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Abstract. In this paper we present a perceptual and error-based com-
parison study of the efficacy of four different deep-learned super-resolution
architectures, namely ESPCN, SRResNet, ProGanSR and LapSRN, all
performed on photo-realistic images by a factor of 4x; adapting some
of the current state-of-the-art architectures using Convolutional Neural
Networks (CNNs). The resultant application and the implemented CNNs
are tested with objective (Peak-Signal-to-Noise ratio and Structural Sim-
ilarity Index) and perceptual metrics (Mean Opinion Score testing), to
study their relative quality and implementation within the program. The
results of these tests demonstrate the effectiveness of super-resolution,
showing that most network implementations give an average gain of +1
to +2dB (in PSNR), and an average gain of +0.05 to +0.1 (in SSIM)
over traditional Bicubic scaling. The results of the perception test also
show that participants almost always prefer the images scaled using each
CNN model compared to traditional Bicubic scaling. These findings also
present a look into new diverging paths in super-resolution research;
where the focus is now shifting from solely error-reduction, objective-
based models to perceptually focused models that satisfy human percep-
tion of a high-resolution image.

1 Introduction
Traditional image scaling techniques such as nearest-neighbour, bilinear, and

bicubic interpolation offer computationally quick methods of increasing the size
of an image, but they do not provide any benefit to quality as they cannot
construct or infer new data; able to only increase the scale of what is already
present in the original image.

Nearest neighbour interpolation works by first enlarging the image by the
desired factor and spreading the already available pixels within the newly defined
space. The original pixels are surrounded by a ‘grid’ of blank space in which
there are no original pixels from the image; the blank spaces are then filled
by copying the ‘nearest-neighbour’ pixels to the blank space, turning one pixel
to four identical pixels (for 4x scale). To perform bilinear interpolation, pixels
are sampled in two directions. This type of scaling takes the closest 4 pixels
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located diagonally into account (2x2) and takes a weighted average, as opposed
to nearest-neighbours singular sample. Bicubic interpolation further considers
the weighted average of the nearest 16 pixels (in a grid of 4x4), which produces
an overall smoother image and reduces artefacts. Because the region of sampling
is greater for this algorithm compared to others, pixels closer to the chosen
interpolated pixel are given a greater weighting in the calculation.

Whilst such image resampling techniques increase the actual ‘resolution’ of
the image when upscaling, they do not present any added detail that contributes
to the increase in spatial resolution of the final image. This results in an equal or
less-than equally detailed output image, such that one might refer to the output
as ‘blurry’ when compared to a similar image of native resolution. This issue has
led to the research and development of machine learned models to improve upon
traditional methods of image upscaling; a method known as super-resolution.

1.1 Motivation and Rationale

Super-Resolution can have applications in surveillance, medical imaging, astro-
nomical observation, and so on (Yue et al., 2016)[5]. Super-Resolution also has
novel uses; a popular application of such techniques is upscaling textures from
older video games to bring them into the modern era, as well as enhancing old
low-resolution photographs, or enhancing complex drawings and diagrams. Im-
age super-resolution by nature is an ill-posed problem as there is no true output
to an image that does not have a corresponding high-resolution parent. There
are a number of different approaches that have been taken using machine learn-
ing and convolutional neural networks (CNNs) for image super-resolution; such
as SRCNN, SSResNet, Deep Image Prior and ESPCN. These all attempt, using
different architectures, to up-scale an image while retaining/reconstructing fine
image detail that is not found within the original low-resolution image (such as
sharp edges on geometric shapes, or texture detail on small scale objects). Many
of these methods for super resolution exist in a primitive form however; the
majority being simply proposals that offer independent python command line
implementations based on Linux, or working models built using and running
within MATLAB.

1.2 Related Literature

ESPCN The following method by Shi et al., (2016) [4] ESPCN, uses
a shallow 3-layer convolutional neural network and avoids upscaling the low-
resolution input like in (Dong et al., 2015)[3]. A convolutional layer is applied
directly on the low-resolution input to extract the feature maps, followed by a
sub-pixel convolutional layer to upscale these feature maps to produce the su-
per resolution output. This method differs from Dong et al, (2015)[3] in that it
uses an efficient sub-pixel convolution layer instead of deconvolution layer (which
recovers resolution from the max pooling layer, also known as backwards convo-
lution). This pixel shuffle layer is faster than methods that use a deconvolution
layer specifically in training, as well as being faster than methods performing
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upscaling or pre-processing before convolution is applied. In Shi et al (2016)[4],
ESPCN with ReLU activation trained with ImageNet data achieved significantly
better performance compared to SRCNN models. Training the ESPCN model
with more images saw a greater gain in PSNR than the values found with SR-
CNN. Interestingly, performance on this architecture is found to be high enough
that it is capable of running on video without severe performance degradation.

SRResNet Another architecture by Ledig et al, (2017) [6] presents a
method of Super-resolution combining error reduction focused architectures with
a GAN architecture. The authors pose that while performance and accuracy of
current super-resolution models are a benefit, recovering fine-detail in the im-
age has not yet been tackled successfully. Most methods (A+, SRCNN, ESPCN,
and LapSRN for example) are based on Mean Squared Error (MSE) reduction
during reconstruction. While the resultant PSNR values for these techniques are
high, high-frequency details are missing and the images do not give the visual
perception of being high-resolution to the human eye. By combining a CNN
optimised for Mean Squared Error (SRResNet) with a Generative Adversarial
Network-based model (SRGAN), this problem can be overcome. This architec-
ture sees greater gains in PSNR and SSIM over both ESPCN (Shi et al. 2016) [4]
and SRCNN (Dong et al. 2015)[3], however as the authors rightfully state, that
these values are not representative of the fine detail reconstruction that SRGAN
provides. The authors therefore take an extra step and use Mean Opinion Score
testing to quantify the super resolution capabilities of each of these models.
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Instance Norm 2d
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Fig. 1. The architecture of SRResNet
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LapSRN The architecture by Lai et al. (2018)[7] referred to as LapSRN
provides an alternative process of super-resolution using Laplacian pyramids.
The authors highlight drawbacks of using pre-processing methods found in other
techniques, in that they increase the computational cost unnecessarily and do
not provide any additional high frequency information for a HR output. Many
techniques focus around MSE loss, resulting in overly smooth images (the same
low-resolution patch may have multiple high-resolution output patches in cor-
respondence). The authors propose a progressive approach which eliminates the
single up-sampling step that most other models use (SRCNN, ESPCN use di-
rect reconstruction in a single step), to progressively reconstruct images along
the network. The Laplacian Pyramid structure of this network is a key concept;
where weights are shared across pyramid levels to reduce network parameters.
This subsequently allows for multi-scale training for different levels of super res-
olution at once (2x, 4x, 8x pyramids). The authors also state the LapSRN can be
easily extended to incorporate adversarial training as a part of GAN, as found
in Ledig et al (2017)[6] and Wang et al (2018)[8], however this is not provided
in the paper.

ProSR Taking the concept of progressive reconstruction a step further,
Wang et al (2018)[8] propose an architecture that combines two methods, ProSR;
a progressive method to upscale images in intermediate steps, and ProGanSR
which follows the same design principle but allows for more photo-realistic re-
sults to be generated using a GAN. This diverges from other traditional methods
in that it takes a progressive approach with “curriculum learning” as opposed to
direct methods which upsample in a single final step. The basis of this is that the
network up-samples the image in intermediate steps while the learning process
increases in difficulty along with these steps. his approach shares similarity in
concept with LapSRN (Lai et al, 2018)[7] due to their progressive approaches,
but the authors of ProSR note that the Laplacian pyramid structure increases
difficulty of optimisation and reduces performance on levels higher up the pyra-
mid structure. The authors propose Dense Compression Units consisting of both
Dense Blocks and Compression.

2 Design and Development
Neural Network development took place using Python 3 with PyTorch 1.0.The

GUI was developed using Qt for Python.The four models mentioned above were
chosen for implementation; ESPCN[4], SRResNet(w/o GAN)[6], LapSRN[7],
ProGanSR[8]. Each has a PyTorch implementation officially provided by the
author or independently implemented in Python. Each models code was further
adapted to work with the GUI code to produce the resultant application.

2.1 Training

All models are trained for a desired resolution multiplier of 4x. Training was per-
formed locally using an NVIDIA GeForce GTX 1080 Ti. Training was performed
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Fig. 2. The architecture of ProSR (without GAN) as found in [8]

using CUDA v9.0 to provide faster execution and training speeds. Datasets used
for training include BSDS500 (Arbelaez et al., 2011)[2], DIV2K (Agustsson et
al., 2017)[1]. In order to train, the data set images are first downscaled by 4x.
An independent implementation of MATLAB’s imresize function was used, as
this provides the best results for bicubic downscaling compared to other meth-
ods found within Python. Training datasets were also augmented with random
cropping, flipping, and transposing of each image. Each model was trained indi-
vidually via said local machine, or via the provided model from the author for
100 Epochs.

2.2 Testing

Two tests performed, a test validating output images from the application using
PSNR and SSIM with a python script; and another evaluating human perception
on the same set of test images to judge percieved quality via a survey. The
Python implementations are not a perfect recreation of the models described in
the relevant literature, as such the results for PSNR found within the literature
are typically greater than those of the python versions when tested with similar
images. The PSNR and SSIM testing for images within relevant literature is
performed on the Y channel, and so for this test the image channels are separated,
and testing is performed on the Y channel.

2.3 Similar Work

Applications such as Waifu2x and Topaz A.I. Gigapixel perform similar functions
to the proposed application; Waifu2x works best on non-photoreal images such
as drawings and cartoons at up to 2x factor scaling based around the (no longer
state-of-the-art) SRCNN architecture, and Gigapixel is a proprietary piece of
software in which the algorithms used are unknown. This prototype application
differs from both of these in that it is a free application that makes practical use
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of more up-to-date, publicly available image scaling networks in a user-friendly
manner through a GUI; by compiling the current and more recent state-of-the-
art models together in the application, instead of a single model used in either
program mentioned.

A qualitative survey was created to test the results of the networks used in
the application on human perception. The same 5 images from the previous test
were used, each run through the application with the downscale option selected.
The image scaling options for each image were; Bicubic, ESPCN, SRResNet,
LapSRN, and ProGanSR. This resulted in a total of 25 images that were given
to participants. 20 Participants responded to the survey. Participants were asked
to rank the images in order of visual quality and realism, where a rank of 1 is the
highest quality and most visually pleasing image, and a rank of 5 is the lowest
quality and least visually pleasing image. Participants are not given the Ground
Truth image as reference, and the names of each model are not divulged.

3 Results and Evaluation

3.1 PSNR and SSIM

On the ‘statuette’ image set, bicubic scaling appears to give the highest value
results for both SSIM and PSNR. It is unclear why this happens, but it is only
the case on this image. This example is some justification as to why PSNR and
SSIM alone are not a concrete metrics for judging image quality. SRResNet has
the most occurrences of the highest values of PSNR and SSIM on the 5 sets of
test images, in both test runs. SRResNet also outperforms ProSR when tested
against these metrics, which is to be expected. ESPCN falls behind bicubic
scaling in many of these test cases, in both SSIM and PSNR. The majority of
results gathered in this test show that error-focused architectures do outperform
both traditional scaling methods and perceptual-focused architectures. It is clear
when looking at the images PSNR and SSIM alone do not provide the optimal
method for judging the visual quality of a super-resolved image.

Table 1. The results of the PSNR and SSIM Test on a custom set of 5 images.

Image Set Test ProSR SRResNet LapSRN ESPCN Bicubic

Sign PSNR (dB) 27.674 27.792 28.006 24.283 24.844
- SSIM 0.888 0.883 0.885 0.696 0.787

Dog PSNR (dB) 25.325 27.146 25.478 25.738 26.438
- SSIM 0.753 0.800 0.791 0.741 0.776

Statuette PSNR (dB) 24.300 26.054 25.007 24.004 27.766
- SSIM 0.836 0.826 0.821 0.813 0.856

Bluebell PSNR (dB) 22.604 23.815 22.767 21.235 22.061
- SSIM 0.746 0.788 0.765 0.689 0.693

View PSNR (dB) 21.950 23.504 22.735 22.367 21.083
- SSIM 0.644 0.704 0.697 0.663 0.574
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3.2 Perceptual Study

ESPCN was ranked lowest of the tested group, only barely contesting bicubic
scaling in most cases. Looking at the images, there is only a minute difference
between ESPCN and Bicubic, with ESPCN looking slightly sharper than the
Bicubic images. As expected, Bicubic scaling provides the worst quality results
and this is reflected in the participants’ response. In 3 out of 5 test cases, Bicubic
scaling is ranked higher than or equal to ESPCN. Therefore, it can be determined
from this that ESPCN provides an alternative to Bicubic scaling, not a true
replacement as was expected with the other models.

Fig. 3. A bar graph showing the total aggregate results of perceptual testing on the
same 5 images.

4 Conclusion
This paper has presented a study and prototype implementation of state-of-

the-art techniques for super-resolution within a x64 and Unix compatible appli-
cation, allowing for any user to upscale a desired image using these techniques
without the need for knowledge of programming or deep learning. Through test-
ing, we find that the error-focused architectures (based around PSNR, SSIM,
and Mean-Square Error testing) provide some excellent techniques for objective
super-resolution, but result in often murky and smudged images. The perceptually-
focused architectures, a more recent development making use of adversarial net-
works, give promising results that better represent true, high-resolution images
able to fool the human perception. In the context of applications of these mod-
els, perceptual approaches that hallucinate finer detail might be less suited for
medical applications or surveillance because the data they produce is techni-
cally not present within the original image, giving an advantage to error-focused



8 A. Shackleton et al.

approaches. Perceptual approaches may therefore be more useful for applica-
tions that do not specifically require the content of the images to be accurate
(such as personal photos). This gives merit to the suggestion that one path for
super-resolution is not necessarily better than another.

5 Further Work
The application can be extended to work on other forms of media with further

training, such as drawings or animations. Re-training each network with more
data is another viable further step, in order to provide more optimal results on
photographic images. The tool could also be extended to process larger images
in a memory-saving manner, as larger images currently require high amounts of
VRAM to process. Further optimization techniques can be utilised to streamline
the process and make it more practical for real time and networking applica-
tions. A further study could be conducted to compare the relative quality of
each architecture with and without GAN; current testing only shows that hu-
man participants prefer GAN-processed images, but not which GAN architecture
specifically.
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