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1. Introduction. Crystal surfaces are often endowed with energies whose depen-
dence on orientation n (outward unit normal) displays "low energy cusps" at a finite
set M of orientations;1 such energies lead to crystal shapes that are fully faceted, the
orientations of the facets being the orientations n G Af. A possible model2 for the planar
evolution of such crystals is based on an evolution equation relating the normal velocity
Vi(t) and crystalline curvature

Ki(t) = xMt)-1 (1.1)

of each facet Fi, where Li(t) is the length of Fi, while \i has constant value —1, +1,
or 0 according as the crystal is strictly convex, strictly concave, or neither near Fi\ this
evolution equation has the form

/3(ni)Vi(t) = l(m)Ki(t) - U, (1.2)

where /3(ni) > 0, the kinetic modulus, and Z(n,) > 0, the Wulff modulus,3 depend only
on the (fixed) orientation n^ 6 Af of Fi, where U is the constant bulk energy of the
crystal relative to its exterior.

In many respects this evolution equation exhibits behavior typical of a parabolic PDE,4
and it seems reasonable to ask whether it has an associated comparison principle. What

Received August 17, 1994.
1991 Mathematics Subject Classification. Primary 80A22; Secondary 35K99.

lJ\f is the set of orientations that appear on the Wulff crystal (the unique crystal that minimizes total
surface energy at fixed enclosed area (in the plane)).

2Proposed independently by Taylor [Ta] and Angenent and Gurtin [AG] (cf. [Gu]).
3i(n) is the length of the facet on the Wulff crystal that has orientation n. For all of our results,

except those of Sec. 5, we use only the condition Z(n) > 0; the form of the underlying surface energy is
irrelevant.

4For example, the curve-shortening equation V = K (V = normal velocity, K = curvature) for
smooth boundary curves; in fact, Girao and Kohn [GK] and Girao [Gi] use crystalline evolution as a
method of approximating generalized curve-shortening equations.
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makes this question especially important is that comparison can form the basis for weak
formulations of the underlying evolution problem.5

We here establish such a comparison principle:6 we show that if C and C are admissible
evolving crystals with C(0) contained in C(0), then C(t) is contained in C(t) as long as
both evolutions are well defined.

2. Crystals. Let C be the closure of an open, possibly unbounded set in the plane.
We then refer to C as a crystal if its boundary dC is a piecewise linear curve; that is, if
dC is the finite union

N

dC=\jFl (2.1)
i=1

of (closed, maximally connected, possibly infinite) line segments F-t called facets. We
use the following terminology: (2.1) is the facet decomposition of c)C\ the point of
intersection of adjacent facets is called an edge; the outward unit normal n to dC is the
orientation of C.

We will study crystals whose orientation belongs to a finite subset J\f of the unit
circle S1; JV is related to the lattice structure of the crystal and should be envisaged as
representing stable orientations of the crystal surface. The unit vectors n € Af will be
referred to as admissible orientations. The identification of admissible orientations
n with their argument £ R/(27rZ) through n = (cost?,sind) renders meaningful the
term adjacent orientations, or, more precisely, TV-adjacent orientations, as well as the
assertion "m lies between n and p" (for m, n, p £ M).

Let C be a crystal and let a be a point on dC. Then C is admissible at a if
(i) the orientation of each facet containing a is ,/V-admissible; and

(ii) for a an edge, the orientations of the two facets that intersect at a are AA-adjacent.

C is admissible if C is admissible at each point of dC. We will also use a local definition
of admissibility: C is admissible near a if there is an open set W containing all facets
containing a such that C is admissible at every point of W CidC. Here it is important to
note that, since facets are (relatively) closed, if an open set W contains a facet F, then
W contains all facets adjacent to F.

For a £ IR2 and n £ S1, let

7Y(a, n) = {x £ R2 : (x - a) • n < 0} (2.2)

denote the halfspace whose boundary contains a and whose outward unit normal is n; for
n an admissible orientation, H(a, n) furnishes a trivial example of an admissible crystal.

5 This issue will be addressed in a forthcoming paper of Giga. For smooth interfacial energies, com-
parison is a key tool in establishing global existence via the level-set method [CGG, ES]. An alternative
approach to existence is that of Fukui and Giga [FG], who establish a weak formulation for motion by
crystalline curvature using an adaptation of nonlinear semigroup theory; the study [FG] is limited to
(7 = 0 and to an interface which is the graph of a (spatially periodic) function.

®The comparison theorem (12H) of [Gu] is valid only when restricted to convex crystals.
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FIGURE 1. The set J\f of admissible orientations and a corresponding
crystal C. The transition numbers are \\ = +1, X2 = X8 = 0,
X3 = X4 = X5 = X6 = XT = -1-

Given a crystal C, let F be a facet of C, let n be the orientation of F, and let L denote
the length of F. The transition number x for F is defined as follows: for a £ F,

X — — 1 if the facets adjacent to F belong to H(a, n);

X = +1 if the facets adjacent to F belong to 7i(a, —n);

X = 0 otherwise.

Roughly speaking, x is —1 or +1 according to C is convex or concave near F (Fig. 1). In
fact, we say that C is convex if the transition number of each of its facets is —1.

Finally, the crystalline curvature K of F is defined by

K = XL~l if L < oo;

K = 0 if L = oo.

3. Maximum principle. A classical maximum principle—for smooth real func-
tions—asserts that if / < / in a neighborhood of xo and if f(xo) = f{xo) = yo, then

(i) f'{x0)=J\x0),
(ii) f"(x0)<f"(x0).

The first condition asserts that the graphs of / and / have a common normal at (xq, yo),
while (ii) compares the curvatures of the two graphs.
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We now derive an analogous result for crystals. Let C and C be crystals. We say that
dC touches dC at a from inside if a £ dC D dC and if there is an open neighborhood
W of a such that

(a) W contains all facets of C that contain a or all facets of C that contain a; and
(b) cnwccnw.

There are four possibilities for the touching of C and C (Figure 2):
(1) facet-facet: a belongs to a facet interior of each crystal;
(2) edge-facet: a belongs to an edge of one crystal and a facet interior of the other;
(3) proper edge-edge: a belongs to an edge of each crystal and, near a, C and C

intersect only at a;
(4) improper edge-edge: a belongs to an edge of each crystal, but the touching at

a is not proper.
The next result is an analog of the classical maximum principle.

Maximum Principle for Crystals. Let C and C be crystals with C and C admissible
near a. Assume that dC touches dC at a from inside. Then

(i) There are facets F and F of C and C such that a E F fl F and such that the
orientation of F equals that of F. Moreover, if a is a proper edge-edge touching,
then the set of orientations of facets of C meeting at a equals the corresponding set
for C.

(ii) If F and F are facets of C and C with a E F fl F and with the orientation of F
equal to that of F, then the curvatures K and K of F and F satisfy

I< <K. (3.1)
If K = K 0, then dC = dC in some neighborhood of F and F.

Proof. For a facet-facet touching, the definition

adC touches dC at a from inside" (3-2)

implies that the facets of C and C whose interiors intersect at a must have the same
orientation, for otherwise they would cross. Consider next an edge-facet touching with
F and e, respectively, the facet and edge in question. Then (3.2) implies that the
orientation of F must lie between those of the facets G and H of the other crystal that
meet at e. But, by admissibility, the orientations of G and H must be A/"-adjacent. Thus
the orientation of F must coincide with either that of G or that of H.

For an improper edge-edge touching there are facets F and F of C and C such that
aeFnf and such that, for some b E F n F, dC touches dC at b from inside, with the
touching of facet-facet type; thus, as above, F and F must have the same orientation.

For a proper edge-edge touching there are two subcases to consider; to state these let
W be an open set that contains a and intersects only those facets of C and C that contain
a. Case a : W OdC and W fl dC are contained in a halfspace H with a E 3TL. Case /3 :
there is a halfspace H with a E dH such that W fl dC is contained in 7i and W n dC is
contained in the closure of the complement of H. These two cases are shown in Fig. 3
(see p. 732) and in either case the requirement that ni and 112 not lie between ni and
n2 and that ni and n2 not lie between nj and 112 implies that ni = nj and 112 = H2, so
that the set of orientations of facets of C meeting at a equals the corresponding set for
C.
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Figure 2. The four types of touching at a

(ii) We assume first that both F and F are finite. Let x and L denote the transition
number for—and length of—F, and let x and L denote the corresponding quantities for
F. Suppose that A" > 0 so that x = 1- By (3.2), either x < 0 or X = 1 and L > L. In
both cases K < K and in the latter case equality holds only if L = L, so that dC = dC
in some neighborhood of F = F. The case K < 0 is treated analogously. If K — 0, then
X = 0 and x < 0; so that K < K. Finally, if F and F are infinite, then K = K — 0; if
F is infinite and F finite, then K = 0 and \ < 0, so that K < K, and similarly when F
is infinite and F is finite. □
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Case a

Case 3
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m cnc

Figure 3. Proper edge-edge touching

Remarks.
1. If in (i) of the Maximum Principle, a is an improper edge-edge touching, then the

set of orientations of facets of C meeting at a may not equal the corresponding set for C

(Fig. 2).
2. The edge-facet and improper edge-edge touchings are essentially facet-facet touch-

ings; that is, there are points b arbitrarily close to a such that dC touches dC at b from
inside with b a facet-facet touching.

4. Evolving crystals comparison theorem. Our final step is to establish a com-
parison theorem for crystals C(t) that evolve with time t. The set J\f of admissible
orientations is fixed throughout the discussion.
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By an admissible evolving crystal C (of duration T — Tc) we mean a one-
parameter family C(t), 0 < t < T, of admissible crystals such that, writing

N

dC(t) = \jFi(t) (4.1)
i= 1

for the facet decomposition of dC(t):
(i) N is independent of t,

(ii) each facet Fi(t) has orientation n, that is independent of t,
(iii) the position vector of each edge varies smoothly in t.

C is convex if C(t) is convex for 0 < t < T. Implicit in the definition of an admissible
evolving crystal is the requirement that a facet present at some t G [0, T) is present for
all t e [0, T), so that facets are neither created nor destroyed.

We say that an admissible evolving crystal C corresponds to data {/3,l,U} if
(i) /?(n) > 0 and Z(n) > 0 for every admissible orientation n € M,
(ii) each facet F,(t) evolves on (0, Tc) according to the evolution equation

/3{ni)Vi(t) = l(ni)Ki(t) + U, (4.2)

with n^ the orientation, Vt(t) the normal velocity in the direction n,, and Ki(t) the
crystalline curvature of Ft (t). Here j3 is the kinetic modulus, I is the Wulff modulus, and
U is the bulk energy.

For our first comparison theorem the two crystals correspond to the same moduli, but
the bulk energies are different. In stating this theorem note that, for C and C admissible
evolving crystals, the distance

dist(c?C(t), dC{t)) = inf{|x — x|; x 6 dC(t),x. 6 dC(t)} (4.3)

is actually attained, since each crystal has a finite number of facets.

First comparison theorem. Let C and C be admissible evolving crystals of equal
duration T. Let {/3,l,U} and {/3,l,U} denote the data corresponding to C and C, with
U >U. Assume that

C(0) C C(0). (4.4)

Then
(a) C(t) C C(t) for all t € [0, T),
(b) dist(dC(t),dC(t)) is a nondecreasing function of t.

Proof. The proof will proceed in a series of steps.
1. Admissible evolving crystals are translation invariant: if C(t), 0 < t < T, is an

admissible evolving crystal corresponding to data {/3,1, U} and r is a vector, then C(i) + r,
0 < t < T, is an admissible evolving crystal corresponding to the same data.

2. An admissible evolving crystal C corresponding to {[3,1, U} has its evolution gov-
erned by a system of coupled ODE's7 (one equation for each facet) and from the theorem

7Cf. (10.18) of [AG], (12.29) of [Gu],
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on smooth dependence on data for this ODE system one can show that for each e there
is an admissible evolving crystal Ce that satisfies C£(0) = C(0), corresponds to the data
{/?,/, U + e}, and is such that (i) its duration Te satisfies Te —> T as e —> 0; and (ii)

dist(9C£(i), dC(t)) —> 0 as e —> 0

uniformly for t in any closed interval of [0, T).
3. Our next step is to show that, granted (a), d(t) := dist(<?C(i), dC(t)) is nondecreas-

ing. It suffices to show that d(0) < d(t), 0 < t < T. There is a vector r with length d(0)
such that C(0) + r is contained in C(0). By Step 1, C(t) + r is an admissible evolving
crystal and, appealing to (a) for this translated crystal, we conclude that C(t) + r is
contained in C(t). Thus d(0) < d(t).

4. We turn now to the proof of (a). Assume that C(t) is not contained in C(t) at some
t E (0, T). Then

0 < to ■= sup{t;C(t) C C(t)}

satisfies to < T. Further, in view of the Maximum Principle and Remark 2 of Sec. 3,
C(to) C C[to) and there is a point b £ C(to) nC(io) such that dC(to) touches dC(t0) at
b from inside with b either a facet-facet touching or a proper edge-edge touching; and
such that:

(a) for b a facet-facet touching, if F and F are the relevant facets of C and C, then F
and F have common orientation, n say, and the normal velocities V and V of F and F
in the direction n satisfy

V(to) > V(to)\ (4.6)

(]3) for b a proper edge-edge touching, b is an edge of adjacent facets F[ and F2 of
C and an edge of adjacent facets F1 and F2 of C, and (renumbering if necessary), for
i = 1,2, Fi and Ft have the same orientation and

fi(to)>Fi(fo) or V2(to)>V2(to), (4.7)

where Vi and Vj are the velocities of Fi and Fi in the direction n(.
5. Assume that U > U. Consider (a) of Step 4. By the Maximum Principle, the

crystalline curvatures corresponding to F and F satisfy K(to) < K(to). Thus, applying
the evolution equation (4.2) to each of the crystals, we find, with the aid of (4.6), that
U < U, a contradiction. An analogous argument yields a contradiction for (/3) of Step 4.
Thus (a) is proved for U > U.

6. Our final step is to prove (a) for U — U. In place of C we use the admissible evolving
crystal CE corresponding to U + s (> U) discussed in Step 2. By Step 5, C£(t) C C(t) for
0 < t < Te and letting e —» 0 we conclude that C(t) C C(t) for 0 < t < T.

Remarks.
1. If U > U,C(t) is actually contained in the interior of C(t) for 0 < t < T. Indeed,

if not, there is a <1 >0 such that dC(t\) touches 3C(t\) at some b from inside. Since
C(t) C C(t) for alH > 0 and since t\ > 0, we have the same speed relations of facets near
b as described in Step 4 of the proof of the First Comparison Theorem, an observation
that yields, via the argument of Step 5, a contradiction to U > U.
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2. The standard proof of comparison for the heat equation does not require differ-
entiability of the initial data. Within our framework differentiability is analogous to
admissibility. Our assumption of admissibility of the initial crystal allows for the simple
argument given in Steps 4 and 5. If we drop this assumption (but continue to assume
that the crystal is admissible for t > 0), then, letting to be as defined in (4.5), there is a
t\ > to and a point b G C(ti)\C(ti) such that

dist(b, dC(ti)) > dist(x, dC(t\)) for all x E C(t), 0 <t <t\.

One can compare orientations, curvatures, and speed around b and reach a contradiction
to U > U as in Step 5. This argument furnishes a proof for nonadmissible initial data
but requires U > U as well as continuity of C(t) and C(t) (as sets) up to t = 0. For the
case U — U, our argument of Step 6, which utilizes the corresponding ODE system, does
not apply directly, since this system is not well defined for facets of zero length. We will
not consider this question in the present paper.

A useful extension of the comparison theorem allows the moduli of the crystals to
differ.

Second Comparison Theorem. Let C and C be admissible evolving crystals of equal
duration T, with either C or C convex. Let C and C correspond to the data {/3,l,U} and
{/?, I, U} with

U/(3 > U/p, l/P > l/p. (4.7)
Assume that

C(0) C C(0). (4.8)

Then
(a) C(t) C C(t) for all t G [0, T),
(b) dist(dC(t),dC{t)) is a nondecreasing function of t.

We omit the proof, which is similar to the proof of the first comparison theorem.
We now give a weaker notion of an evolving crystal. By a weakly admissible evolv-

ing crystal C corresponding to the data {P,l,U} we mean a one-parameter family
C(t),0<t<Tc,of crystals such that

(i) C(t) is continuous in t on [0, Tc) as a set-valued function [AF];
(ii) there are finitely many times to — 0 < t\ < t^ < ■ • ■ < tu < Tc such that

C is an admissible evolving crystal corresponding to {/3,l,U} on each [tj,tj+1), j =
0,1,2,..., M — 1.
This definition allows for the disappearance of facets at the times ti,t2,- ■ ■

Theorem. The two comparison theorems hold without change for weakly admissible
evolving crystals.

5. Bounds on crystal growth. We now use the second comparison theorem to
establish bounds on crystal growth.8 We assume we are given a bulk energy U, a kinetic
modulus (3{n) > 0, and a Wulff modulus l(n) > 0, with both moduli defined for every

BCf. Soner [So], who uses analogous ideas to bound the growth of smooth crystals.
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ngjV. We assume further that the Wulff modulus corresponds to the interfacial energy
/(n) > 0, n G A/". Precisely, we assume that the discrete set /(n) 'n, n E A/", lies on the
boundary of its convex hull, so that the Wulff crystal

A = {x : x • n < /(n) for all n 6 M} (5.1)

is convex and fully faceted with A/* as its set of orientations; l(n) is then the length of
the facet on A with orientation n € A/".9 Granted this, if /3(n) satisfies

/(n)/3(n) = k = constant (5-2)

and if z(t) is a solution of the differential equation

nz(t) = —[U + z{t)~l] (5.3)

on a maximal time-interval [0,T) with z(t) > 0, then10

C{t) = z(t)A is an admissible evolving crystal

corresponding to the data {/?, Z, f/}.
(5.4)

For U > 0, C{t) shrinks to a point in finite time; for U < 0, C{t) will shrink to a point or
grow without bound according as z(0) < \U\ or z(0) > \U\.

Let C be an admissible evolving crystal corresponding to the data {/3,l,U}} and let
Zq > 0 and Zq > 0 denote the largest and smallest numbers such that, for some vectors

and b+,
z0"(A + b-)cC(0)c4(A + b+). (5.5)

Further, let k+ > 0 denote the smallest constant such that /3+(n) := K+f(n)' -1 > P(n)
for all n € A/", let n~ > 0 denote the largest constant such that (3 (n) := K-/(n)-1 <
/3(n) for all n € A/", and let z±(t) with 2±(0) = z(f denote the solution of (5.3) with
k = k±. Then, by (5.4) and the second comparison theorem,

z~(t){A + b~) c C(t) C z+{t)(A + b+). (5.6)

Thus for U > 0 or for U <0 and \U\ sufficiently small, C(t) lies between convex crystals
that each shrink to a point in finite time; for U <0 and \U\ sufficiently large, C(t) lies
between convex crystals that grow without bound.
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9Cf. §12 of [Gu].
10 [Ta] for U = 0; (12G) of [Gu] for the general case.
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