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A COMPARISON THEOREM FOR STEINER MINIMUM TREES
IN SURFACES WITH CURVATURE BOUNDED BELOW
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Abstract. Let D be a compact polygonal Alexandrov surface with curvature bounded
below by κ . We study the minimum network problem of interconnecting the vertices of the
boundary polygon ∂D in D. We construct a smooth polygonal surface D̃ with constant curva-
ture κ such that the length of its minimum spanning trees is equal to that of D and the length of
its Steiner minimum trees is less than or equal to D’s. As an application we show a comparison
theorem of Steiner ratios for polygonal surfaces.

1. Introduction. Roughly speaking, a minimal geodesic segment is a curve whose
length is equal to the distance between its endpoints. The distance plays very important roles
in various researches. It means that the geometry of geodesics can be useful and have many
applications. The minimum network problem is one of them. We will discuss the minimum
network problem on surfaces from a geometric point of view. The theory of Alexandrov
surfaces plays important roles because some comparison theorems are very useful to make a
suitable configuration of points in a model surface with constant curvature.

Let M be a complete Alexandrov surface with curvature bounded below by κ having
no boundary. Examples of those surfaces are complete 2-dimensional Riemannian manifolds
with curvature bounded below by κ having no boundary, convex surfaces without boundary in
the Euclidean space E3, glued surfaces with curvature bounded below by κ having no bound-
ary [8], [16], [17]. Let P be a finite set of points in M . A shortest network interconnecting
P is called a Steiner minimum tree which is denoted by SMTM(P). A Steiner minimum tree
SMTM(P) may have vertices which are not in P . Such vertices are called Steiner points. A
spanning tree on P is by definition a tree interconnecting P with vertex set P , so that all
edges are minimal geodesic segments connecting two points in P . A shortest spanning tree
on P is called a minimum spanning tree on P which is denoted by MSTM(P). If P consists
of two points p and q in M , then SMTM(P) and MSTM(P) are a minimal geodesic segment
T (p, q). Let L(T ) be the total length of edges in a tree T . The Steiner ratio ρ for M is given
by

ρ = ρ(M) = inf
P

L(SMTM(P))

L(MSTM(P))
,
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where P runs over all finite sets of more than two points in M . If M is the Euclidean plane
E2 and P consists of three points which make an equilateral triangle, then we have the ratio

L(SMTE2(P ))

L(MSTE2(P ))
=

√
3

2
.

Du and Hwang [6] stated that ρ(M) = √
3/2 if M is the Euclidean plane. This was the

affirmative answer of a famous conjecture of Gilbert and Pollak [7]. However, Ivanov and
Tuzhilin [12], de Wet [19] and Innami et al. [11] have recently pointed out that their proof
is not complete. Rubinstein and Weng [15] have stated that ρ(M) = √

3/2 if M is a 2-
dimensional sphere of constant curvature. However, their proof used the result stated in [6],
so the proof is not complete. Ivanov, Tuzhilin and Cieslik [13] have estimated some Steiner
ratios for manifolds. Innami and Kim [10] have proved that ρ(M) = 1/2 if M is a complete
simply connected surface of negative constant curvature and without boundary. Tamura and
Innami [18] succeeded in generalizing their theorem, proving that ρ(M) ≤ n/2(n − 1) if M

is a complete locally compact length space with n ends.
Rubinstein and Weng [15] expected that the Toponogov comparison theorem is useful to

generalize their theorems. The present paper shows that their expectation is right.
We say that a simply connected compact surface D with vertex set v(∂D) is a polygonal

surface with curvature bounded below by κ if Int D is a locally compact Alexandrov surface
with curvature bounded below by κ and the boundary ∂D is the union of minimal geodesic
segments T (pi, pi+1) in D connecting adjacent vertices pi, pi+1 ∈ v(∂D) which are locally
convex. We will see the definition of an Alexandrov surface with curvature bounded below
by κ in Section 2. Let Int T = T \ {p, q} for a minimal geodesic segment T = T (p, q)

connecting points p, q ∈ D. Here, a minimal geodesic segment T contained in ∂D is by
definition locally convex if for any point p ∈ Int T there exists a positive ε such that any
minimal geodesic segment T1 with p ∈ Int T1 in the ε-ball around p in D is a subsegment of
T , namely T1 ⊂ T . The total angle around at any point in Int D is less than or equal to 2π .
A point in Int D having total angle less than 2π is said to be singular. If there is no singular
point in Int D, then D is said to be smooth. The inner angle around any point in ∂D \ v(∂D)

is π . However, the inner angle at a vertex p ∈ v(∂D) may be greater than 2π . We call such a
vertex in v(∂D) a spiral vertex. Let SMT(D) and MST(D) denote a Steiner minimum tree for
v(∂D) in D and a minimum spanning tree on v(∂D) in D, respectively. In general, SMT(D)

and MST(D) are not uniquely determined.
The first purpose of this paper is to prove the following theorem.

THEOREM 1. Let D be a polygonal surface with curvature bounded below by κ . Then,
there exists a smooth polygonal surface D̃ with constant curvature κ such that

L(SMT(D)) ≥ L(SMT(D̃)) and L(MST(D)) = L(MST(D̃)) .

In particular, we have
L(SMT(D))

L(MST(D))
≥ L(SMT(D̃))

L(MST(D̃))
.
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We do not assume that a polygonal surface D can be immersed into any Alexandrov
surface. However, if D̃ is smooth and flat, then D̃ is immersed into the Euclidean plane E2

(see Lemma 25).
We define a new ratio to estimate the Steiner ratio. Let M be a simply connected complete

Alexandrov surface with curvature bounded below by κ having no boundary. Let D be an
immersed polygonal surface in M . Let SMT(D) be a Steiner minimum tree for v(∂D) in D

and MST(D) a minimum spanning tree on v(∂D) in D. We define the Steiner ratio η of M

for immersed polygonal surfaces by

η = η(M) = inf
D

L(SMT(D))

L(MST(D))
,

where D runs over all immersed polygonal surfaces in M . Du and Hwang [6] have given an
idea to construct immersed polygonal surfaces which are called the characteristic areas C(T )

for any full Steiner trees T in the Euclidean plane E2. Ivanov and Tuzhilin [12] actually suc-
ceeded in constructing them in a different way. Since they are immersed polygonal surfaces,
we have

ρ(E2) ≥ inf
T

L(SMT(C(T )))

L(MST(C(T )))
≥ η(E2) ,

where T runs over all full Steiner trees in E2.
Their construction of characteristic areas are valid in a domain M0 ⊂ M if there is the

unique minimal geodesic segments connecting their endpoints in M0. We say that a domain
M0 is convex if for any p, q ∈ M0 there exists a minimal geodesic segment connecting p and q

in M which is contained in M0. We say that a convex domain is strong if the minimal geodesic
segment T (p, q) connecting p and q in M0 is unique in M0. Any strongly convex domain in
an Alexandrov surface with curvature bounded below by κ contains no singular point. The
open hemispheres are examples of strongly convex domains. In a smooth Riemannian surface
any sufficiently small ball around any point is strongly convex.

As an application of Theorem 1 we prove the following.

THEOREM 2. Let M be a complete Alexandrov surface with nonnegative curvature
having no boundary and M0 a strongly convex domain in M . Then, we have

√
3

2
≥ ρ(M0) ≥ η(M0) ≥ η(E2) .

This inequality suggests a comparison theorem for Steiner ratios.
Here is the idea of our proof of Theorem 1. Alexandrov [1] introduced the cutting and

pasting method to change a polygonal surface D in the class of those surfaces with curvature
bounded below by κ . Using his method, we make a deformation under which the length of
MST does not change and the length of SMT does not increase. We deform the polygonal
surface D until it has constant curvature. Rubinstein and Weng [15] succeeded in doing this
for spheres by using spheres with little by little increasing radii until it becomes flat. We
cannot adopt spheres for modification in our case. Instead, we replace a small part of the
polygonal surface D by a piece of the corresponding domain with constant curvature κ little
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by little until it is smooth and has constant curvature κ . This modification is possible in the
class of Alexandrov surfaces with curvature bounded below by κ . To complete the gradual
modification, we consider the partial ordered set M of polygonal surfaces Dα , α ∈ Λ, with
curvature bounded below by κ , such that Dα are made of the original polygonal surface D by
compression maps given in Lemmas 5 and 6. The main part of the proof is to construct an
upper bound of any totally ordered subset M0 of M. Then, we apply Zorn’s lemma to have
a maximum element D̃ of M. The maximum element D̃ of M is a smooth polygonal surface
satisfying the condition in Theorem 1.

The idea of the proof of Theorem 2 is the following. We first construct the characteristic
area for a Steiner minimum tree in M0 in the light of the idea of Du and Hwang [6]. The
characteristic area is an immersed polygonal surface D in M0. We then have the second
inequality. Thus, we apply Theorem 1 to estimate the ratio η(M0). We deform D until it
is smooth and flat. In the course of the modification, the polygonal surface D is probably
not immersed in any Alexandrov surface because points overlapping each other may have
their neighborhoods which are not isometric. However, a smooth flat polygonal surface is
immersed in the Euclidean plane E2. This shows the third inequality.

2. Alexandrov surfaces. Let M be a locally compact space with intrinsic metric d .
Then, every point p in M has a neighborhood U(p) such that there exists a minimal curve
connecting any points q and r in U(p) whose length is equal to the distance between them.
In addition, if M is complete, then there exists a minimal curve T (q, r) connecting any points
q and r in M . Such a minimal curve is called a minimal geodesic segment T (q, r) connecting
q and r . Moreover, there exists a shortest network interconnecting any finite set P of points
in M which is called a Steiner minimum tree for P .

Let M(κ) denote a simply connected complete surface with constant Gaussian curvature
κ . If κ is positive, zero and negative, then M(κ) is isometric to the sphere with radius 1/

√
κ,

the Euclidean plane E2 and the hyperbolic plane with curvature κ , respectively.
Let �1(pqr) = T (p, q) ∪ T (q, r) ∪ T (p, r) be a geodesic triangle in M . We say that a

geodesic triangle �̃1(pqr) = T (p̃, q̃) ∪ T (q̃, r̃) ∪ T (p̃, r̃) in M(κ) is a comparison triangle
corresponding to �1(pqr) if the lengths of its sides are the same as those of �1(pqr). Here,
the points p̃, q̃, r̃ denote the corresponding vertices of �̃1(pqr) to p, q , and r , respectively.
Namely, �̃1(pqr) = �1(p̃q̃ r̃). The symbol p̃, q̃, r̃ are only used to denote the vertices of a
comparison triangle corresponding to �1(pqr). We say that a locally compact space M with
intrinsic metric d is an Alexandrov space with curvature bounded below by κ if M satisfies the
following condition. There exists a neighborhood U(w) around any point w in M such that
if �1(pqr) is an arbitrary geodesic triangle in U(w) and �̃1(pqr) is a comparison triangle
corresponding to �1(pqr) in M(κ), and if κ is positive we assume that the perimeter of
�1(pqr) is less than 2π/

√
κ, then the following is true.

(A) If x ∈ T (q, r), x ′ ∈ T (q̃, r̃) with d(q, x) = d(q̃, x ′), then d(p, x) ≥ d(p̃, x ′).
Let x ∈ T (p, q) and y ∈ T (p, r). Let ω(x, y) be the angle at p̃ of a comparison

triangle �1(x̃p̃ỹ). The angle 
 (qpr) of T (p, q) with T (p, r) at p is defined by 
 (qpr) =
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limx→p,y→p ω(x, y) if the limit exists. In an Alexandrov space with curvature bounded below
by κ , this limit exists as seen in Lemma 3 (B). It follows from the definition that 
 (q1pr1) is
equal to 
 (qpr) for any q1 ∈ Int T (p, q) and r1 ∈ Int T (p, r). We can see some conditions
equivalent to (A) in [2], [5].

LEMMA 3. The condition (A) is equivalent to the following conditions.
(A′) If x ∈ T (p, q), y ∈ T (p, r), x ′ ∈ T (p̃, q̃) and y ′ ∈ T (p̃, r̃) with d(p, x) =

d(p̃, x ′) and d(p, y) = d(p̃, y ′), then d(x, y) ≥ d(x ′, y ′).
(B) The angle ω(x, y) at p̃ of a comparison triangle �1(p̃x̃ỹ) corresponding to

�1(pxy) is monotone nonincreasing for d(p, x) and d(p, y) when x ∈ T (p, q)

and y ∈ T (p, r).
(C) 
 (pqr) ≥ 
 (p̃q̃r̃), 
 (qrp) ≥ 
 (q̃r̃p̃) and 
 (rpq) ≥ 
 (r̃p̃q̃).
(D) The sum of the angles at p̃ of comparison triangles �1(p̃q̃r̃), �1(p̃r̃ s̃), �1(p̃s̃q̃)

for any points p, q, r, s is less than or equal to 2π .
(H) If d(p, q) = d(p′, q ′), d(p, r) = d(p′, r ′) and 
 (qpr) = 
 (q ′p′r ′), then

d(q, r) ≤ d(q ′, r ′). Here p, q, r ∈ M and p′, q ′, r ′ ∈ M(κ).

In (H) we call the triple (d(p, q), d(p, r), 
 (qpr)) a hinge in M . If M is complete, those
properties mentioned in the definition and Lemma 3 are true for any geodesic triangle in M

and its comparison triangle in M(κ).
The Hausdorff dimension m of an Alexandrov space M is equal to its topological dimen-

sion. If m ≤ 2, then M is a topological manifold with dimension m. We say that a point p in M

is a singular point if the total angle around p is less than 2π . Any minimal geodesic segment
does not pass through a singular point in M which is not its endpoint. Two minimal geodesic
segments with the same endpoints do not intersect at any other point. Moreover, if T (p, q)

and T (p, r) are minimal geodesic segments for q 
= r ∈ M , then T (p, q) ∩ T (p, r) = {p}
unless one of them contains the other.

Let M be a simply connected Alexandrov surface with curvature bounded below by κ .
We say that �(pqr) is a geodesic triangle domain for points p, q, r ∈ M if �(pqr) is a
simply connected domain surrounded by �1 = T (p, q) ∪ T (q, r) ∪ T (r, p). The geodesic
triangle domain may not be uniquely determined by its vertices. We say that a geodesic trian-
gle domain �̃(pqr) in M(κ) is a comparison triangle domain corresponding to �(pqr) if the
lengths of its sides are the same as those of �(pqr). When κ > 0, there are two comparison
triangle domains in M(κ) with same vertices. Then, we accept the geodesic triangle contained
in some hemisphere as �̃(pqr).

We see the following lemma in [9].

LEMMA 4. Let D be a polygonal surface with curvature bounded below by κ . Let
�(pqr) be a geodesic triangle domain in D whose inner angles are less than π and �̃(pqr)

a comparison triangle domain corresponding to �(pqr) in M(κ). If κ is positive we assume
that the perimeter of �(pqr) is less than 2π/

√
κ. Then, there exists a surjective map ϕ :

�(pqr) → �̃(pqr) such that the restriction to each side is an isometry to the corresponding
side, and d(ϕ(x), ϕ(y)) ≤ d(x, y) for any points x, y ∈ �(pqr).
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We say that a surjective map ϕ : D → D̃ is a compression map from D onto D̃ if the
restriction of ϕ to ∂D preserves the arc length of ∂D and d(ϕ(x), ϕ(y)) ≤ d(x, y) for any
x, y ∈ D. The map ϕ in Lemma 4 is a compression map. The idea of the proof of Lemma
4 shows us the fundamental technique for the deformation which will be used in the proof of
Theorem 1.

THE IDEA OF THE PROOF. The map ϕ is a combination of the following shrinking
maps.

(1) Let B be a subset of D and p′ a point in B. Let ϕ1(x) = p′ for all x ∈ B. Then,
d(ϕ1(x), ϕ1(y)) ≤ d(x, y) for any x, y ∈ B because the left hand side is always
zero.

(2) Let V (p, q) be a geodesic biangle domain with vertices p and q in D, namely,
V (p, q) is a domain in D surrounded by two minimal geodesic segments T1 =
T1(p, q) and T2(p, q) connecting p and q . Let x1 = ϕ2(x) ∈ T1 be the point with
d(p, x1) = d(p, x) if d(p, x) ≤ d(p, q), otherwise x1 = q for any x ∈ V (p, q).
Then, d(ϕ2(x), ϕ2(y)) ≤ d(x, y) for any x, y ∈ V (p, q) because of the triangle
inequality of the distance d .

(3) Let C(p, a) = {x ∈ D ; d(p, x) = a} and S(p; q, r) the sector surrounded by
T1 = T (p, q), T (p, r) and the subarc of C(p, a) connecting q and r . Let x1 =
ϕ3(x) ∈ T1 be the point with d(p, x1) = d(p, x) if d(p, x) ≤ a, otherwise x1 = q

for any x ∈ S(p; q, r). Then, d(ϕ3(x), ϕ3(y)) ≤ d(x, y) for any x, y ∈ S(p; q, r)

because of the triangle inequality of the distance d .
(4) Let �1(pqr) be a geodesic triangle whose inner angles are less than π and

�̃1(pqr) the comparison triangle corresponding to �1(pqr). Let ϕ4(x) be the cor-
responding point x ′ in �̃1(pqr) for any x ∈ �1(pqr). Then, d(ϕ4(x), ϕ4(y)) ≤
d(x, y) for any x, y ∈ �1(pqr) because of the condition (A′) in Lemma 3.

Using these shrinking maps, we construct the compression map ϕ as follows. Let m

and m′ be the midpoints of T (q, r) and T (q̃, r̃), respectively. By the condition (A) we have
d(p,m) ≥ d(p̃,m′). Then we find points r1 and q1 in �(pqr) such that d(p, r1) = d(p̃,m′),
d(q, r1) = d(q̃,m′), d(p, q1) = d(p̃,m′), and d(r, q1) = d(r̃,m′). Set Δ1 = �(pqr) \
(Int �(pqr1) ∪ Int �(prq1)). Then, Δ1 is divided into four pieces S(p; r1, q1), S(q; m, r1),
S(r; m, q1) and the remaining domain B. By using the above maps, we have a shrinking map
from Δ1 onto T (p̃, q̃) ∪ T (p̃, r̃) ∪ T (q̃, r̃) ∪ T (p̃,m′) in �̃(pqr). Repeat this construction
of shrinking maps for the remaining triangles �(pqr1) and �(prq1) until we at last have a
set D2 ⊂ �(pqr) such that �(pqr) \ D2 consists of at most countably many open geodesic
biangle domains with vertex p, because those remaining triangle domains converge to mini-
mal geodesic segments or geodesic biangle domains. We also have a shrinking map from D2

into �̃(pqr). Using the map in (2), we can make a shrinking map from each geodesic biangle
domain of �(pqr) \ D2 onto a minimal geodesic segment. Combining these maps, we have
a compression map from �(pqr) onto �̃(pqr). �
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We need to use the following lemma to change polygonal surfaces in the proof of The-
orem 1. Alexandrov [1] shows the first parts of Lemmas 5 and 6. However, we prove that
Lemmas 3 (C) is satisfied because we refer to the similar construction in the proof of Lemma
10.

LEMMA 5. Let D be a polygonal surface with curvature bounded below by κ and let
�(pqr) be a geodesic triangle domain in Int D whose inner angles are less than π . Let
�̃(pqr) be a comparison triangle domain corresponding to �(pqr) in M(κ). Set D̄ = (D \
�(pqr))∪�̃(pqr) where �(pqr) is removed from D and then �̃(pqr) is glued on D\�(pqr)

along corresponding sides. Assume that the distances between the adjacent vertices in ∂D do
not change. Then, D̄ is also a polygonal surface with curvature bounded below by κ . There
exists a compression map ϕ : D → D̄ such that the restriction to each side is an isometry to
the corresponding side and d(ϕ(x), ϕ(y)) ≤ d(x, y) for any points x, y ∈ D.

It should be noted from the proof below that d(ϕ(x), ϕ(y)) = d(x, y) for x and y in
D if a minimal geodesic segment T (ϕ(x), ϕ(y)) does not intersect �̃(pqr) in D̄ because
the distance is intrinsic. Equivalently, if d(ϕ(x), ϕ(y)) < d(x, y), then all minimal geodesic
segments connecting ϕ(x) and ϕ(y) intersect �̃(pqr) in D̄. Thus, if all minimal geodesic
segments T = T (x, y) connecting x and y in D do not pass through p ∈ D, we can make a
polygonal surface D̄ from D such that ϕ(T ) = T (ϕ(x), ϕ(y)) = T (x, y) which does not pass
through ϕ(p) in D̄. In particular, if the minimal geodesic segments T (pi, pi+1) connecting
adjacent vertices pi, pi+1 in the vertex set v(∂D) are unique, then for any point q ∈ Int D
there exists a sufficiently small convex geodesic triangle domain �(pqr) in Int D satisfying
the assumption in Lemma 5. This ensures that the edges in ∂D are minimal geodesic segments
in D̄.

PROOF. It is clear that D̄ is simply connected and compact, and that ∂D̄ is locally
convex because of the assumption. It suffices to prove that Int D̄ is an Alexandrov surface
with curvature bounded below by κ . Let w be a point in D̄. If w is not in the boundary
∂�(pqr) of �(pqr), then we can have a neighborhood around w satisfying the condition (C)
because D \ �(pqr) and Int �(p̃q̃ r̃) are Alexandrov surfaces with curvature bounded below
by κ . Suppose w ∈ Int T (p, q) ∪ Int T (q, r) ∪ Int T (r, p), say w ∈ Int T (p, q). Let U(w)

be a neighborhood of w in D̄ which is divided by Int T (p, q) into two parts such that each
component is contained in either �(p̃q̃ r̃) or D \ Int �(pqr). This is possible because T (p, q)

is a minimal geodesic segment in both �(p̃q̃r̃) and D \ Int �(pqr). Let �(abc) be a geodesic
triangle domain in U(w). All the cases we treat are proved in a similar way, so we suppose
that a ∈ Int �(p̃q̃r̃) and b, c ∈ Int (D \ Int �(pqr)), meaning that T (a, b) ∩ T (p, q) = {u}
and T (a, c) ∩ T (p, q) = {v} for some points u, v.

We first prove that 
 (avu) + 
 (cvu) = π . Suppose this is not true, namely, 
 (avu) +

 (cvu) < π . Let x ∈ T (a, v) and y ∈ T (c, v) be sufficiently near v. Let x ′, y ′ and
v′ be points in M(κ) such that 
 (x ′v′y ′) = 
 (avu) + 
 (cvu), d(x ′, v′) = d(x, v) and
d(y ′, v′) = d(y, v). Take a point z′ ∈ T (x ′, y ′) such that T (z′, v′) makes angles 
 (avu)

with T (x ′, v′) and 
 (cvu) with T (y ′, v′), respectively. Let z be the point in T (p, q) with
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d(v, z) = d(v′, z′) > 0. Then,

d(x, y) = d(x, v) + d(v, y)

= d(x ′, v′) + d(v′, y ′) > d(x ′, y ′)
= d(x ′, z′) + d(z′, y ′) ≥ d(x, z) + d(z, y) > d(x, y) .

We use the comparison theorem of hinges in Lemma 3 (H) to prove the second inequality.
This is a contradiction.

Next we have 
 (uac) ≥ 
 (ũãc̃) because the angle at ṽ of a quadrangle ãũc̃ṽ is less
than or equal to π where the quadrangle ãũc̃ṽ consists of two comparison triangle domains
�(ãũṽ) and �(c̃ũṽ). By the same reasoning, we have 
 (uca) ≥ 
 (ũc̃ã).

Next we prove that 
 (auc) ≥ 
 (ãũc̃). We claim that there exists a point x ∈ T (u, v)

such that the angle at x̃ of a quadrangle ã′ũ′c̃′x̃ is just equal to π where the quadrangle
ã′ũ′c̃′x̃ consists of two comparison triangle domains �(ã′ũ′x̃) and �(c̃′ũ′x̃). This is proved
as follows. As x ∈ T (u, v) moves from u to v, the angle at x̃ changes continuously because
so do the distances from x to u and v. The inner angle of the quadrangle ã′ũ′c̃′x̃ at x̃ is greater
than π when x is near u and is less than π when x = v. The mean value theorem ensures our
claim. The quadrangle ã′ũ′c̃′x̃ is just a triangle domain � with its base containing x̃ which
may not be the comparison triangle domain corresponding to �(auc). Let �(ãũc̃) denote the
comparison triangle domain corresponding to �(auc). Since the base of � is longer than or
equal to T (a, c), we have


 (auc) = 
 (auv) + 
 (cuv)

= 
 (aux) + 
 (cux) ≥ 
 (ã′ũ′x̃) + 
 (c̃′ũ′x̃)

≥ 
 (ãũc̃) .

We have used the Toponogov comparison theorem in Lemma 3 (C) for proving the first in-
equality ≥ and the hinge comparison theorem in Lemma 3 (H) for the second one.

Next we have 
 (bac) ≥ 
 (b̃ãc̃) and 
 (abc) ≥ 
 (ãb̃c̃) because the angle at ũ of a
quadrangle ãũb̃c̃ is less than or equal to π where the quadrangle ãũb̃c̃ consists of comparison
triangle domains �(ãũc̃) and �(b̃ũc̃). In the same way we can prove that 
 (acb) ≥ 
 (ãc̃b̃).
Therefore, we have proved that the condition (C) is satisfied in U(w).

It remains to treat the case that w is a vertex of �(pqr). We have only to consider a
geodesic triangle domain �(abc) containing w. In order to prove that 
 (abc) ≥ 
 (ãb̃c̃),
we first show that there exists a point x ∈ T (b, c) such that a minimal geodesic segment
T (a, x) passes through w or a geodesic biangle domain V (a, x) contains w where V (a, x)

is surrounded by two minimal geodesic segments connecting a and x. If one of geodesic
biangles V (a, b) and V (a, c) exists and contains w, then x = b or c satisfies the condition.
Otherwise, since w lies in one side of T (a, y) in �(abc) if y ∈ T (b, c) is near b, and in the
different side of T (a, y) if y ∈ T (b, c) is near c, we can find a point x ∈ T (b, c) \ {b, c}
satisfying the above condition.

Using this point x, we consider the quadrangle ãb̃x̃c̃ consisting of comparison triangle
domains �(ãb̃x̃) and �(ãx̃c̃). Using the hinge comparison theorem in Lemma 3 (H) to make
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the comparison triangle domain �(ãb̃c̃) from the quadrangle ãb̃x̃c̃, we have


 (abc) ≥ 
 (ãb̃x̃) ≥ 
 (ãb̃c̃) .

The other cases are proved in the same way. Thus Lemma 3 (C) is satisfied in some neighbor-
hood around w.

The map ϕ : D → D̄ is given by ϕ(x) = x for any point x ∈ D \ �(pqr) and by
ϕ(x) = ϕ1(x) for any x ∈ �(pqr) where ϕ1 : �(pqr) → �̃(pqr) is the compression map
given in Lemma 4. �

As a special case we prove the following lemma.

LEMMA 6. Let D be a polygonal surface with curvature bounded below by κ and let
V (p, q) be a geodesic biangle domain with vertices p and q in D, namely V (p, q) is a domain
in D surrounded by two minimal geodesic segments T1(p, q) and T2(p, q) connecting p and
q . Let D̄ be the surface constructed as follows. The biangle domain V (p, q) is removed from
D and then the boundary of D \ V (p, q), T1(p, q) and T2(p, q), are glued together along
corresponding points. Assume that the distances between the adjacent vertices in ∂D̄ do not
change. Then, D̄ is also a polygonal surface with curvature bounded below by κ . There exists
a compression map ϕ : D → D̄ such that the restriction to each side is an isometry to the
corresponding side and d(ϕ(x), ϕ(y)) ≤ d(x, y) for any points x, y ∈ D.

If p and q are adjacent vertices in ∂D, then D̄ satisfies the assumption. If there exists
a diagonal T (p, q) of D used in a minimum spanning tree MST(D) such that V (p, q) is
contained in a sufficiently thin neighborhood around T (p, q), then Lemma 9 shows that D̄

satisfies the assumption. This remark, together with the remark after the statement of Lemma
5, will play important roles in the deformation of polygonal surfaces which is discussed in
Section 4 and also in the proof of Lemma 23.

PROOF. This lemma is proved in the same way as Lemma 5. Let T (p, q) be the minimal
geodesic segment in D̄ reduced from V (p, q). Depending on w 
∈ T (p, q), w ∈ Int T (p, q)

or w ∈ {p, q}, we find a neighborhood U(w) satisfying the condition (C) in Lemma 3.
The map ϕ : D → D̄ is given by ϕ(x) = x for any x ∈ D \ V (p, q) and ϕ(x) = ϕ2(x)

for any x ∈ V (p, q) where ϕ2 : V (p, q) → T1(p, q) is the map in (2) of Lemma 4. �

3. Steiner trees and polygonal surfaces. In this section we summarize some proper-
ties of Steiner minimum trees in a complete Alexandrov surface and a polygonal surface with
curvature bounded below by κ .

PROPOSITION 7. Let M be a complete Alexandrov surface with curvature bounded
below by κ and P a set of n points in M . Then, a Steiner minimum tree SMTM(P) for P in
M satisfies the following properties.

(1) All terminal points of SMTM(P) are points in P .
(2) Any two edges meet at an angle at least 2π/3.
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(3) Every Steiner point has degree exactly three, and hence is not a singular point in
M . The edges emanating from it to three neighboring vertices are unique minimal
geodesic segments.

(4) There are at most n − 2 Steiner points in SMTM(P).

PROOF. The properties (1) and (4) are proved in the same way as in the Euclidean
plane E2. We prove (2). Suppose that there exists a vertex p where two edges meet at the
angle θ less than 2π/3. Let T (p, q) and T (p, r) be those edges. Let q1 and r1 be points in
T (p, q) and T (p, r) with a = d(p, q1) = d(p, r1). For a sufficiently small positive ε, the
subarc C(p, ε) = {y ∈ M ; d(p, y) = ε} ∩ �(pq1r1) of the circle contains a point s with
b(ε) = d(s, q1) = d(s, r1) since d(r1, q2) > d(r1, r2) and d(q1, r2) > d(q1, q2), where q2

and r2 are the endpoints of the subarc of C(p, ε) in T (p, q1) and T (p, r1), respectively. The
quadrangle p̃q̃1s̃r̃1 consisting of comparison triangle domains �(p̃q̃1s̃) and �(p̃r̃1s̃) has the
angle 
 (q̃1p̃r̃1) less than 2π/3. Set θ1 = 
 (q̃1p̃s̃) = 
 (r̃1p̃s̃) ≤ θ/2 < π/3. We consider the
hinge (a, ε, θ/2) in M(κ). If the triangle constructed by this hinge is �(q̃1p̃x̃(ε)), we have
a − ε/2 > d(q̃1, x̃(ε)) for any sufficiently small positive ε, using the first variation formula
for the geodesic variation through T (q̃1, p̃) in M(κ) with fixed point q1. Therefore, we have

a − ε

2
> d(q̃1, x̃(ε)) ≥ d(q̃1, s̃) = d(q1, s) = b(ε) ,

because the middle inequality follows from θ1 ≤ θ/2. For those ε, we have

d(p, q1) + d(p, r1) = d(p̃, q̃1) + d(p̃, r̃1)

= 2a

> 2
(
b(ε) + ε

2

)
= d(q̃1, s̃) + d(r̃1, s̃) + d(p̃, s̃)

= d(q1, s) + d(r1, s) + d(p, s) ,

contradicting that T (p, q) and T (p, r) are edges in SMTM(P).
The property (3) follows from (2) because there are at least three edges emanating from

this point, each angle is at least 2π/3 and the total angle around this point is at most 2π . �

We say that a tree T is a Steiner tree if T satisfies (1) to (3). A Steiner tree T is by
definition full if T has exactly n − 2 Steiner points. Any Steiner tree can be decomposed into
an edge-disjoint union of full Steiner trees.

We consider the minimum network problem in a polygonal surface D with curvature
bounded below by κ and vertex set v(∂D). A Steiner minimum tree for v(∂D) in D and a
minimum spanning tree on v(∂D) in D are denoted by SMT(D) and MST(D), respectively.
We say that an oriented curve C in D is right convex (resp. left convex ) if for any point w in
C there exists a positive ε such that any minimal geodesic segment T (u, v) connecting any
points u, v ∈ C contained in the ε-ball with center w is in the right (resp. left ) side of C or
on C.
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PROPOSITION 8. Let D be a polygonal surface with curvature bounded below by κ

and vertex set v(∂D). Then, SMT(D) satisfies the following properties.
(1) All terminal points of SMT(D) are points in v(∂D). The interior of every edge of

SMT(D) does not intersect ∂D if it is not an edge of ∂D.
(2) Any two edges meet at an angle of at least 2π/3. Hence, if a vertex of SMT(D) is

not a spiral vertex of ∂D, then the vertex has degree at most 3.
(3) All Steiner points are in Int D and have degree exactly three. Hence, they are not

singular points in Int D. The edges emanating from them to three neighboring ver-
tices are unique minimal geodesic segments.

(4) If v(∂D) consists of n points, then there are at most n−2 Steiner points in SMT(D).
(5) Assume that SMT(D) is full. Then, the vertices p and q ∈ v(∂D) are adjacent in

∂D if and only if the minimal subtree S(p, q) of SMT(D) is convex.

PROOF. We omit the proofs of (1) to (4). We prove (5). Since SMT(D) is full, any edge
in ∂D is not contained in SMT(D). Suppose for indirect proof that S(p, q) is right convex
and q is not the adjacent point of p in ∂D. Take a vertex r ∈ P lying in the subarc of ∂D

from p to q . Consider a subtree S(r, p) of SMT(D) from r to p. Then, S(p, q) is not right
convex at the first intersection of S(r, p) and S(p, q) which is a Steiner point, a contradiction.

Conversely, if S(p, q) is not convex, there exists a convex subtree S such that the first
two edges coincide with those of S(p, q). This implies that S connects p and a vertex between
p and q in ∂D. Thus, p and q are not adjacent in ∂D. �

We recall that a shortest network interconnecting the vertex set v(∂D) in a polygonal
surface D without using any vertices other than v(∂D) is a minimum spanning tree on v(∂D)

in D. Let mst(D) be the set of all topologies of all minimum spanning trees on v(∂D) in D. A
minimum spanning tree with topology s ∈ mst(D) is denoted by r(s,D). Therefore, r(s,D)

is one of MST(D)’s. In general, r(s,D) is not unique for s ∈ mst(D). Du and Hwang [6] call
r(s,D) a minimum inner spanning tree with topology s when D = C(T ) is a characteristic
area for a full Steiner tree T in E2.

We summarize some properties of mst(D).

LEMMA 9. Let D be a polygonal surface with curvature bounded below by κ and
vertex set v(∂D). The following are true.

(1) mst(D) is a finite set.
(2) L(r(s,D)) is constant for any s ∈ mst(D).
(3) All edges of r(s,D) do not cross any other edge of r(s′,D) at their interior point

for any s, s′ ∈ mst(D).

PROOF. We omit the proofs of (1) and (2). The property (3) is proved by Rubinstein
and Thomas [14]. Since this property is important in our deformation of polygonal surfaces in
Section 4, we refer to the proof here. They reduced the number of cases, however we do not in
the following proof. Suppose for indirect proof that edges T1 = T (a, b) ⊂ r1 = r(s,D) and
T2 = T (c, d) ⊂ r2 = r(s′,D) with T1 
= T2 intersect at their interior point p ∈ Int T1∩Int T2.
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Then, T1 ∩T2 = {p} and both r1 \ Int T1 and r2 \ Int T2 consists of two connected components.
Set T1(a), T1(b), T2(c) and T2(d) are those connected components containing a, b, c and d ,
respectively. The following cases happen.

(1) (a) T1(a)  c, T1(b)  d ; (b) T1(a)  d , T1(b)  c.
(2) (a) T1(a)  c, d ; (b) T1(b)  c, d ,
(1′) (a) T2(c)  a, T2(d)  b ; (b) T2(c)  b, T2(d)  a.
(2′) (a) T2(c)  a, b ; (b) T2(d)  a, b.

We may suppose without loss of generality that d(a, b) ≤ d(c, d). Since T1 
= T2, we have

d(a, b) + d(c, d) = d(a, p) + d(p, b) + d(c, p) + d(p, d)

> d(a, d) + d(b, c)

and

d(a, b) + d(c, d) = d(a, p) + d(p, b) + d(c, p) + d(p, d)

> d(a, c) + d(b, d) .

Therefore, we have d(c, d) > min{d(a, d), d(b, c)} and d(c, d) > min{d(a, c), d(b, d)}.
Each of (1′) (a) and (1′) (b), say (1′) (a), causes a contradiction as follows. Notice that both
S1 = T2(c) ∪ T (a, d) ∪ T2(d) and S2 = T2(c) ∪ T (b, c) ∪ T2(d) are spanning trees in D.
Then, we have

L(MST(D)) = L(r2)

= L(T2(c)) + L(T (c, d)) + L(T2(d))

> L(T2(c)) + min{d(a, d), d(b, c)} + L(T2(d))

= min{L(S1), L(S2)} .

Suppose that (1) (a) and (2′) (a) happen. Consider two spanning trees S1 = T1(a) ∪
T (b, c) ∪ T1(b) and S2 = T2(c) ∪ T (a, d) ∪ T2(d) in D. Then, we have

L(MST(D)) = L(r1)

= L(T1(a)) + L(T (a, b)) + L(T1(b)) ,

and

L(MST(D)) = L(r2)

= L(T2(c)) + L(T (c, d)) + L(T2(d)) .

Therefore, we have

2L(MST(D)) = L(r1) + L(r2)

= L(T1(a)) + L(T (a, b)) + L(T1(b)) + L(T2(c)) + L(T (c, d)) + L(T2(d))

> L(T1(a)) + L(T (b, c)) + L(T1(b)) + L(T2(c)) + L(T (a, d)) + L(T2(d))

= L(S1) + L(S2) .
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Thus one of L(S1) and L(S2) is less than L(MST(D)), a contradiction. In the other cases, the
same computation causes a contradiction. The following is the list of spanning trees in D we
consider in the remaining cases.

1. Case; (1) (a) and (2′) (b): T1(a) ∪ T (a, d) ∪ T1(b) and T2(c) ∪ T (b, c) ∪ T2(d).
2. Case; (1) (b) and (2′) (a): T1(a) ∪ T (a, c) ∪ T1(b) and T2(c) ∪ T (b, d) ∪ T2(d).
3. Case; (1) (b) and (2′) (b): T1(a) ∪ T (b, d) ∪ T1(b) and T2(c) ∪ T (a, c) ∪ T2(d).
4. Case; (2) (a) and (2′) (a): T1(a) ∪ T (b, c) ∪ T1(b) and T2(c) ∪ T (a, d) ∪ T2(d).
5. Case; (2) (a) and (2′) (b): T1(a) ∪ T (b, d) ∪ T1(b) and T2(c) ∪ T (a, c) ∪ T2(d).
6. Case; (2) (b) and (2′) (a): T1(a) ∪ T (a, c) ∪ T1(b) and T2(c) ∪ T (b, d) ∪ T2(d).
7. Case; (2) (b) and (2′) (b): T1(a) ∪ T (a, d) ∪ T1(b) and T2(c) ∪ T (b, c) ∪ T2(d).

�

In Lemma 10, we make arrangements to start the deformation of the polygonal surface
D in Theorem 1. This arrangements ensures that the resulting polygonal surface D0 does not
degenerate into a metric space with lower dimension under the deformation in Section 4.

Let Γ (D) denote the union of all edges in all minimum spanning trees in D, namaly,
Γ (D) = ⋃

s∈mst(D) r(s,D).

LEMMA 10. Let D be a polygonal surface with curvature bounded below by κ and
vertex set v(∂D). Then, there exists a polygonal surface D0 with curvature bounded below by
κ and vertex set v(∂D0) satisfying the following.

(1) If all p′
i ∈ v(∂D0) correspond to pi ∈ v(∂D), i = 1, 2, . . . , n, in this order on

∂D0 and ∂D, then d(p′
i , p

′
i+1) ≤ d(pi, pi+1) where p′

n+1 = p′
1 and pn+1 = p1.

(2) mst(D) ⊂ mst(D0) and ∂D0 ⊂ Γ (D0).
(3) L(MST(D0)) = L(MST(D)) and L(SMT(D0)) ≤ L(SMT(D)).

PROOF. If ∂D ⊂ Γ (D), then D0 = D is a polygonal surface satisfying the conditions.
Suppose that there exists an edge T = T (pi, pi+1) ⊂ ∂D such that T 
⊂ Γ (D). From
Lemma 9 (3), Γ (D) ∪ ∂D divides D into a finitely many simply connected domains, namely
D\(Γ (D)∪∂D) consists of simply connected open domains. One of their closures contains T ,
say D′. From the construction, ∂D′ \T ⊂ Γ (D), and hence T is the longest in all the edges in
∂D′. Let q be the midpoint of T . Let �̃(s) be the triangle in M(κ) determined by the lengths
of three sides, L(T )/2, L(T )/2 and L(T )−s, for any positive s ∈ (0, L(T )). Glue the triangle
�̃(s) on D′ along T (pi, q)∪T (q, pi+1). The resulting domain is denoted by D′(s). The new
edge which connects pi and pi+1 is denoted by T (s). Let ι : D′ → D′(s) be the inclusion
map which is not isometric. Then, there exists a positive s1 such that Γ (D′(s)) = ι(Γ (D′))
for all s < s1 and ι(Γ (D′)) � Γ (D′(s1)). If T (s1) ⊂ Γ (D′(s1)), then D′ is replaced by
D′(s1) in D. Otherwise, repeat this construction by using T (s1), its midpoint, and the suitable
triangles in M(κ) instead of T , q and �̃(s) until the new edge is contained in the union of
MST’s. This process will stop after a finite number of iterations because of Lemma 9 (3). The
resulting domain is replaced by D′ in D and we have a polygonal surface D1 with curvature
bounded below by κ , as was seen in the proof of Lemma 5. Since D is included in D1 as a
subset by the inclusion map ι and the lengths of curves C in D are equal to those of curves
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ι(C) in D1, we have L(SMT(D)) ≥ L(SMT(D1)). If ∂D1 
⊂ Γ (D1), namely, there exists
an edge T ′ ⊂ ∂D other than T with T ′ 
⊂ Γ (D), we repeat this deformation until we have a
polygonal surface D0 such that ∂D0 ⊂ Γ (D0) �

4. Deformation of polygonal surfaces. Let D0 be a polygonal surface with curvature
bounded below by κ and v(∂D0) the vertex set of ∂D0. Assume that ∂D0 ⊂ Γ (D0). Such a
polygonal surface D0 has been constructed in Lemma 10. Let M be the set of all polygonal
surfaces Dα , α ∈ Λ, with curvature bounded below by κ satisfying the following conditions.

(P1) Every vertex in the boundary ∂Dα corresponds to a point in v(∂D0) and is denoted
by the same symbol. Namely, v(∂Dα) = v(∂D0).

(P2) There exists a compression map ϕα : D0 → Dα . For convenience, we think that
∂D0 = ∂Dα = ϕα(∂D0).

(P3) mst(Dα) ⊃ mst(D0).
(P4) L(r(s,Dα)) = L(r(s,D0)) for any s ∈ mst(D0) where r(s,D0) and r(s,Dα) are

by definition the minimum spanning trees on v(∂D0) in D0 and Dα with topology
s, respectively.

(P5) ∂Dα ⊂ Γ (Dα) where Γ (Dα) is the union of all minimum spanning trees on
v(∂Dα) in Dα .

We define a binary relation ≤ in M as follows. The relation Dα ≤ Dβ holds for
Dα,Dβ ∈ M if there exists a compression map ϕαβ : Dα → Dβ with ϕβ = ϕαβ ◦ ϕα

and mst(Dα) ⊂ mst(Dβ). From Lemmas 5, 6 and the remarks after those lemmas, we can
make Dβ and ϕαβ if there exists a point p ∈ Dα with p 
∈ Γ (Dα) such that any neighborhood
of p is not isometric to any domain in M(κ). We can prove the following, and therefore ≤ is
a partial order in M.

LEMMA 11. The relation ≤ satisfies the following.
(1) Dα ≤ Dα for all α ∈ Λ.
(2) If Dα ≤ Dβ and Dβ ≤ Dγ , then Dα ≤ Dγ .
(3) If Dα ≤ Dβ and Dβ ≤ Dα , then Dα = Dβ , namely, ϕαβ is an isometry from Dα

onto Dβ .

PROOF. (1) and (2) are direct consequences from the definition. We prove (3). Since
ϕα = ϕβα ◦ ϕβ and ϕβ = ϕαβ ◦ ϕα, we have

ϕα = (ϕβα ◦ ϕαβ) ◦ ϕα and ϕβ = (ϕαβ ◦ ϕβα) ◦ ϕβ .

Therefore, ϕβα◦ϕαβ and ϕαβ ◦ϕβα are identity maps because ϕα and ϕβ are surjective. Hence,
we have

d(x, y) = d(ϕβα ◦ ϕαβ(x), ϕβα ◦ ϕαβ(y))

≤ d(ϕαβ(x), ϕαβ(y)) ≤ d(x, y)

for any x, y ∈ Dα . Therefore, ϕαβ : Dα → Dβ is an isometry. In the same way we have that
ϕβα : Dβ → Dα is an isometry. �
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Let SMT(Dα) and MST(Dα) be a Steiner minimum tree for v(∂Dα) in Dα and a mini-
mum spanning tree on v(∂Dα) in Dα , respectively.

LEMMA 12. The following are true.
(1) L(MST(Dα)) = L(MST(D0)) for any Dα ∈ M.
(2) L(SMT(Dα)) ≥ L(SMT(Dβ)) for any Dα,Dβ ∈ M with Dα ≤ Dβ .

PROOF. Let s ∈ mst(D0). Then, s ∈ mst(Dα). Therefore, we have

L(MST(Dα)) = L(r(s,Dα)) = L(r(s,D0)) = L(MST(D0))

because of the condition (P4). This proves (1). If Dα ≤ Dβ for α, β ∈ Λ, then we have

L(SMT(Dα)) ≥ L(ϕαβ(SMT(Dα))) ≥ L(SMT(Dβ)) .

This proves (2). �

We also define the partial order in the index set Λ, namely α ≤ β for α, β ∈ Λ if and
only if Dα ≤ Dβ . We will prove that (M,≤) is an inductively ordered set. Let M0 be a
totally ordered subset of M with index set Λ0 ⊂ Λ. If Λ0 is a finite set, we then find an
α0 ∈ Λ0 such that Dα ≤ Dα0 for all α ∈ Λ0. Here Dα0 ∈ M0 is an upper bound of M0.
Thus we may assume that Λ0 is not a finite set.

We will construct an upper bound N for M0. We define an equivalence relation ∼ in D0

by

x ∼ y if inf
α∈Λ0

d(ϕα(x), ϕα(y)) = 0 .

Let x̄ be the equivalence class containing x ∈ D0 and N = D0/∼. We define a distance in N

as follows.

d(x̄, ȳ) = inf
α∈Λ0

d(ϕα(x), ϕα(y))

for any x̄, ȳ ∈ N . This distance is well defined in N and satisfies that

d(x̄, ȳ) ≤ d(ϕβ(x), ϕβ(y)) ≤ d(ϕα(x), ϕα(y)) ≤ d(x, y)

for any x, y ∈ D0 and α, β ∈ Λ0 with α ≤ β. In the same way we define metric spaces
Nα = D0/∼α by using equivalence relations ∼α in D0 where x ∼α y for x, y ∈ D0 if
d(ϕα(x), ϕα(y)) = 0. Let [x]α be the equivalence class containing x ∈ D0. We define the
distance dα by dα([x]α, [y]α) = d(ϕα(x), ϕα(y)) for any [x]α, [y]α ∈ Nα . Then, the map
ϕ̄α : Nα → Dα given by ϕ̄α([x]α) = ϕα(x) for any [x]α ∈ Nα is isometric. The sequence of
metric spaces (Nα, dα) converges to (N, d) in some sense.

Let fα : D0 × D0 → R be a function given by fα(x, y) = dα([x]α, [y]α) − d(x̄, ȳ) for
any [x]α, [y]α ∈ Nα , where α ∈ Λ0. In other words, fα(x, y) = d(ϕα(x), ϕα(y)) − d(x̄, ȳ)

for any x, y ∈ D0.

LEMMA 13. The function fα is nonnegative. Given x, y ∈ D0, fα(x, y) is monotone
nonincreasing for α ∈ Λ0. For any ε > 0 there exists an α0 ∈ Λ0 such that fα(x, y) < ε for
any x, y ∈ D0 and any α ∈ Λ0 with α ≥ α0.
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PROOF. We have already proved the first part of the lemma.
Let mα = max{fα(x, y) ; x, y ∈ D0}. Let xα and yα be points in D0 such that

fα(xα, yα) = mα. Since D0 is compact, there exist subsequences {xαj } and {yαj } of {xα}
and {yα} which converge to some points x0 and y0, respectively. Since

mαj = d(ϕαj (xαj ), ϕαj (yαj )) − d(x̄αj , ȳαj )

≤ d(ϕαj (xαj ), ϕαj (x0)) + d(ϕαj (x0), ϕαj (y0))

+d(ϕαj (y0), ϕαj (yαj )) − d(x̄αj , ȳαj )

≤ d(xαj , x0) + d(ϕαj (x0), ϕαj (y0)) + d(y0, yαj ) − d(x̄αj , ȳαj ) ,

and

d(x̄0, ȳ0) ≤ d(x̄0, x̄αj ) + d(x̄αj , ȳαj ) + d(ȳαj , ȳ0)

≤ d(x0, xαj ) + d(x̄αj , ȳαj ) + d(yαj , y0) ,

we have that

mαj ≤ d(ϕαj (x0), ϕαj (y0)) − d(x̄0, ȳ0) + 2d(x0, xαj ) + 2d(y0, yαj ) .

Thus, the sequence {mαj } converges to 0 as j goes to ∞. Since {mα} is monotone nonincreas-
ing, the sequence {mα} converges to 0. �

Let ϕ : D0 → N be the map given by ϕ(x) = x̄ for any x ∈ D0. Then, we have
d(ϕ(x), ϕ(y)) ≤ d(x, y) for all x, y ∈ D0. Since D0 is compact, the metric space (N, d) is
compact, and, in particular, complete and locally compact.

For each α ∈ Λ0 we define the map ϕαN : Dα → N by ϕαN(xα) = x̄ for any xα ∈ Dα

where x is a point in D0 with ϕα(x) = xα. Obviously, we have ϕαN(ϕα(x)) = ϕ(x) = x̄ for
all x ∈ D0 and d(ϕαN(xα), ϕαN(yα)) ≤ d(xα, yα) for all xα, yα ∈ Dα .

Using Lemma 13 we prove the following.

LEMMA 14. Let x, y ∈ D0 and xα = ϕα(x) ∈ Dα , yα = ϕα(y) ∈ Dα . Let Tα =
T (xα, yα) be a minimal geodesic segment connecting xα and yα in Dα . Then, there exists a
subsequence of the sequence {ϕαN(Tα)}α∈Λ0 converging to a minimal geodesic segment T̄ in
N , namely d(x̄, z̄) + d(z̄, ȳ) = d(x̄, ȳ) for every z̄ ∈ T̄ . In particular, (N, d) is a length
space.

PROOF. Since ϕαN(Tα) are curves connecting x̄ and ȳ with lengths less than the di-
ameter of D0, it follows from Ascoli’s theorem that there exists a subsequence {ϕαjN (Tαj )}
of the sequence {ϕαN(Tα)}α∈Λ0 converging to a curve T̄ in N . Let z̄ ∈ T̄ . There exists a
sequence of points zαj ∈ Tαj ⊂ Dαj such that {ϕαjN (zαj )} converges to z̄ in N . It follows
from the definition of zαj and Lemma 13 that, for any positive ε, there exists a j0 such that
d(ϕαj N (zαj ), z̄) < ε/3 and |d(xαj , yαj ) − d(x̄, ȳ)| < ε/3 for all j ≥ j0. Since

d(x̄, z̄) ≤ d(ϕαjN (xαj ), ϕαj N(zαj )) + d(ϕαj N (zαj ), z̄)

< d(xαj , zαj ) + ε/3
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and

d(ȳ, z̄) ≤ d(ϕαjN (yαj ), ϕαj N(zαj )) + d(ϕαj N (zαj ), z̄)

< d(yαj , zαj ) + ε/3 ,

we have

d(x̄, ȳ) ≤ d(x̄, z̄) + d(z̄, ȳ)

≤ d(xαj , zαj ) + d(zαj , yαj ) + 2ε/3

= d(xαj , yαj ) + 2ε/3

< d(x̄, ȳ) + ε .

Thus, we have d(x̄, z̄) + d(z̄, ȳ) = d(x̄, ȳ). �

Notice that if T̄ passes through a spiral vertex of N , then T̄ may be broken at that point. In
order to study the properties of T̄ more, we need to know the topological and metric structure
of N .

LEMMA 15. ϕ(∂D0) is a simple closed curve. All edges in ϕ(∂D0) are locally convex
and the inner angle at any point in ϕ(∂D0) \ ϕ(v(∂D0)) is π .

PROOF. We first prove that ϕ(∂D0) is simple. Suppose for indirect proof that x̄ =
ϕ(x) = ϕ(y) = ȳ for some x, y ∈ ∂D0 with x 
= y. Let x ∈ T1 and y ∈ T2 where
T1 and T2 are edges contained in ∂D0. Suppose as the first case that x is an endpoint T1,
namely a vertex of ∂D0, and y is not the endpoint of T2 = T (p, q). There exists an α ∈ Λ0

such that d(ϕα(x), ϕα(y)) < min{L(T (p, y)), L(T (y, q))}. We have d(ϕα(x), ϕα(p)) <

d(ϕα(p), ϕα(q)) and d(ϕα(x), ϕα(q)) < d(ϕα(p), ϕα(q)). Consider a minimum spanning
tree S on v(∂Dα) in Dα containing T2. Such an S exists because of the condition (P5). Re-
move T2\{p, q} from S. Then, S\(T2\{p, q}) consists of two connected components S(p) and
S(q) where S(p) and S(q) are the connected components containing p and q , respectively.
Hence, one of {ϕα(x), ϕα(p)} and {ϕα(x), ϕα(q)} is contained in a connected component, say
S(p). Then the spanning tree S(p) ∪ T (ϕα(x), ϕα(q)) ∪ S(q) on v(∂Dα) has its length less
than L(S), contradicting the condition (P4).

Next we suppose that both x and y are points in v(∂D0). Since we have infα∈Λ0 d(ϕα(x),

ϕα(y)) = 0, there exists an α1 ∈ Λ0 such that a minimal geodesic segment T (ϕα1(x), ϕα1(y))

must be used in all minimum spanning trees on v(∂Dα1) in Dα1 . This contradicts that
L(r(s,Dα)) is constant for α ≥ α1 and s ∈ mst(Dα1). Then, there exists an α2 ∈ Λ0

such that Dα2 ∈ M0 does not satisfy the conditions (P3) and (P4).
Next we suppose that both x and y are not the endpoints of T1 and T2, respectively.

Then, x and y divide T1 and T2 into two minimal geodesic segments, respectively. Let 2δ be
the minimum value of all the lengths of these segments. Since ϕ(x) = ϕ(y), there exists an
α0 ∈ Λ0 such that there exists a minimal geodesic segment T (ϕα(x), ϕα(y)) passing through
the interior of Dα for any α ≥ α0. Then Dα is divided into two connected components by
T (ϕα(x), ϕα(y)). We say that x ′ ∈ T1 and y ′ ∈ T2 are in the same side with respect to
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x, y in the edges if any minimal geodesic segment connecting x ′ and y ′ does not intersect
T (ϕα(x), ϕα(y)) for every α ≥ α0. We claim that δ satisfies that ϕ(x ′) = ϕ(y ′) for x ′ ∈ T1

and y ′ ∈ T2 if d(x, x ′) = d(y, y ′) < δ and x ′, y ′ are in the same side with respect to
x, y in the edges. In fact, if x̄ ′ = ϕ(x ′) 
= ϕ(y ′) = ȳ ′ for some x ′ and y ′, we then take
a point x ′′ with d(x ′′, x) < δ in the other side of x ′ with respect to x in T1, namely, x ′′,
x and x ′ are in this order on T1, and consider the comparison triangle domain �̃(x̄ ′′x̄ ′ȳ ′)
in M(κ) corresponding to �(x̄ ′′x̄ ′ȳ ′). Since d(x̄ ′, ȳ ′) > 0, �̃(x̄ ′′x̄ ′ȳ ′) is not degenerate.
So are �̃(ϕα(x ′′)ϕα(x ′)ϕα(y ′)) and �(ϕα(x ′′)ϕα(x ′)ϕα(y ′)) because of Lemma 13, and, in
particular, �(x̄ ′′x̄ ′ȳ ′) is not degenerate because of Lemma 13. This implies that d(x̄, ȳ) > 0, a
contradiction. Here we give the detail of the estimates of the distances. For any α0 ∈ Λ0, there

exists an α ∈ Λ0 with α ≥ α0 such that if x ′
α ∈ T (ϕ̃α(x ′′), ϕ̃α(x ′)) is the point corresponding

to x with d(x ′′, x) = d(ϕ̃α(x ′′), x ′
α) in �̃(ϕα(x ′′)ϕα(x ′)ϕα(y ′)), then

d(ϕα(x), ϕα(y)) ≥ d(ϕα(x), T (ϕα(x ′′), ϕα(y ′))) ≥ d(x ′
α, T (ϕ̃α(x ′′), ϕ̃α(y ′))) .

In fact, since ϕα(T1) and ϕα(T2) are minimal geodesic segments in Dα and locally convex,
there exists an α ∈ Λ0 with α ≥ α0 such that the minimal geodesic segment T (ϕα(x ′′),
ϕα(y ′)) \ {ϕα(x ′′), ϕα(y ′)} is contained in Int Dα and T (ϕα(x ′′), ϕα(y ′)) divides Dα into two
connected components, say ϕα(x) ∈ Dα1 and ϕα(y) ∈ Dα2. Since �(ϕα(x ′′)ϕα(x ′)ϕα(y ′)) ⊂
Dα1, ϕα(y) ∈ Dα2 and Dα1 ∩ Dα2 = T (ϕα(y ′), ϕα(x ′′)), we have the first inequality.
Lemma 3 (A′) shows the second inequality. Thus we have, from Lemma 13,

d(x̄, ȳ) ≥ inf
α∈Λ0

d(x ′
α, T (ϕ̃α(x ′′), ϕ̃α(y ′))) = d(x ′

0, T ( ˜̄x ′′, ˜̄y ′)) > 0 ,

where x ′
0 is the point corresponding to x with d(x ′′, x) = d(x̄ ′′, x ′

0) in �̃(x̄ ′′x̄ ′ȳ ′). This
inequality contradicts that infα∈Λ0 d(ϕα(x), ϕα(y)) = d(x̄, ȳ) = 0. Therefore, it follows
from the claim that an endpoint of one of T1 and T2 converges to an interior point or an
endpoint of the other. Hence, this case is included in the previous cases. As a result we have
a contradiction if we suppose ϕ : ∂D0 → N is not injective.

We prove the second part of the lemma. It follows from Lemma 14 that all edges in
ϕ(∂D0) are minimal. Suppose that an edge T2 in ϕ(∂D0) is not locally convex. Then there
exists a minimal geodesic segment T1 in N such that x̄ = ȳ for some x̄ ∈ Int T1 and ȳ ∈ Int T2

and T1 
= T2 in any neighborhood of x̄. On the other hand, as was seen in the proof of the first
part, T1 and T2 coincide in some neighborhood of the intersection, a contradiction.

Since ϕ(∂D0) are locally convex, the inner angle at any interior point in any edge of
ϕ(∂D0) is π . �

We call ϕ(∂D0) the boundary of N and it is denoted by ∂N . We prove that N \ϕ(∂D0) 
=
∅.

LEMMA 16. N \ ∂N is not empty. Each edge in ∂N is the limit of a sequence of
minimal geodesic segments in N \ ∂N .
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PROOF. Let gα = max{d(x, ∂Dα) ; x ∈ Dα} for every α ∈ Λ0. We have only to prove
that there exists a positive δ such that gα ≥ δ for all α ∈ Λ0. Suppose for indirect proof that
infα∈Λ0 gα = 0. Then, N = ∂N . Let a point p ∈ ∂D0 be fixed and h : [0, 1] × [0, 1] → D0

be a continuous map such that h(0, ·) : [0, 1] → ∂D0 is a parametrization of ∂D0 with
h(0, 0) = h(0, 1) = p and h(1, [0, 1]) = p. Then, ϕ ◦ h : [0, 1] × [0, 1] → N gives
a homotopy from ∂N to the point ϕ(p) in N . This implies that ∂N is simply connected,
contradicting Lemma 15.

Since all edges in ∂N are locally convex and minimal, the second part of the lemma
holds. �

We call N \ ∂N the interior of N and it is denoted by Int N . The next step is to prove
that Int N is an Alexandrov surface with curvature bounded below by κ .

Let B(x, r) be the open metric ball with center x and radius r , namely, B(x, r) is the set
of all points y with d(x, y) < r .

LEMMA 17. Let x̄ be a point in N with B(x̄, r) ⊂ Int N . Let ϕ(x) = x̄. Then,
B(ϕα(x), r) ⊂ Int Dα for any α ∈ Λ0.

PROOF. Suppose B(ϕα(x), r)∩∂Dα 
= ∅ for some α, say ϕα(yα) ∈ B(ϕα(x), r)∩∂Dα ,
yα ∈ D0. Since M0 is a totally ordered set, for β ≥ α we have ϕβ(yα) = ϕαβ(ϕα(yα)) ∈
∂Dβ , and hence ȳα ∈ ∂N . On the other hand, d(x̄, ȳα) = infβ≥α d(ϕβ(x), ϕβ(yα)) ≤
d(x, yα) < r , namely, ȳα ∈ B(x̄, r), contradicting the assumption B(x̄, r) ⊂ Int N . �

LEMMA 18. Let x̄ ∈ Int N with B(x̄, 5r) ⊂ Int N and let x ∈ D0 with ϕ(x) = x̄. Let
p̄, q̄ be points such that p̄, q̄ ∈ B(x̄, r). Then, there exists an α0 ∈ Λ0 such that a minimal
geodesic segment T (ϕα(p), ϕα(q)) is contained in B(ϕα(x), 4r) ⊂ Dα for any α > α0.

PROOF. From Lemma 13, there exists an α0 ∈ Λ0 such that d(ϕα(y), ϕα(z))−d(ȳ, z̄) <

r for any α ≥ α0, and for any y, z ∈ D0. For those α we have

d(ϕα(x), ϕα(p)) ≤ d(x̄, p̄) + r < 2r

and

d(ϕα(p), ϕα(q)) ≤ d(p̄, q̄) + r

≤ d(p̄, x̄) + d(x̄, q̄) + r ≤ 3r .

Hence, for any ϕα(w) ∈ T (ϕα(p), ϕα(q)) with w ∈ D0,

d(ϕα(x), ϕα(w))

≤ 1

2
{d(ϕα(x), ϕα(p)) + d(ϕα(p), ϕα(q)) + d(ϕα(q), ϕα(x))}

< 4r .

�

LEMMA 19. (Int N, d) is an Alexandrov space with curvature bounded below by κ .
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PROOF. Let x̄ and r be as in Lemma 18. Let �(p̄q̄r̄) be a geodesic triangle domain
in B(x̄, r) and �(p̃q̃r̃) a comparison triangle domain in M(κ) corresponding to �(p̄q̄r̄).
Let s̄ ∈ T (q̄, r̄) and let s′ ∈ T (q̃, r̃) be the point corresponding to s̄. Since Int Dα is an
Alexandrov surface, the condition (C) shows that


 (ϕ̃α(q)ϕ̃α(s)ϕ̃α(r)) ≤ 
 (ϕα(q)ϕα(s)ϕα(r)) ≤ π .

Since

d(q̄, r̄) = d(q̄, s̄) + d(s̄, r̄) = lim
α∈Λ0

{d(ϕα(q), ϕα(s)) + d(ϕα(s), ϕα(r))} ,

the sequence of angles 
 (ϕ̃α(q)ϕ̃α(s)ϕ̃α(r)) converges to π . Therefore, the sequence of an-
gles 
 (ϕα(q)ϕα(s)ϕα(r)) converges to π also. Since Int Dα is an Alexandrov surface and by
Lemma 3 (D), we have

2π ≥ 
 (ϕ̃α(p)ϕ̃α(s)ϕ̃α(r)) + 
 (ϕ̃α(p)ϕ̃α(s)ϕ̃α(q)) + 
 (ϕ̃α(q)ϕ̃α(s)ϕ̃α(r)) .

Therefore, we have

lim sup
α∈Λ0

{
 (ϕ̃α(p)ϕ̃α(s)ϕ̃α(r)) + 
 (ϕ̃α(p)ϕ̃α(s)ϕ̃α(q))} ≤ π .

Hence, if a quadrangle ˜̄p ˜̄q ˜̄s ˜̄r is the union of comparison triangle domains �̃(p̄q̄s̄) and �̃(p̄r̄ s̄)

glued along T ( ˜̄p, ˜̄s), then the angle of the quadrangle ˜̄p ˜̄q ˜̄s ˜̄r at ˜̄s is less than or equal to π .
Therefore, d(p̄, s̄) ≥ d(p̃, s′). �

We need to prove that N is a surface homeomorphic to a disk.

LEMMA 20. N is homeomorphic to a disk.

PROOF. We have only to prove that there exists an α0 ∈ Λ0 such that N is homeomor-
phic to Dα for all α > α0, because Dα is homeomorphic to a disk. Since ϕ does not increase
the distance, we have dim N ≤ 2. Since Int N 
= ∅, we have dim N 
= 1. Hence, dim N = 2.
This implies that N is a topological surface with boundary ∂N . Take a positive θ such that all
geodesic triangle domains with diameter less than θ in N are homeomorphic to disks. Let Σ

be a triangulation of N such that the diameters of all geodesic triangle domains in Σ is less
than θ . Let x̄i , i = 1, . . . , k, be the vertices of the triangulation Σ and xi ∈ D0 the points
with ϕ(xi) = x̄i . It follows from Lemma 14 that for any positive ε there exists an α1 ∈ Λ0

such that ϕαN(Tα) is contained in the ε-neighborhood of T̄ = T (x̄, ȳ) if T̄ is some minimal
geodesic segment connecting x̄ and ȳ in N and Tα is a minimal geodesic segment connecting
xα = ϕα(x) and yα = ϕα(y) in Dα if α ≥ α1. Therefore, we have the triangulation Σα

of Dα whose vertices are (xi)α , i = 1, . . . , k. Thus there exists an α0 ∈ Λ0 such that the
triangulation Σα is homeomorphic to Σ as a graph if α satisfies α ≥ α0 ≥ α1. Since Dα

is topologically a disk, each triangle in Σα surrounds a domain which is homeomorphic to a
disk. From this we see that N is homeomorphic to a disk Dα if α ∈ Λ0 satisfies α > α0. �

Thus, N is a polygonal surface with curvature bounded below by κ . We next prove that
N is an upper bound of M0.
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LEMMA 21. (N, d) is contained in M and Dα ≤ N for all α ∈ Λ0.

PROOF. The condition (P1) is satisfied by N because of the construction and Lemma 14.
Let ϕ : D0 → N be given by ϕ(x) = x̄. Obviously, it follows that d(ϕ(x), ϕ(y)) ≤ d(x, y)

for any x, y ∈ D0. Let x and y be points in an edge of the boundary ∂D0 of D0. Then,

d(ϕ(x), ϕ(y)) = d(x̄, ȳ) = inf
α∈Λ0

d(ϕα(x), ϕα(y)) = d(x, y) .

This implies that N satisfies the condition (P2). We prove the condition (P4). Let s ∈
mst(D0) ⊂ mst(Dα) and let T1, . . . , Tn−1 be minimal geodesic segments which are edges
of r(s,D0). Since L(ϕα(Tk)) ≤ L(Tk) and

L(r(s,Dα)) ≤
n−1∑
k=1

L(ϕα(Tk)) ≤
n−1∑
k=1

L(Tk) = L(r(s,D0)) ,

we have L(ϕα(Tk)) = L(Tk) for all k = 1, . . . , n − 1, and ϕα(Tk) is a minimal geodesic
segment for k = 1, . . . , n − 1. Therefore, ϕ(Tk) is also a minimal geodesic segment for all
k = 1, . . . , n − 1 and L(r(s,N)) = L(r(s,D0)). The condition (P4) implies (P5) for N . In
order to prove the condition (P3), we suppose that mst(N) does not contain mst(D0). Then,
there exists a minimum spanning tree T on v(∂N) in N such that L(T ) < L(r(s,N)) ≤
L(r(s,D0)) for any s ∈ mst(D0). Let t be a topology of T . Then, since

L(T ) = inf
α∈Λ0

L(r(t,Dα)) ,

there exists an α0 ∈ Λ0 with L(r(t,Dα)) < L(r(s,Dα)) for any α ≥ α0, contradicting
the condition mst(Dα) ⊃ mst(D0) for α ∈ Λ0. At the end of the proof, we notice that
ϕαN : Dα → N for any α ∈ Λ0 is a compression map. �

We have proved the following because of Zorn’s lemma.

LEMMA 22. (M,≤) is an inductively partially ordered set. Therefore, there exists a
maximum element in M.

5. Proof of Theorem 1. In this section we prove Theorem 1. Let D be the polygonal
surface as in Theorem 1. We change D into a polygonal surface D0 as in Lemma 10. As
was seen in Lemma 22, we have the inductively ordered set (M,≤) from the polygonal
surface D0. Let D̃ be a maximum element in M. The polygonal surfaces D and D̃ satisfy the
properties about SMT and MST stated in Theorem 1 because of the construction. We have to
prove that Int D̃ is smooth and has constant curvature κ . This follows from Lemma 23.

LEMMA 23. If D̃ ∈ M is not a smooth polygonal surface with constant curvature κ ,
then there exists an element D1 ∈ M with D̃ < D1.

PROOF. Let p be a point in Int D̃ such that any neighborhood around p is not isometric
to a subset in M(κ). We have two cases, namely, p ∈ Γ (D̃) or p ∈ D̃ \ Γ (D̃), where Γ (D̃)

is the union of all minimum spanning trees r(s, D̃), s ∈ mst(D̃). If p ∈ D̃ \ Γ (D̃), then
there exists a sufficiently small geodesic triangle domain � around p which is contained in
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D̃ \ Γ (D̃) such that any minimum spanning tree on v(∂D̃) in D1 = (D̃ \ �) ∪ �̃ does not
intersect �, where D1 is a polygonal surface given as follows. � is removed from D̃ and a
comparison triangle domain �̃ in M(κ) is glued on D̃ \ � along its edges. Then, D1 ∈ M
with D̃ < D1 because of Lemma 5. Assume that p ∈ Γ (D̃). Let S be the edge of Γ (D̃)

containing p. We should notice that p is not a singular point because Int D̃ is an Alexandrov
surface with curvature bounded below by κ , and hence there exists a point q near p such that
any neighborhood around q is not isometric to a subset in M(κ). If we can find a point q 
∈ S

near p such that some neighborhood around q is not isometric to any subset in M(κ) and does
not intersect any biangle domain one of whose sides is S. By using the point q instead of p as
in the above argument, we can see that D1 ∈ M exists with D̃ < D1. Otherwise, there exists
a thin biangle domain V one of whose sides is S, then Lemma 6 shows that D1 ∈ M with
D̃ < D1 exists. �

The review of our method is helpful to understand the process of deformation, in particu-
lar, what happens on the condition (P3). Roughly speaking, Lemmas 5 and 6, combined with
Lemma 9 (3), states that we can deform a polygonal surface D0 with ∂D0 ⊂ Γ (D0) contin-
uously and separately in each connected component of D0 \ Γ (D0), leaving the set mst(D0)

of topologies of minimum spanning trees on v(∂D0) invariant. We continue the deformation
until we cannot do it anymore in this way. The changing polygonal surface yields a new edge
which does not degenerate. If D′ is the resulting polygonal surface changed from D0, then
D′ must be a smooth polygonal surface with constant curvature κ or mst(D′) � mst(D0),
meaning that the new edge used in some minimum spanning tree appears. Due to the con-
tinuous property of deformation and Lemma 9 (3), the new edge dose not cross the old ones.
Zorn’s lemma states that this time comes, the existence of a maximum element. In the first
case, the deformation completes. In the second case, the deformation starts again from D′,
leaving mst(D′) invariant. This operation will stop after a finite number of iterations, since
the number of the topologies of minimum spanning trees on v(∂D0) is finite.

6. Characteristic domain. In this section we show how to construct a polygonal
surface containing given Steiner minimum tree in a strongly convex domain of a complete
Alexandrov surface with curvature bounded below by κ . We will call such a polygonal surface
the characteristic domain.

We describe the characteristic domain a little more before we will show how to construct
it. Let M be a complete Alexandrov surface with curvature bounded below by κ having no
boundary and M0 a strongly convex set in M . Then, M0 is simply connected and smooth. Let
P be a set of n points in M0. Assume that a Steiner minimum tree T0 = SMTM(P) is full.
When T0 is not full, we define the characteristic domain of T0 by the union of all the charac-
teristic domains of all full Steiner subtrees of T0. The characteristic domain C(T0) of T0 is a
polygonal surface with curvature bounded below by κ such that it includes Int T0 in its interior
and its vertices are points of P , namely v(C(T0)) = P . A diagonal of a polygonal surface
D is by definition a minimal (but not broken) geodesic segment connecting two vertices in
the polygonal surface D which is not contained in ∂D. Although we do not know whether
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there exists a diagonal of D, in general, an important property is that D is divided into two
polygonal surfaces by any diagonal of D.

Here is how to construct the characteristic domain C(T0). The construction is the same as
Ivanov and Tuzhilin’s in [12], since the minimal geodesic segments connecting their endpoints
are unique in the strongly convex domain M0. Let p and q in P be adjacent points which are
by definition connected by a convex subtree S(p, q) of T0. Let T (p, q) be the unique minimal
geodesic segment connecting p and q . If S(p, q) ∪ T (p, q) is a simple polygon, then the
domain surrounded by S(p, q)∪T (p, q) is denoted by D(p, q). If S(p, q)∪T (p, q) is not a
simple polygon, then we construct a simply connected spiral domain D(p, q) in the following
way. Let p = p0, p1, . . . , pk = q be self-intersection points of T (p, q) ∪ S(p, q) which lie
in this order on T (p, q). Since M0 is strongly convex and S(p, q) is a convex subtree, at least
one of the following is true.

(1) Every subtree S(pi, pk) of S(p, q) is contained in the simply connected domain
surrounded by T (pi−1, pi) ∪ S(pi−1, pi) for i = 1, . . . , k − 1.

(2) Every subtree S(pi, pk) of S(p, q) is in the outside of the simply connected domain
surrounded by T (pi−1, pi) ∪ S(pi−1, pi) for i = 1, . . . , k − 1.

We say that q (resp. p) is the center of the spiral S(p, q) if (1) (resp. (2)) happens. At least
one of p and q is the center of the spiral S(p, q). There exists an integer l with 0 ≤ l < k − 1
such that at least one of S(p0, pl) and S(pl, pk) is a spiral around p or q , respectively. We
assume that S(pl, pk) is a spiral around q . Let Ai be the polygonal domain surrounded by
S(pi, pi+1) ∪ T (pi, pi+1) for each i = l, . . . , k − 1. Cut Ai along the segment T (pi+1, q),
and we have a polygonal domain A′

i surrounded by the polygon T (q, pi) ∪ S(pi, p
′
i+1) ∪

T (p′
i+1, q), where T (p′

i+1, q) is a copy of T (pi+1, q) along which the polygonal domain is
cut. Glue A′

i on A′
i+1 along the segments T (p′

i+1, q) and T (pi+1, q) for all i = l, . . . , k − 1.
If l > 0, then we do the same thing in order to construct a spiral domain around p. Thus we
get the domain D(p, q) which is spiral around at most two points and is simply connected.
Finally we glue these domains along the Steiner minimum tree T0, and the resulting domain
C(T0) is by definition the characteristic domain of T0. The characteristic domain C(T0) is
uniquely determined by T0 but not P .

We call D(p, q) the basic domain of an adjacent pair of points p and q in T0. Let
D(p, q) be a basic domain, where p and q are adjacent points in T0. Then, D(p, q) is a
polygonal surface with curvature bounded below by κ . Let p = p0, . . . , pk = q be vertices
of the boundary ∂D(p, q) which lie in this order. Notice that the inner angle at pi is 2π/3
for every i = 1, . . . , k − 1. Hence, there exists a integer k′ with 1 ≤ k′ ≤ k − 1 such
that the minimal geodesic segment from p0 to pi in D(p, q) does not pass through q for
every i = 1, . . . , k′ and it is broken at the point q for every i = k′ + 1, . . . , k. We then
have a triangulation of D(p, q) which consists of geodesic triangle domains �(p0pipi+1)

for i = 1, . . . , k′ − 1, �(ppk′q), �(qpk′pk′+1), and �(qpipi+1) for i = k′ + 1, . . . , k − 1.
Combining these triangulations of basic domains we get a triangulation of the characteristic
domain of T0.

We summarize some properties of the characteristic domain C(T0).
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PROPOSITION 24. Let M0 be a strongly convex set in a complete Alexandrov surface
M with curvature bounded below by κ having no boundary and P a finite set of points in M0.
Assume that T0 = SMTM(P) is full. Then, the characteristic domain D = C(T0) satisfies the
following.

(1) The boundary ∂D of D is a polygon whose sides are minimal geodesic segments
connecting adjacent points in P which is the set of all vertices of ∂D. In particular,
each side in ∂D is locally convex.

(2) The interior Int D of D is an Alexandrov surface with curvature bounded below by
κ .

(3) A shortest network interconnecting v(∂D) contained in D is a Steiner minimum
tree for P in M0.

(4) The characteristic domain D has a triangulation such that each geodesic triangle
domain is contained in a basic domain.

It follows from (1) and (2) that the characteristic domain C(T0) is a polygonal surface
with curvature bounded below by κ which is immersed in M . The property (3) implies
L(T0) = L(SMT(D)), and hence ρ(M0) ≥ η(M0), which is needed in the proof of The-
orem 2. In fact, this inequality is proved as follows. Let T be an Steiner minimum tree for a
finite set P of points in M0. We decompose T into some full Steiner trees T1, . . . , Tn which
are subtrees of T . Since the characteristic domains C(Tk) are polygonal surfaces, it holds that
L(SMT(C(Tk))) ≥ η(M0)L(MST(C(Tk))). We then have

L(T ) =
n∑

k=1

L(Tk) =
n∑

k=1

L(SMT(C(Tk))) ≥ η(M0)

n∑
k=1

L(MST(C(Tk))) ,

and

L(MSTM0(P )) ≤
n∑

k=1

L(MST(C(Tk))) ,

because
⋃n

k=1 MST(C(Tk)) is a spanning tree on P in M0. Therefore, we have

L(T )

L(MSTM0(P ))
≥ η(M0) ,

and thus ρ(M0) ≥ η(M0).
The following lemma will be used to prove Theorem 2.

LEMMA 25. Any smooth flat polygonal surface can be immersed in the Euclidean
plane E2.

PROOF. Let D be a smooth flat polygonal surface with n vertices. From the Gauss-
Bonnet theorem we have

n∑
i=1

(π − θi) = 2π ,

where θi is the inner angle at the vertex pi ∈ v(∂D) for i = 1, . . . , n. Hence, we have
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(n − 2)π =
n∑

i=1

θi .

Since n ≥ 3, there exists at least three vertices of ∂D at which the inner angle are less than
π . Let p be such a vertex of ∂D and θ the inner angle at p which is less than π . Assume that
q1 and q2 are the adjacent vertices of p in ∂D. Consider the minimal curve T connecting q1

and q2 in D. If it is a minimal geodesic segment T (q1, q2) without broken point, then it is a
diagonal of D. Otherwise, since there exists another vertex q of ∂D such that the inner angle
at q is less than π , we have T 
⊂ ∂D. Therefore, there exists a diagonal of D. In any case we
can find a diagonal of D. The polygonal surface is divided into two polygonal surfaces by the
diagonal. The number of vertices of these polygonal surfaces are less than n. By mathematical
induction we prove that D has a triangulation by diagonals of D. Using this triangulation we
construct an immersion from D into the Euclidean plane E2, since each triangle domain in
the triangulation is imbedded into E2. �

7. Proof of Theorem 2. In this section we prove Theorem 2. Let M be a complete
Alexandrov surface with curvature bounded below by zero having no boundary and M0 a
strongly convex set. As stated after Proposition 24, we have ρ(M0) ≥ η(M0).

We prove η(M0) ≥ η(E2). Let D be an immersed polygonal surface in M0. By Theorem
1 and Lemma 25 we construct a polygonal surface D̃ from D such that Int D̃ is smooth and
constant curvature zero and D̃ is immersed in the Euclidean plane E2. Thus, we have

L(SMT(D))

L(MST(D))
≥ L(SMT(D̃))

L(MST(D̃))
≥ η(E2) .

This shows η(M0) ≥ η(E2).
It remains to prove that the Steiner ratio of M0 is less than or equal to

√
3/2. In order to

do this, we will find a sequence of geodesic triangles with vertex set P(ε) = {p(ε), q(ε), r(ε)}
of points in M such that

L(SMTM(P(ε)))

L(MSTM(P(ε)))
→

√
3

2
as ε → 0 .

Let p, q and r be points in M0 such that its Steiner minimum tree has a Steiner point w.
Take points p(ε) ∈ T (w, p), q(ε) ∈ T (w, q) and r(ε) ∈ T (w, r) such that d(w, p(ε)) =
d(w, q(ε)) = d(w, r(ε)) = ε. Then, we have

ε

d(p(ε), q(ε))
→ 1√

3

as ε → +0, since d(p(ε), q(ε))2 � 2ε2(1 − cos ω(p(ε), q(ε))) and ω(p(ε), q(ε)) → 2π/3
as ε → +0. Here � means that the left-hand side is approximated by the right-hand side (see
[3, 2.9 Proposition in p.22]). In the same way we have

ε

d(q(ε), r(ε))
→ 1√

3
and

ε

d(r(ε), p(ε))
→ 1√

3
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as ε → +0. Since the Steiner minimum tree for P(ε) = {p(ε), q(ε), r(ε)} is not longer
than T (w, p(ε))∪T (w, q(ε))∪T (w, r(ε)) and a minimum spanning tree is the union of two
shorter sides of the triangle �1(p(ε)q(ε)r(ε)), we see that

lim sup
ε→+0

L(SMT(P (ε)))

L(MST(P (ε)))
≤

√
3

2
.

This completes the proof of Theorem 2.
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