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A Compensator for the Effects of High-Order
Polarization Mode Dispersion in Optical Fibers

Mark Shtaif, Antonio Mecozzi, Moshe Tur, and Jonathan A. Nagel

Abstract—We present a polarization mode dispersion compen-
sator for the rotation of the principal states with frequency. This
compensator requires only two control elements more than existing
first-order compensators. These are the position of one polariza-
tion controller and the setting of a single delay. With the proposed
scheme, compensation for first order can be decoupled from the
compensation for higher orders and controlled independently. The
effect of the compensator on signal transmission is evaluated with
extensive numerical simulations.

Index Terms—Optical communication, polarization mode dis-
persion (PMD), PMD-compensation.

I N RECENT YEARS, polarization mode dispersion (PMD)
in optical fibers has become one of the major obstacles to

the increase of transmission rates in wavelength-division multi-
plexing (WDM) systems. The first-order effect of this phenom-
enon can be quite simply described in terms of a group delay
that is created between two components of the transmitted signal
propagating along the fiber principle axis. In reality, this de-
scription seems to be insufficient for signal bandwidths that are
relevant in optical communications, and distortions due to the
effect of higher order PMD become visible [1]. PMD compen-
sators that are designed for the new generation WDM systems
will need to correct for such high-order effects. The main dis-
advantage of high-order PMD compensators suggested so far
is that they require control over a large number of parameters
[2]. In addition, the compensation for the various orders is cou-
pled and needs to be done simultaneously. The compensator pro-
posed here requires only one polarization controller and one ad-
justable delay in addition to what is needed for first-order com-
pensation. In addition to first-order PMD, we compensate for
the precession of the rotation axis defined by the transmission
matrix of the fiber. Contrary to common wisdom, such com-
pensation involves a combination of all PMD orders, where the
orders are defined in terms of a Taylor expansion of the PMD
vector in frequency as in [3]. In this paper, we will show that
this description is consistent with the behavior of actual fibers
in many cases.

While the most common definition of PMD orders is based
on the Taylor expansion of the PMD vector in frequency [3],
there is no reason to believe that this is the most natural descrip-
tion of actual fibers over a range of frequencies where first-order
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Fig. 1. (a) Schematic of PMD compensator.P1; P2; andP2 are polarization
controllers, and all splitters are polarization beam splitters.K and� are variable
delays. The last polarization controller is shown only for conceptual reasons
and it is not required in practice. (b) An alternative implementation of the same
compensator with only two delays. The Faraday mirror performs a rotation of
�=2 in Stokes space. Note that by fine tuning of the delaysK and� so that
they do not affect the polarization of the central frequency, the compensation
for first- and higher orders can be completely decoupled from each other. The
setting ofP2 has a fixed relation to the position ofP2.

PMD is insufficient. The proposed compensator is based on the
observation that within a limited bandwidth, the rotation axis
defined by the transmission matrix of the fiber tends to perform
precession at a nearly constant rate. It is important to note that
this description is not second-order PMD in its common defini-
tion given in [3], nor does it correspond to a pure precession of
the PMD vector, or of the principal states [4]. In fact, the PMD
vector follows a more complicated path in Stokes space, which
can only be approximated as precession in a small vicinity of
the carrier frequency.

The Jones matrix describing this compensator is given by

M(!) = R�1(! ~K)

�
exp(i!�=2) 0

0 exp(�i!�=2)

�

�R(! ~K)R(~�) (1)

where! denotes the deviation from the central angular optical
frequency andR denotes a unitary Jones matrix whose effect is
equivalent to rotation in Stokes space. The argument of this op-
erator is a three-dimensional Stokes vector whose orientation is
the axis of rotation and whose magnitude is the rotation angle.
In (1), � is the differential group delay andK is the precession
rate of the rotation axis defined byM. R(~�) is used to trans-
form the principal states at the fiber output into linear polariza-
tions. The straightforward implementation of the compensator
is depicted in Fig. 1(a). The first rotation in (1) is frequency
independent and can be trivially implemented by a single polar-
ization controllerP1. The second and fourth rotationsR(! ~K)
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andR�1(! ~K) are each implemented with two polarization con-
trollersP2 andP2, a polarizing beam splitter/combiner and a
variable delay. The two polarization controllersP2 andP2 per-
form exactly opposite transformations. The setting ofP2 can be
obtained precisely from the position ofP2 by using a predeter-
mined lookup table. In practice, theP2 polarization controller
at the output of the compensator is obviously not required. The
implementation in Fig. 1(a) is similar to the structure proposed
in [5] for the PMD emulation. It involves two additional delay
lines to first-order compensation and requires that the setting of
theP2 andP2 polarization controllers in the stage responsible
forR(! ~K) isset exactly identical to theP2 andP2 controllers
that belong toR�1(! ~K). Although such accuracy is possible in
practice, a simpler implementation of the same compensator can
be obtained with a Faraday rotator and a mirror, as depicted in
Fig. 1(b). The Faraday rotator performs a�=2 rotation in Stokes
space, and ensures that the transformation undertaken by the
backward propagating field through the delayK is the inverse
of the transformation undertaken during forward propagation.
With the exception of an immaterial frequency-independent po-
larization rotation, the latter implementation is exactly equiva-
lent to the previous one. Since the polarization controllersP2
andP2 are fixed relative to each other, this compensator in-
volves only two elements more than what is required for first
—order compensation. These are the setting ofP2 and the delay
K. The feedback signal required for optimizing the compensa-
tion can be obtained in the same manner as in existing schemes
of first-order compensation. It must be noted that an important
requirement in all compensation schemes that involve more than
a single variable delay is that the delays, once set, remain stable
on the order of a single wavelength. This is so because a sub-
wavelength variation of the delay of one stage rotates the po-
larization of the signal so that it is no longer compatible with
the setting of the following stage. In the scheme proposed here,
the delay of the first stage needs to be stabilized with this level
of accuracy. Although such stability is a complication, it is fea-
sible and can be implemented in several ways, which will be
addressed separately. In most cases, an active feedback mecha-
nism will be required.

A significant advantage in terms of controlling this compen-
sator can be obtained (in both implementations) if the first and
second rotations are adjusted such that they do not affect the
polarization at the central optical frequency. In that case the set-
ting of R(! ~K) andR�1(! ~K) can be completely decoupled
from the setting of the first-order compensation. Then, a natural
algorithm for operating this compensator would be as follows:
first setK = 0 and compensate for the first-order PMD, using
only the first polarization controllerP1 and the second delay
� . Then optimize the operation of the stages involving the ro-
tationsR(! ~K) andR�1(! ~K). This scheme ensures that the
performance of the higher order compensation is always better
than that of first-order compensation, a situation that is not triv-
ially achievable with other high-order compensation schemes.
The adjustment of the first two rotations so that they do not
alter the polarization at the central frequency can be obtained
by fine tuning of the delaysK and � (within a single wave-
length). Note that this does not add significant complication to
the system because high stability of the first and second delays
is required anyway.

Fig. 2. Bottom and top of the eye obtained for the ensemble of the 1000
simulated fibers. Part (a) shows the uncompensated case, (b) the effect of a
first-order compensator, and (c) the effect of the proposed compensator.

Our measure for the efficiency of the compensator is based
on a comparison with a first-order PMD compensator that is ap-
plied to the same fiber. We have examined the operation of the
proposed compensator on a pool of 1000 simulated optical fibers
with an average PMD of 10 ps. To examine the effect of the
compensator on signal transmission, we have performed a set
of simulations with a 40-Gb/s pseudorandom nonreturn-to-zero
signal. The launch polarization was chosen such that an equal
amount of power was coupled into each one of the principal
states at the signal central frequency. Our purpose in this paper
is only to compare between the ultimate performances of the
first-order compensator and the compensator that we propose.
To achieve this, the compensation for first-order PMD was done
by matching the PMD of the fiber at the central frequency, and
the value of~K was obtained from the rate of change in the direc-
tion of the PMD vector of the fiber in the vicinity of the central
frequency. Although, in principle, an even better performance
can be obtained in both cases by optimizing over all free pa-
rameters (P1; �; K; andP2), we believe that our analysis pro-
vides a fair comparison of the two compensation techniques.
Fig. 2 shows the bottom and the top of the eye obtained with
each one of the 1000 fibers. The uncompensated case is shown
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Fig. 3. (a) is the probability that the eye closure is smaller than a given value
versus the eye margin penalty in percent for 40-Gbit transmission and 10-ps
average PMD. The scale of the vertical axis is chosen such that a straight line
corresponds to an integrated negative exponential distribution. Stars, circles,
and squares correspond to the uncompensated case, first-order compensation,
and proposed compensation, respectively. (b) is the output polarization at the
output of the fiber (stars), the output polarization after first-order compensation
(circles), and the polarization after the higher order compensator (squares). The
average PMD is 10 ps, and the frequency band is 40 GHz. Note the improvement
in degree of polarization achieved by the proposed compensator. Consistent
results were obtained for all 1000 fibers.

in Fig. 2(a), the case of first-order compensation is described in
Fig. 2(b), and the effect of the proposed compensator is shown
in Fig. 2(c). The improvement achieved by the proposed com-
pensator is self-evident.

To obtain more quantitative results, the distribution of the eye
opening is plotted in Fig. 3(a). The horizontal axis corresponds
to the eye closure in percents, and the vertical axis describes the
probability that the eye closure is smaller than a given value.
The vertical axis is scaled exponentially, namely, an exponen-
tial distribution would appear on this figure as a straight line.
The crosses correspond to the uncompensated case, the circles
to first-order compensation, and the squares to the proposed
high-order compensator. The negative penalties result from the
fact that PMD induced intensity fluctuations may, in some cases,
open the eye, a phenomenon that is of no consequence to com-
munication systems. The better performance obtained with the
proposed compensator is evident. The origin of the good com-
pensator performance lies in its capability of reducing depo-
larization caused by high-order PMD. This effect is shown in
Fig. 3(b), which represents on the Poincarè sphere the depolar-
ization that is observed in one particular fiber of the simulated
sample when the frequency of a fixed polarization input signal
is swept over a range of 40 GHz. The stars denote the effect
of the fiber without any compensation, and the circles denote
the effect of a first-order PMD compensator optimized to pre-
cisely remove the first-order PMD. The squares correspond to
the effect of the proposed compensator. Note the large improve-
ment in the degree of polarization obtained with the proposed
compensator. This improvement in degree of polarization was
observed consistently in all tested fibers.

To conclude, we have proposed a compensator to account for
the precession of the rotation axis defined by the transmission
matrix of the fiber. This compensator requires only two control
parameters more than existing first-order compensators. With
the proposed scheme, the compensation for first order is decou-
pled from the compensation for the higher orders and is con-
trolled independently. Our results show a significant improve-
ment in transmission performance over the case of first-order
compensation only.
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