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Summary. In this paper we study a multiprogramming 

system consisting of an input-output unit (IO unit) and a 

central processor (CP). This system can be represented by 

a continuous time Markov process with states (m, n), where 

m and n denote the number of jobs at the CP and the IO unit 

respectively. The computation of the equilibrium distri- 

bution {Pro,,} of this Markov process is the purpose of the 

analysis in this paper.The analysis consists of two parts. In 

the first part, we use a compensation procedure to show 

that the equilibrium distribution {Pro, n} in those states 

(m, n) for which m + n is not too small, can be expressed as 

an infinite linear combination of product forms. Explicit 

formulae are given for the product forms and the coeffi- 

cients of this infinite linear combination. In the second part 

of the analysis, we pay attention to some numerical aspects 

of the computation of the equilibrium distribution. 

Zusammenfassung. Wir betrachten in dieser Arbeit das 

Modell eines multiprogrammierten Rechensystems, das 

aus einer zentralen Recheneinheit (CP) und einer Ein- 

Ausgabe-Einheit (IO) besteht. Das Modell ist ein Markov- 

Prozel3 in kontinuierlicher Zeit mit Zustgnden (re, n), 

wobei m die Anzahl der Auftr~ige an der CP, n die Anzahl 

der Auftrfige an der 10 angibt. Hauptziel der Arbeit ist die 

Berechnung der Gleichgewichtswahrscheinlichkeiten 

{Pm,~} des Prozesses. Im ersten Teil der Untersuchungen 

wird eine Kompensationsprozedur verwendet, um zu 

zeigen, dag Pm, n fiJr Zust/inde mit hinreichend grogen 
m + n als abz~ihlbar unendliche Linearkombination von 

Produktformausdrticken geschrieben werden kann. Es 

werden explizite Formeln ftir diese Produktformaus- 

driJcke und die Linearkoeffizienten angegeben. Im zwei- 

ten Teil behandeln wir die numerischen Aspekte bei der 

Berechnung der {Pm, n}. 
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1. Introduction 

In this paper we consider a multiprogramming system 

with two stations, an input-output unit (IO unit) and a 

central processor (CP), and an infinite source of available 

new jobs. After being released fi'om the infinite source, a 

new job makes a number of visits to the IO unit and the CP 

and subsequently leaves the system. During each visit the 

job may have to wait before being served, due to the 

presence of other jobs cycling between the IO unit and the 
CP. This system can be represented by a continuous time 

Markov process with states (m, n), where m and n denote 
the number of jobs at the CP and the IO unit respectively. 

Due to the special rule for releasing new jobs, the system is 

not a Jackson network and therefore the equilibrium 

distribution {P~,n} of this Markov process has a mgre 
complex structure than a simple product-form (ge o- 

metric) distribution. The determination of this distri- 

bution is the purpose of this paper and we shall call this 

problem the multiprogramming queues problem (MPQP), 
Hofri [6] studied this problem by exploifirlg technique~ 

developed by Kingman [7] (see also Flatto and McKean 
[4]) for the symmetric shortest queue problem (SSQP). For 

this SSQP, Kingman converts the equilibrium equations 

into an equation for the bivariate generating function for 

{P,~,n}, by which this function is given in terms of two 

univariate generating functions. Subsequently, he shows 
that these two univariate functions are meromorphic and 

he gives formulae for the poles and residues. By this result, 

the equilibrium distribution of the lengths of the two 

queues could be expressed as an infinite linear combi- 

nation of product forms. However, explicit formulae are 

given only for the equilibrium probabilities at the boun- 
daries of the state space. By using the same kind of 
analysis for the MPQP, Hofri derived similar results for the 
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equilibrium distribution {pro,n} of the lengths of the queues 

at the CP and the IO unit. However, for the MPQP these 

results are restricted to those states (m, n) for which m + n 

is not too small. The extension of the analysis for the 

SSQP to the MPQP appears to be far from trivial. For  the 

complete analysis along this line, the reader is referred to a 

recent paper [3] in which the results of Hofri are amended. 

Recently, an elementary method, called the compen- 
sation procedure, has been developed to compute the 

equilibrium distribution of the SSQP (cf. [ 1]). In short this 

compensation procedure works as follows. First, the 

method constitutes an initial solution consisting of one 

product form, which approximately describes the equilib- 

rium distribution far away from the origin of the state 

space. After that, in all next steps product form terms are 

added to the solution to correct errors on one of the 

boundaries of the state space. It can be shown that this 

procedure yields the solution of the equilibrium equations 

up to a normalizing constant. The analysis in [1] directly 
leads to the result that the equilibrium distribution of the 

lengths of the two queues can be expressed as an infinite 

linear combination of product forms; moreover, explicit 

and simple formulae are given for all equilibrium proba- 

bilities. These results easily lead to efficient algorithms for 

the computation of the equilibrium distribution and other 

quantities of interest, such as the mean number of jobs at 

the IO unit. 

Noting the extension by Hofri [6] of the analysis of 

Kingman [7] for the SSQP to the MPQP, it seems natural 

to investigate whether the analysis in [1] for the SSQP 

applies to the MPQP as well. Such an extension appears to 

be possible, but it is indeed far from trivial. Nevertheless, 

it is much simpler than Hofri 's analysis and, as in the 

SSQP case, it leads to more explicit results. 

Besides the SSQP, also the asymmetric shortest queue 

problem (ASQP) may be solved by using a compensation 

procedure (see [2]). However, the asymmetric case is much 

more difficult than the symmetric case. For  the ASQP one 

has to analyse a completely different Markov process (in 

this case the state space consists of two quadrants instead 

of one) and the equilibrium distribution appears to be a 

binary tree of product  forms. 

Let us end this section with an outline of the contents 

and main results of this paper. In Sect. 2 we present the 

model of the multiprogramming system. Next, we apply 

the compensation procedure to the MPQP in Sect. 3. This 

procedure generates an infinite linear combination of 

product forms; explicit and simple formulae are given for 

the product forms and the coefficients in this linear 

combination. The main result of this paper is proved in the 

Sect. 4 and 5 and it states that the equilibrium distribution 

{Pro, n} in those states (m,n) for which m+n is not too 
small, is equal to the infinite linear combination of 

product forms generated by the compensation procedure. 

In the Sects. 6 and 7 some numerical aspects of the 

computation of { Pro, n} are discussed. For  the computation 
of the equilibrium probabilities in those states (m, n) for 

which m + n is not too small, bounds are derived for the 

errors caused by truncating the infinite linear combina- 

tions, and after that numerically stable formulae are 

presented to compute one by one the remaining probabili- 

ties. Finally, Sect. 8 is devoted to the computation of a 

number of relevant quantities, such as the mean value of 

the number of jobs at the IO unit, while some concluding 

remarks are made in Sect. 9. 

2. Model and problem formulation 

In this section we describe the multiprogramming system 

as studied by Hofri  [6] and we present the equilibrium 

equations for the equilibrium probabilities of the relevant 

continuous time Markov process. 

A 
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Fig. 1. The multiprogramming system 

Consider the multiprogramming system as shown in 

Fig. 1. This system consists of an input-output unit (IO 

unit), a central processor (CP) and an infinite source of 

new jobs (queue III), which are waiting to start their 

service by the system with a visit to the IO unit. A variable 

number of "old" jobs cycles between the IO unit and the 

CP. After being served by the IO unit, a job leaves the 

system at point C with probability p, 0 <p  < 1, and joins 

queue II to be served by the CP with probability 1 - p .  

After a visit to the CP a job is recycled to the IO unit and 

joins queue I. If the IO unit becomes idle, the IO unit starts 

servicing a job from queue I. If and only if queue I is 

empty, the IO unit starts the service of a new job from 

queue III, where always jobs are available. So, jobs in 

queue I have nonpreemptive priority with respect to the 

jobs in queue III. 

It is assumed that the IO unit and the CP have a FCFS 

service discipline, and that service times at the IO unit and 

the CP are exponentially distributed with parameter p' ,  

/2' > 0, and p,/~ > 0, respectively. Since the IO unit always 

has jobs available, it generates a stream of jobs according 

to a Poisson process with intensity/~'. The stream of jobs 

leaving the system at point C therefore is a Poisson stream 

with intensity 

t / = p p ' ,  

and the stream of jobs joining queue II is a Poisson stream 

with intensity 

,~ = (1 - p)kt'. 

As a consequence, the CP process can be modeled as an 

MIMI 1 queueing system. 
The multiprogramming system may be represented by 

a continuous time Markov process with states (re, n), 
m, n = 0, 1,.. . ,  where m represents the length of queue II, 
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m--.~ 

Fig. 2. The transition-rate diagram 

including the job being served by the CP, and n represents 

the lenght of queue I, excluding the job being served by the 

IO. This process constitutes a denumerable, irreducible, 

aperiodic Markov chain. The transition rates of the 
process are illustrated in Fig. 2. 

Since the Markov process is certainly not ergodic if 

2 >/~ (in that case the Markov process which describes the 

length of the queue at the CP is not ergodic), we assume 

2</~. In Sect. 5 we will see that this condition is also 

sufficient to prove the ergodicity of the Markov process. 

Let {p~,,} be the equilibrium distribution of the 

Markov process. Then {p~,,} satisfies the equilibrium 

equations 

X P m , n = C t P m + l , n - 1  +)~Pm I,n+l +qPm, n+l 

i fm > 0, n > 0, (1) 

Q.t + 2)pm, o = 2p,~_ 1, o + 2p~ l, 1 + r]Pm, 1 

if m > 0, n - 0, (2) 

(2+~)po , ,=/~pl , ,_ l+qpo, ,+l  i fm =0,  n >0 ,  (3) 

2P0,0 = qPo, ~ if m - 0, n = 0, (4) 

where 

x :-/~ + 2 + r/. 

The determination of the equilibrium distribution {Pm,n} is 

the objective of this paper and we call this problem the 

multiprogramming queues problem (MPQP). For a more 

extensive description of the problem we refer to Hofri [6]. 

Remark 1 (service discipline). For clarity, we have assumed 

that the IO unit and the CP have service discipline FCFS. 

However, as long as the equilibrium equations remain the 

same, assuming another service discipline (for example 

processor sharing) makes no difference for the results in 
this paper. 

3. The compensation procedure 

Comparing the transitions for the MPQP (see Fig. 2) with 

the ones for the SSQP (see for example [1], Fig. 1 b), we see 
that the structure of the transitions is nearly the same for 

both problems. This is probably an explanation for the 

fact that Hofri [6] was able to analyse the MPQP by using 

the same technique as Kingman [7] used for the SSQP. To 

the MPQP we shall now apply the compensation pro- 

cedure that has been developed in [1] for the SSQP. The 

compensation procedure itself is described in this section, 

while in the next two sections it is investigated to what 

extent this method yields the equilibrium distribution. We 

will see that the latter question raises difficulties not 

encountered when answering the same question for the 

SSQP. 

Using the compensation procedure we try to construct 

a solution of the equilibrium equations with product 

forms as building blocks. This procedure only succeeds, if 

the equilibrium distribution can be written as a linear 

combination of product forms: 

o o  

Pm,n = CiCCi t~i, m > O, n > O. 
i -O 

The first step of the compensation procedure consists of 

chosing an initial product form a{fi~ which asymptotical- 

ly describes the equilibrium distribution, i.e. far away 

from the origin of the state space. If we require that a{fl~ 

describes the equilibrium distribution {Pm, n} for large m, 
i.e. 

Pm, n ~-" I-' l ~ m p n  ,~ ~,0 p0  (5 )  

for large m, where C is a constant, then the knowledge 

about the behavior of the CP yields the choice for a0. Since 
the CP behaves like an MIM[1 queueing system with 

arrival intensity 2 and service rate /~, we know the 

marginal equilibrium distribution {p~,. } of the number of 

jobs at the CP: 

On the other hand Pm,. equals 

c ~  

Pro , .=  E P . . . .  m ~ O. 

n 0 

Now, substitution of (5) in this last expression yields 

(7) 

1 
Pm,. ~ C-1 _ _  a~. 

1 - f lo  

for large m. Combination of this expression and (6) shows 

that we have to choose a0=2//~. The choice for the 

parameter/?0 now follows by the fact that requirement (5) 
implies that a~fl~ has to satisfy equilibrium equation (1). 
Substituting a~/?~ in (1) and then dividing both sides of the 
equation by t~ 0~m 1/~n/j0 1 yields a quadratic equation for fi0. 

This result is stated more generally in the following 
lemma. 

Lemma 1. The product form ctmfl" is a solution of  Eq. (1) i f  
and only i f  a and fl satisfy 
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X 5  r = / 1 5  2 + /~ r  2 -k / / S t  2 (8) ~ r  - q r  ~ 
X 1 + X 2 

/1 
By Lemma 1, we find two possible values for rio, namely 1 

and 2/(u + q). We set r0 = 2 / ~  + ~/), because r0 = 1 implies 

that for large m the equilibrium probability Pm,~ is 

independent of n, which is very unlikely. Besides, it does 

not lead to convergence of the sum of all equilibrium 

probabilities. 

Besides (t)  the product form 5~r ~ also satisfies Eq. (2) 

on the boundary n = 0. Because 5,~,r~ violates Eq. (3) on 

the boundary m = 0, the next step of the compensation 

procedure consists of adding a correction term clamr ~ to 

5,#r~, such that 5~'r~ + cl a'~r ~ satisfies (3) as well as (1). 

Since (3) has to be satisfied for all n, it follows immediately 

by substituting a~'r~ + cl 5mr ~ in (3) that we have to take 

r = rio. Next, Lemma 1 yields the possible choices for 5 in 

the following way. Because of the linearity of (1), the 

linear combination 5~,r~ + el amr~ is a solution of this 

equation if 5mfl~ is a solution of this equation. By Lemma 

1, the product form amr~ is a solution o f ( l )  if a equals 50 

or cq, where 50 is the already known root of the quadratic 

equation (8) for fixed f l=ro and a~ is the second root, 

~ = ( 2 / ~  + ~/))2. Because we need a correction term, we 

take 5 = 51. Finally, by again substituting a~r~ + el 5~fl~ 
in (3), we get 

r 0  -- 51 
Cl 

50 -- r o  

In a more general formulation this argument gives the 

following lemma. 

yields (9). [] 

By adding a correction term to our initial solution we have 

corrected the error on the boundary m = 0, but at the same 

time we introduced a new error on the boundary n = 0. In 

the same way as above, one can prove that this new error 

can be corrected by adding a correction term cldl 5~/~f, 

where/~1 is defined as the smallest root  of  the quadratic 

equation (8) for fixed ~z = al, and dl is determined by 

Lemma 2(ii). 

It is obvious that the process described above can be 

continued by correcting the violation of alternately Eq. (3) 

on the boundary m = 0 and Eq. (2) on the boundary n - 0. 

In this way the compensation procedure yields an infinite 

linear combination of product forms 

Xm, n = ~ (Ci 5m + ei+lSim+l)dir n (11)  

i=0 
r 

m /'t 2 ?~ m = codoao ro + (cliff n + di+lfli+l)Ci+15i+l, 
i=0 

which, hopefully, provides the equilibrium distribution up 

to some normalizing constant. First, we define the pa- 

rameters 5i and ri and the coefficients ci and d,. 

The parameters ai and fli are defined simultaneously. 

For  the initial values 50 = 2//1 and r0 = 2/(/1 + q) we define 

the sequence 

Lemma 2. 

(i) Let x~ and x2 be the roots of  the quadratic equation (8) 
for f ixed r, r4=O. Then the linear combination 
klx~]3" +k2x~r ~ satisfies the Eqs. (1) and (3) if  k~ and k2 
satisfy 

k2 x2 - r kl. (9) 

Xl - r  

(ii) Let Yl and y2 be the roots of  the quadratic equation (8) 
for f ixed a, ar  Then the linear combination 
kl amy~ + k25~y~ satisfies the Eqs. (1) and (2) if  kz and k2 

satisfy 

k2 1 -- Y2 kl" (10) 
1 - Yl 

Proof We only prove part (i). Part (ii) can be proved along 

the same lines. By Lemma 1, x'~r ~ and x~r" are solutions 

of (1), so, by linearity, klx'~r" + k2xPr ~ is a solution of (1) 

for all kl and k 2. N o w ,  by substituting kl x~'r ~ + k2x~r ~ in 

(3), we get 

k2 = ('~ + ~/)r - ~/r 2 - /1x l  kl. 

(~ + v ) r  - q r  2 -/1x2 

Substituting in this expression the equation for the sum 

Xl + x2 of the roots of the quadratic equation (8) for fixed r ,  

flo r l  
7 N 7 "~ 7 

a 0 51 52 

f12 

such that for all i > 0 the parameters ai and 5i+ 1 are the 

roots of the quadratic equation (8) for fixed fl =fl;, and fli 
and fl~+l are the roots of the quadratic equation (8) for 

fixed a=a~+l. From this definition it follows that the 

parameters ai and ri  can be computed recursively by the 

formulae 

~r~ ai5i+ 1 = -, i> O, (12) 
/Z 

flifli+l /1a2i+1 , i>__O, (13) 
/[ + / /5 i+  1 

which both are formulae for the product of the roots of the 
quadratic equation (8)�9 From these formulae it follows by 

induction that for all i the numbers ai and ri  are real and 

positive. 
By Lemma 1, all product forms 5mfl~ and aT+ lfl~ satisfy 

(1), and thus any linear combination of these product  

forms also satisfies (1). We now define for i>_0 the 

coefficients ci respectively di such that {xm,n} also satisfies 

the boundary conditions. Therefore, for i=0 ,  1 . . . .  the 

coefficients ci+l and di+~ have to be generated such that 

(ciam+ci~la~+l)fl~ satisfies (3) and (difl~+di+lfl~+a)a~+l 
satisfies (2). By Lemma 2 this yields 
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g i  ~i+1 
ci+~ ci ,  i > 0 ,  (14) 

~i  - - /g i  

1 - / g i + j 4 ,  i > 0 .  (15) d /+ l  
1 -/g~ 

For  Co and do we may take arbitrary values. We take 

Co = 1 - a0 and do = 1 /go, since then the first term of{x,~,,} 

is a normalized two-dimensional product form distri- 

bution. Besides, in this case we have the following simple 

formula for d,: 

4 : ( -  1)'(1 -/g,), i > O. 

This completes the definition of the solution {Xm,,} 
generated by the compensation procedure. Since we do 

not know whether the series x~,, converge, {xm,,} is called 

a formal  solution. 

Remark 2 (explicit formulae for  a~ and /gi). It  is possible to 

derive explicit formulae for ai and/gi (cf. Lemma 3 in 

Kingman [7]). Combining (13) and the formula for the 

sum/gi +/gi+ 1 of  the roots of  the quadratic equation (8) for 

fixed a = a~+ ~ yields 

1 1 x 
- - q  - , i > 0 .  
/gi /gi+ 1 /2 a i + 1 

4. Absolute convergence of the series of product forms 

In this section we prove that there exists a nonnegative 

integer N such that the series Xm,~ are absolutely conver- 

gent in all states (m, n), m > 0, n > 0, m + n > N. The series 

xm,, in the other states are divergent. As a consequence, 

the constructed solution only satisfies the equilibrium 

equations in which all equilibrium probabiIities p~,, 

belong to states where Xm,, converges. So, {Xm,~} only 

satisfies the equilibrium equations in the states (m,n), 
m _> 0, n > 0, m + n > N, (m, n) 4 = (N, 0) (compare Eqs. (1) till 

(4)). 

Theorem 1 (absolute convergence). There exists an integer 
N, N >_ O, such that." 

(i) The series xm.n is absolutely convergent for  all m>_O, 

n>O, m + n > N .  

(ii) Z Ixm, nt< ~.  (16) 
m>O,n>O 
m+n>N 

Before we can prove Theorem 1, we need some informa- 

tion about  the behavior of  the sequences {ai}, {/g~}, {ci} and 

{d,.}. This information is easily derived by studying the 

behavior of  the sequences [ui} and {vi}, where ui and vi for 

all i_> 0 are defined by 

Next, adding this relation for i -  1 and i, and eliminating ai 

and ai+ 1 by using (12) and the formula for the sum ai + ai+ 1 

of the roots of  the quadratic equation (8) for fixed/g =/gi, 

yields the following inhomogeneous second order linear 

recurrence relation for {1//gi}: 

1 2 1 x ( x  r/) 
- - + - - +  i > 1 .  
/gi 1 /gi /gi+l  ~ /~/gi /~ ' - -  

This recurrence relation can be solved by standard means, 

yielding 

~1  = A C 1 + B r i +  - -  i > 0 ,  
/gi .{-i ' - -  

a i  0/i+ 1 
u~= /g---~-, v ,= /g--7- (17) 

By first considering the sequences {ui} and {vi}, and next 

the sequences {ai}, {fii}, {ci} and {di}, we get the following 

results. 

Lemma 3. 

(i) AS i-~ ~, then 

z + R  z - R  
u i T A2 - - ,  Ui ~ A1 , (18) 

2/2 2/2 

where 

where 

x - X/x 2 - 42/~ 
-C= 

x + ~ x 2  42/2 ' 

A =  rlx 
x 2 - 42/2 ' 

and B and C follow from the initial values of~go = 2/(/2 + */) 

and /gl=22/2/((/2+,l)((/2+q)2+r12)). For  ai we find 

ao = A//l and 

(+)1 
x 2 A + B ( I + r ) v i + C  1+ --v i > 0 .  

/2 tTi+ 1 /7 ~ ' __ 

R = ~/x 2 - 42/2. 

(iO 0 < / 2 - 2 + ~ / < R  < x ,  

0 <A~ <2//2 < i <A2. 

(19) 

(20) 

(iii) As i -~ ~, then 

a i + l  and/gi+l .L A1 Ci+l 

ai /gi A2 " ci 

1 - A1 di+l 
-~ -1 .  (21) 

A 1 -  1 ' di 

(iv) The terms of  the series ( l l )  for  Xm,, are alternating on 
account of" 

1 > a0  > / g 0  > a 1 > / g l  > " "  > 0 ,  

di+l 
- - <  O for  all i >_ O. 

4 

ci > O for  all i >_ 0, 

(22) 
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P r o o f  (i) By substituting 

2 
glib i : - -  

/1 

in 

integer Nhas been defined such that for m + n > Nthe  limit 

in (23) is smaller than unity. As a consequence, we may 

conclude that for m + n _> N the series 

2 cidia?fl'/ and 2 c~+~dia~m+lfi'I 
i=0 i=0 

V i 4- Ui+ 1 = - -  
r 

(to prove these two equalities, one needs (12), (13) and also 

the formula for the sum fii+fli+a of the roots of the 

quadratic equation (8) for fixed a = a~+ 1), we get for {ui} 

and {vi} the iteration schemes 

b/i+ 1 = - -  ~ -- , V i = - -  Z - - - -  : 
/.t r vi+l 

with initial values u0 = (/.t + q)/p and v0 = 2/(/1 + 1/). By 

these iteration schemes, u~ increases to A2 and v~ decreases 

to A ~, where A ~ and A2 are the fixed points of the iteration 

schemes, that is, the roots ofA = l / i t .  (~c-2/A). 

(ii) The inequalities in (19) follow from the definition of R 

and the fact that xa-42/~  can be rewritten as 

(~ t -2+q)z+4r /2 .  The inequalities in (20) follow from 

(19). 

(iii) The first three limits in (21) can be derived from the 

limits of the sequences {ui} and {vi} after having rewritten 

ai+ 1 /a i ,  fli+ 1/fl i  and ci+ 1/Ci to: 

a i+ l  Vi ~i+1 Vi Ci+ 1 1 vi 

C~i Hi ~i Ui+, ci ui - 1 

For  the last limit in (21), one needs (15) and the fact that 

fli ~ 0 as i -~ ~,  which follows from the limit behaviour of 

J~i+ 1 /~ i  and (20). 
(iv) The inequalities for ai and fi~ follow from the fact that 

u~ > 1 and vg < 1 for all i>  0, while the inequalities for c~ and 

di+ 1/di are shown by using the formulae (14) and (15) and 

the inequalities for ai and fli. [] 

The knowledge about the behavior of ai, fli, c~ and di 

enables us to prove Theorem 1. To show the first part of 

this theorem, consider a fixed m > 0 and n > 0. By Lemma 

3 (iii), we obtain that 

]ci+ ,di+ l aiml[3'l+ l] 

Icidiam~'zI 

I ci + 2di + l a im2flT+ l [ 

] ci+ ldiam+ l ~ l  

and 

l - - A 1  / A l l  m+n 

A 2 - 1  \ ~ 2 J  ' (23) 

as i --* ~.  Now define N as follows. 

Definition. Let N, N>_ 0, be the smallest integer for which 

1 -  A I  ( A l  l N 

A 2 -  1 \-~-2 ] < 1. (24) 

Because A1/A2< 1 (see (20)), N is well-defined, and the 

are absolutely convergent. Therefore, also the series x~,n is 

absolutely convergent. This completes the proof  of The- 

orem 1 (i). The set consisting of the states (re, n), m >_ 0, 

n >_ 1, m + n >N, is called the convergency region, while the 

set consisting of the remaining states is called the diver- 
gency region. For the states in this divergency region, the 

limit in (23) is greater than or equal to unity. It is easy to 

see that Xm,, diverges in those states (m, n) in the diver- 

gency region for which the limit in (23) is greater than 

unity. For  those states for which the limit in (23) equals 

unity, this is more difficult to prove. At the end of this 

section, Remark 3 shows that in general the divergency 

region is rather small. 

The second part of Theorem 1, needed to define a 

normalizing constant, is proved with the help of Lemma 

3 (iv) and Theorem 1 (i). Due to Lemma 3 (iv), the series in 

(16) is bounded as follows: 
o o  

2 
m>0,  n>0 

m+n>_N 
m>_O,n>O i=0 

m+n>_N 

N - 1  o, 

n=0 m = N - n  i=0 

n = N  m 0 i=0 

= 2 2  
n=o i=o 1 - ai 

+ 2 Ci 
i=O 1 -- a i 

N - '  

<-2 
n 0 

4- CY+I i -- gi+l 

4- Ci+l - -  1 lid, l /~ 
1 - a i + l  j 1 - f l i  

- -  N - n  n 1 2 (ciaN n 4- Ci+lai+l )ldil~i 
1 -  ao n=o 

1 1 

1-ao 1-flo Z (ci+ci+l)[dilf lN' 
i=0 

Since the series in this last expression converge by 

Theorem l(i), we may conclude that the series in (16) 

converges as well. 
The existence of the divergency region pinpoints the 

error made by Hofri  [6] in his analysis of the MPQP. Hofri 

derived that all equilibrium probabilities could be written 

as infinite sums of powers, which correspond to our 

infinite linear combinations of product forms, and he gave 

explicit formulae for the equilibrium probabilities on the 

boundaries. However, he overlooked the possibility of 

divergence of these infinite sums (see [3]). The existence of 

the divergency region is the essential point which makes 
the MPQP more complicated that the SSQP. 
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N= 1 

0 . 5 ~  

0 1 

Fig. 3. The value of N 

N--0 

Remark 3 (value of  N). By considering the definitions ofAb 

A2 and N (see (18) and (24)), one can see that the value of N 

completely depends on (2 + ~/)//~ and p. In general the 

value of N is rather small, which is illustrated in Fig. 3, 

where the value of Nis given as function of (,t + r/)//l andp. 

The boundaries between the regions in this figure are 

derived by writing (1 AI) / (A2-  1). (AI/A2) i for i = 0, 1,2 

as a function of (2 + r/)/p andp. We see that the divergency 
region is empty (i.e. N =  0), if and only if the IO unit works 

faster than the CP. By looking at the limiting behavior of 

(1 -A1) / (A  2 - 1) and A1/A2, one can prove that N ~  as 
0 <(2 +r/)//~ < 1 andp  10. 

5. The main theorem 

In this section we will show that the formal solution {xm,~} 

restricted to the convergency region is a solution of the 
equilibrium equations of the Markov process restricted to 

this convergency region. Therefore, up to a constant {Xm,~} 
equals the equilibrium distribution of this restricted 

Markov process, which in turn equals the equilibrium 

distribution {p~,~} of the original Markov process up to 

another constant. As a consequence, our main result 

states that in the convergency region {Xm,~} equals {Pm,n} 
up to a normalizing constant. Due to our suitable choice 

for the coefficients co and do, this normalizing constant 
appears to be equal to one. We remark that the restricted 

Markov process approach has been used earlier for the 

asymmetric shortest queue problem (ASQP), where a 

divergency region occured as well (see [2]). 

Theorem 2 (Main Theorem). For all m > O, n > O, m + n > N, 

P m ,  n - -  X . . . .  ( 2 5 )  

and the equilibrium distribution of the restricted process 

will be denoted by {p~)~}. 

For the restricted Markov process all transition rates 

are equal to the corresponding transition rates for the 

original unrestricted process, except the transition rates 

from the states (m, N - m ) ,  0 < m < N - 1 ,  to state (N, 0). 
The latter transition rates correspond with visits to the 

divergency region in the unrestricted process. Because 
these visits always end with a transition to state (N, 0) (see 

Fig. 2), the transition rate of the restricted process from 

(m, N -  m), 0 < m < N -  1, to (N, 0) is equal to r/(see Fig. 4). 

I(0,N) 

,0) 

m ----~ 

Fig. 4. The transition rates to state (N, 0) for the process resticted 
to ,/f (x) 

Now, it is easy to verify that all equilibrium equations 

of the restricted process are equal to the corresponding 

equilibrium equations of the unrestricted process except 

for the equation in (N,0). Because our constructed 

solution {Xm,~} satisfies the equilibrium equations in the 

states ~(N)\{(N,0)} for the unrestricted process, {Xm,~} 
also satisfies the same equations for the restricted process. 

But, for this restricted process, {Xm,, } then also satisfies the 

equilibrium equation in the state (N, 0), since inserting 

{Xm,,} into the other equations of the restricted process 

and then summing over these equations and changing 

summations (which is allowed by virtue of the absolute 

convergence of {Xm,,}, see (16)) exactly yields the desired 

equation. 

Apart from the fact that {xm,,} is a solution of the 

equilibrium equations of the restricted process, we also 

need the fact that {Xm,,} is a nonnull solution (i.e. not 

identical to the null solution). This latter fact can be 

proved by showing that for m > N  the sum of x~,n over 

n _> 0 is nonnull. For m >_N, we get (use expression (25) for 
d,+~) 

n=0  n=0  i = 0  

Consider a time interval of infinite length and the visits of 

the original Markov process to the states during this 
interval. The process restricted to the convergency region 

is obtained from the original process by skipping the time 

intervals during which the original process is in the 
divergency region. In the remainder of this section the 
convergency region is denoted by 

~<~v) = {(m, n)lm > O, n > O, m + n > N} ,  

= (1 - ao)ag 

-- ~ '  de 1 

i=o 1 ,8~ 

= ( 1  - ~ o ) a ~  

1) 
- - + d i + l  1-fii+~ ci+xaT+l 

(26)  
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Since this expression is greater .than null, {Xm, n} is a 

nonnull solution. Remark that the form of expression (26) 
corresponds to the fact that the CP behaves like an MIMI  1 

queueing system. 

Because {x~,,} is a nonnull solution of the equilibrium 

equations of the restricted process, and because the sum of 

all Ix,.,.I is finite according to Theorem l(ii), we may 

conclude by a result of Foster [5] (see Theorem 1 of that 

paper) that the restricted process is ergodic and the 

solution {Xm,,} can be normalized to produce the equilib- 

rium distribution s _(N) ~ of this restrictes process: tPra, n$ 

~,, = ~ ,  Xm,, Xm,,, (re, n) e ~ ( m .  (27) 

m>0, n>0, 
m+n>N 

Since the number of states in the divergency region is 

finite, the ergodicity of the restricted process implies the 

ergodicity of the unrestricted process. As a consequence, 
in the convergency region the equilibrium distribution 

{P~n ,} of the unrestricted process is proportional to the 

equilibrium distribution {p(mU,)~} of the restricted process, 

p,.,, = n)(~<N))p(mN,). , (m,n)  e ~(N),  (28) 

where IP(~//'(N)) represents the probability that the unre- 

stricted process is in the convergency region. Substitution 

of (27) in (28) proves that there exists a constant C such 

that 

Pm,n = C - i x  . . . .  (m, n) ~ U(N). 

Insertion of this relation and equation (26) into formula 

(7) shows that 

P~.. = C -1 ~ .  Xm, n= C -1 1-- 
n=0 

for m >N. Comparing this expression with (6) yields that 

C has to be equal to C = 1, which completes the proof of 

the Main Theorem. 

6. Bounds needed for the computation of the Xm, n'S 

By the Main Theorem, we are able to compute the 

equilibrium distribution {Pro, n}, at least in principle. We 

now will pay attention to some numerical aspects. The 

numerical part of the analysis of the MPQP is described in 

the next two sections. In the present section we will derive 
bounds for the errors caused by truncating the series Xm,, 

and we will treat the computation of the remaining 
equilibrium probabilities in the divergency region in the 

next section. 
The computation of the terms of the series x,,,, needs 

no more attention, since the coefficient ai, fl;, ci and di can 
be computed recursively by the formulae (12) till (15). 
What does need more attention is the approximation of 

the series Xm,, by partial sums. For m > 0, n >_ 0, m + n > N 

and k >_ 0 we define the partial sum X~,n by 

k 

Xkm," : 2 (Ciam + Ci+lO~im+l)di~' (29) 

i=0 

and we will derive bounds for the absolute (and relative) 

error in Xkm,, with respect to xm,,. Remark that the terms of 

Xm,, are alternating. So, if they would also be decreasing in 

absolute value (which is the case for the SSQP), then the 

error of x~,, would be bounded by the k-th term. 

However, numerical experiments show that in general the 

terms are not monotonously decreasing. Therefore, a 

more subtile approach is needed to obtain bounds. 

For the derivation of the bound for the absolute error 

in Xkm,, a preliminary result is formulated in Lemma 4. 

L e m m a  4. L e t  m > O ,  n > O ,  m + n >  N and k >O. 

Then fo r  all i >_ k, 

(Ci+lam+l + ce+2atm2)ldi+llflT+t 

m n 
< R(m,  n, k)(ci am + Ci+lat+l)ldilfli, (30) 

where R(m,  n, k)  is defined by 

R ( m , n , k )  1 - A1 1 

(a~/flk) - 1 1 - flk 
- - ~  / \---fl-~-k / "(31) 

Proo f  By Lemma 3 and the formulae (14) and (15) for ct+ 1 

and dr+l, we find for i>_k 

m 

Ci+lldi+llai+1fli+l 

cil dil a~' /37 

fli - ai + j 1 - ,fit + 1 

1 - v i  1 - f l i + l  

1 - A 1  1 

- ui - 1 1 - fli 

1 - A 1  1 

- U k - - 1  1--[3k 

at / \ ~t / 

ak / 

= R (m, n, k), 

and in the same way 

ci+ 2[di+ l[aim2fln+ l ~ R(m,  n, k),  
m n 

ce+ xldelai+ tfle 

from which (30) follows immediately. 

By Lemma 4 the terms of the series 

k 
Xm, n -- Xm, n = 2 (eiam + Ci*lCtim+l)difln 

i=k+ l  

[] 
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are decreasing in absolute value i fR(m, n, k) < 1. Since the 

terms of this series are also alternating, in this case the 

absolute value of Xm, n-Xm,,  is bounded by the absolute 

value of the first term of the above series. This immediate- 

ly yields Lemma 5. 

Next, the remaining equilibrium probabilities at level I are 

obtained by solving the system consisting of the equilib- 

rium equations in the states (i, l -  i), 0 < i < l -  1: 

(2 + r/)p0,l = tiP1,1 1 + t/P0,l+l, (34) 

Lemma 5. Let m>O, n>O, m+n> N and k>_O. 

I fR(m,  n, k )< 1, then 

xPi, l - i --ktPi+u i-1 + 2Pi-l,l i+1 + P]Pi, l+l-b 

0 < i < l - - 1 .  (35) 

- Xm, , l<R(m,n ,k) (ckap + Ck+la'~+l)[dklfl~. (32) iXm, n k 

We remark that the bound in Lemma 5 for k --. ~ and fixed 

m and n decreases slowly if m + n ~ N ,  and fastly if 

m + n >> N, since the function R (m, n, k) satisfies the follow- 

ing properties: 

�9 R (m, n, k) { R (m, n) as k ~ ~ ,  where R (m, n) is defined by 

R(m,n)  
A 2 - 1  \ A 2 }  " 

/ - - !  

�9 R ( m , n , k )  decreases monotonously  and exponentially 

as m ~ ~ for fixed n and k. 

�9 R ( m , n , k )  decreases monotonously  and exponentially 

as n --' ~ for fixed m and k. 

We see that the limit R(m, n) is smaller than unity if and 

only if m + n >_N. 

Remark 4 (relative error). In this section we have derived a 

bound for the absolute �9 k error in x~,,. But from this we can 

also get a bound for the relative error in ~ xm,,. Namely, if 

- Xm,n[<_ ek, iXm, n k 

However,  this system of l equations can be reduced to 1 

equations f rom which the equilibrium probabilities P~,t-~, 

O < i < l - 1 ,  can be computed one by one. Before we 

formulate this result in Lemma 6, we define the sequence 

{Yi} by the homogeneous second order linear recurrence 

relation 

Yi  = ;~Yi 1 -- 2/zyi-2, i < 2, (36) 

with initial values Y0 = 1 and Yl = (4 + I/). For  this sequence 

an explicit formula is given in Remark 5 below, from 

which one easily derives that yi > 0 for all i > 0. 

Lemma 6. For i = l -  1, l - 2 ,  ..., 0: 

i 

Yi+iPi ,  l i = f l Y i P i + l , l  i - I  + E 2 i - J t l Y i P j ,  l+l J" (37) 
j -o 

Proof Relation (37) is proved by induction with respect 

to i. For  i = 0 relation (37) equals (34). Next, assume that 

(37) is valid for i, 0 < i < l -  1. Then adding 2 times (37) for i 

and Yi+ 1 times (35) for i + 1 shows that (37) is also valid for 

i+1.  [] 

k 
and I Xm, n [ > ek,  then the relative error in Xkm, n is bounded by 

]Xm, n k ]Xm, n k -- Xm, n] '~k - -  Xm, n[ ~ 

iXm, n] --  k k --  k " IX,. , .I--IXm,. -- Xm,.I [X~,.I--e~ 

7. Computation of the equilibrium probabilities 
in the divergency region 

In this section we discuss the computat ion of the equilib- 

rium probabilities in the divergency region. Of  course 

these probabilities can be obtained by solving the system 

consisting of the equilibrium equations in the divergency 

region. However,  we will derive numerically stable formu- 

lae to compute these probabilities one by one. 

With level l, l>  0, we denote the states in which there 

are l+ 1 jobs in the system, i.e. the states (m,n), m>_O, 

n _> 0, m + n = l. We now show that the equilibrium proba-  

bilities at level l, l > 0 ,  can be computed given the 

equilibrium probabilities at level l+  l. First, the prob-  

ability Pt, 0 is obtained by balancing the stream out of  the 

set of  states (m, n), m > 0, n > 0, m + n < l, and the stream 

into this set of states: 

1 

2pl,0 = 11 ~ Pj, I+I-j.  (33) 
j - 0  

In the formulae (33) and (37) all terms at the right hand 

side are positive. This means that, if the equilibrium 

probabilities at level l+  1 have been computed with 

relative accuracy e, then the equilibrium probabilities at 

level l are computed with the same relative accuracy e, by 

these formulae, So, the formulae (33) and (37) are 

numerically stable. As a result, if the equilibrium proba-  

bilities at level N have been computed with relative 

accuracy e and one computes the equilibrium probabilities 

at the levels N - 1 ,  N - 2 ,  ..., 1 with the help of  the 

formulae (33) and (37), then all equilibrium probabilities 

in the divergency region are computed with the same 

relative accuracy e. 

Example. The results presented so far in this paper  are 

used in a program that computes the equilibrium proba- 

bilities up to a certain level L and with a certain relative 

accuracy e. For  the equilibrium probabilities that are 

computed with the help of the series Xm,, (i.e. the 

equilibrium probabilities at the levels N up to L), this 

program also produces the number  of  iterations (= 

number  of  terms of Xm, n) needed to compute xm,~ with the 

given relative accuracy e. For  the case kt' = 0.75,p = 0.2 (so 

r/= 0.15 and 2 = 0.6) and/1 = 1 (in this case N -  1) we have 

computed with this program the equilibrium probabilities 

up to level L = 10 and with relative accuracy e = 10 -4. The 

results are presented in Tables 1 and 2. These results have 
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Table 1. The equilibrium probabilities for the example 
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10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

0 

0.0012 
0.0023 0.0008 
0.0044 0.0015 0.0006 
0.0083 0.0029 0.0012 0.0006 
0.0158 0.0056 0.0023 0.0011 
0.0293 0.0106 0.0044 0.0021 
0.0520 0.0196 0.0082 0.0039 
0.0833 0.0346 0.0151 0.0074 
0.1048 0.0546 0.0264 0.0135 
0.0779 0.0661 0.0405 0.0232 
0.0195 0.0427 0.0446 0,0341 

0.0006 
0.0011 0.0006 
0.0021 0.0012 0.0007 
0.0039 0.0022 0.0013 
0.0074 0.0042 0.0025 
0.0134 0.0079 0.0047 
0.0227 0.0143 0.0088 

0.0008 
0.0015 0.0009 
0.0028 0.0017 0.0010 
0.0053 0.0032 0.0019 0.0012 

0 1 2 3 4 5 6 7 8 9 10 
m---' 

Table 2. The numbers of iterations needed for the example 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

2 
2 2 
2 2 2 
2 2 2 2 
3 2 2 2 2 
3 3 2 2 2 2 
4 3 3 2 2 2 2 
5 4 3 3 2 2 2 
9 5 4 3 3 2 2 

33 9 5 4 3 3 2 
34 9 6 4 3 3 

2 
2 2 
2 2 2 
2 2 2 2 

0 1 2 3 4 5 6 7 8 9 10 
m---' 

been computed in less than one second on an IBM- 

compatible P C \ A T  with a numerical coprocessor. 

Remark 5 (explicitformulaforyi). Since yi has been defined 

by a homogeneous second order linear recurrence relation 

(see (36)), we can derive an explicit formula for Yi by 

standard means. We find 

r 2 - - ( 2  + 0 )  " (2  + ~ ) - - ~ 1  ' 
Yi v]+ r~, i>O, 

where 

x - R  x + R  
7;1 - - ,  722 ~ - -  

2 2 

By using (19) we can derive that 0 < ~1 < (2 + q) < "g2, from 

which we obtain Yi > 0 for all i > 0. 

Remark 6 (reduction of  computing time). As is indicated in 

Table 2, the computation of the equilibrium probabilities 

at level N with the help of the series Xm,n needs relative 

large numbers of iterations, while these equilibrium 

probabilities can be computed with evidently less effort 

with the help of the formulae (33) and (37) given the 

equilibrium probabilities at level N+  1. So, it may be 

useful to compute all desired equilibrium probabilities at 

the levels M and higher, M >  N, with the help of the series 

x . . . .  and the equilibrium probabilities at the levels M -  1 

and lower with the help of the formulae (33) and (37). 

8. Computat ion  of  relevant quantit ies  

Besides the equilibrium distribution {Pm, n}, we are also 

interested in quantities such as the number of jobs at the 

IO unit, which inform us about the performance of the 

multiprogramming system. A number of relevant quanti- 

ties is discussed in this section. 

Let Xcp be the number of jobs at the CP, Xio the 

number of jobs at the IO unit, including the job being 

served by the IO unit, and Xtot the total number of jobs 

cycling between the CP and the IO unit, i.e. 

X t o  t = XCp 4- JXZiO. Since the CP is an MI MI 1 queue, we know 

the distribution of Xcp (see (6)) and formulae for its 

moments are easily derived. Expressions for the distri- 

bution and moments of Xio and Xtot are found by 

expressing each quantity as a function of the equilibrium 

probabilities Pm, n and subsequently using the main result 

stated by Theorem 2. For  example, in this way we find for 

the first moment of Xio: 

IEXIo = 1 + 2 n Pm, n 
n=0 m =0 

= 1 + 2 n Pm,n + Xm, n 

n=0 m=0  m = N - n  

+ 2 n Xm, n 

n = N  m =0 

= 1 +  ~" n Pm, n 

n=0 m=0  

+ ~ c; +ci+l a'+---z--~ ~/~7 
i=0 1 - ai 1 - a i + ~  

1) 
4- 2 Ci - -  -~- ci+ 1 - -  

i = 0  1 - -  a i 1 - -  ai+ 1 

/~i + N(1 -/~i) d S .  
1 - -  f l i  

(38) 
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Table 3. Some relevant quantities computed with relative accuracy e -  10-4 for the case with p - 0.2, # - 1 and varying values for #' 
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,u' 2 N r(N) iter. ~Xcp a(Xcp) IEXto  a(Xio) lEXto, a(Xtot) S p(Xcp, Xto) 

0.0125 0.01 2 0.04 3 0.01 0.10 1.84 0.46 1.85 0.45 739.3 -0.172 
0.0625 0.05 2 0.17 6 0.05 0.24 1.96 0.62 2.01 0.60 161.2 -0.278 
0.2500 0.20 2 0.41 12 0.25 0.56 2.28 0.94 2.53 0.91 50.6 -0.350 
0.5000 0.40 2 0.39 12 0.67 1.05 2.66 1.35 3.33 1.40 33.3 -0.343 
0.7500 0.60 1 0.69 34 1.50 1.94 3.11 1.88 4.61 2.27 30.8 -0.293 
1.0000 0.80 1 0.38 14 4.00 4.47 3.77 2.72 7.77 4.75 38.9 -0.197 
1.1875 0.95 0 0.68 38 19.00 19.49 4.59 3.87 23.59 19.62 99.3 -0.067 
1.2375 0.99 0 0.62 31 99.00 99.50 4.91 4.34 103.91 99.53 419.8 -0.015 

Another  relevant quantity we can compute is the mean 

value S of the system response time, i.e. the time between 

the moment  that a job passes point B for the first time and 

the moment  that a job leaves the system at point C. Since 

the intensity with which jobs leave the system equals 1/, by 

Little's formula we have S = IEXtot/q. The last quantity we 

like to mention is the coefficient of  correlation p (Xcp, Xlo) 

between the number  of  jobs at the CP and the number  of 

jobs at the IO unit. The only extra variable that we need 

for this quantity is IEXcpXio, for which an expression is 

derived in the same way as for the moments  ofXio andXtot. 
The expressions for the distribution and moments  of 

Xio and Xtot contain series which are similar to the series 

xm,n. For  these series, the same bounds hold as the bounds 

that we found for Xm, n, see Lemma 5. For example, 

formula (38) for Xio contains N +  1 series. The absolute 

value of the difference between 

~i ai+ 1 
4- Ci+ 1 ci 1 - ai 1 --- d#q~, 

i=0 I 

0 < n < N  1, 

and its k-th partial sum is bounded b y R ( N  n, n, k) times 

the absolute value of the k-th term and the absolute value 

of the difference between 

~ ( 1 1 ) f l i + N ( l  fii) diflN 
Z Ci 4 Ci+ 1 - -  
i = o  1 - a i  1 - a i + l  1 --]~i 

and its k-th partial sum is bounded by R(0, N, k) times the 

absolute value of the k-th term. 

For  p = 0.2,/1 - 1 and varying values for/1 ' ,  we have 

computed the mean value and the standard deviation of 

Xcp, X~o and Xtot, the mean system response time S and the 

coefficient of  correlation 0 (Xcp, Xio); see the right part  of 

Table 3. In the first three columns the value of/~' and the 

corresponding values of  2 and Nare  denoted. Since/1 - 1,2 

denotes the workload for the CP. Since this workload is 

required to be smaller than uni ty , /1 '  had to be chosen 

smaller than 1.25. 

To gather the results listed in the table, for each case 

one first computes all equilibrium probabililties P~,n at 

level N, i.e. all series Xm,,, at level N, whereafter the 

equilibrium probabilities in the divergency region can be 

computed with the help of the formulae (33) and (37). 

Subsequently, one computes the quantities listed in Table 

3. During these computations,  for all series involved 

r(N) 1 - A t  ( A l l  N, 
A2 1 \ ~ 2 / "  

denotes the rate with which the terms of each of these 

series decrease in the limit. Therefore, this rate is expected 

to be a measure for the maximum number  of iterations (= 

terms) needed to compute all series involved with the 

given accuracy. The rate r(N) and this maximum number  

of iterations are listed in the forth and fifth column of the 

table. 

As we see, r(N) is a good measure for the maximum 

number  of iterations. For  all cases considered, the number  

of iterations needed for the series Xm,n at level N appeared 

to be larger than for the series in the expressions of  the 

moments  of  Xio and Xtot. Of course the numbers of  

iterations can be decreased by computing the equilibrium 

probabilities at level M >  N by means of the series x~,,, the 

quilibrium probabilities at all lower levels with the help 

the formulae (33) and (37) and the moments  of Xio and Xcp 

as before, but with the N replaced by M in their formulae 

(see also Remark 6). In that case the terms of all series 

involved decrease with rate r(M) in the limit. 

Studying the right part  of Table 3, we observe that for 

increasing/1' the values for the mean and the deviation of 

Xcp, Xio and Xtot are also increasing. For /~'T 1.25 the 

values for IFXIo and a(Xio) are only slowly increasing, 

which is due to the fact that the IO unit behaves like an 

M[M[ 1 queue for large/t ' .  The mean system response time 

S appears to be a convex function of/~' and S ~ ~ as/~' + 0 

or /1 ' t l .25.  Finally, the coefficient of correlation 

p(Xc~,Xm) appears to be a concave function of/L'  and 

p(Xc~,,Xro)YO as # ' + 0  or/1 '  T 1.25. 

9 .  C o n c l u s i o n s  

We developed a compensation procedure to derive explicit 

expressions for the equilibrium probabilities of  the mul- 

t iprogramming queues problem (MPQP). In the conver- 

gency region (consisting of the states which are not too 

close to the origin of the state space) the equilibrium 

distribution of the lengths of the queues at the CP and the 

IO unit can be expressed as an infinite linear combination 

of product  forms. Explicit formulae have been given for 

the product  forms and the coefficients of this linear 

combination. The reason that this result is restricted to the 

convergency region is the fact that this infinite linear 
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combination can be divergent near the origin. This latter 

fact was the essential point which made the analysis for the 

MPQP much more difficult than for the SSQP. Apart  

f rom the above result, we derived numerical procedures 

for the computat ion of the equilibrium distribution. In 

particular, we determined bounds for the errors in the 

partial sums which approximate the infinite linear combi- 

nation, and we derived numerically stable formulae to 

compute one by one the equilibrium probabilities in a 

bounded region near the origin. By these results it has 

been possible to obtain an efficient numerical algorithm 

for the computat ion of the equilibrium distribution. 

Similar results have been derived for a number  of relevant 

quantities. 

Comparing the results of  this paper  to the results 

derived by Hofri  [6], we can say the following. Hofri  also 

derived that the equilibrium distribution can be expressed 

as an infinite linear combination of product forms. 

However,  he only gave explicit formulae for the equilib- 

rium probabilities on the boundaries, and he overlooked 

the fact that the infinite linear combination can be 

divergent near the origin, by which the result is restricted 

to the convergency region (compare [3] for a more 

complete treatment). Moreover, the analysis in the present 

paper is based directly on the set of  equilibrium equations. 
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