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Abstract— Fine-grained (sub-meter) ranging and localization
is critical to the deployment of dense, mobile sensor networks in
aquatic environments. However, such a task is faced with a num-
ber of challenges, including noisy underwater environments,
limitation on size and complexity of localization hardware,
and constraints on computing capabilities of sensor platforms.
In this paper we present a sliding-window discrete Fourier
transform (DFT)-based algorithm for precise detection of the
arrival of a monotone acoustic signal, as a key enabling step
in measuring the time of flight (TOF) of the acoustic signal for
localization of the sensor node. The algorithm accommodates
the rise dynamics of the signal and compensates for the latency
in detection given the signal model, detection threshold, and
steady-state signal amplitude. The algorithm is implemented
onboard a small biomimetic robotic fish, and experiments in an
indoor pool have shown that the proposed method results in an
underwater ranging error of 1.4 wavelengths (74.3 cm), and is
thus promising for localization of dense aquatic networks. The
proposed method has also shown robustness in comparison with
other tested methods including a matched filter-type method.

I. INTRODUCTION

With the advances in underwater robotics and wireless
networking, there is a growing interest in developing and de-
ploying dense (1 - 100 m separation), mobile, aquatic sensor
networks [1]. Such sensor networks can be used to collect
temporally and spatially resolved information in aquatic
environments, with applications in oceanography, marine
biology, pollution detection, seismic monitoring, oil/gas field
exploration, and aquafarm monitoring. Of particular interest
are robotic fish-based platforms that are small (decimeter
scale), inexpensive, and energy-efficient, and are thus afford-
able and easy to deploy in large numbers.

For small robotic fish, having onboard localization ca-
pability is essential for successful navigation of the robot
and for effective coordination of robotic fish network. Ac-
curate localization is also critical for tagging the sensed
information so that the data collected by robotic fish are
associated correctly to the physical location in the water. It
is often desirable to achieve GPS-free localization, because
the precision of commercially available GPS units (5 -
10 m) is inadequate for many applications, where sub-
meter localization precision is needed. Furthermore, GPS
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signals are often unavailable due to their rapid attenuation
underwater.

A number of GPS-free localization approaches has been
proposed, involving the use of optical (infrared or visible),
acoustic, or RF signals. Node localization within the network
is typically achieved through two phases: 1) range estimation
(i.e., ranging) or bearing angle estimation, and 2) translation
of range and/or angle estimates into a position through
geometric relations [2]. Ranging can be realized using the
received signal strength information (RSSI) [3]. RADAR [4]
and SpotOn [5] are two examples of RF RSSI-based ranging.
But it is well documented that this approach is not reliable in
cluttered or noisy environments. Another major approach in
ranging is to measure the time of signal propagation, such
as Time of Flight (TOF). The TOF measurement is often
made with acoustic (including ultrasonic) signals, synchro-
nized through RF communication. Examples of TOF-based
methods include AHLoS [6], the Cricket location-support
system [7], and the Calamari system [8]. Measurement of
Angle of Arrival (AOA) is another common approach in
localization [9], [10]; however, extracting angles of arrival
requires receiver arrays, increasing hardware requirements
thus making AOA unfavorable in small robotic fish where
space and resources are limited.

The aforementioned methods are mostly studied for lo-
calization in air. Onboard localization for small robotic fish
presents many new challenges. First, comparing to in-air
localization, underwater localization itself is much more
difficult. RF signals have large attenuation in water. The
influence of currents, depth, temperature and salinity on
sound speed [11] inevitably introduces error in the esti-
mation of travel distance of the acoustic signal. Second,
the relatively low speed (typically under 50 cm/s) and the
size of the small robotic fish demand high resolution (1 m
or less) in localization. Finally, the constraints on power,
size, and weight require that the onboard localization system
has minimal volume and computational complexity. While
underwater localization and its related topics (in particular,
the sonar technology) have been studied for almost a century
[12], [13], the requirements there on ranging/localization
resolution and the constraints on power/sizes of acoustic
transceivers are in general much more relaxed. For example,
the system reported in [14] used powerful hydrophones as
tranceivers and full-fledged computer systems for signal
analysis, both of which would be unavailable for small
robotic fish.

In this paper we present a TOF-based underwater acoustic
ranging scheme targeting small robotic fish with inexpensive
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hardware. Although ultrasonic signals are a popular choice
for TOF-based ranging [6], [7], their high directionality
requires multiple transceivers to remove blind spots, making
them unfavorable for size-constrained robotic fish. Instead,
we have adopted a monotone, audible signal (2.8 kHz),
produced by a sounder (buzzer) and received by a micro-
phone. The major challenge in estimating the TOF is precise
determination of the arrival instant of ranging signal, in
the presence of signal transients, signal attenuation, and
ambient noises, using limited onboard hardware and com-
putational capability. An efficient, robust, sliding-window
discrete Fourier transform (SDFT) algorithm is proposed to
address this challenge. The algorithm computes and monitors
the signal component of desired frequency in real time,
and reports detection once the component exceeds a pre-
specified threshold. To further accommodate the effect of
signal transients, the rise dynamics of signal is modeled
and its influence on detection latency derived, which is then
compensated in the proposed algorithm.

The proposed algorithm is implemented onboard a
biomimetic robotic fish. Experiments in an indoor pool have
shown that the underwater ranging error of the proposed
SDFT-based method is within 1.4 wavelengths (74.3 cm) of
the acoustic signal. In terms of the number of wavelengths,
the performance has even surpassed the state of the art in
in-air ranging methods (2.3 wavelengths) [7], [15]. Experi-
mental results have also shown that the SDFT-based method
is robust in comparison with three other tested methods for
detection of signal arrival, which are based respectively on
a) threshold-crossing of instantaneous signal magnitude, b) a
tone detection circuit, and c) matched filter-type correlation.

The remainder of this paper is organized as follows.
Section II is a brief overview of the robotic fish-based mobile
platform, ranging hardware, and TOF-based ranging protocol
implemented on-board the robotic fish. The SDFT algorithm
is presented in Section III, along with the discussion on
the compensation function. Experimental ranging results
using the proposed SDFT scheme and three other methods
are discussed in Section IV. Conclusions are provided in
Section V.

II. DESCRIPTION OF THE RANGING SYSTEM

A. Platform Hardware

Ranging is performed onboard a mobile platform in the
form of a robotic fish, representing a node for eventual
deployment as part of a dynamic sensor network. Shown
in Fig. 1 is a robotic fish prototype, upgraded from that
reported in [16]. The robotic fish is propelled by an ionic
polymer-metal composite (IPMC) actuator as a caudal fin.
The addition of a passive fin to the IPMC piece is used
to enhance propulsion, and consequently the steady-state
velocity [17]. The electronics and lithium-ion batteries are
housed in a waterproof casing placed within a custom-made
fiberglass outer shell.

The prototype is controlled by a 16-bit digital signal
controller (DSC) (dsPIC30F3012, Microchip), where all the
control and computational processes originate. Amongst the

peripherals attached to the DSC is a ZigBee-standard RF
transceiver (XBee, Digi/Maxstream), used for wireless com-
munications and generating the RF packet in the ranging
protocol. The robotic fish is also fitted with a piezoelec-
tric buzzer (CPE-267, CUI Inc.) and an electret condenser
microphone (WP23502, Knowles Acoustics), used in the
generation and detection respectively of the acoustic pulse.
Both components are chosen based on their performance
specifications, size, weight, and price. Routed through a 12 V
DC-DC step up converter (MAX761, Maxim), a signal from
the DSC controls the pulse duration of the buzzer, producing
a monotone signal with a center frequency f0 of 2.8 kHz.
On the receiving end, the signal from the microphone is
amplified and filtered using active bandpass circuitry, before
being sampled by the DSC at a rate of Fs = 88.76 kHz.

Fig. 1. An aquatic sensor platform based on a biomimetic robotic
fish propelled by an IPMC caudal fin.

B. TOF-Based Ranging Protocol

In this paper ranging is achieved through the measurement
of time of flight (TOF), by concurrent use of an RF packet
and an acoustic pulse. It is assumed that the RF packet is re-
ceived instantaneously; error induced by such an assumption
is about 0.5 mm for a node separation distance of 100 m.
Since RF signals propagate poorly underwater, the ranging
and thus localization is only performed when the robotic
fish surfaces with its RF antenna exposed in air (but buzzer
and microphone still underwater). Note that, however, the
proposed method for detection of sound arrival is applicable
in general cases and not limited to the case of RF-enabled
synchronization and thus not limited to ranging/localization
on water surface. Ranging between two nodes is performed
using the following protocol:

• Step 1: Node 1 transmits an RF packet to Node 2 to
indicate it is ready;

• Step 2: Node 2 simultaneously transmits an RF packet
and an acoustic pulse;

• Step 3: Node 1 receives the RF packet and starts on-
board timer;

• Step 4: Node 1 receives the acoustic pulse and stops
on-board timer;

• Step 5: Distance between receiver and transmitter is
estimated from the timer reading.

Although seemingly straightforward, accurately determin-
ing the arrival of the acoustic signal (Step 4) is challenging
due to signal transients, various noises, multi-path effects,
and hardware constraints. While not a central issue in air,
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precise detection of the arrival moment is critical underwater
as every missed signal cycle introduces errors of approxi-
mately 53.6 cm. This is the central problem the paper aims
to address.

III. SLIDING-WINDOW DFT (SDFT) ALGORITHM

A. Derivation of SDFT

The short-term Fourier transform (STFT) [18] is based on
the discrete Fourier transform (DFT), with the addition of
time dependency,

XSTFT [k,n] =
R−1


m=0

x[n−m]w[m]e− j 2k
N m, 0 ≤ k ≤ N−1, (1)

where n represents the discrete time, index k identifies the
frequency bins f = kFs

N , N is the Fourier sequence length,
and Fs is the sampling frequency for obtaining x[·]. R is
the size of the window sequence w[·] that extracts a finite
portion of x[·] for analysis; such an operation makes the
signal approximately stationary over the specified section.

With the buzzer producing a monotonic signal with known
center frequency f0, we can focus on a single frequency
bin k = p =

[
f0N
Fs

]
, where the result in [·] is rounded to the

nearest integer. We can further simplify the STFT by using a
rectangular window sequence (w[·] = 1) with length R = N,

Xp[n] =
N−1


m=0

gx[n−m]e− j0m, (2)

where 0 � 2 p
N and 0 < g ≤ 1 is some software-selectable

gain. The parameter g is introduced for convenience in tuning
the computation in onboard implementation, and it has no
significance in the analysis here. Associated with the STFT
algorithm is the overlapping of the samples x[·] within the
consecutive windows, which results in a recursive algorithm,
termed as SDFT, as follows:

Xp[n] = e− j0Xp[n−1]+ gx[n]−ge− j0x[n−N]. (3)

The resulting sequence Xp[·] is complex, for which the
algorithm needs to compute the magnitude for monitoring
purposes. Due to the complexity of implementing square
root functions using the DSC, the algorithm instead monitors∣∣Xp[·]

∣∣2, which defines the power density at f0, with an
additional factor of 2 . From here on, the term power density
is used interchangeably with

∣∣Xp[·]
∣∣2. Upon arrival of the

signal, the power density increases and crosses a software-
selectable threshold  , ∣∣Xp[n]

∣∣2 ≥ , (4)

at which point the algorithm is immediately stopped and
the time n recorded. The recorded value corresponds to the
propagation time between the transmitter-receiver pair.

B. Ideal Case: Steady-State Signal

Next we analyze properties of the SDFT algorithm relevant
to the error in the detection of signal arrival. Analysis is
provided for two cases, the first being the ideal case where
the signal arrives with steady-state amplitude. The second
is the non-ideal case, where the arriving signal has some
transient dynamics. Note that Xp[n] depends on the samples
in a window ending with x[n]. Ignoring the ambient noise,
we note that the samples in a window of size N will be zero
until the signal arrives. Let s be the number of samples in the
window that belong to the acoustic signal, with 0 ≤ s ≤ N.
Relabeling the samples in a window by q, q = 0, · · · ,N −1,
we can express them as

x′[q] =
{

0, if q < N − s,
AE[q− (N− s)]sin(0(q− (N − s))), otherwise.

(5)
In (5), A is the steady-state amplitude of the acoustic signal,
and E[·] represents an envelope function. For the ideal case,
E[·] ≡ 1. Fig. 2 illustrates the definition of x′[q]. Note the
relationship between x′[·] and the original sequence x[·]:

x′[q] = x[n + q− (N−1)]. (6)
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Fig. 2. Illustration of the windowed samples from an arriving signal
with steady-state amplitude. Here A = 1, N = 32, and s = 20.

Using (2), (5), and (6), we can derive |Xp[n]|2 as a function
of s:

|Xp[n]|2 =
A2

4

⎡⎣(s−1


l=0

sin(l)

)2

+

(
s−

s−1


l=0

cos(l)

)2
⎤⎦ ,

(7)
where  = 20. From (7), the power density is an accumu-
lation of the sampled arriving signal, suggesting that some
latency is necessary before reaching a given threshold. The
dependence of such a latency on the amplitude A is also
evident from (7).

Fig. 3 illustrates the above analysis. For an ideal sinusoidal
signal arriving at t0 = 0, |Xp[l]|2 rises gradually after t0 = 0,
following (7). The power density saturates when the window
includes p cycles. The latency in detection due to the
threshold  is also highlighted, requiring some non-zero time
t1 > t0. For example, for  = 2000, t1 = 83 samples, or 62.25

4056



cm of error for Fs = 200 kHz. The analysis demonstrates
that even in the ideal case, joint time-frequency analysis of
an arriving signal introduces timing error that needs to be
compensated.
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Fig. 3. Evolution of the computed power density for ideal and
non-ideal signals. Here N = 200, p = 2,A = 1. Note the latency in
detection for both cases.

C. Non-Ideal Case: Presence of Signal Transient

Next we investigate the effect of signal rise dynamics
on the recursively evaluated power density. A sample of
the microphone signal is shown in Fig. 4. It can be seen
that, due to transducer characteristics, there is a transient
before the amplitude of signal reaches the steady state. The
rise dynamics can be approximately treated as a first-order
system. Accordingly, the envelope function E(·) in (5) can
be expressed as

E[l] = 1− e l, (8)

where  �− Ts
 and Ts = 1

Fs
is the sampling interval. The rise

constant  can be identified empirically through data fitting.
Fig. 4 shows that the rising amplitude can be approximated
with a first-order system with  = 0.004 s.
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Fig. 4. Sampled acoustic signal underwater showing transient
characteristics.

Similar as in the ideal case, we can derive |Xn
p |2 for the

non-ideal case, in terms of s:

|Xp[n]|2 =
A2

4

⎡⎣(s−1


l=0

(1− e l)sin(l)

)2

+

(
s−1


l=0

(1− e l)(1− cos(l))

)2
⎤⎦ . (9)

The simulation result based on (9) is shown in Fig. 3, and as
expected, we see that detection latency t2 > t0 due to signal
transients is even greater than that in the ideal case. The value
of  affects the delay t2 in that the accumulation rate becomes
lower as the rise constant increases. For A = 1,  = 2000, the
latency is t2 = 416 samples, which is equivalent to a ranging
error of 312 cm for Fs = 200 kHz if uncompensated. The
potentially significant error necessitates a compensation step
to remove the latency.

D. Onboard Compensation of Latency

For a given  , Eq. (7) and (9) show that it will take some
s = s∗ > 0 for |Xs

p|2 to cross the threshold  , for both the
ideal and non-ideal cases. For either case, the number of
samples s∗ would represent the latency in the detection of
signal arrival. The idea of compensation is to subtract s∗ off
the timer reading, thus removing the latency introduced by
the algorithmic artifact.

We will focus on the non-ideal case, since that is what one
encounters in reality. The value s∗ of latency is a function of
,, and A, as determined by (9). However, given |Xs

p|2 =  ,
the nonlinear equation (9) is difficult to solve for s. Instead,
for a given  and the experimentally identified rise constant
 , and for a range of values A, we evaluate (9) in Matlab
and locate s∗ at threshold crossing for each value of A. A
look-up table is then created and stored onboard the robotic
fish, which can efficiently provide the compensation value
once the signal amplitude A is known, eliminating the need
of intensive computation onboard.

The following method has been adopted to measure the
steady-state signal amplitude A online. Prior to ranging, the
buzzer transmits a 100 ms pulse, which the receiving node
records after a specified amount of time (to ensure steady-
state amplitude is reached). To compute A, the receiving
node takes the sum of absolute values of the incoming signal
samples,

Ã =
g
N

N−1


n=0

|x[l]|. (10)

Since x[·] is a sinusoidal signal with amplitude A,

Ã =
2Agp

N

(
1 +

sin(/2)
1− cos(/2)

)
, (11)

which allows evaluation of A using the measurement Ã.

IV. EXPERIMENTAL RESULTS ON RANGING

A. Results of the SDFT-based Ranging Scheme

Experiments were mostly conducted across the width of
the deep side of an indoor pool. The pool has dimensions
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13×25 m2, with depth varying from 1.3 m to 3.3 m.
For the SDFT scheme, the ranging sequence for a single
measurement involves a 100 ms pulse for computing steady
state amplitude A, followed by a 35 ms pulse for actual
range estimation, with 500 ms wait period between the
two. Consecutive ranging sequences have a wait period of
1500 ms to avoid reverberant noise in the recorded signal.
At each distance increment of 91.44 cm, the amplitude,
compensated range estimate, and compensation value are
recorded ten times, and the mean is taken of each data
set as the final estimate. The ranging results, including the
measured signal amplitude at the steady state, are shown in
Fig. 5.

Consistent with the analytical results for the non-ideal
case, Fig. 5 shows that the uncompensated range estimates
can have large errors (over 300 cm). We observe the relation-
ship between the uncompensated estimate and the recorded
signal amplitude; as the amplitude drops with range, the ab-
solute error of the uncompensated range estimate increases,
which is consistent with the analysis (9). After compensation,
the absolute error reduces to less than 1.4 wavelengths
(74.3 cm) over a range exceeding 10 m. Judging in the
number of wavelengths, we note that the error under SDFT
with compensation for underwater ranging is even smaller
than the error in TOF-based in-air ranging using 40 kHz
ultrasonic signals, which has 2.3 wavelengths. It is expected
that, due to the construction of the SDFT algorithm, its
ranging error would be independent of the signal frequency
and thus the number of wavelengths is a reasonable metric.

B. Comparison with Other Methods

The SDFT-based method is also compared to three other
methods for detecting the arrival of the acoustic signal: a) the
threshold-crossing method compares the pre-processed mi-
crophone signal with a threshold and reports detection once
the threshold is crossed, b) the tone-detection method uses a
tone detector chip (LMC567, National Semiconductor) tuned
to 2.8 kHz, which declares signal arrival once the internal
phase locked loop (PLL) is locked, and c) the correlation
method, which monitors the integral of the product of Vmic

and a template sinusoidal signal sin(t) with frequency 2.8
kHz. Details of these three methods can be found in [19].

As hardware-based approaches, the threshold-crossing
method and the tone-detection methods were implemented on
an earlier prototype of robotic fish [19], while the correlation
method, which requires digital signal processing, was imple-
mented in the prototype shown in Fig. 1. As shown in [19],
with the threshold-crossing method, the measured ranges
for each fixed distance were highly scattered, implying its
great susceptibility to noise. The maximum ranging error was
about 90 cm over the range of 500 cm (beyond which the
signal was barely distinguishable from the noise). With the
tone-detection method, the ranging error was mostly under
130 cm (maximum 180 cm) for a range of about 1000 cm
[19]. The raw data for each fixed distance were also scattered.
Part of the reason for the uncertainty in lock-on times is
that the frequency of the buzzer is not strictly constant;
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Fig. 5. Experimental results on ranging underwater using the SDFT
method. (a) Estimated distance versus actual distance; (b) absolute
error with and without compensation; (c) measured steady state
amplitude A.

experimental data have shown a standard deviation of 90.4
Hz from the nominal frequency of 2.8 kHz.

For the correlation method, ranging results were collected
at five different transmitter-receiver separation distances, as
seen in Fig. 6. At each point, 10 range estimates were made
using 20 ms pulses, and the mean of the estimates was taken
as the final estimate. The absolute error in ranging is less than
120 cm over a range of about 1000 cm. Note that there is still
a large variation in the measurement results. A major cause of
the uncertainty is attributed to the unknown deviation slope
of the correlation integral [20].

From the discussions above, we can see that the proposed
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Fig. 6. Experimental results on ranging underwater using the
correlation method.

SDFT-based method not only produces the least amount of
ranging error, but also is far more consistent than other
methods. In particular, as seen in Fig. 5(a), the range es-
timates for each fixed distance under the proposed method
have little scattering, showing the robustness of the SDFT
scheme against noise and other uncertainties.

V. CONCLUSION

In this paper we have presented an effective underwater
ranging method for small robotic fish, as an important step
towards GPS-free localization of these robots in aquatic
sensing applications. A monotone buzzer and a single mi-
crophone were adopted for production and detection of
the acoustic signal, to accommodate the requirements of
low cost, compact size, and low computational complexity
for the robot. While the use of a richer acoustic signal
and/or multiple microphones could facilitate more accurate
ranging, it was not studied considering the associated cost
and complexity. A key component of the proposed ranging
scheme was a compensated sliding-window DFT algorithm
for precise detection of the arrival of acoustic signal, in
the presence of ambient noises and signal transients, with
limited computational resources. Through comparison with
three other methods, we have established the advantages of
the proposed scheme in both accuracy and robustness.

In future work experiments will be performed in a larger
aquatic environment (e.g., a lake) to examine the maximum
ranging distance under the current system, and to investigate
ways for extending the distance. We will also carry out more
extensive localization experiments, where groups of robotic
fish use their onboard localization system to demonstrate
collaborative behaviors. Another aspect of future work is
to accommodate synchronization without the use of RF, for
example, by exploring the use of acoustic communication.
This would remove the current constraint that the localization
is only performed when the robotic fish surfaces.
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