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Abstract. In order properly to apply transformations
when using data derived from different GPS solutions,
the effects of plate motion on the coordinates should be
accurately taken into consideration. Only then can a
rigorous comparison be established between results
observed at different epochs. Equations are given to
relate GPS-derived Cartesian coordinates and velocities
affected by changes of their reference frames and epochs.
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1 Introduction

Accurate positioning using modern Global Positioning
System (GPS) technology and methods requires the full
understanding of reference-frame transformations. The
fact that GPS terrestrial observing stations are located
on moving lithospheric plates slightly complicates the
issue. Recent developments in space geodesy techniques
have reached a level of sophistication capable of
corroborating to a high degree of certainty the geo-
physical theories describing global plate tectonics.
Absolute motions of points on the Earth’s surface with
respect to a fixed geocentric coordinate frame average
about 3cm/year, and depend on geographic location.
Crustal motions along subduction zones could be as
large as 24cm/year, the fastest crustal motions yet
observed (Bevis et al. 1995). In addition, crustal
deformations and earthquake activity near transform
faults increase the difficulty of properly modeling crustal
velocity fields (see, e.g., Snay et al. 1996). GPS data
analysts are also aware that the original Cartesian vector
components resulting from any GPS data reduction
technique always refer to the satellite ephemeris terres-

trial frame used during processing the GPS vectors.
These vectors refer to a specific epoch # and rigorous
transformations are required when mixing data collected
at different epochs intended to calculate geodetic
positions.

The following conventions will be retained through-
out this article:

1. Only right-handed,
frames are used.

2. Geodetic longitude 4 is counted positive toward the
east.

3. Positive rotations about axes (the three of a coordi-
nate frame, or any arbitrary axis going through the
origin of the frame) are anticlockwise (counter-
clockwise) rotations as viewed looking towards the
origin of the coordinate frame.

three-dimensional coordinate

With these definitions, rotations about coordinate axes
are conveniently expressed by proper orthogonal matri-
ces denoted R;(0), i =1,2,3 (e.g., Kaula 1966, p. 13).
The subscripts indicate rotations about the first, second,
and third axis, respectively. The argument represents the
magnitude of the rotation, which can be any finite angle
0. Successive rotations are operated in sequence, how-
ever the final result is not commutative and depends on
the specific sequence of the individual rotations applied.
Exceptions to this rule are differential rotations, which
follow the commutative property.

Rotations of geocentric vectors about an arbitrary
axis — while keeping the geocentric coordinate frame
fixed — are required properly to account for plate tec-
tonic motions. Every differential displacement caused by
a small rotation could be associated with a skew-sym-
metric (antisymmetric) matrix which is a function of the
angular rotation components. According to the fore-
going definitions, and in order to simplify as much as
possible the nomenclature, the following conventions
are introduced. When anticlockwise rotation of frames is
involved, the three differential rotations about the three
Cartesian axes x, y, and z, will be denoted, respectively,
by €, €, and e.. However, when rotations of geocentric



vectors (i.e., points) around arbitrary axes are per-
formed — keeping the geocentric frame fixed — these ro-
tations are expressed by the components (referred to the
fixed Cartesian frame) of the angular velocity vector,
namely, Q,, Q,, and Q..

A compact notation for 3 x 3 skew-symmetric ma-
trices will be used throughout. When a vector is differ-
entially rotated about any axis with respect to a fixed
frame — active point of view or active transformation — its
components will be operated through the following
skew-symmetric matrix:

0o -Q Q
Q=92 0 -Q (1)
-Q, Q0

The foregoing notation is consistent with the definition
of fixed right-handed coordinate systems and positive
anticlockwise rotation of vectors, which is labeled by
some authors as the right-hand rule. This sign conven-
tion is the one primarily used in rigid body mechanics
and widely adopted by geophysicists investigating plate
kinematics. It should be kept in mind that when one
rotates geocentric vectors using the matrix in Eq. (1), the
Cartesian axes remain fixed, although the components
of the vector will change because its tip is moved to a
new position (see Fig. 1).

The opposite scenario occurs when coordinate axes
are differentially rotated keeping the vector (or the lo-
cation of the point) fixed in space — passive transforma-
tion — then the physical position of the vector remains
invariant in space, although its components change due
to the rotation of the coordinate axes (see Fig. 2). It can
be proved that anticlockwise rotation of axes is equiv-

Fig. 1. Active transformation of vectors (frame remains fixed; vector
rotates)
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Fig. 2. Passive transformation of vectors (frame rotates; vector
remains fixed)

alent to clockwise rotation of vectors and vice versa.
However, since by definition we want to enforce the
property that all positive rotations in three-dimensional
space have the anticlockwise sense as positive, the ro-
tation of coordinate frames by ¢,, ¢,, and ¢, should have
a skew-symmetric matrix with opposite sign to the one
shown in Eq. (1), i.e.,

0 € —€
[G]t == —€z 0 €x (2)
6 —€& 0

Through basic matrix algebra it is known that
[] = —[¢], where ¢ denotes matrix transpose. The
matrices of Egs. (1) and (2) are, respectively, consistent
with positive anticlockwise rotation of vectors around a
single arbitrary axis (frame fixed) rotating with angular
velocity Q or, equivalently, anticlockwise rotations
(vector fixed) €, €,, €. about three-dimensional coordi-
nate axes.

Because this discussion is restricted to three-dimen-
sional Euclidean space, 3 x 1 three-dimensional column
(vector) matrices will be abbreviated as follows:
{x} ={xyz}, {I.} ={T. T, I.}', etc. Notice that the
ordered sequence of coordinates is retained, although
only the first coordinate appears explicitly in the
abbreviated notation. This direct notation is a short,
compact way of representing vector matrices, and has
the advantage of maintaining the matrix nomenclature
popular among aerospace and astronautical engineering
textbooks. The 3 x 3 identity (unit) matrix is denoted by
[I] and the 3 x 3 zero (null) matrix by [0].
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2 Geocentric terrestrial (Earth-fixed) conventional
reference frames

With the advent of GPS the possibility of accurately (to
the subcentimeter level) determining three-dimensional
Cartesian coordinates has drastically changed the meth-
odology used in geodesy, surveying, and mapping
applications. However, the use of an adopted ‘“best”
mean-Earth fitting ellipsoid of revolution (e.g., WGS84,
GRS80) will be required in order to express results in
curvilinear geodetic coordinates (/, ¢, #). The need for
geodetic longitude, geodetic latitude, and geodetic
(ellipsoid) height is still useful because they are more
intuitive, facilitating the graphic depiction of points on
the surface of the Earth through mapping. However,
although more abstract in concept, three-dimensional
coordinates are the primary output of any GPS
reduction process and the user should be familiar with
how they are employed and, more importantly, how
they are rigorously transformed from frame to frame.

The conversion from curvilinear geodetic (4, ¢, 4) to
Cartesian (x, y,z) coordinates is given by the well-known
equations:

x (N + h)cos ¢ cos A

yop=14 (N+h)cos¢sini (3)
z [N(1 —€?) + h]sin ¢

where N is the principal radius of curvature along the
prime vertical (see Sect. 7). The inverse transformation
(Cartesian to geodetic) does not have a simple explicit
closed formulation. A computer subroutine based on the
approached suggested by Borkowsky (1989) is given in
(McCarthy 1996, p. 12).

At the time of writing there are two immediate
choices of geocentric (Cartesian) conventional terrestrial
reference frames: WGS84 (G873) and ITRF96. WGS84
(G873), epoch 1997.0, is the latest realization of a series
of WGS84 frames implemented by the National Imagery
and Mapping Agency (NIMA, formerly Defense Map-
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ping Agency). The letter G stands for “GPS,” implying
that archived Doppler data were excluded from the
observations materializing the frame; the “873” indi-
cates the GPS week number (0" UTC, 29 September
1996) of the initial date when the coordinate frame was
made available through NIMA GPS precise ephemeri-
des. The same frame was incorporated into the Kepler-
ian elements of the broadcast message on 29 January
1997 (Malys et al. 1997a).

The other alternative is the International Earth Ro-
tation Service (IERS) Terrestrial Reference Frame
ITRF96, epoch 1997.0 (available since 0" UTC, 1 March
1998). This solution includes extraterrestrial data from
several sources (VLBI, SLR, GPS, and DORIS) col-
lected up to year 1997. ITRF frames are created under
international sponsorship and satisfy accuracy require-
ments for various modern space techniques (Feissel and
Gambis 1993). Related to each ITRF frame there is an
associated velocity field, i.e., each station of the network
materializing the frame has a velocity vector (vy,v,,0:)
indicating its time-dependent absolute displacement
caused by the motion of the tectonic plate on which the
point is located. These secular displacements can be
approximated anywhere on the Earth’s crust by spheri-
cal geophysical models such as NNR-NUVELIA (De-
Mets et al. 1994) which is a recent revised improvement
of the original NUVEL-1 (Argus and Gordon 1991).

3 Local reference frames

Several local Cartesian frames can be defined at any
observation point 4. Obviously, local terrestrial three-
dimensional frames parallel to WGS84 or ITRF96 at 4
would be required to refer the vector components
between the standpoint (reference or base station) 4
and the forepoint (remote station) B: {xz — x4 yg — 4
zp — 24} = {xp — x4} = {x}' (see Fig. 3). These are the
typical vector components used as GPS observables in
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Fig. 3. Geocentric terrestrial, local terrestrial,
and local geodetic frames



three-dimensional network adjustments during the final
stages of a GPS project.

Another convenient frame to use at any GPS obser-
vation point 4 is the local geodetic frame (e, n,u) shown
in Fig. 3, defined as follows:

1. origin: any point A(x,y,z) = A(, ¢, h), referred to a
given ellipsoid;

2. u-axis: normal through A4 to the reference ellipsoid; the
positive sign is in the outward (geodetic zenith) or
“up” direction;

3. e-axis: normal to u and the geodetic meridian plane
(when / = 0, tangent to the geodetic parallel through
A); positive (east) is in the direction of increasing 4;

4. n-axis: perpendicular to e¢ and u forming a right-
handed triad (when % =0, tangent to the geodetic
meridian through A). Positive (north) is in the di-
rection of increasing ¢; the plane e — n defines the
local geodetic horizon.

This local geodetic frame is commonly alluded to in
practical applications as the east-north-up frame (right-
handed convention enforced). Some authors use the
terminology “‘vertical” instead of “‘up,” which is satis-
factory if one is fully aware that the measurements are
purely geometric and are given along the normal to the
ellipsoid with no relation to the curved plumb line.

4 Transformation between local geocentric terrestrial and
local geodetic frames

Assuming that an adopted ellipsoid of revolution (e.g.,
WGS84, GRS80) is centered at the origin of the
geocentric conventional terrestrial reference frame, the
transformation of components of a vector 4B between
local terrestrial (x y z) and local geodetic (e n u) frames
could be obtained as follows:

{e} = [Ri{xs — x4} = [Rl{x} (4)

where the rotation matrix [R] of the transformation is
given by

[R} =R (%ﬂf — ¢A>R3<AA —|—%TE>
= R3 (% n)R2 (%TC - d)A)R}(;LA) (5)

or explicitly

—sin A cos / 0
[R] = | —sin¢cosA —sin¢gsind cos ¢ (6)
cos¢pcosi  cos¢psind  sing |,

Related to the local geodetic frame are the following two
geometric parameters:

1. o: geodetic azimuth; angle in the plane of the local
geodetic horizon counted positive clockwise from
geodetic north; 0 < a < 27;

2. v: vertical angle; angle in the plane containing the
geodetic vertical (i.e., normal to the ellipsoid) and the
forepoint measured from the local geodetic horizon

485

to the direction between the two points and counted
positive above the geodetic horizon; —in <v <1m;
the geodetic zenith distance z is defined as z = %n -,
0<z<m.

These two parameters can be computed very accurately
using GPS from the values {e} in Eq. (4) by the well-
known formulas:

tano = e/n (7)

tanv = u/(e* + nz)% (8)

Physical quantities such as astronomic azimuth o* and
astronomic altitude v* are related to o and v through the
components of the deflection of the vertical (y,¢)
(Heiskanen and Moritz 1967, p. 186 and 190).

o =o+ntan¢ + (Esina — ycosa) tanv 9)

v =v+ &cosa+ysina (10)

Thanks to the great accuracy achieved by GPS, the
required components # and ¢ could be determined
completely independent of classical astronomic and/or
gravimetric methods using GPS and leveling (Soler et al.
1989). Incidentally, the so-called Laplace equation (or
condition) is merely Aa = o — a.

An important formula relates 4 (measured through
GPS) with H (orthometric height, determined through
observations of leveling and gravity) and N, (predicted
undulation or geoid height):

h~H+N, (11)

5 Transformations between geocentric conventional
terrestrial frames

When transforming between geocentric conventional
terrestrial frames, one should also consider that these
frames are given at some specific epoch. As already
explained, this precaution is required to take into
account the motion of the observing stations which is
inevitable due to the phenomena of plate tectonics.
Points on the ITRFyy, epoch ¢ (yy denotes the last two
digits of the ITRF yearly solution, e.g., ITRF96) series
of coordinate frames have attached a velocity field
giving at every point the corresponding components of
the linear velocity about the three local terrestrial
Cartesian axes: (v, Uy, Uz).

Many of the ITRF stations belong to the Interna-
tional GPS Service for Geodynamics (IGS) network
which tracks the satellites of the GPS constellation
(Neilan 1997). The location of these receivers, as well as,
e.g. the National Geodetic Survey (NGS) Continuously
Operating Reference Stations (CORS) network (Strange
1995), are useful as “fiducial” stations to propagate
coordinates in GPS surveys. The term “fiducial” is
loosely applied to describe continuously operating
GPS sites whose RINEX2 data are made available



486

electronically to the geodetic-surveying community.
Generally, the coordinates and velocities of these per-
manent sites are accurately known with respect to some
predefined reference frame and could be used to rigor-
ously propagate coordinates to other arbitrary points.

The rigorous transformation between point coordi-
nates from ITRFyy, epoch #,, to ITRFzz, epoch ¢,
(designated symbolically by the mapping:
ITRFyy(ty) — ITRFzz(¢)) could be implemented ac-
cording to the equation (see Appendix):

{hirrez: = {Th + (1+9)[[€ + [1]
x H{x}ITRFyy + {UX}ITRFyy(t —1)] (12)

where: (1) {7} = coordinates of the origin of the frame
ITRFyy in the frame ITRFzz, i.e., the translations or
shifts between the two frames, (2) €,, €,, e, = differential
anticlockwise rotations (expressed in radians), respec-
tively, around the axes x, y, and z of the ITRFyy frame
to establish parallelism with the ITRFzz frame, and (3)
s = differential scale change (expressed in ppm x 107;
ppm = parts per million). The Cartesian coordinates {x}
and the velocities {v, } must have conformable units. The
interval of time ¢ — #; is generally expressed in year and
its fraction. Note that ¢ could be the actual time of the
GPS observations (e.g., t = 1998.3587).

Furthermore, if ITRFyy =ITRF93, the following
matrix expression (see Appendix) should be added to
Eq. (12):

{7} + [ (1 +s)[E" + (e + 1] Hxhrrpos]
x (t — to) (13)

Included in the preceding are the rates of the ITRF93
translation, rotation, and scale parameters required for
yy =93 because of the decision of IERS to make
consistent the time evolution of the ITRF93 frame with
the IERS series of Earth orientation parameters (EOP).
The seven transformation parameters required in
Egs. (12) and (13) are tabulated in Boucher and
Altamimi (1996). A note of caution is in order; all
rotations involved in the equations described herein are
consistent with anticlockwise positive rotations, while,
contrary to standard practice, clockwise positive rota-
tions are implied in the values given by Boucher and
Altamimi (1996). On this issue read the exchange of
letters “‘to the editor” in GPS World (1997).

Similarly, from Eq. (A5) in the Appendix the rigor-
ous transformation of velocities can be expressed as:

{ochrrez = [(1+9)[e" + 5[] + [1]] I hrrE
+ (1+9)[[d + 1 1{ve ey (14)

Sometimes, the values of {v,} are not readily known.
This is the situation for GPS stations which are not part
of the set of CORS or ITRF global sites. Then,
approximations could be obtained by using any of the
published kinematic plate models. In such case, the
angular velocity components {€,}, for each plate P, are
known quantities that could be extracted from the

available geophysical models. Then, the approximation
for the velocity vector {v,} required in Egs. (12) and (14)
is determined as follows

{UX}ITRFyy ~ [Q]P, {x}ITRF}y (15)

The elements of [Q]Pc are given in radians/year and
contain angular velocity components of the particular
plate P, on which the point is located. The components
of {Q,} in rad/My are tabulated in, e.g., McCarthy
(1996, p. 14) for the model (no net rotation) NNR-
NUVELIA. At a minimum, station velocities should be
applied to the fiducial sites before starting GPS pro-
cessing in order to bring the position of these reference
stations as close as possible to their actual spatial
location at the time the observations were collected. For
consistency, the selected reference frame for all fiducial
points should be the one implicit in the precise
ephemeris used during processing, consequently the
resulting coordinates are referred to the reference frame
of the satellite orbits used and the actual epoch of
observation. The final processed GPS results could be
transformed to any other conventional terrestrial frame
using Eq. (12).

If preferred, for better practical visualization, the
velocity components could be expressed along the local
east-north-up frame applying Eq. (4):

{ve} = [Rl{v:} (16)

6 Anticlockwise rotation of geocentric vectors around
geocentric arbitrary axes

Assume that one wants to rotate a geocentric vector of
components {v,} (in other words, a point P of coordi-
nates {x}), by an anticlockwise rotation of magnitude Q
(given in radians) around an axis with direction cosines
{¢}. Direction cosines are used to define the orientation
of a line in space. Each spatial line going through the
origin of the geocentric Cartesian frame forms three
well-defined angles with the Cartesian axes. The cosine
of each one of these angles is termed direction cosine.
They will be denoted in matrix notation by
{€} = {4, £ £3}'. Recall that the direction cosines of a
line through a point with geodetic coordinates P(4, ¢, h)
are given by: ¢} =cosicos¢p, £, =sinicos¢p, and
{3 = sin ¢p. They are the components of the unit vector
along the normal to the ellipsoid going through P.

The formulation for active transformations was orig-
inally introduced by Euler (1775) and revived a century
later by Thomson and Tait (1879). The rotation matrix
of the transformation takes the form:

R(Q) = cos Q[I] + sin Q] + (1 — cos Q)[¢]* (17)

where [f] is given according to the definitions of
direction cosines ¢| =y, {, = {,, {3 = ¢, and Eq. (2).
When anticlockwise rotation of Cartesian axes of
frames (passive transformation) is dictated, the trans-
pose rotation matrix R)(Q), not Ry(Q), should be used.
Applying to R)(Q) the particular case of the direction



cosines of the three Cartesian axes (i.e., /1 =1, £, =0,
{3 = 0, for the x-axis, etc.), the three standard rotation
matrices R;(0), i = 1,2, 3, about the reference axes de-
scribed in the Introduction are obtained. Notice that in
Eq. (17) no assumptions about the magnitude of Q were
made, 0 < Q < 2m.

Reviewing:

1. Active transformation (body-axes rotation). Coordi-
nate (vector component) transformation with the
Cartesian axes fixed in space and the point carried
with the body (see Fig. 1):

(v} = {Vi} = {V.} = Ru(Q){v}

2. Passive transformation (space-axes rotation). Coordi-
nate (vector component) transformation with the
point (body) fixed in space and the Cartesian axes
rotating (see Fig. 2):

it = Al ={w}= RQ(Q){Vx}

The change {dx} in the Cartesian coordinates of a point
{x} due to a rotation Q about an arbitrary axis of
direction cosines {¢} given in the sense (new—old) could
be obtained through the equation:

{dx} = [Re(Q) — [1]]{x} (18)

If the angular rotation Q is small
(sinQ =~ Q; cosQ ~ 1), the preceding expression reduc-
es to

{ox} = [Q]{x} (19)

which also applies to the determination of velocity
components as described above (Eq. 15) when the units
of Q are, e.g. radians/year.

The transformation from a general rotation matrix
[R] with direction cosines /;; to a rotation R/(Q) around
an axis with direction cosines ¢;, i = 1,2, 3, and angle Q
is given according to the equations:

cos Q = 1[tr[R] — 1] (20)

where tr[R] denotes the trace of [*R], the sum of the
elements of its diagonal, e.g. tr[R] = X¢;;, and

61 Z%(EB — 632)/sinQ (213)
62 :%(&51 — 613)/sinQ (21b)
53 :%(512 — le)/sinQ (21C)

where clearly the case sin Q = 0 is excluded.

An equation equivalent to Eq. (17) could also be
obtained by simple application of successive rotations
about axes, keeping in mind the difference between
passive and active transformations. Notice that a rota-
tion of magnitude Q about an arbitrary axis as depicted
in Fig. 1 can be derived using the following steps:
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1. passive anticlockwise rotation about the z-axis by
7: Ry(2);

2. passive clockwise rotation about the new rotated y-
axis by ¢: Ra(—) = Ry(¢);

3. active anticlockwise rotation about the new rotated x-
axis by Q: R{(Q) = R (—Q).

Undo steps (2) and (1), that is:

4. passive anticlockwise rotation about the rotated y-axis
by piRal) |
5. passive clockwise rotation about the rotated z-axis by

At R3(—2) = R4(4).

Thus, once all individual rotations are taken into
consideration in a sequential manner, the resulting
proper orthogonal (rotation matrix) operator could be
written:

Ri(Q) = R3(=A)Ra(P)Ri (—Q)Ra(—)R3(4) (22)

It can be easily proved that this equation is identical to
Eq. (17) once the substitutions ¢, = cosAcos ¢;
£, = sin /.cos ¢; £, = sin ¢ are implemented.

In general, the order and sense of the rotations de-
scribed in Eq. (22) will depend on how the angles 4 and
¢ are defined. This alternative formalism to compute
the rotation operator about an arbitrary axis was im-
plicitly applied in Mueller (1969, p. 115) when de-
scribing the corrections due to stellar proper motion.
The sign conventions used here for all rotations are
consistent with the standard definitions followed
throughout the book.

7 Local displacements of a point in curvilinear
coordinates due to plate rotations

Sometimes one may be interested in knowing the
changes in the curvilinear coordinates at any arbitrary
point P(2,¢,h) = P(x,y,z) due to plate motions. The
differential changes (per year) in longitude, latitude
(both in radians), and ellipsoid height (in linear units),
ie., {04} = {6/ 8¢ oh}' due to a differential rotation Q
(rad/year) can be computed as follows:

{02} = [H] "[RO {x} = [H] ' [RI{v.}

= [H] " {ve} (23)

where [H] is the so-called Lamé’s matrix and [H]™'

denotes its inverse. For the particular case of orthogonal
curvilinear (geodetic) coordinates treated here, the
matrix [H] is diagonal and given explicitly by (Soler
1976, p. 18):

(N + h)cos¢ 0 0
[H] = 0 M+h 0 (24)
0 0 1

Notice that [H]? is equal to the “metric matrix™ of tensor
calculus. N and M are the principal radii of curvature
along the prime vertical and meridian, respectively. They
can be computed from the following exact equations:
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N=a/W; M =a(l-2¢)/W,
W= (1—e2sin2¢)%; and &> =2f — /%,

where a and f are the parameters describing the size
(semi-major axis) and shape (flattening) of the adopted
reference ellipsoid (e.g., for the WGSS84 ellipsoid:
a=6378137m and 1/f = 298.257223563; the GRS80
ellipsoid has identical @ and 1/f = 298.257222101).

It can be proved that when Eq. (23) is simplified to
the spherical case, i.e., N +h =M + h = r (the approx-
imate radius of the Earth’s sphere), then dr = 0, imply-
ing that, as expected, the displacements given by
spherical plate rotation models only produce horizontal
displacements on the surface of the sphere and changes
along the radial (vertical) component are zero. That is
not the case when plate rotations are applied to an el-
lipsoid of revolution.

8 Transformation of observations

Generally, the final post-processed products available to
the GPS user are vector components {x — x4}, at time o
between standpoint A4 and forepoint B referred to a local
conventional terrestrial frame {x}, the one implicit in the
satellite ephemeris employed. Applying the theory de-
scribed above, it is possible to transform these compo-
nents (the observables) to any other selected epoch ¢,
previous to the implementation of a three-dimensional
adjustment to determine coordinates for all points in the
network. Since these GPS vector components are referred
to a local frame, only rotations and scale affect the
transformation, thus by analogy with Eq. (12):

{xp — x4}, = (1 +9)[[e]' + 1] [{xp — x4},
+ {vs, — va H(t = 10)] (25)

where the values for the scale factor s and the rotations
€, €, €, correspond to the parameters implicit in the
transformation between the conventional reference
frames from epoch 7 to .

The final variance-covariance matrix of the new
transformed GPS observations can be determined from
the original values at 7, according to the following
equation:

gy, = (L8[l + [ [Z1 1" + 1) (26)
where

IIZ]] = Z{XB*XA Ho + 2(1 - 10)
x [Z{XB*XA}IOUB - Z{XB*XA}fOUA]
+ (t - tO)Z[ZL‘A + ZUB - 2ZUAL‘B] (27)

These expressions are based on the application of the
standard law of propagation of errors. In practical
situations all elements in the variance-covariance matrix
Zis—xs)r, are known. However, ¥, and X, are generally
diagonal matrices and the values of the elements of the
cross-correlation matrices are not available and could be
neglected, i.e.,

Z{XB—XA}fob‘A = Z{XB—XA}toUB =2y = [O] (28)

9 Conclusion

This article introduces rigorous matrix equations to
transform coordinates of points and their velocities from
one arbitrary terrestrial frame to another. The seven
similarity transformation parameters required in
Egs. (12), (13), and (14) for transforming coordinates
and/or velocities between different ITRF frames were
given in Boucher and Altamimi (1996), with the
restriction mentioned in Sect. 5. Parameters for the
transformation between WGS84 (G873) and ITRF9%4
are presented in Malys et al. (1997b). The new ITRF96
is aligned to ITRF94 in origin, scale, orientation, and
time evolution. Recently determined transformation
parameters between the GLONASS-defined frame (P-
90, also referred to as PE-90) and the WGS84 were
reported in the literature (Misra et al. 1996; Langley
1997). Similarly, the transformation of GPS processed
vector components could be obtained using identical set
of parameters and Eq. (25). The rigorous application of
this methodology assumes the knowledge of the original
velocities of the points involved. Presently, only points
pertaining to the CORS and ITRF GPS networks have
an associate velocity field. However, approximate esti-
mates of absolute velocity components on a terrestrial
frame could be determined using Eq. (15) and an
adopted plate tectonic model such as NNR-NUVELIA.
Using the same or equivalent plate models, changes in
the coordinates of any point due to plate rotations could
be computed according to Eq. (18), where R;(Q) is given
by Eq. (17) as a function of the direction cosines of the
rotation axis or, alternatively, by Eq. (22) if the
geographic location of the rotation axis pole is known.
Finally, Eq. (23) expresses the more intuitive variation
in curvilinear geodetic coordinates of a point as a
function of the components of the angular rotation of
the plate where it is located or, alternatively, the point
velocity components, along local three-dimensional
coordinate frames.

Appendix

The rigorous similarity transformation between two sets
of coordinates {x}, and {x}, referred respectively to
frames A and B expressed symbolically by the mapping
A — B can be written:
{x}p = {T:} + o[R|{x}, (A1)
where {7,} was previously defined in Eq. (12), o is the
scale factor, and [9] is the orthogonal matrix rotating
frame A4 into B (anticlockwise rotations are assumed
positive).

The coordinates of any arbitrary point moving with
velocity components {x} ., referred to the old frame,
will change during the interval ¢y to ¢ according to:



{xba = ag + a € — 1) (A2)
Similarly, the coordinates {x} B() of any point on frame
B at time ¢ which moved from ¢, to ¢ with velocity {x}
is determined by:

{x} ) = (g + {5380 (€ — 10)

Equation (A1) relating frames 4 and B can be written at
any initial time f:

{x}p) = {T} + o[ R{x} 40

The variation of these coordinates with time is given by:

{#} ) = {1} + [6[R] + o[RI] {x} 400
+ o[ R{x} 4 0)

Therefore, in order to know the transformed coordi-
nates on frame B at time ¢ the above two equations
should be substituted into Eq. (A3), to obtain:

{x}p = {T} + o[R] [{x} ) + {5} (0 — 10)]
+ [{ T} + [6[R] + o [RI{x} )] (¢ — 0)

Under the assumption of differential rotations, the
matrix [R] reduces to [e]' + [I], where [¢]' is given by
Eq. (2). It is also common practice in the geodetic
literature to express the final coordinates in terms of the
corrections to the original coordinates. If this logic is
applied to differential rotations and scale changes, one
has:

{x}bp = {aba + [k = [l + U]1{x},

and instead of writing {x}; = o{x}, as assumed previ-
ously, the changes to the original coordinates due to
scale variations could be written:

{x}tg = {x}y +s{x}, = (1 +9){x}, (A8)

When the simplifications [R] = [¢]' + [/] and 6 =1+
are applied to Eq. (Al), the standard seven parameter
similarity transformation expression is obtained (e.g.,
Lambeck 1971; Leick and Gelder 1975, p. 4):

{x}s = {T} + (L +9)[le) + [11{x},

If the second-order differential products of the scale
factor by the rotations are neglected, the preceding
equation takes the alternative explicit form:

(A3)

(A4)

(AS)

(A6)

(A7)

(A9)

Z) B 4
s & —€
+|—e s €x (A10)
€ —€& S z),

Equation (A10) is the form given by Boucher and
Altamimi (1996). However, it should be stressed that
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these authors assumed clockwise rotations of coordinate
axes to be positive.

If the simplifications for [R] and ¢ described above
are introduced into Eq. (A6), after grouping common
terms Eqgs. (12) and (13) are obtained.
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