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ABSTRACT: 

 

In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features 

extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves 

the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are 

employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include 

linear, polynomials and Radial Based Function (RBF).   

The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, 

Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental 

tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison 

to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function. 

 

1. INTRODUCTION 

Crop classification and mapping using synthetic aperture radar 

(SAR) is an important application of remote sensing and earth 

observation technology. The main advantage SAR observation 

compared with optical sensors is the all-weather mapping 

capability of these systems. The discrimination potential of 

SAR data is based on the sensitivity of the radar backscatter to 

the dielectric properties of the objects and their structure (i.e., 

the size, shape, and orientation distribution of the scatterers) [1], 

[2]. The possibility of identifying the individual classes is based 

on the fact that the dielectric properties and the structure of the 

different crop types are different. A distinct variation is seen for 

these properties through the growing season due to the 

development of crops [2]. Therefore, the discrimination 

capabilities may vary through the season, and it may also be 

improved by performing multi-temporal classification [3], [4]. 

The radar backscatter is also sensitive to, e.g., the dielectric 

properties of the soil, the surface roughness, the terrain slope, 

and the vegetation canopy structure (e.g., the row direction and 

spacing, and the cover fraction) [1]. These properties are not 

necessarily specific for the individual classes and may therefore 

cause variability of the backscatter within the classes. Also, 

differences in the development stages at a specific point in time 

due to, for instance, differences in sowing time may cause such 

variability [2].  

The full-polarimetric SAR observation contain very important 

source information about the terrestrial targets in the form of 

scattering matrix [5]. Therefore, such data may be used to assess 

the capabilities of SAR for classification in general and crop 

mapping where the backscattering models are more complex. 

Various methods have been used for SAR data classification 

such as the statistical methods based on the Wishart distribution 

[4], [6]-[7], or covariance matrix elements transformed into 

backscatter coefficients [4], [7]-[8], methods based on the 

scattering mechanisms [9], [10], and knowledge-based methods 

[11]-[12]. In the latter methods, it is possible to include 

scattering model results and common knowledge about the 

targets. Therefore, these approaches are normally relatively 

more robust and easy to adjust to different growing conditions 

due to, for example, various sowing time, soil, and weather 

conditions. The number of different classes that can be 

determined is normally relatively small using this type of 

methods. The statistically based methods, on the other hand, 

will normally provide a larger number of classes, but the 

classifiers will then normally be specifically adjusted to the data 

set at hand, and it is difficult to adopt the classifier to other 

environmental conditions [13]. 

In this paper, we have developed a framework for the 

classification of the temporal alpha features of H/A/α 
decomposition method, using SVM classifier and studied the 

effect of various kernel function on classification accuracy and 

performance. 

This paper is structured as follows. First, in Section 2, 

the SAR data and the test site will be described. Section 3 

outlines the theoretical background for the classification 

methodology used in the study. The results are given in Section 

4, together with the discussion. Section 5 contains the 

conclusions. Finally, section 6 is the acknowledgement.  

 

2. METHODOLOGY 

2.1 Polarimetric SAR data structure 

A polarimetric SAR acquires data at the four linear 

polarizations, HH, HV, VH, and VV, and these measurements 

are formed into a scattering matrix. For a reciprocal medium in 

the monostatic case, the scattering matrix transforms into a 

scattering vector 𝑘 = [𝑆𝐻𝐻 𝑆𝐻𝑉 𝑆𝑉𝑉]𝑇  (1) 

where the superscript T denotes the matrix transpose and the 𝑆𝑟𝑡 

elements are the complex scattering amplitudes for transmitting 

t-polarization and receiving r-polarization. In the reciprocal 

case, 𝑆ℎ𝑣 equals 𝑆𝑣ℎ, and in that case, an averaged element, i.e., 𝑆𝑥𝑝 = 0.5 ∗ (𝑆ℎ𝑣 + 𝑆𝑣ℎ), will be used for the measured data to 

improve the signal-to-noise ratio for the cross-polarized 

element. This will, in principle, not mimic true single- and dual-

polarization modes where the cross-polarized backscatter is 

included, but the error introduced will be small. The multi-

temporal scattering matrices are converted to the covariance 
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matrix format and multi-looked for speckle reduction, and 

hence: 𝑍 = 1𝑛 ∑ 𝑘(𝑖)𝑘(𝑖)∗𝑇 =𝑛𝑖=1[〈|𝑆𝐻𝐻|2〉 〈𝑆𝐻𝐻𝑆𝐻𝑉∗ 〉 〈𝑆𝐻𝐻𝑆𝑉𝑉∗ 〉〈𝑆𝐻𝑉𝑆𝐻𝐻∗ 〉 〈|𝑆𝐻𝑉|2〉 〈𝑆𝐻𝑉𝑆𝑉𝑉∗ 〉〈𝑆𝑉𝑉𝑆𝐻𝐻∗ 〉 〈𝑆𝑉𝑉𝑆𝐻𝑉∗ 〉 〈|𝑆𝑉𝑉|2〉 ]  (2) 

where n is the number of pixels multi-looked, ∗ is the complex 

conjugate, and ‹› denotes spatial averaging. All elements in (2) 
are normalized with the factor 4𝜋 (𝐴 cos(𝜃))⁄ , where A is the 

ground resolution area and θ is the incidence angle. Hence, all 
data correspond to the γ0 backscatter coefficient in order to 

reduce the influence of the incidence angle. 

2.2 Support Vector Machines (SVM) 

A brief description of SVM is made here and more details can 

be found in [3]. 

1) Linear case: We should now consider the case of two 

classes’ problem with N training samples. Each samples 

are described by a Support Vector (SV) Xi composed by 

the different “band” with n dimensions. The label of a 
sample is Yi. For a two classes case we consider the label -

1 for the first class and +1 for the other. The SVM 

classifier consists in defining the function 𝑓(𝑥) = sign(〈𝜔, 𝑋〉 + 𝑏)  (3) 

which finds the optimum separating hyperplane as 

presented in Figure 1, where ω is normal to the hyperplane, 
and 

|𝑏|‖𝜔‖ is the perpendicular distance from hyperplane to 

the origin. 

 
Figure 1. SVM classifier; linear case 

 

The sign of f(x) gives the label of the sample. The 

goal of the SVM is to maximize the margin between 

the optimal hyperplane and the support vector. So we 

search the min 
‖𝜔‖2 . 

To do this, it is easier to use the Lagrange multiplier. 

The problem comes to solve: 𝑓(𝑥) = sign(∑ 𝑦𝑖 . 𝛼𝑖〈𝑥. 𝑥𝑖〉𝑁𝑆𝑖=1 + 𝑏)  (4) 

where αi is the Lagrange multiplier. 

2) Nonlinear case: If the case is nonlinear as the Figure 2 the 

first solution is to make soft margin that is particularly 

adapted to noised data. The second solution that is the 

particularity of SVM is to use a kernel. The kernel is a 

function that simulates the projection of the initial data in a 

feature space with higher dimension Φ: Κn → H. In this 

new space the data are considered as linearly separable. To 

apply this, the dot product 〈xi, xj〉 is replaced by the 

function: 𝐾(𝑥, 𝑥𝑖) = 〈∅(𝑥), ∅(𝑥𝑖)〉 

Then the new function to classify the data are: 𝑓(𝑥) = sign(∑ 𝑦𝑖 . 𝛼𝑖 . 𝐾〈𝑥, 𝑥𝑖〉𝑁𝑆𝑖=1 + 𝑏)  (5) 

Three kernels are commonly used: 

 The polynomial kernel: 𝐾(𝑥, 𝑥𝑖) = (〈x. 𝑥𝑖〉 + 1)𝑝 

 The sigmoid kernel: 𝐾(𝑥, 𝑥𝑖) =  tanh(〈x. 𝑥𝑖〉 + 1) 

 The RBF kernel: 𝐾(𝑥, 𝑥𝑖) =  𝑒𝑥𝑝−|𝑥−𝑥𝑖|22𝜎2  

 
Figure 2. SVM classifier; nonlinear case 

3) Multiclass case: The principle of SVM was described for a 

binary classification, but many problems have more than 

two-class problem. There exists different algorithms to 

multiclass problem as “One Against All” (OAA) and “One 

Against One” (OAO). 
If we consider a problem with K class, OAA algorithm 

consists in the construction of k hyperplanes that separate 

respectively one class and the (k-1) other classes. OAO 

algorithm consists in the construction of 
𝑘(𝑘−1)2  hyperplane 

which separate each pair of classes. In the two cases the 

final label is that mainly chosen. 

4) Wishart classification: The Wishart classification involved 

only the T matrix elements especially dedicated to SAR 

data as it accounts for the Wishart distribution observed 

due to the presence of speckle noise [15]. 

3. FULL-POLARIMETRIC L-BAND SAR DATA 

We have utilized several full-polarimetric L-band UAVSAR 

datasets. Several airborne L-band full polarimetry SAR data sets 

with a short revisit time have been acquired by the JPL 

UAVSAR system over an agriculture region near Winnipeg, 

Manitoba, Canada in the summer of 2012. The data acquisition 

was to support the future Soil Mapping Active Passive (SMAP) 

mission of JPL-NASA [14]. UAVSAR is an L-band SAR with a 

bandwidth of 80 Mhz. The antenna measures 0.5 meters in 

range by 1.5 meters in azimuth and is contained within a pod 

that hangs beneath the fuselage of the Gulfstream G-III aircraft. 

The antenna may be electronically steered along track; 

typically, it is steered to zero Doppler. The power transmitted is 

greater than 2 kW, and the noise equivalent for most of the 

swath is better than -45 dB. The single-look-complex data 

(SLC) have a pixel spacing of 0.6 m x 1.6 m. The Rosamond 

Calibration Array is used to calibrate the UAVSAR data to the 

required accuracy of one dB. 

UAVSAR typically flies at an altitude of 41,000 feet on the 

NASA Gulfstream G-III, at a nominal ground speed of 430 

Knots. The typical flight duration is 6 hours. In a typical mode 

of operation, full quad-polarization data are acquired. The cross-
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track image swath is about 20 km, and a typical flight line is 

100 km in length. 

Several researches have shown that among various radar bands 

for crop classification, L-Band radar with wavelength of 24 cm, 

has the proper amount of penetration power, producing better 

distinguished scattering characteristics between crop classes [7]. 

As a result, the L-band observations have potential information 

for crops discrimination and classification, due to the specific 

typical structure and canopy of annual crops. A color composite 

representation of coherency matrix elements is shown in   

Figure 3. 

 
Figure 3. color composite of coherency matrix (RGB: T11, T22, 

T33), acquired on 2012/07/17 

4. RESULTS AND DISCUSSION 

The proposed method is applied to the extracted multi data 

polarimetric features. Based on the available rreference crop 

map, (See Figure 4), several types of crop classes are considered 

and the training and test data are collected. They are Soybeans, 

Wheat, Canola/Rapeseed, Corn, Oats, Broadleaf and Unknown 

classes. 

 

Color description 

 soybeans 

 wheat 

 
canola/ 

rapeseed 

 corn 

 oats 

 broadleaf 

 unclassified 
 

Figure 4. reference crop map (left) and its legend (right) 

Figure 5 shows the result of the classification of alpha feature 

from H/A/α decomposition method using SVM classification 

with different kernels. The upper one shows the result of SVM 

classification with linear kernel. It is the basic kernel which is 

the simplest one and takes the least time to process. I have used 

it to have a comparison between the simplest kernel and other 

more complicated ones. The one which is in the middle is 

related to 3rd degree Polynomial kernel which is more advanced 

than the linear one. It uses the non-linear equations for 

transition inputs to feature space. As a result, it is more time 

consuming and complicated than the previous kernel but release 

more reliable results with higher accuracies. Since the more 

degree the polynomials are, the more complicated and time 

taking the process will be, I just used the 3rd degree to get to a 

better performance with regard to complication, time taking, 

number of training data which is needed and the accuracy. And 

the downer one is the outcome of the RBF kernel. It is the most 

popular kernel among other researches on SAR data. The more 

usage is due to the RBB kernel’s relevance to the nature of SAR 

data which is in Gaussian contribution. It is obvious that a 

Gaussian kernel will be more related to such these data. So the 

higher performance of algorithm is the result of using this 

kernel. The results of these processes with use of three-time 

data and 0.1% of training data are brought in Table 1. 

In addition, we used different number of data times with RBF 

kernel to examine the effects of several time uses in crop 

classification (Table 2). The percentage of utilized training data 

was again 0.1%. Multi-temporal data is useful to employ the 

agricultural different phonological behaviors in classification 

process. It is obvious that although different kinds of crops may 

have same scattering in one time, it differs in another time [16]. 

 Table 3 also shows the effect of using different percentage of 

training data on three-time data using RBF kernel for 

classification. Despite the fact that using the more training data 

brings with it the more accuracy results, it is obvious that it is 

expensive, time consuming and sometimes impossible to use a 

considerable amount of training data. 

Kernel type OA (%) Kappa 

RBF 82.28 0.79 

Linear 79.12 0.75 

3rd deg. polynomial 81.37 0.78 

Table 1.  Using different kernel functions 

# of dates OA (%) Kappa 

1 63.34 0.55 

2 77.36 0.73 

3 82.28 0.79 

Table 2. Using different number of dates 

% of training data OA (%) Kappa 

0.1 82.28 0.79 

1 85.52 0.83 

Table 3. Using different ratio of training data 

In consistency with several researches, RBF kernel yielded 

higher overall accuracy and kappa coefficient with respect to 

convergence speed [17].  
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Figure 5. crop classification using linear kernel (up),  

polynomial kernel (middle) and RBF kernel (down) 

 

5. CONCLUSION 

This paper presented a comparison study on the 

performance of different SVM’s kernels for classification of 

multi-temporal full-polarimetric L-band SAR data in 

agricultural region. A statistical-based decomposition method, 

namely, Entropy/Anisotropy/Alpha is applied to filtered 

orthorectified SAR data of different dates. Then various 

combination feature time series have been generated using these 

features. For classification, different SVMs classifiers based on 

several well-known kernel functions (i.e. RBF, Linear and 

polynomial) are applied to multi-temporal polarimetric features. 

The experimental evaluations demonstrated that the 

accuracies of RBF-based SVM classifier for various crop types 

are relatively better than other two kernel functions. In other 

words, RBF obtains almost 1 and 3 percent better OA compared 

with linear and 3rd degree polynomial kernels respectively.  In 

addition, RBF kernel shows the best results with respect to the 

speed of its convergence. It is obtained with regard to the time 

of process. Indeed, RBF is the most frequently used kernel in 

optical remote sensing data.  

The results also show that using two-data data increases 

the OA of classification up to 14%, and using another date, i.e. 

three multi-temporal dataset, increases the overall accuracies 

about 5% in comparing to two-date imagery. The effect of 

multi-temporal data in crop classification is much more than 

even using more training data, which sometimes is expensive 

and time consuming. As an example, using even ten-fold of 

training data in each class, just has an increase about 3% in 

overall accuracy. 

For the future works, we planned to use different kinds 

of polarimetric target decompositions for incoherent classes. 

Also, it is expected that a future work would be to develop a 

new kernel accounting for the distribution of the data, such the 

one which would be due to the presence of speckle in SAR data. 
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