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ABSTRACT
In our more and more interconnected world, a specific risk is that of a cyber-epidemic (or cyber-
pandemic), produced either accidentally or intentionally, where a cyber virus propagates from device
to device up to undermining the global Internet system with devastating consequences in terms of
economic costs and societal harms related to the shutdown of essential services. We introduce a
compartmental model for studying the spreading of a malware and of the awareness of its incidence
through different waves which are evolving on top of the same graph structure (the global network of
connected devices). This is realized by considering vectorial compartments made of two components,
the first being descriptive of the state of the device with respect to the new malware’s propagation,
and the second accounting for the awareness of the device’s user about the presence of the cyber
threat. By introducing suitable transition rates between such compartments, one can then follow the
evolution of a cyber-epidemic from the moment at which a new virus is seeded in the network, up to
when a given user realizes that his/her device has suffered a damage and consequently starts a wave
of awareness which eventually ends up with the development of a proper antivirus software. We then
compare the overall damage that a malware is able to produce in Erdős-Rényi and scale-free network
architectures for both the case in which the virus is causing a fixed damage on each device and the
case where, instead, the virus is engineered to mutate while replicating from device to device. Our
result constitute actually the attempt to build a specific compartmental model whose variables and
parameters are entirely customized for describing cyber-epidemics.

The study of compartmental models started already at
the beginning of the 20th century [1, 2, 3, 4], and soon be-
came a subject of great, recent, interest that has attracted the
attention of many epidemiologists. In analogy with cellu-
lar automata [5], these models consider a networked popu-
lation of individuals, each one of them described by a state
whose discrete values are labeled by compartments. Indi-
viduals may then progress between compartments through
given transition probabilities, which allow the time-discrete
evolution of the population during, for instance, the spread-
ing of infectious diseases and/or rumors and social conta-
gion. Physicists became interested in these models when it
was pointed out that epidemiological processes can be re-
garded as percolation like processes [6].

Starting from the seminal work by Pastor–Satorras and
Vespignani [7], the last twenty years have seen a burst of ac-
tivity on understanding the effects of a network topology on
the rate and patterns of the disease spread. A lot of studies
have tried indeed to predict things such as the total number
of infected individuals, or the duration of an epidemic, and
to estimate various relevant parameters such as the repro-
ductive number. Moreover, and especially in relation to the
recent COVID19 world pandemic crisis, these models have
been used to assess the effects of public health interventions
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and/or to quantify the efficiency of issuing a limited number
of vaccines in a given population [8, 9].

In particular, the SIR model [10, 11] is one of the sim-
plest compartmental models, and describes the evolution of
diseases resulting in the immunization or death of the in-
fected individuals. The model assumes that, at each time,
each individual can be in one of three possible compart-
ments: susceptible (denoted by S), infected (I), or removed
(R). The susceptible units of the network are those healthy
persons that can develop the disease if they get in contact
with infected individuals. Once an individual contracts the
infection, it moves into the infected (and infective) compart-
ment, and then, after some time, into the removed compart-
ment, which indicates that the individual cannot catch the
disease anymore (or passes it on), due to a lasting resistance
conferred by the recovery (or because it dies).

Just as a viral pandemic proliferates inside a population
of individuals, a ransomware (or other malware) software
can spread within the global Internet. As technology is to-
day globally interconnected, a cyber virus can indeed prop-
agate from device to device, with devastating consequences.
Cyber attacks on infrastructure services are currently on the
rise, and hackers are exploiting the use of the Internet of
Things which creates millions of new vulnerability points
in all critical infrastructures. A specific risk is therefore the
occurrence of a cyber-epidemics (or cyber-pandemic), pro-
duced either accidentally or intentionally, and undermining
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Figure 1: The compartmental model for cyber-epidemics.
Units of the network can be in one of four possible states
before recovery: susceptible-unaware (Su), susceptible-aware
(Sa), infected-unaware (Iu), and infected aware (Ia). The re-
covery or healed status (Ha) is by nodes that, after getting
aware of the existence of the malware, applies a suitable oper-
ation on the system. Orange (blue) arrows stand for contact-
based (localized spontaneous) transitions.

the global Internet system up to the need of its lockdown.
TheWorld Economic Forum [12] predicted that a single day
without Internet would cost around 50 billion USD glob-
ally, without even considering the societal harm related to
the shutdown of essential services.

Since the first attempt to describe the spreading of com-
puter viruses [13], several other studies have tried to adapt
classical, global or networked, compartmental models with
the aim not only of investigating the propagation cycle of cy-
ber viruses but also to evaluate the effectiveness of possible
security countermeasures [14, 15, 16, 17, 18, 19, 20]. There
is, however, a fundamental difference between the spread-
ing of a biological virus within a population and a cyber-
epidemic. In the former case, indeed, each individual is pas-
sive actor of the game, contracting the disease and recov-
ering from it due to the action of its immune system. The
latter case can instead be seen as the struggle between two
kind of actors: the ones who intentionally program the mali-
cious code and try to seed it within the global Internet (that
we will call from here after as the “bad team”) and those
(that we will call from here after as the “good team”) who
are instead engaged in programming the corresponding an-
tivirus code after becoming aware of the presence of the new
malware in the network, and in spreading it to all network’s
users.

In this paper, we introduce a novel compartmentalmodel,
whose variables and parameters are entirely customized for
the case of a cyber-epidemic. We will then compare the
spreading of a malware on top of Erdős-Rényi (connected)
and scale-free network architectures for both the case inwhich
the virus is producing a fixed damage on each device and the
case where, instead, the virus is engineered to mutate while
replicating from device to device.

In our model, both the spreading of malware and aware-
ness occurs through waves developing and evolving within
the same graph structure (the global network of connected
devices). Notice that this differentiates our approach from
that of Ref. [21] which describes the dynamical interplay of a

virus and of an awareness level on top of multiplex networks.
In our case, instead, we consider two dimensional vectorial
compartments, the first component of which being the state
of the device with respect to the new malware’s propaga-
tion (S for susceptible, I for infected, and H for healed)
while the second component accounts for the awareness of
the device’s user about the presence of the new virus (“a” for
aware and “u” for unaware). Transition rates between such
vectorial compartments are then defined to properly model
the behavior of a cyber-epidemic from the moment at which
a new (i.e., yet unknown to the good team) virus is seeded
in the network by the bad team, up to the moment at which a
given user realizes that his/her device has suffered a damage
and consequently starts a wave of awareness which eventu-
ally ends up with reaching one of the units of the good team.
Then, the good team develops a proper antivirus software
that the aware units download from the net for healing their
devices.

In other words, the framework we adopt is somewhat
like a vectorial version of the SIR model, where each sus-
ceptible or infected node is also either aware or unaware of
the existence of the virus. This means that one has four
possible states before recovery: susceptible-unaware (Su),susceptible-aware (Sa), infected-unaware (Iu), and infected
aware (Ia), see Fig. 1. Finally, the recovery or healed status
(Ha) can be reached only by a node (a device) whose user,
after getting aware of the existence of the virus, applies a
suitable operation on the system, for instance installing an
antivirus.

The transition probabilities between such states are me-
diated by four fundamental parameters, whose meaning is
directly linked to specific processes occurring during a cy-
ber epidemic:

• � is the equivalent of the standard infection parameter
in the SIR model. Here, it accounts for the contact-
based transition rate from the susceptible to the in-
fected status. In the case of Sa individuals, a differentinfection rate is used (�′ = �∕10), due to the fact that
awareness makes individuals reluctant to be in con-
tact with infected sites/computers (for instance, email
phishing campaigns normally raise alarms in media,
making people more concerned about clicking on du-
bious links);

• � is the rate of spreading of awareness due to network
contacts, i.e., the parameter who rules the contact-based
transition from the unaware to the aware status;

• � accounts for the individual awareness parameter, i.e.,
the rate at which an infected unaware user actually no-
tices that his/her device has suffered a damage (larger
than a given threshold) due to having been infected by
a new cyber virus, and consequently turns to the in-
fected aware state and simultaneously starts signaling
the existence of a new virus circulating in the net;

•  is the recovery/healing parameter, i.e., the rate at
which an aware (either susceptible or infected) indi-
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Symbol Description Range Chosen value
� Infection rate [0,1] 0.0055
� (Contact-based) awareness parameter [0,1] 0.011
�0 (Spontaneous or local) awareness parameter [0,1] 0.011
 Recovery parameter [0,1] 0.03
�0 Fraction of population initially infected [0,1] 0.01

Table 1
Summary of the parameters involved in the model.
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Figure 2: The typical cycle of a cyber-epidemic. The total
number of Su, Sa, Iu, Ia and Ha units (see legend for color
code) vs. time, during a typical cyclic evolution of the virus.
Simulations refer to an ensemble average over 1000 realization
of an Erdős-Rényi random network with N = 1000 nodes, av-
erage degree ⟨k⟩ = 10, threshold � = 0.2 and constant damage
d = 0.3. See Table 1 for the values of the other parameters
used. It is possible to distinguish three different phases of the
cycle: an initial phase of no awareness where more and more
nodes pass from the Su to the Iu state; a second stage, the
awareness phase starting at around t ∼ 30, when a given Iu
node becomes Ia and ignites an awareness wave so that the
total number of both Ia and Sa grows by contact transitions;
a final healing stage where all nodes turn to the Ha state.

vidual gets healed by purging of the system via the
installation of a proper antivirus.

Two types of transitions may therefore occur in our model:
contact-based transitions and individual (or contact-indepen-
dent) ones. In individual transitions, the change of state is
fully independent of the states of the rest of the devices, but
is only due to the perception of the damage caused to the de-
vice (in the case of the passage from the state Iu to the state
Ia at rate �) and/or the user’s interest in using an antivirus
(in the case of the passage from any aware state to the state
Ha at rate ).In our simulations, we initially prepare the network with
all its units in the Su state. Then, a new malware is seeded
by the bad team, i.e., one node (or a small group of nodes) is
turned to the state Iu, and contact propagations start, yield-
ing an initial spreading of the virus. At a second time, i.e.,
when one of the infected users gets aware of the damage pro-
duced by the cyber virus in its device, a second wave (which

spreads awareness in the same network) starts due to an ini-
tial local transition from the state Iu to the state Ia. Eventu-ally, the entire cycle of the cyber-epidemic takes place, with
an end state of the network where all its units are in the Hastate [22].

In order to properlymonitor how damaging a cyber-epidemic
can be in a network of devices, we introduce as a further pa-
rameter the damage d ∈ [0, 1] caused when a device is in-
fected by the virus, and we quantify the total damage caused
to the system as the sum of the damages made to each single
device. Finally, as the � parameter is totally related to the
damage produced in a device, it is appropriate to define it
to be proportional to the d parameter. In addition, in order
to account for the fact that there may be situations where the
virus damage is not perceived at all by the user and the device
continues to function correctly even with high damage or, on
the opposite, cases (like, for instance, in high sensitivity in-
frastructures) where just a little damage constitutes an alarm
on the existence of the virus, the parameter � is activated
depending on whether it exceeds a threshold � ∈ [0, 1]. The
latter lead to the following expression with �0 ∈ [0, 1]:

� =

{

�0(d − �) if d ≥ �,
� = 0 if d < �.

As for the threshold �, the higher it is the more damage
individual systems can withstand before realizing the pres-
ence of the virus. If the threshold is at a low value (as, for
instance, in high security infrastructures or clusters) a dam-
age as small as the deletion of a couple of files in the sys-
tem is already sufficient to trigger an alarm. If, instead, the
threshold is high, then a few files missing would be taken as
an error, but a large system failure would actually be under-
stood as the consequence of a virus. Lower thresholds are
therefore always preferable for protecting an overall system
from damage, but in practice they are overcostly as they need
more investments in infrastructure protection and even more
employees to maintain it.

Fig. 2 reports the total number of Su, Sa, Iu, Ia and
Ha units vs. time during a typical cyclic evolution of the
virus, for an Erdős-Rényi random network of N = 1000
nodes, with average degree ⟨k⟩ = 10, � = 0.2, � = 0.0055,
� = 0.011, �0 = 0.011,  = 0.03 and �0 = 0.01 (being
�0 the fraction of population initially infected, which there-
fore means that the virus is initially seeded in 10 devices).
From the figure, one can clearly distinguish the three dif-
ferent stages of the cycle: an initial stage of no awareness
where more and more nodes are infected (passing from the
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Figure 3: Effects of network topology. D∕N vs. d, for different choices of networks (Barabási-Albert or Erdős-Rényi) of mean
degree 6, 10 and 14 (see legend at the bottom of the figure for color code) and different values of the threshold �: a) � = 0.2,
b) � = 0.4, and c) � = 0.6.

Su to the Iu state), the beginning of the awareness phase
(around t ∼ 30) when a given Iu node becomes Ia and startsan awareness wave so that the total number of both Ia and
Sa grows by contact transitions, and the final healing stage
where all nodes turn to theHa state.In order to quantify the total injury produced in the sys-
tem by the cyber virus during its cycle of evolution, we intro-
duce the quantity D∕N accounting for the normalized sum
of the individual damages suffered by each node. Its value is
obtained with multiplying d by the total number of infected
nodes during a cycle (regardless on whether they are in the
state Iu or Ia), and dividing by N . When d is below the
threshold � the presence of the cyber threat is never detected
and, as a consequence, the virus will propagate to all nodes
in the network yieldingD∕N = (N ⋅d)∕N = d. A non triv-
ial behavior is instead observed for all values d > �, where
the awareness mechanism is activated at a given time in the
cycle.

As a first step, we face the problem of assessing how
different topologies of the network react to a virus (causing
a constant damage d when infecting a device) at different
values of the threshold �.

With the aim of comparing homogeneous and heteroge-
neous topologies Fig. 3 illustrates the results of our simula-
tions, and reports D∕N vs. d for Barabási-Albert [23, 24]
scale free and Erdős-Rényi [25] random networks, at differ-
ent values of the mean degree ⟨k⟩ and different values of �.
A first, even though rather trivial, evidence is that the global
damage is higher for higher values of �, indicating that the
harder it is for nodes to become aware, the more free is the
cyber threat to propagate without countermeasures. More-
over, a noticeable difference is observed regarding the posi-
tion of the maximum damage that a virus can deal in a given
system, being it located at d = 1 for low thresholds and at
d = � for high thresholds. Finally, and more remarkably,
the results shown in Fig. 3 allow to conclude that Barabási-

Albert scale free (i.e., heterogenous) networks are more frag-
ile, and more sensitive to the spreading of viruses causing a
fixed damage than Erdős-Rényi (i.e., homogenous) ones, so
that a first conclusion is that engineering a network in a scale
free topology renders it more vulnerable to cyber-epidemics,
in line with what was already known about their structural
fragility against intentional attacks [26]. On the other hand,
it is seen that, regardless on the specific network topology,
the higher is the average degree the higher is the graph’s vul-
nerability. Already at this qualitative level, a first conclusion
can be drawn: if the threshold is high, inflicting maximal
injury to a system requires some tuning on the side of the
bad team (the virus designers), with the ideal value of the
damage to be caused at each single device being that of the
threshold. On the opposite, if the threshold is low, then a
high base damage virus is able to inflict a huge damage on
the network regardless on the specific threshold value.

We then move to consider the effects of a damage which
is variable in time, that is, d = d(t), where t is a discrete
time measuring the number of iterations in the model (a time
unit being the lapse from one to another iteration of the net-
works’ nodes). Namely, starting at d0 = 0.1, the damage is
increased in times as

d(t) =
d0e"t

1 + d0(e"t − 1)
, (1)

for some " > 0. Note that the function d(t) is the logis-
tic function with growth rate ", initial population d0 and
carrying capacity 1, so that it displays an exponential be-
havior (d(t) ≈ d0e"t) when t ≈ 0 and approaches 1 when
t → ∞. Choosing the logistic function as the damage func-
tion is ideal in the model, as the intentions of the bad team
is precisely that of spawning as much damage as possible
before the virus is detected by users.

Fig. 4 reportsD∕N vs. ", for both Erdős-Rényi (left col-
umn) and Barabási-Albert (right column) at different mean
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Figure 4: Effects of time varying damage. D∕N vs. " (see text
for definition), for different choices of networks (Erdős-Rényi
in the left column and Barabási-Albert in the right column) of
mean degree 6, 10 and 14 (see legend at the bottom of the
figure for color code) and different values of the threshold �:
a,b) � = 0.2, c,d) � = 0.6. In all panels the maximal injuries
achieved by a fixed strength virus (the global maximum of the
curves of Fig. 3) are reported with horizontal dashed lines.

degrees and different values of �. For comparison, in the
same figure the maximum possible injury caused to the sys-
tem by a fixed strength virus is reported by horizontal dashed
lines. One can easily see that, as a function of ", D∕N dis-
plays an initial monotonic growth and an asymptotic behav-
ior for " → 1, featuring a local maximum for some 0 <
"̄ < 1. Remarkably, one can notice that for low values of
the threshold, there is a range of " for which the amount
of injury inflicted to the system is actually higher than the
maximum at constant base damage. This implies that the
bad team has the option of causing a higher injury on a high
security system by just engineering the virus with an inter-
nal clock, which would progressively increase the damage
inflicted to infected devices. On the contrary, at high val-
ues of � (i.e., when security is not so demanding), viruses
whose base damage is given by Eq. (1) cause an overall in-
jury which is comparable with the maximal value at constant
damage strength.

Finally, we briefly describe the scenario in which the
virus is engineered to increase its base damage not due to
an internal clock, but due to a mutation that occurs all the
times the virus is transmitted from an infected device to a
susceptible one. This is tantamount to say that, when a de-
vice is infected at time t, the damage caused depends on the

D
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Figure 5: Mutating virus. D∕N vs. " (see text for definition),
for different choices of networks (Erdős-Rényi in the left col-
umn and Barabási-Albert in the right column) of mean degree
6, 10 and 14 (see legend at the bottom of the figure for color
code) and different values of the threshold �: a,b) � = 0.2,
c,d) � = 0.6. For comparison, in all panels we report also the
curves of Fig. 4 (with dashed lines) and the global maximum
of the curves of Fig. 3 (with horizontal dotted lines).

story of the specific strain of the infecting virus. In other
words, Eq. (1) is substituted by

d(ti) =
d0e"ti

1 + d0(e"ti − 1)
with d0 = 0.1,

where the discrete variable ti is now the number of times
that the infective strain propagated before reaching the ac-
tual device. Therefore, the damage caused is now explicitly
a function of the specific history of the strain propagation.
Moreover, for the Iu → Ia local transition, the parameter �
is determined by looking at the base damage received by the
device at the moment of its contagion.

The results are reported in Fig. 5, whereD∕N is plotted
vs. " for the case of a mutating virus. One can see that the
emerging qualitative scenario is similar to that of time vary-
ing viruses, in that one has an initial growth and an asymp-
totic behavior with a local maximum in between. Moreover,
we again observe that for low thresholds a range of " val-
ues exists for which the injury to the system is higher than
the case of a constant base damage whereas at high thresh-
olds a virus with fixed base damage is more harmful. The
comparison with Fig. 4, however, suggests that a virus with
increasing base damage over time always produces a larger
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injury to the system than mutating virus.
In conclusion, we have introduced a novel compartmen-

tal model able to describe the spreading of a malware (and
of the awareness of its incidence) on a given network of de-
vices. The novelty of our approach consists in having con-
sidered vectorial compartments made of two components,
the first being descriptive of the state of the device with re-
spect to the virus propagation, and the second accounting
for the awareness of the device’s user about the presence of
the cyber threat. The model allows to follow the evolution
of a cyber-epidemic from the moment at which a malware is
seeded in a network of devices, until when a given user gets
aware of the incurred damage and starts a wave of aware-
ness which eventually leads to the development of a proper
antivirus software. We then illustrate the overall injury that
a malware is able to produce in Erdős-Rényi and scale-free
architectures for both the case in which the virus is caus-
ing a fixed damage on each device and the case in which,
instead, the virus is engineered to mutate while replicating
from device to device. As our world is more and more in-
terconnected, a cyber-epidemic is a dangerous threat, where
a cyber virus would undermine the global Internet system
with catastrophic consequences. Our results are the attempt
to describe, in a customized way, the evolution of such pan-
demic, and our conclusionmay give hints on how to properly
engineer a network of devices to minimize its vulnerability.
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101625-B-I00 (SpanishMinistry, AEI/FEDER,UE) andM1993
(URJC Grant). Authors acknowledge the usage of the re-
sources, technical expertise and assistance provided by the
supercomputing facility CRESCOof ENEA in Portici (Italy).
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