nine stations. The titles read station
names and their coordinates in model grid indices. The horizontal axis shows the accumulated
available observation numbers along time. Along vertical axis, the ozone concentrations are
plotted in µg m−3. The diamond points show the observations, the short lines plot assimilated
concentrations, and the lines with error bars are the means of the forecast ensemble. The error
bars are the relative standard derivations calculated with the forecast ensemble.
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Figure 18: Maps of the averaged relative standard derivation during both assimilation and
prediction periods. The ensemble spread is decreased by assimilating observations.

employed (detailed in Section 3.1). There are 33 cells along latitude and 65 cells along longitude.
All available assimilation algorithms are tested for this full-resolution setting. The assimi-

lation experiments are similar to those in Section 3.3, but conducted at three different dates.
The assimilations are performed at 1st, 3rd, 7th July respectively, and the corresponding pre-
diction dates are 2nd, 4th, 8th July. The Balgovind parameters for B are the same as those in
coarse-resolution case for OI and 4DVar. The sample number of EnKF ensemble is set to 30.
For RRSQRT, the number of columns in the mode matrix is 30, the number of column in Q

1

2

is 20, and the number of columns in R
1

2 is 10.
In general, the magnitude and structure of model error vary with respect to the model

resolution. The assimilation results are shown in Figure 20 and Figure 21. The assimilations
improve the forecast scores. The poor performance of EnKF forecasts at 4th July might be the
consequence of excessive perturbations. Comparing with the forecast scores at 2nd July for the
coarse case in Figure 2, one can find that the Balgovind parameterization of model error are
stable (OI and 4DVar results), whereas the perturbation methods are sensitive to the changing
of model resolutions (EnKF and RRSQRT).

Better results can be obtained via tuning the algorithm parameters in perturbation methods
for the full-resolution case. The sensitivity of assimilation performance to the ensemble size
and the assimilation window are presented in Figure 22 and Figure 23. The aim of this simple
sensitivity study is not to find the optimal algorithm parameters for the full-resolution model, but
to verify the main findings in the coarse case. For instance, the forecast scores are improved by
augmenting ensemble samples. We observe spin-up process in the first day of EnKF assimilation,
and we have satisfactory results with assimilation window set to three days.

5 Conclusion

In order to design suitable assimilation algorithms for short-range ozone forecasts in realistic
applications, four algorithms, namely optimal interpolation, reduced-rank square root Kalman
filter, ensemble Kalman filter, and four-dimensional variational assimilation, have been imple-
mented and compared in the same benchmark settings.
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Figure 19: The one-day forecast performances based on model simulations with/without assim-
ilations in the context of cycling assimilation/predictions.
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Figure 20: Forecast scores of ozone concentrations during prediction dates.
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Figure 21: Time evolution of ozone forecasts against available observations at Montandon sta-
tion.
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Figure 22: Forecast scores at 2nd July against EnKF ensemble size.
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Figure 23: EnKF forecast scores at 8th July against the number of assimilation days.

Although the forecasts beyond one day tend to approach the model simulations without
assimilation (because of the low dependency of model simulations on initial conditions), it has
been shown that the assimilation algorithms significantly improve the ozone forecasts. Data
assimilation would be an indispensable part of practical ozone forecast systems as in NWP.

The comparison results have illustrated the limitations and potentials of different assimilation
algorithms. OI provides overall better performances. It benefits from the Balgovind parameteri-
zation of model uncertainties during the assimilation periods. In EnKF, the model uncertainties
were approximated by the statistics of the ensemble generated by perturbing uncertain model
parameters. This perturbation method shows good potential to alleviate the constraint of the
low dependency on initial conditions in ozone forecasts. EnKF produces best forecasts during
the end of prediction periods. The strongly constrained 4DVar does a moderate job, because
uncertainties are taken into account only at the initial date of the assimilation. Further studies
are needed, e.g. the estimation of ozone concentrations jointly with the emission rates [Elbern
et al., 2007]. We remark that there are no final conclusions because of the unsettled formulation
of model error. We paid less attention to RRSQRT, since, in our implementation, it is quite
similar to EnKF.

We have also conducted sensitivity analysis on algorithm parameters, e.g. ensemble ran-
domness and size, assimilation window, perturbation fields, and diverse model settings. Fur-
ther refinements of the assimilation algorithms can thus be tested by tuning these algorithm
parameters for better forecast performances. This is especially necessary for the case of the
full-resolution model.

It is the complexity of the chemistry-transport phenomena and the limited observations
that make it difficult for the modeling and assimilation. The approximations of the complex
phenomena make CTMs imperfect, and uncertainties arise. If a deterministic model is employed,
or if the uncertainties are not realistic, the forecasts of the stable system approach to the reference
simulations without assimilation. Therefore all assimilation algorithms have to be adaptive, in
one way or another, so that the uncertainties should be better represented.

For the design of better assimilation algorithms, serious investigations on error modeling
are needed. The ensemble could be obtained from more uncertain sources, e.g. numerical
approximations and subgrid physical parameterizations. The statistics of the enlarged ensemble
are expected to be more accurate approximations of the model error.

Spatially heterogeneous perturbations, which smooth out the spurious correlations of long
distance, would certainly produce more realistic model errors. Another concern is that the
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lognormal perturbations might result in non-Gaussian model errors. In this case, assimilation
methods deviating from normal may have to be accounted for. Other methods rely on hybridiza-
tions between sequential and variational methods which essentially use the assimilation results
from both methods for error modeling. The comparison of ensemble forecast techniques [Mallet
and Sportisse, 2006a] and assimilation algorithms would also be an interesting topic for future
studies.
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