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Abstract. The chameleon model is a scalar field theory with a screening mechanism that
explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-
system searches for fifth-forces. The chameleon is a popular dark energy candidate and
also arises in f(R) theories of gravity. Whilst the chameleon is designed to avoid historical
searches for fifth-forces it is not unobservable and much effort has gone into identifying the
best observables and experiments to detect it. These results are not always presented for the
same models or in the same language, a particular problem when comparing astrophysical
and laboratory searches making it difficult to understand what regions of parameter space
remain. Here we present combined constraints on the chameleon model from astrophysical
and laboratory searches for the first time and identify the remaining windows of parameter
space. We discuss the implications for cosmological chameleon searches and future small-scale
probes.
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1 Introduction

The expansion of the universe is currently accelerating. The parsimonious explanation for
this, that a cosmological constant should be included in Einstein’s equations combined with
quantum mechanical calculation of its value, spectacularly fails to predict a universe in which
we could live. Predictions for the value of the cosmological constant are typically so large
that galaxies would not even be able to form. No conclusive solution to the cosmological
constant problem exists but a common side effect of current attempts at a solution is the
introduction of new light scalar degrees of freedom. These light scalars in turn cause their
own problems as they will mediate a new long-range fifth-force which is not observed to a
high degree of precision in solar system or laboratory searches. As the cosmological constant
problem is the result of the vacuum fluctuations of standard model particles, it is expected
that couplings between such a scalar and matter are unavoidable.

These scalars are known as dark energy, and their existence can be reconciled with the
lack of observation of a fifth-force through the use of screening mechanisms which allow the
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scalar to vary its properties with the local environment. The archetypal example of this is the
chameleon mechanism, which allows the mass of the scalar to increase in dense environments
(this is analogous to how the Debye mass of a photon in a plasma increases with the charge
density). The low density of intergalactic space means that the chameleon can have a light
mass and mediates a long-range force on cosmological scales but has a high mass inside the
test masses used to search for fifth-forces, suppressing its effects there.

A wide range of experiments are either currently searching for the chameleon, or will
do in the near future; ranging from table top laboratory experiments using cold atoms to
satellite missions aiming to map the formation and evolution of structure in our universe.
These experiments all exploit the fact that the chameleon varies its mass depending on
the environment so a suitably designed experiment or tailored astrophysical observable has
the potential to be able to detect its presence. To date, the various communities studying
the chameleon have used a variety of different notations meaning that constraints are not
easy to compare and we are currently unable to identify the best strategy for detecting or
excluding the most popular current model of dark energy. Here, we address this lack by
providing combined constraints on the chameleon from both laboratory measurements and
astrophysics. As a result, we are able to identify the remaining areas of parameter space and
the experiments with the best prospects for covering the remaining space. The results we
combine here have all previously been published. The novel contribution of this article is the
combination of constraints that we present in Figure 3, and the extension of some existing
constraints to a broader range of chameleon models. We do not report every experiment that
has ever placed constraints on the chameleon model, focusing instead on the current state
of the field so that we can present the most up to date exclusion plots for the chameleon.
We hope that this will prove useful to future attempts to search for the chameleon and allow
such experiments to be targeted at the most viable models.

2 Chameleon Dark Energy

The chameleon is a model of a canonical scalar field sourced by both matter and a non-trivial
scalar potential [1, 2]. We will start from the equation of motion for the chameleon scalar φ

�φ =
dV (φ)

dφ
+

ρ

M
, (2.1)

where ρ is the density of non-relativistic matter and M is a new mass scale characterising the
strength of the coupling to matter. In appendix A we provide a complete covariant theory
for the theoretically inclined reader and derive some useful results but all we will require for
our purposes is the scalar force

~Fφ =
~∇φ

M
. (2.2)

We start by considering what happens if the scalar is not a chameleon and has no ability
to vary its mass. If we were to choose a simple mass term for the potential V (φ) = (1/2)m2

0φ
2

we would have a standard Yukawa scalar and the ratio of the scalar to gravitational forces
around a massive spherical test mass is

F5

FN

= 2

(

Mpl
2

M

)

e−m0R. (2.3)
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Yukawa modifications of the inverse-square law are tightly constrained by laboratory fifth-
force searches and Lunar Laser Ranging (see e.g. [3–6]) and one typically needs to tune
m0 ≫ H0, in which case the scalar has little to nothing to say about dark energy, or to tune
M ≫ Mpl, in which case interactions between the scalar and matter would be extremely
difficult to observe. Choosing M ≫ Mpl is also unsatisfactory because in order to trust a
theory with such a high coupling constant it would be necessary to have knowledge of physics
above the Planck scale.

The scalar field in the analysis above is tightly constrained precisely because the equation
of motion is linear: the mass of the field in the solar system is identical to the cosmological
mass. Chameleon models circumvent this by choosing a non-linear potential [2]. We can
consider the dynamics of the scalar field as being governed by an effective potential

Veff(φ) = V (φ) +
φρ

M
. (2.4)

Any choice of V (φ) that results in a minimum for the effective potential where the mass of
small fluctuations about this minimum increases with ρ is a valid choice for the chameleon
potential. Specifically, this condition forbids us from choosing V (φ) ∝ φ2 or V (φ) ∝ φ.
The most common choice is to assume that the potential has an inverse power law form;
specifically

V (φ) = Λ̃4 +
Λ4+n

φn
. (2.5)

This potential has a density-dependent minimum given by

φmin(ρ) =

(

nMΛ4+n

ρ

)

1

n+1

(2.6)

and the mass of fluctuations around this minimum is

m2
eff(ρ) = Veff φφ = n(n+ 1)Λ4+n

[ ρ

nMΛ4+n

]
n+2

n+1

(2.7)

so the mass is an increasing function of the density provided that either n > 0, −1 < n < 0 or
n is an even negative integer i.e. n = −4,−6,−8, . . .. The case n = 0 is simply a cosmological
constant, the case n = −1,−2 does not allow the mass to vary with the density, and there is
no minimum when n = −3,−5,−7, . . ..

The effective potential for positive and negative powers are shown in figure 1 where one
can clearly see that the curvature near the minimum is larger in high-density environments.
The density-dependence allows for models where the scalar is light on cosmological scales so
that it can drive dark energy but heavy in the solar system so that solar system tests are
avoided. It is this blending in with the environment that has inspired the name chameleon.

The varying mass allows the chameleon to avoid searches for fifth-forces through the so
called “thin-shell” effect shown in figure 2. Consider a static, spherically symmetric source
placed into some larger homogeneous background with density ρ0 and field φ0, which could be
the value that minimises the potential in the background, or could be set by the geometry of
the experiment. Deep inside the object, the field dynamics drive it towards the high-density
minimum. Moving radially outward, the large mass ensures that the field will be frozen at
this minimum. At large distances from the object, the field tends towards φ0 and so one
expects that there is some radius, the screening radius rs, at which the field gets pulled out
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Φ

VHΦL

n > 0, low density

Φ

VHΦL

n > 0, high density

ϕ

V(ϕ)

n < 0, low density

ϕ

V(ϕ)

n < 0, high density

Figure 1. Sketch of the chameleon effective potential, for positive n (upper panels) and negative
n (lower panels). Potentials are shown for low density environments (left panels) and high density
environments (right panels). The blue line indicates the bare potential, the red line the contribution
from the coupling to matter, and the black dashed line the sum of the two contributions.

Figure 2. The thin shell mechanism. The non-linear potential (2.5) ensures that the mass inside the
screening radius, rs does not source the field. The fifth-force is only sourced by the mass inside the
light green thin shell indicated with by the arrow. In contrast, the Newtonian force is sourced by the
entire mass of the object and so the fifth-force is highly suppressed in comparison.

of the minimum of the effective potential inside the source and starts to evolve towards the
background value φ0. This results in the following form for the scalar field outside the object
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[2, 7–11]

φ′

M
≈ 2

(

Mpl

M

)2 G (Mobj −Mobj(rs))

r2
e−m0(r−R), (2.8)

where M(rs) is the mass enclosed within the screening radius and Mobj is the object’s total
mass. We give an expression for the screening radius in the general case in equation (3.3) and
in the simplest case, where the source has constant density in Equation (3.4). The freezing
of the field inside the object has the result that the exterior profile is sourced only by the
mass outside the screening radius. When rs = 0 the field is sourced by the entire object and
we are left with the situation described above where the theory describes a simple Yukawa
interaction. This is the unscreened case that requires fine-tuning to satisfy solar system
bounds. Conversely, when rs ≈ R the field is sourced only by a very thin shell near the
surface. The ratio of the fifth- to Newtonian-force is

F5

FN

= 2

(

Mpl

M

)2(

1− Mobj(rs)

Mobj

)

e−m0(r−R) (2.9)

and we see how screening naturally suppresses the chameleon fifth-force without the need
to tune M or m0. The force profile highlights an important property of chameleon theories:
they violate the equivalence principle.1 Since the force depends on the mass enclosed within
the screening radius, the acceleration of an extended object depends not only on its total
mass but on its composition, which sets the value of rs (see section 4.1 below). For this
reason, objects with identical masses but different internal structures fall at different rates
in the presence of external fields, signifying a breakdown of the equivalence principle (see [7]
for an expanded discussion on this).

One can see from equation (2.9) that whether or not an object screens depends on
whether the field can reach the minimum inside an object, or, equivalently and perhaps more
intuitively, the existence and location of the screening radius. We will refer to screening
that occurs in this way as self-screening. In addition, due to the non-linear nature of the
equations, the field profile for two nearby objects is not simply a superposition of the profiles
for the individual bodies and this can lead to the environmental screening of smaller objects
by larger ones. We refer to this as environmental screening, and it will have important
implications for experimental tests of chameleons, which we will discuss further below.

Unfortunately, any model that successfully screens in the solar system cannot have a
cosmological mass that is light enough to drive the cosmic expansion [12, 13]. Indeed, big bang
nucleosynthesis constraints on the variation of standard model particle masses require the
cosmological field to track its (time-dependent) minimum [14] and, at the level of background
cosmology, the dominant term in equation (2.5) is the cosmological constant. For this reason,
special attention is often paid to the particular choice Λ = 2.3×10−3 eV i.e. the dark energy
scale. Indeed, many of the experiments discussed below make this choice from the outset.
Whilst we focus our attention around this scale, we do not restrict ourselves to precisely this
value, as the mechanism which solves the cosmological constant problem is as yet unknown,
and until we know how the chameleon is related to such a solution we should allow for some
variation between the cosmological constant scale and the scale controlling chameleon self
interactions. In light of this, chameleon models should be viewed as alternatives to ΛCDM
that predict an identical background expansion but exhibit novel effects and make differing
predictions on smaller scales.

1This is an emergent property of solutions of the theory. There is no violation of the equivalence principle
at the level of the Lagrangian.
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Two important specific cases are the case n = 1 due to it being the simplest and most
well-studied model, and n = −4, where the self-interaction mass-scale Λ is absent and the
potential is given by

V (φ) = λφ4, (2.10)

which is re-normalisable. In this case, λ ∼ O(1) is seen as being natural since smaller values
are fine-tuned and larger ones are strongly coupled. Regardless of the choice of bare potential,
the full chameleon theory will never be renormalisable because the coupling between the scalar
and matter fields necessarily introduces higher order operators. Therefore, the chameleon
should be thought of only as a low energy effective theory valid below some cut-off and not
as a fundamental description of the universe. Regions of parameter space where Coleman-
Weinberg type quantum corrections to the chameleon mass could be kept under control in
fifth-force experiments were identified in [15]. Lack of control over high energy quantum
corrections to the theory has also been shown to mean that it is not currently possible
to consistently evolve the chameleon theory through the radiation dominated epoch of the
universe [16, 17]2.

The chameleon also arises in f(R) theories of modified gravity where the Einstein-
Hilbert action is replaced by one of the form

S =

∫

d4x
√−g

R+ f(R)

16πG
. (2.11)

It can be shown that these are equivalent to a theory of standard Einstein Hilbert gravity plus
a scalar field which couples to matter with strength M =

√
6Mpl [19]. Therefore, the only

viable models of f(R) gravity must screen their fifth-forces using the chameleon mechanism
[19]. The quintessential paradigm for f(R) chameleons is the model of [20]

f(R) = −a
µ2

1 + (R/µ2)−b
, (2.12)

with b ≥ 1. When written as a scalar-tensor theory, this is equivalent to a model with
n = −b/(1 + b) [21]. One can then see that Hu-Sawicki f(R) models cover the narrow range
of parameter space −1 < n < −1/2. In particular, the most commonly studied models b = 1
and b = 3 correspond to n = −1/2 and n = −3/4 respectively. Other models, such as
the designer model [22–26], can span different ranges in n. This review focuses on general
chameleon models and so we will not include any constraints that apply strictly to f(R)
models, although we will indicate interesting models on our final results. We refer the reader
to [27] for a comprehensive review of f(R) chameleons.

3 Screening

In this section we describe the behaviour of the chameleon in both astrophysical and labora-
tory settings.

3.1 Astrophysical Screening

Most astrophysical objects of interest are well approximated by spheres. When this is the
case3, the screening and force profile are captured by the fifth-force strength α and the

2Although see [18] for a potential UV extension that can evade quantum corrections.
3The more general elliptical case has been studied by [28], who find that the screening is weakened by high

ellipticity.
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self-screening parameter given by

α = 2

(

Mpl

M

)2

and (3.1)

χ =
φmin(ρ0)M

2Mpl
2 =

1

2

(

M

Mpl
2

)
n+2

n+1
(

nΛ4+n

3Ωm,0H2
0

)

1

n+1

, (3.2)

where we have substituted ρ0 = 3Ωm0Mpl
2H2

0 into equation (2.6). α parametrises the
strength of the fifth-force and one has F5/FN = α if the object is fully unscreened; α = 1/3
in f(R) models. χ determines how efficient an object is at screening itself4. In particular, χ
determines the screening radius rs via the implicit relation

χ = 4πG

∫ R

rs

rρ(r) dr. (3.3)

Consider a theory with χ = 0 so that rs = R. Increasing χ requires one to decrease rs (i.e.
integrate further into the object) to satisfy this relation and therefore more of the object is
unscreened. Theories with large χ therefore have a smaller screening radius and are hence
more unscreened. If χ is so large that there is no solution then rs = 0 and the object is fully
unscreened. One can show that this happens when χ > GM/Rc2 = ΦN, where ΦN is the
surface Newtonian potential [7, 9–11]. A good rule of thumb is then that objects are screened
when χ < ΦN.

One can see then that unscreened objects are those with low Newtonian potentials,
which gives us a classification scheme for the level of self-screening. In particular, table 1
shows the Newtonian potential of commonly used astrophysical probes of chameleon models.
Both the Sun and the Milky Way (being a spiral galaxy) have potentials of order 10−6 and
so χ is constrained to lie below this value from the outset by the requirement that they are
self-screening 5.

Object ΦN

Main-sequence star 10−6

Post-main-sequence star (1–10M⊙) 10−7–10−8

Spiral Galaxy 10−6

Dwarf Galaxy 10−8

Table 1. The Newtonian potential of useful astrophysical objects.

Dwarf galaxies have low Newtonian potentials due to their slow rotation6, which makes
them perfect laboratories for testing chameleon theories. This has motivated [29] to compile
a screening map of nearby galaxies in the SDSS survey that gives the screening status of

4the f(R) literature often uses fR0 = 2/3χ instead of χ.
5In principle, one can relax this assumption by requiring the screening to be due to the local group instead.

This is difficult to calculate and we will see shortly that astrophysical tests place constraints that are stronger
than the requirement for self-screening and so we will assume self-screening from the outset.

6Recall from the virial theorem that GM/r ∼ v2. Dwarf galaxies have rotational velocities of order 50
km/s.
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each galaxy as a function of χ accounting for environmental screening. Several tests using
dwarf galaxies have been proposed [30] and we discuss these below. It is worth noting that
there are no objects in the Universe with ΦN < 10−8 that do not reside in screened galaxies.
For this reason, there is a limit on the constraining power of astrophysical tests and models
where χ < 10−8 must be tested using other means.

3.2 Laboratory Screening

The precision laboratory measurements we consider here are performed in high vacuum. If
the walls of the vacuum chamber are sufficiently thick, then the chameleon field can reach the
minimum of the effective potential inside the wall, and the mass of the field increases. This
means that the chameleon field in the interior of the vacuum chamber is effectively decoupled
from its behaviour in the exterior and, in particular, is not affected by any environmental
screening due to the Earth or Solar System. In this case, the equations governing the evolution
of the field in the interior can be solved without any reference to the exterior solution. This
condition is satisfied when the walls are thicker than ∼ 1/meff(ρwall). This also ensures
that any chameleon signals propagating from the exterior towards the interior of the vacuum
chamber are exponentially damped by the walls.

If the vacuum chamber is large enough the chameleon field will take the value that
minimises its effective potential in the centre. In smaller chambers the field does not have
enough space to evolve from the field value that minimises the potential in the walls to that
which minimises the potential in vacuum [2]. In this case the background value of the field
φ0 is set by the geometry of the vacuum chamber and the field takes a background value to
ensure that its Compton wavelength is approximately the size of the chamber. For spherical
vacuum chambers, this value can be calculated analytically [31, 32] but in more complicated
scenarios it must be done numerically [33, 34].

Once the background field value has been determined, the screening of sources can
be computed. Most sources used in laboratory experiments can be modeled to a good ap-
proximation as having constant density. In this case the expression for the screening radius
simplifies and becomes

1− r2s
R2

=

(

M

Mpl

)2 8πMpl
2R

Mobj

(

φ0 − φmin(ρobj)

M

)

(3.4)

The right hand side of Equation (3.4) is the ratio of the chameleon to Newtonian potentials
surrounding the source, multiplied by the square of the ratio of the chameleon and gravita-
tional coupling strengths. It has been demonstrated that, at least in parts of the chameleon
parameter space, neutrons, atoms, and silica microspheres are unscreened, meaning that
there is no real solution to Equation (3.4) for these objects [31, 35].

There is an additional level of complexity when considering atomic and sub atomic
particles, as measurements are performed with quantum states. However whilst the position
of the particle may be uncertain, the particle or nucleus still has a well defined size as
experiments are performed at low energies that do not disrupt the quantum chromodynamics
binding the nucleons together. A trapped quantum particle will remain in a region of size
Rtrap for a time of order Rtrap/v, where v is the deterministic velocity of the particle. The
chameleon can respond to fluctuations in the position of the particle on a time scale set
by 1/meff(φ0). When this is smaller than Rtrap/v, the chameleon can track the quantum
fluctuations of the particle and whether the particle is screened should be determined from
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the size and mass of the nucleus or neutron. This is the case for all experiments that we
consider here [31].

4 Experimental Tests of the Chameleon

In this section we review various tests of chameleon dark energy models; we will combine
them into one single set of constraints in section 5.

4.1 Astrophysical Tests

As remarked above, astrophysical tests typically focus on objects inside dwarf galaxies. Tests
using other objects such as binary pulsars [36] and extra-solar planets [37] are superseded.

4.1.1 Cepheid Tests

Cepheid variable stars with masses between 4 and 10M⊙ pulsate with a known period-
luminosity relation and can hence be used as standard candles to measure the distance to
other galaxies. The period scales as Π ∼

√

R3/GM and is hence sensitive to the theory
of gravity. In particular, unscreened Cepheids pulsate with a shorter period leading one to
underestimate the distance by a factor [38]

∆d

d
≈ −0.3

∆G

G
. (4.1)

Another independent method to estimate the distance is to use the tip of the Red Giant
branch (TRGB) [39]. Post-main-sequence stars with masses 1M⊙

<
∼ M <

∼ 2M⊙ do not
exhibit instabilities but instead ascend the Red Giant branch burning hydrogen in a thin
shell around their core. As this happens, the core temperature rises steadily until helium
burning can proceed efficiently. This signals the onset of the so-called helium flash where the
star rapidly moves onto the asymptotic giant branch (AGB) leaving a visible discontinuity
in the I-band. This discontinuity occurs at fixed luminosity and is largely insensitive to the
metallicity, making the TRGB a standard candle. Since the helium flash is set by nuclear
and not gravitational physics this distance estimate is insensitive to chameleons.

[38] have used a sample of 25 galaxies from the screening map of [29] to compare Cepheid
and TRGB distance estimates to screened and unscreened samples of galaxies. Both samples
are consistent with each other and the resulting χ2-fit to both GR and chameleon models
places stringent bounds in the α–χ plane, which we translate into our n–Λ–M parameteri-
sation using eqs. (3.1) and (3.2) in the next section.

4.1.2 Rotation Curve Tests

As mentioned above (and elaborated on in appendix A), chameleon theories do not satisfy the
equivalence principle; screened objects do not respond to chameleon fields whereas unscreened
objects do. When χ < 10−6 main-sequence stars in circular orbits around the galactic centre
are screened and do not fell the fifth-force. In contrast, diffuse gas with a lower Newtonian
potential is fully unscreened and feels the fifth-force in full. For completely unscreened
galaxies where F5 = αFN the circular velocity law v2 = FN + F5 implies that the circular
velocity of the stars is larger than that of the gas by a factor

vgas
v⋆

=
√
1 + α. (4.2)
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An offset between the gaseous and stellar rotation curves then constitutes a novel test of
chameleons.

Unfortunately, the galactic rotation curves are typically measured using Hα or the 21
cm line, which both probe the gaseous component. The screening map of [29] contained six
unscreened low surface brightness galaxies for which information about the the Mgb triplet
line was also available. This line is due to absorption in stellar atmospheres and hence allows
the stellar rotation curve to be reconstructed. [40] reconstructed the rotation curves for both
components using this information and were able to place bounds in the α–χ plane by looking
at the confidence with which they could reject the predicted difference based on the observed
difference on a galaxy-by-galaxy basis.

4.1.3 Galaxy Cluster Tests

The mass of galaxy clusters can be inferred using two independent methods. Hot, non-
relativistic gas in the intra-cluster medium is in hydrostatic equilibrium and one can define
a hydrostatic mass via

dP

dr
= −GMhydro(r)ρ

r2
. (4.3)

In GR Mhydro is the same as the cluster’s mass M (defined as the integral of the baryonic
density) but in chameleon theories there is an additional contribution from the scalar force,
which appears a correction to the hydrostatic mass. The pressure distribution is related to
the X-ray surface brightness of the cluster, which allows the hydrostatic mass to be calculated
from X-ray observations.

A second, independent mass measurement can be made using weak lensing. As explained
in appendix A, the lensing of light by massive objects is insensitive to chameleon gravity
and therefore the mass inferred from weak lensing is identical to the true mass in both
chameleon theories and GR [41]. Chameleon theories can therefore be probed by measuring
and comparing the hydrostatic and lensing mass. [42] have performed such a test for the
Coma cluster and, recently, [43] have applied the same technique to a sample of 58 clusters
using X-ray data from the XMM Cluster Survey and lensing data from CFHTLenS to find
new constraints.

4.2 Fifth-force Searches

Fifth-force searches look for new non-gravitational interactions by directly measuring the
total force between different objects. Vacuum chambers are typically used to reduce noise
and the geometry of the experiments is chosen to minimise the Newtonian force. In many
cases the experiments probe length-scales below the dark energy scale of ∼ 90µm.

4.2.1 Torsion Balance Experiments

Torsion balance experiments probe the inverse-square law and are therefore excellent probes
of massive scalars and chameleons due to their Yukawa-like force laws (see equation (2.9)). In
particular, the Eöt-Wash experiment [3, 5, 44] has been used to probe fifth-forces on sub-mm
scales. The experiment consists of a torsion pendulum in the form of a freely rotating circular
disk suspended above a second disk that acts as an attractor. Both disks have holes drilled
into them that act as missing masses producing dipole and higher-order multipole moments.
These cause a torque on the pendulum when the holes are misaligned. The attractor is
rotated at a uniform angular velocity chosen such that there is no torque on the pendulum
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if the force is exactly inverse-square. Conversely, deviations from this form predict large
torques, the absence of which can be used to constrain the model parameters.

Both the pendulum and the attractor are coated in gold to reduce electrostatic effects
and a beryllium-copper membrane is placed between the pendulum and the attractor for the
same purpose. These have little effects for linear modifications of gravity such as Yukawa
interactions but cause considerable complications when one wants to make theoretical predic-
tions for non-linear chameleon models. In particular, the gold coatings and BeCu membrane
may either have a thin shell or not depending on the model parameters. Furthermore, the
non-linear nature of the field equations makes the computation of the field profile difficult for
non-symmetric systems such as the Eöt-Wash configuration. This has led to an intense effort
towards making ever-increasingly precise approximations for the chameleon torque [19, 44–
48]. The most stringent constraints have been found using the so-called “one-dimensional
plane-parallel approximation [48], which attempts to include the effects of the missing masses
on the field profile.

4.2.2 Casimir Force Tests

Quantum electrodynamics predicts a force between two conducting plates due to the exchange
of virtual photons that has been measured to incredibly high precision [49, 50]. The Casimir
force per unit area between two parallel plates is proportional to d−4 where d is the plate
separation. When the plates have thin shells, the chameleon force per unit area scales as
[46, 51, 52]

Fφ

A
∼ d−

2n
n+2 , (4.4)

which always scales with a power ≥ −4 with equality when n = −4. Thus, the chameleon
force dominates at large separations and can be probed by the agreement of the measured
force with the predicted one. In practice, parallel plates are inconvenient for measurements
since they are difficult to keep parallel to the required precision and very smooth plates are
required. Instead, the most precise experiments measure the force between a plate and a
sphere whose radius of curvature is large compared with the minimum separation. In this
case, the total Casimir force is proportional to d−3 while the chameleon force scales as

Fφ ∼ d
2−n
n+2 , (4.5)

which again always scales with a power ≥ −3 and hence the same principles apply.
Current Casimir force searches [53] place strong bounds on n = −4 and n = −6 models

when Λ is dark energy-scale [51] but are not competitive with other probes when n > 0.
Planned future experiments [54, 55] that propose to use larger separations will place more
stringent constraints. Finally, the non-linear nature of the chameleon allows for more targeted
experiments. For example, by holding the plates still and varying the pressure of the ambient
gas the chameleon could be probed by looking for the characteristic change of force with gas
density [56, 57].

4.2.3 Levitated Microspheres

Optically levitated dielectric spheres with radii ∼ O(µm) can be used to probe forces
<
∼ O(10−8N) [58]. Microspheres can be unscreened when Λ >

∼ 4.6 meV and recently [35]
have used this to constrain chameleon forces. The radiation pressure of a single upward-
pointing laser beam trap acts to counter the Earth’s gravity so that any additional forces
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dominate. These are measured using a cantilever and in the case of chameleons are given by

F = λ
( ρ

M

)

∫

d3~x
∂φ

∂z
, (4.6)

where the integral is performed over the volume of the sphere (the density ρ is constant) and
z is the vertical direction. The scalar charge λ is unity when the sphere is unscreened, which
is the case for M <

∼ 1010 TeV, but at larger M screening reduces this so that λ < 1, limiting
the sensitivity. Currently, only constraints on n = 1 theories have been reported [35].

4.3 Atom Interferometry

Atom interferometry is a technique used to measure forces on individual atoms. This is
beneficial for the chameleon because over a wide range of the chameleon parameter space
atoms are unscreened in a laboratory vacuum. The experiment can be thought of as a
cross between a classical Michaelson-Morley interferometer and the double slit experiment of
quantum mechanics. An atom is put into a superposition of states which travel along different
paths, these are the two arms of the interferometer. The two paths are then recombined and
a measurement is made. The atoms are moved around in the interferometer by shining laser
beams at them; if the atom absorbs a photon, exciting an electron to a higher energy state,
then the atom also absorbs the photon’s momentum and thus acquires some linear motion.
If no observation is made at this point the atom is in a superposition of the ground state
where the atom is stationary and an excited state where the atom is moving. By repeating
this process it is possible to put the atom into a superposition of states that travel along the
two arms of the interferometer. When the two paths are recombined the probability that the
atom is observed to be in its excited state is

P ∝ 2 cos

[

aT 2k

~

]

(4.7)

where a is the acceleration (assumed constant) experienced by the atoms, k is the momentum
of the photons and 2T is the duration of the experiment.

If a massive source is placed inside the vacuum chamber then the atoms experience an
acceleration towards due to the chameleon force [31, 59]. It has recently been possible to
constrain this acceleration using atom interferometry down to a precision of 10−6g, where g
is the acceleration due to free fall at the surface of the Earth [33, 60]. It is expected that
sensitivities of 10−9g could be reached in the near future.

4.4 Precision Atomic tests

The chameleon mediates an attractive fifth-force between the nuclei of atoms and their elec-
trons. This will perturb the motion of the electrons from the motion that would be calculated
using only the Coulomb potential. As described above, the walls of a vacuum chamber screen
the interior of the chamber from any chameleon effects in the exterior, and therefore strongly
coupled chameleons could produce observable shifts in the energy levels of atomic nuclei [61].

The Hamiltonian describing the electrons orbiting an hydrogenic atom is perturbed by
a term

δH =
me

M
φnuc (4.8)

where me is the mass of the electron, and φnuc is the chameleon field profile sourced by the
atomic nucleus. Assuming that the nucleus is sufficiently light to be unscreened inside the
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vacuum chamber, the 1s, 2s, and 2p energy levels are perturbed by

δE1s =− ZmNme

4πM2a0
(4.9)

δE2s = δE2p =− ZmNme

16πM2a0
(4.10)

where Ze is the nuclear charge, mN the mass of a nucleon and a0 the Bohr radius. If a
coupling of the chameleon to photons is introduced the degeneracy between the 2s and 2p
energy levels will be broken.

The best current measurement for constraining the chameleon is that of the 1s-2s tran-
sition for a hydrogen atom. This measurement has a total uncertainty of 10−9 eV at 1σ
[62–64], and agrees with the prediction of the standard Coulombic calculation. This there-
fore constrains the perturbation due to the chameleon to be smaller than 10−9eV which
implies

M & 10 TeV. (4.11)

4.5 Precision Neutron Constraints

Being electrically neutral, neutrons provide a new window into low-energy particle physics
and short-range gravitational physics precisely because they are free from the electromagnetic
backgrounds, van der Waals interactions, and Casimir-Polder forces that act as a source
of uncertainty for charged particle experiments. Several different experiments using slow
neutrons have placed competitive constraints on the coupling M [32], which we summarise
below. The constraints were found assuming that Λ = 2.4 × 10−3 eV (i.e. the dark energy
scale) in all cases.

4.5.1 Ultra Cold Neutrons

Ultra cold neutrons bouncing above a mirror interact with the gravitational potential of the
Earth leading to a quantised energy spectrum. The presence of a chameleon field sourced by
the mirror φ(z), where z is the distance above the mirror, introduces a perturbation to the
Hamiltonian [65, 66]

δH =
mN

M
φ(z) =

2.2keV2

M

(

z

82µm

)
2

2+n

, (4.12)

where mN is the neutron mass. If this were too large, new bound states not seen by the
Grenoble experiments [67] would exist, which places the new bound [65]

M > 104 TeV. (4.13)

Furthermore, the Hamiltonian perturbs the energy levels, which can be measured using res-
onance spectroscopy of the |3〉 → |1〉 transition [68] to find the stronger bound

M > 1.7× 106 TeV. (4.14)

4.5.2 Neutron Interferometry

Neutron interferometry measures the quantum properties of neutrons by splitting a monochro-
matic beam into two coherent beams using a mono-silicone crystal plate. The beam is later
recombined using similar plates to produce an interference pattern whose phase shift can be
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extracted [32]. If one of the beams traverses a vacuum chamber with walls located at x = ±R
an additional phase shift

δϕ =

√
2m2

NKn(0)

~2kM

(√
2RΛ

Jn(0)

)
n+4

n+2

, (4.15)

where Jn andKn are Bessel functions of the first and second kind, arises due to the chameleon
field between the plates [32, 69]. This experiment has been performed by [70, 71] who report
the bounds listed in table 2.

Model Reference [70] Reference [71]

n = 1 M > 5.3× 107 TeV M > 2.1× 108 TeV

n = 2 M > 1.7× 107 TeV M > 1.2× 108 TeV

n = 3 M > 5.0× 106 TeV M > 7.9× 107 TeV

n = 4 M > 2.1× 106 TeV M > 5.6× 107 TeV

n = 5 - M > 4.9× 107 TeV

n = 6 - M > 4.2× 107 TeV

Table 2. The bounds on M coming from neutron interferometry experiments [70].

4.6 Coupling to Photons

We briefly mention a class of searches for chameleon fields that are orthogonal to those we
consider here. These rely on introducing a coupling between the chameleon and photons,
making the chameleon an axion-like particle. Such a coupling is not present in the simplest
chameleon models because the photon has a traceless energy-momentum tensor but it is
not forbidden and can be introduced into the model by hand or by integrating out charged,
massive fields [72, 73]. Searches for such fields are closely related to searches for axion-like
particles, relying on the Primakov effect to convert photons into chameleons (and vice versa)
in the presence of a magnetic field.

Terrestrial searches have been performed by Gammev-ChASe [74], ADMX [75], and
CAST [76], and astrophysical observations of the polarization and luminosity of light from
stars [77] and active galactic nuclei [78, 79] have all been used to constrain the strength of the
chameleon–photon coupling. The chameleon mechanism means that such fields avoid many
constraints on axion-like particles that are derived from dense environments, however the
coupling to photons is not an intrinsic part of the chameleon mechanism, and constraining it
does not tell us how the field changes its mass with the environment. Therefore we restrict
our attention to the necessary couplings to massive fields in this work.

– 14 –



5 Combined Constraints

We have collated the most stringent results from the various probes described in section 4
and have translated them into the common paramterisation given by {n,M,Λ} or, in the
case n = −4, {λ,M}. We list the constraints we use and their associated references in table
3. In many cases, the constraints apply only for specific values of n, Λ, or λ. In figure 3 we
show constraints for the n = 1 and n = −4 models, which are the most commonly studied,
and constraints in the n–M plane for positive and negative n separately with Λ fixed to the
dark energy scale. If Λ0 = 2.4 × 10−3 eV is the dark energy scale then comparing with the
case of arbitrary n 6= −4 one has λ = (Λ/Λ0)

4 and so the range of λ covers the same range
of Λ plotted above when n = 1. Furthermore, the reader should recall that n = −1 and
n = −2 models are not chameleons. Similarly, only negative even integers and those where
−1 < n < 0 exhibit the mechanism and so the constraints in these plots should be interpreted
as being valid for these specific values of n only.

Experiment Reference

Cepheids [38]

Rotation Curves [40]

Cluster Lensing [43]

Eöt-Wash [48]

Casimir Force Tests [51]

Microspheres [35]

Atom Interferometry [60]

Precision Atomic Tests [61]

Neutron Bouncing [68]

Neutron Interferometry [70, 71]

Table 3. The constraints used in this section.

– 15 –



Figure 3. Combined constraints on chameleon models for n = 1 (top left panel), n = −4 (top right
panel), and general n with Λ fixed to the dark energy scale, 2.4 meV (positive n in bottom left panel
and negative n in bottom right panel). The excluded regions from different experiments are labelled
accordingly; rotation curve and Cepheid tests are combined in the blue astrophysics region and the
pink region corresponds to cluster lensing constraints. The black, blue and red dots show the lower
bounds (indicated by the arrow) on M at the dark energy scale coming from neutron bouncing and
interferometry experiments respectively, with blue corresponding to the bounds of [70] and red to
those of [71]. The dark energy scale Λ = 2.4× 10−3 eV (upper plots only) and the astrophysical limit
are indicated by the dotted and dashed black lines respectively. The dashed purple black line indicates
the forecasted constraints from the next generation of atom interferometry experiments taken from
[60] (n = 1 and n = −4). The red hashed area (bottom right only) corresponds to regions where the
model is not a chameleon. The brown region is accessible to cosmological observations. Note that in
the case n = 1 this region is already excluded by other probes and so we indicate it using the brown
dashed line; the region above and to the right of this predicts observable deviations on cosmological
scales. Whilst constraints for negative n are plotted with continuous lines we remind the reader that
only negative even integers give rise to a chameleon mechanism.
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6 Discussion

We have shown that the majority of the chameleon parameter space is already excluded for
models with n = 1 and n = −4, and that if we fix Λ to the cosmological constant scale
then only the chameleon theories most weakly coupled to matter are allowed. Astrophysical
constraints are complementary to laboratory searches but currently their relevance is limited
to relatively small regions of the chameleon parameter space, although we note that these
are precisely the regions where the chameleon has a cosmological scale Compton wavelength.

To date, there have been no constraints coming from cosmological probes but this will
change with upcoming cosmological surveys such as EUCLID [80]. One important question
is then whether cosmological constraints will probe unexplored areas of the parameter space?
And if so, which models are best constrained? To address these, we consider the equation
for the growth of density perturbations in the Newtonian gauge [81, 82]

0 = δ̈ + 2Hδ̇ − 3

2
Ωm(a)H

2Geff

G
δ = 0 with (6.1)

Geff

G
= 1 + 2

(

Mpl

M

)2(

1 +
a2

λ2
Ck

2

)−1

, (6.2)

where λC = m−1
eff is the Compton wavelength (at cosmological densities). One can see that

on large scales where kλC ≪ 1 one has Geff ≈ G and the force is screened, whereas on small
scales kλC ≫ 1 one has Geff ≈ G(1 + 2Mpl

2/M2) and the force is fully unscreened. Said
another way, deviations from GR are only present on scales k−1 < λC i.e. scales inside the
Compton wavelength. Linear cosmological probes will therefore see deviations from GR if
λC

>
∼ 10Mpc. We have included the cosmologically viable regions in the constraint plots

(figure 3). The n = 1 models that are accessible cosmologically are already excluded by
other methods and so we indicate the region with a brown dashed line. The same is true
of n > 1 when Λ is fixed to the dark energy scale but models with n < 1 may be probed.
Similarly, there is a small region of parameter space where models with −1 < n < 0 can be
probed with cosmology. In the case n = −4 the Compton wavelength is <

∼ O(10−7 Mpc)
and so the region of parameter space we are interested in cannot be probed using cosmology.
It is interesting to note that in all cases the edge of the cosmologically accessible region is
close to the astrophysical limit. This is because one has χ ≈ H2/m2

eff [48, 82, 83] so that
the astrophysical limit χ = 10−8 corresponds to λC ∼ 10 Mpc. One could therefore exclude
the entire region where cosmology can probe these models by improving the astrophysical
constraints, in particular extending the constraints to cover larger values ofM (weaker matter
couplings).

Indeed, the astrophysical probes presented here are far from exhausted and are mainly
limited by the small number of dwarfs in the screening map. Future SDSS data releases, in
particular MaNGA, could drastically increase the sample size and with it, the constraints. On
a similar note, other proposed tests using the morphology and kinematics of dwarf galaxies
[30] have yet to be performed but may yield new constraints. [84] considered several tests
along these lines using SDSS optical and ALFALFA radio data but were unable to distinguish
between modified gravity and GR due to the large scatter. Future radio observations such
as VLA may improve the constraining power of such tests.

From Figure 3 it is clear that large regions of the chameleon parameter space are likely
to remain inaccessible to cosmological and astrophysical probes for the foreseeable future.
This, therefore, provides strong motivation for further development of laboratory searches
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for chameleon fields. We are aware of ongoing developments of Casimir, atom and neutron
interferometry, and microsphere searches which should yield new, improved constraints in
the near future, further restricting the allowed behaviour of the chameleon field.

The chameleon model of dark energy is now severely constrained by a wide variety
of observations. It seems very likely that we currently have the technological capability to
perform measurements to detect or completely exclude the chameleon field wherever it lies
in the parameter space. All that remains is to perform the experiments.

A Covariant Theory

Chameleons are a class of scalar-tensor theories that correspond to the action

S =

∫

d4x
√−g

[

Mpl
2

2
R(g)− (∇µφ)

2

2
− V (φ)

]

+ Smatter[A
2(φ)gµν ]; A(φ) = e

φ

M (A.1)

defined in the so-called Einstein frame where the tensor-sector looks like general relativity
but the scalar is non-minimally coupled to matter through the coupling function A(φ). In
particular, matter moves on geodesics of the Jordan frame metric g̃µν = A2(φ)gµν . The
equation of motion for the scalar is

�φ =
dV (φ)

dφ
− T

d lnA(φ)

dφ
, (A.2)

where T = gµνT
µν is the trace of the energy-momentum tensor for matter Tµν = 2/

√−gδSm/δgµν .
For non-relativistic systems (P ≪ ρ where P is the pressure) one has T = −ρ where ρ is the
matter density, in which case one recovers equation (2.1).

The fifth-force can be found by noting that test-bodies move on geodesics of g̃µν . Defin-
ing the tensor Kα

µν = Γ̃α
µν − Γµ

µν where Γ are the Christoffel symbols and tildes refer to
Jordan frame quantities, the non-relativistic limit of the geodesic equation in the Jordan
frame becomes

ẍi + Γi
00 = −Ki

00, (A.3)

where a dot denotes a derivative with respect to t, the proper-time for an observer. One
has the well-known result that Γi

00 = ∂iΦN, which is the Newtonian force in the Einstein
frame and one can calculate Ki

00 = ∂iφ in a straight-forward manner (see [11, 81, 85–87] for
example). This then represents a fifth-force given by equation (2.2). In the case where the
object is not a test mass but is instead an extended body one must self-consistently calculate
the force using the method of [88, 89]. This has been done by [7] who find that the equation
of motion for a body of mass Mobj is

Mobj
~̈x = −Mobj∇ΦN −Q∇φ, (A.4)

where the scalar charge
Q = Mobj −Mobj(rs) (A.5)

and we remind the reader that Mobj(rs) is the mass enclosed within the screening radius.
Equation (A.4) shows how the equivalence principle is violated in chameleon theories: two
objects with identical masses but different internal compositions will have different screening
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radii by virtue of (3.3) and therefore have different scalar charges. Said another way, an
object’s response to an applied external field is not determined solely by its mass.

We end by noting that null geodesics of g̃ are also null geodesics of g with a different
affine parameter (see [90] for example) and therefore the lensing of light is unaltered in
chameleon theories.
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