
A Competitive Layer Model for
Feature Binding and Sensory Segmentation

Heiko Wersing�, Jochen J. Steil, and Helge Ritter

University of Bielefeld, Faculty of Technology,
P.O.Box 100131, D-33501 Bielefeld, Germany

Neural Computation 13(2), 357-387 (2001)

Abstract

We present a recurrent neural network for feature binding and sensory segmenta-
tion, the competitive layer model (CLM). The CLM uses topographically structured
competitive and cooperative interactions in a layered network to partition a set of input
features into salient groups. The dynamics is formulated within a standard additive re-
current network with linear threshold neurons. Contextualrelations among features are
coded by pairwise compatibilities which define an energy function to be minimized by
the neural dynamics. Due to the usage of dynamical winner-take-all circuits the model
gains more flexible response properties than spin models of segmentation by exploiting
amplitude information in the grouping process. We prove analytic results on the con-
vergence and stable attractors of the CLM, which generalizeearlier results on winner-
take-all networks, and incorporate deterministic annealing for robustness against local
minima. The piecewise linear dynamics of the CLM allows a linear eigensubspace
analysis which we use to analyze the dynamics of binding in conjunction with an-
nealing. For the example of contour detection we show how theCLM can integrate
figure-ground segmentation and grouping into a unified model.

1 Introduction

From the viewpoint of brain theory (von der Malsburg 1981; von der Malsburg 1995), fea-
ture binding may provide one of the basic sensory information processing principles. A
key question is then what are the neural correlates of binding processes? In addition to
the importance of this question regarding our understanding of brain function, there is also
great interest in using similar mechanisms for pattern recognition applications like image
segmentation and object recognition.

A large body of neural network research has focused on binding models based on tempo-
rally correlated neural activity (von der Malsburg 1981), stimulated by neurophysiological
findings (Singer & Gray 1995; Eckhorn 1994) which support a functional role of synchro-
nized activity in perceptual processes. Correlation-based feature binding has been mod-
elled by phase-coupled oscillators (Baldi & Meir 1990; Sompolinsky, Golomb, & Kleinfeld
1991), where, however, problems are slow convergence and the necessity of all-to-all con-
nections for robust synchrony. Other non-linear oscillator models have been developed
(von der Malsburg & Buhmann 1992; Schillen & König 1994), but were only tested on�new adress: HONDA R&D Europe (Germany), Future Technology Research, Carl-Legien-Str.30, 63073
Offenbach/Main, Germany, email: heiko.wersing@hre-ftr.f.rd.honda.co.jp
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small networks and highly simplified test images. Relaxation oscillators (Somers & Kopell
1993; Terman & Wang 1995) show long range synchrony also withlocal connections and
have been applied to region-based image segmentation (Wang& Terman 1997) and auditory
segregation (Brown & Wang 1997). A problem is the limited number of groups which can
be stably represented (about 5), which can only be overcome by introducing algorithmic ab-
stractions of the original model. A phase averaging model with rule-based interactions has
been applied to the extraction of contour saliency by Yen & Finkel (1998). Nevertheless,
successful applications to the segmentation of real-worlddata are still rather exceptional
(Wang & Terman 1997; Yen & Finkel 1998). This is mainly causedby the high dynamical
complexity of these models, which makes their simulation costly and their analytic study a
difficult task.

A different approach to feature binding are spin models, which have been developed
for computer vision (Geman, Geman, Graffigne, & Dong 1990; Herault & Horaud 1993;
Opara & Wörgötter 1998) and combinatorial optimisation applications (Peterson & Soder-
berg 1989; Blatt, Wiseman, & Domany 1997). Each feature is represented by a spin variable
which attains one of a discrete set of spin states and a binding of two features corresponds
to both sharing the same spin states. With regard to applications these models have the great
advantage of being derived from energy or cost functions which characterize the stable out-
put states as their minima. This energy-based approach establishes a link to pairwise cluster-
ing (Rose & Fox 1993; Hofmann & Buhmann 1997) and labeling problems in combinatorial
optimisation (Kamgar-Parsi & Kamgar-Parsi 1990). Relaxation labeling (Rosenfeld, Hum-
mel, & Zucker 1976), a standard technique in the field of pattern recognition, also falls into
this category of energy-based labeling iteration schemes (Hummel & Zucker 1983; Pelillo
1994). Although offering a conceptual approach to binding,these models share certain
drawbacks regarding their biological plausibility, sincethey either require iterative discrete
cluster update procedures (Opara & Wörgötter 1998; Blatt, Wiseman, & Domany 1997) or
complex normalizing nonlinearities (Peterson & Soderberg1989; Rosenfeld, Hummel, &
Zucker 1976; Hummel & Zucker 1983).

Since grouping is an intensively studied subject in computer vision, there exist a vari-
ety of other algorithms such as based on Markov Random Fields(Geman & Geman 1984),
variational approaches (Mumford & Shah 1989), and curve evolution (Kimia, Tannenbaum,
& Zucker 1995). See also (Wang & Terman 1997) for other related references. Recent work
has stressed the importance of grouping for dealing with theocclusion problem (August,
Siddiqi, & Zucker 1999; Elder & Zucker 1996). Another recentapproach to segmenta-
tion has used normalized cuts (Shi & Malik 1997) to combine eigen-analysis with graph
partitioning based on feature similarities.

In this contribution we analyse the competitive layer model(Ritter 1990; Wersing, Steil,
& Ritter 1997) (CLM) which realises an energy-based approach to feature binding in a stan-
dard additive recurrent neural network with linear threshold neurons. Similar to spin mod-
els, a feature is assigned to one of a set of labels which are selected by a columnar local
winner-take-all (WTA) circuit. These columns are coupled by lateral interactions which
determine preferred bindings according to the mutual compatibility of the features. The
neurons which represent the same label assignment are arranged in layers which are orthog-
onal to the columnar structure (see Fig. 1). As was shown in (Wersing & Ritter 1999), the
attractors of the CLM provide feasible solutions to relaxation labeling problems. Ontrup &
Ritter (1998) have applied the CLM to texture segmentation,based on features derived from
Gabor filter banks, and shown that the method performs well ona wide range of image data.
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The CLM energy function approach is similar to the quadraticenergy function of Potts-
Mean-Field (PMF) approaches to combinatorial optimization. An important difference is
that the CLM is formulated as a piecewise linear system, and thus allows to use the tools of
eigensubspace analysis for an inspection of the binding process. Our results extend previous
results on single-column WTA networks (Sum & Tam 1996; Hahnloser 1998) to the layered
multi-column case. By using dynamical WTA circuits as opposed to strict normalizations
in PMF, the model gains more flexible and biologically plausible response properties. We
show how this can be used advantageously in the grouping of contours and figure-ground
segmentation.

In Section 2 we introduce the CLM architecture and discuss the main properties of its
binding dynamics. Section 3 is devoted to a general theoretical analysis, which covers con-
vergence, attractors and an eigensubspace analysis of the CLM with relation to the grouping
properties. In Section 4 an efficient simulation procedure is stated, which we used for the
application to contour grouping presented in Section 5. Section 6 discusses the results with
respect to binding properties, noise tolerance and biological relevance.

2 The CLM feature binding model

2.1 The CLM architecture

The CLM consists of a set ofL layers of feature-selective neurons (see Fig.1). We denote
the activity of a neuron at positionr in layer� by xr� and denote as acolumn r the set of
the neuron activitiesxr�, � = 1 : : : L that share a common positionr in each layer. We
associate each column with a particular “feature” which is described by a parameter vectormr. A typical feature example are local edge elements which arecharacterized by position
and orientation,mr = (xr; yr; �r). More complex features were used by Ontrup & Ritter
(1998) for texture segmentation, which employed a vector oflocal Gabor filter responses at
different spatial frequencies and orientations.

A binding between two features, represented by columnsr andr0, is expressed by simul-
taneous activitiesxr�̂ > 0 andxr0�̂ > 0 that share a common layer�̂. Therefore, binding
is achieved by having each (activated) columnr assign its feature to one (or several, but see
below) of the layers�, interpreting the activityxr� as a measure for the certainty of that
assignment. All the neurons in a columnr are equally driven by an external inputhr which
is to be interpreted as the significance of the detection of featurer by a preprocessing step.
The afferent inputhr is fed to the activitiesxr� with a connection weightJr > 0.

Within each layer� the activities are coupled by the lateral interactionf �rr0 which cor-
responds to the degree of compatibility between featuresr andr0 and which is a symmetric
function of the feature parameters,f �rr0 = f�(mr;mr0) = f�(mr0 ;mr). The interactionsf �rr0 determine which pattern configurations, if elicited as activity pattern within a single
layer�, will be mutually supporting among their constituent parts(f �rr0 > 0) or instead suf-
fer mutual inhibition (f �rr0 < 0). Two examples for lateral interactions motivated by Gestalt
laws of perceptual grouping are shown in Figure 2. The lateral interaction pattern may be
identical in all the layers or different to allow greater flexibility; a very useful case, which
we dicuss for the purpose of perceptual grouping, is the incorporation of a “ground” layer to
perform simultaneous grouping and figure-ground segmentation (see Sec. 5). The number
of layers need not correspond to the number of groups, since for sufficiently many layers
only those are active that carry a salient segment.
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Figure 1: The CLM architecture. For each input feature, there is in each layer a responding
neuron. A vertical WTA circuit implements a topographic competition between layers. Lat-
eral interactions characterize compatibility between features and guide the binding process.

The purpose of the layered arrangement in the CLM is to enforce a dynamical assign-
ment of the input features to the layers, using the contextual information stored in the lateral
interactions. The assignment is realized by a columnar WTA circuit, which uses mutual
symmetric inhibitory interactions with strengthI��r = I��r > 0 between neural activitiesxr� andxr� that share a common columnr.

The combination of afferent inputs and lateral and verticalinteractions can be combined
into the standard additive activity dynamics_xr� = �xr� + ��Jrhr �X� I��r xr� +Xr0 f �rr0xr0� + xr� � (1)= �xr� + �(Er� + xr�);
where�(x) = max(0; x) is a non-saturating linear threshold transfer function, and Er� +xr� is the total input to neuronxr�. The additional self-excitatory term simplifies the fol-
lowing computations and can be compensated for by takingf 0�rr0 = f �rr0 � Ærr0 .
2.2 Energy Formulation and Binding Dynamics

The dynamics (1) has an energy function of the formE = �Xr� Jrhrxr� + 12Xr X�� I��r xr�xr� � 12X� Xrr0 f �rr0xr�xr0�: (2)

The energy satisfies�E=�xr� = �Er�, which makesE nonincreasing under the dynamics
(1), d=dtE = �Pr�Er�(�xr� + �(Er� + xr�)) � 0, since (1) confines the activities to
be nonnegative (see App. 1). Thus the attractors of the dynamics (1) are the local minima
of (2) under constraintsxr� � 0. While the vertical interactionsI��r establish the columnar
WTA process, the lateral interactionsf �rr0 contribute in the quadratic energy as a sum over
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Figure 2: Examples of lateral interactions for perceptual grouping. An “OnCenterOffSur-
round” interaction which is excitatory for short distancesand weakly inhibitory for larger
distances is capable of clustering according to proximity of points. Different symbols de-
note activity in different layers. The Gestalt principle ofcontinuity can be modelled by
a local cocircular interaction of edge elements that lie along curves of constant curvature
combined with a weak long-range inhibition to separate different segments.

all pairwise compatibilities within groups. If we interpret the negative value of the energy
as the overall quality of the grouping, the aim of the dynamics (1) is to reach a globally
minimal or almost minimal energy state.

The quadratic summation approach is similar to the corresponding Potts spin mean field
free energy (Peterson & Soderberg 1989)EPMF = �12X� Xrr0 f �rr0xr�xr0� + TXr� xr� log xr�; (3)

which is to be minimized subject to the weighting constraint
P� xr� = 1. On the contrary,

in a Potts spin model there is no explicit representation of an afferent input and the columnar
activity must always sum to one due to its probabilistic interpretation. The additional convex
entropy term that is weighted by the temperature parameterT biases the local minima of (3)
towards soft columnar assignments, since it attains its minimum atxr� = 1=L. Minimal
solutions to (3) can then be obtained by the recurrent dynamics_xr� = �xr� + eFr�=TP� eFr�=T ; Fr� =Xr0 f �rr0xr0� (4)

which implements a columnar WTA circuit that is gradually sharpened by decreasing (or
“annealing”)T ! 0.
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The CLM dynamics (1) provides a similar soft competition scheme between all pos-
sible groupings in the different layers of the model. The hard weighting constraint and
divisive nonlinearity (4), however, are replaced by a more flexible WTA circuit, that is cou-
pled dynamically to the afferent inputhr and permits a contextual modulation of the input
according to the salience of the grouping, but also requiresan additional stability analysis.
Perceptual context effects of this kind have been observed in a wide range of physiological
(Gilbert 1992; Kapadia, Ito, & Westheimer 1995) and psychophysical (Kovács & Julesz
1993; Field, Hayes, & Hess 1992; Polat & Sagi 1994) studies. As our later eigensubspace
analysis of the CLM dynamics reveals, the columnar WTA dynamics is driven by eigen-
modes that depend on the lateral interaction pattern and whose eigenvalues characterize
the rate of the group formation. The analysis motivates a mechanism for slowing down
the lateral mode dynamics for increased grouping quality byadding a self-inhibitory cou-
pling at each neuron of the formf 0 �rr0 = f �rr � TÆrr0 , whereT � 0 is the strength of this
self-inhibition. This leads to a new CLM energyE0 = E + TXr� x2r� (5)

which adds an analog convex term that biases the local minimatowards graded assignments
and thus makes the WTA more soft. Similar to annealing in the Potts model (Peterson &
Soderberg 1989), we can then use a gradual lowering of the inhibitory self-couplingT to
sweep from graded assignments to the final unique assignmentas the final grouping result.

A time course of the dynamics with and without self-inhibitory annealing performing
contour grouping is shown in Figure 3. Annealing results in amuch more regular group for-
mation process, which produces groups proceeding hierarchically from more to less salient
groups. The slowing down of the dynamics, however, results in a tradeoff for convergence
time. Whether annealing is necessary depends on the complexity of the input pattern with
respect to the lateral interactions. Two problems that havebeen emphasized by Wang &
Terman (1997) are long-range coherence with local interactions and the proper separation
of different segments. Self-inhibitory annealing increases long-range coherence, and also
reduces the necessary strength of global inhibition for achieving separation, by a reinforce-
ment of the corresponding dynamical modes, which we discussin detail in the following
section.

3 Theoretical Analysis

The dynamics (1) is a nonlinear dynamical system which consists of a series of continuously
connected linear systems. An alternative dynamical implementation is of the form_xr� = !r�Er� (6)

which avoids the occurrence of the�(:)-nonlinearities and instead enforces the constraintxr� � 0 by a set of “switching variables”!r� = (0 for xr� = 0 ; Er� < 01 else
(7)

This reformulation corresponds to constrained gradient descent in the energy (2) which
naturally makesE nondecreasing,d=dtE = �Pr� !r�E 2r� � 0. Since both dynamics
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a) Activity dynamics without annealing

b) Activity dynamics with self-inhibitory annealing

Figure 3: Activity dynamics and group formation in the CLM. The neural activity is dis-
played by different symbols for different layers with symbol size representing activity value.
The lateral interaction is locally cocircular with a weak global inhibition as in Fig. 2. A typ-
ical time-course of the dynamics is shown in a). After initialization with random activity
values first all activities within in a column are equally active in all layers. After that, dy-
namical modes, which break the symmetry between layers, cause formation of groups. The
“soft competition” between the group assignments lasts until the columnar WTA circuit
has caused an assignment to one of the layers. The modes are given by the eigenmodes
of the lateral interaction pattern. The main problems are long-range coherence with local
interactions and a proper separation of different groups. Fragmented groupings can occur
especially for very short-ranged interactions due to fast expression of modes which lead to
fragmented groups. b) shows how the mechanism of self-inhibitory annealing can be used
to suppress these fragmenting modes. During the dynamics the strength of self-inhibition is
lowered, which has the effect of making the columnar WTA circuit less strict and increases
the “soft competition” between grouping assignments of a single feature. Fluctuations due
to fragmented modes are smoothed out. The groups are then differentiated in a sequence,
where the most salient structures appear first.
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share the same energy function they converge to the same attractors which are local minima
of (2) and may be considered as dynamically equivalent. Since the formulation (6) has the
advantage of simplifying the linear analysis by shifting the nonlinearity to the boundary
wherexr� = 0, in the following we mainly consider the form (6). Nevertheless we prove
our results in Appendix A in a form which also applies to the biologically more plausible
and thus conventional form (1).

Our theoretical analysis is first based on a discussion of themodel attractors and the
conditions for convergence. We then discuss with an eigensubspace analysis which of the
attractors are preferred by the recurrent dynamics and discuss with a synthetic example,
how this relates to the properties of the binding process implemented by the CLM.

3.1 Convergence and Assignment

Networks composed of non-saturating linear threshold neurons as in (1) or (6) may be un-
bounded if the excitatory interactions are not balanced by sufficient inhibition. Hahnloser
(1998) has discussed the stability for a single WTA circuit and given a criterion based on
global inhibition. The following theorem, which we prove inthe appendix, states that in
fact local inhibition is sufficient to ensure boundedness for the CLM system of layerwise
coupled WTA columns.

Theorem 1. If �r� > 0 with �r� = I��r �f �rr�Pr0 6=rmax(0; f �rr0), then the CLM dynamics
is bounded. If 0 � xr�(0) � M for all r; �, where M = maxr(Jrhr=�r�) then 0 �xr�(t) �M for all r; � and t > 0.

The factors�r� control the stability margin and the maximal amplification of the inputshr. They are positive, if the self-interaction strengthI��r � f �rr of a neuron is larger than the
sum of the excitatory connections

Pr0 6=rmax(0; f �rr0) converging onto it. If in the simplest

caseJr = I��r = J for all r; �; �, the afferent input and vertical interaction terms can
be combined in the energy to the termJPr �hr �P� xr��2. We can interpret this as
a penalty term withJ as a constraint multiplier enforcing the condition, that the summed
activity in a column is equal to the inputhr. Unlike in the usual penalty function approach
to combinatorial optimisation problems, in the framework of sensory segmentation as we
consider here a strict enforcement of this constraint is undesirable. If we chooseJ close to
the stability margin of Theorem 1, the penalty term derived from the vertical interactions
no longer dominates over the lateral interactions and the columnwise activity is strongly
influenced by lateral effects; we return to this point after stating the next theorem.

Essential to the columnwise WTA approach is that we obtain a proper assignment of the
features, that is, a state where each columnr contains at most a single nonvanishing activityxr�̂ > 0. The conditions on the vertical interactions for this assignment property to hold
are stated in the following theorem:

Theorem 2. Let Fr� = Pr0 f �rr0xr0� denote the lateral feedback of neuron r; �. If the
lateral interaction is self-excitatory, f�rr > 0 for all r; �, and the vertical interactions satisfyI��r I��r � (I��r )2 for all �; �, then an attractor of the CLM has in each column r either

i) at most one positive activity xr�̂ withxr�̂ = JrI �̂�̂r hr + Fr�̂I �̂�̂r ; xr� = 0 for all � 6= �̂; (8)
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where �̂ = �̂(r) is the index of the maximally supporting layer characterized byFr�̂ > Fr� for all � 6= �̂, or

ii) all activities xr�, � = 1; : : : ; L in a column r vanish and Fr� � �Jrhr for all� = 1; : : : ; L.

This theorem states that as long as there are self-excitatory interactions within each
layer, and the vertical cross-inhibition is sufficiently strong, the CLM converges to a unique
assignment of features to the layer with maximal lateral feedbackFr�. A central result
is that, due to the layered topology of the network, this doesnot require arbitrarily large
vertical couplings. Also note that the lack of an upper saturation is essential for the WTA
behaviour, because it allows to exclude spurious ambiguousstates. Nonzero activities are
only stable due to a dynamical equilibrium and not due to saturation. Douglas et al. (1995)
and Hahnloser (1998) have argued for the plausibility of this form of dynamical stability
since cortical neurons rarely operate close to saturation.The lateral and vertical feedback
modulates the input intensity by an amount that is dependenton the ratios ofI��r ; Fr� andJr. Consider again the simple exampleJr = I��r = J , for all r; �; � where, according
to Theorem 2, the output of the only active neuron in a column is then given byxr�̂ =hr + Fr�̂=J . This shows that by loweringJ the lateral effects can be increased and we
obtain a context-dependent activity distribution, which still remains sensitive to the input
intensities. Note that the additional self-inhibitory annealing by choosingf 0 �rr0 = f �rr�TÆrr0
for T sufficiently large violates the condition of Theorem 2 and leads to stable states with
multiple nonzero activity within a column, as the followingeigensubspace analysis shows.

3.2 Eigensubspace Analysis

After we have discussed the possible attractors of the model, we now turn to the discus-
sion which of them will be preferred by the dynamics. Since the CLM time development
is defined by the piecewise linear differential equation (6), we can apply the method of
eigensubspace analysis to obtain a solution in the linear domain, where the constraints are
inactive. We consider the important special case of a lateral interactionf �rr0 = frr0 that is

identical for all layers. For simplicity we takeJr = I��r = J for all r; �; � as constant.
As we will show in this section, the special form of two topological “orthogonal” inter-
actions allows us to characterise the global eigenmodes completely in terms of the lateral
eigenmodes.

Apart from constraints, the system is described by the linear dynamics_xr� = Jhr +Xr0� G��rr0xr0�; (9)

whereG��rr0 = �JÆrr0 + Æ��frr0 . Introducing theN � L vectorsx = (x1; : : : ;xL) with x� = (x1�; : : : ; xN�) and (10)h = (h0; : : : ;h0) with h0 = (h1; : : : ; hN ) (11)

we can write this as_x = Jh+ Gx (12)
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whereG is a linear transformation in the spaceRN�N 
 RL�L and can be decomposed asG = f 
 IdL�L � J IdN�N 
 IL�L (13)

with Id as the identity andIL�L as anL� L-matrix of 1’s. Equation (13) shows that an or-
thonormal eigenvector basisfvi
 ;�i
g for G can be obtained from orthonormal eigenvector
bases1 fbi; �igi=1:::N andfq
 ; �
g
=1:::L for f andIL�L respectively:vi
 = bi 
 q
 ; i = 1 : : : N; 
 = 1 : : : L; (14)�i
 = �i � J�
 : (15)q
 ; �
 can be calculated analytically. Here, we only use that the first eigenvector obvi-
ously is given byq1 = 1=pL(1; : : : ; 1); �1 = L; (16)

while the remaining orthogonal eigenvectors have zero eigenvalues�2 = �3 = � � � = �L =0. This has a direct geometrical interpretation. We can divide the eigenmodes of the linear
system into two classes:� DC-Subspace: This is the subspace spanned by the eigenmodesvi1 = 1=pL(bi; : : : ;bi); �i1 = �i � JL (17)

which contains the coherent eigenmodes which have equal components in all layers.
For sufficiently largeJ all the corresponding eigenvalues�i1 are negative.� AC-Subspace: This is the orthogonal subspace spanned by theremaining eigenvectorsvi
 6=1 = (q
1bi; : : : ; q
Lbi); �i
 = �i (18)

which contain the eigenmodes causing differences in the activity patterns between
layers and which have a zero mean summed over columns. Their eigenvalues�i
 6=1
are given by the eigenvalues�i of the lateral interactionfrr0 alone and areL � 1
degenerate due to the symmetry between layers.

The linear dynamics can be completely characterized by the eigensubspaces and the
location of the fixed point which is determined by the inhomogeneous inputh. Relative to
the fixed point, the components
i
(t) = (x(t) � xF ) � vi
 develop according to
i
(t) =
i
(0)e�i
 t. This corresponds to exponential growth for positive eigenvalues, while negative
eigenvalues lead to attracting affine constraint surfaces which pass through the fixed point.

By expanding the fixed point equation_x = 0 in the basisvi
 we obtain the following
expansion of the fixed pointxF in powers of�i=JL (note thath and thus alsoxF has no
component in the AC space):xF� = 1Lh0 + 1LXi �iJL(bi � h0)bi +O� �iJL�2: (19)

Therefore, ifJL � �i we can approximate the fixed point byxFr� = hr=L. We can
now draw a sketch (see Fig.4) of the initial CLM dynamics referring to our eigensubspace
analysis.

1We assume that the�i are sorted in descending order�1 � �2 � � � � � �N
10
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Figure 4: Sketch of the linear dynamics for two layers. Shownare the activity trajecto-
ries for the two activitiesxr1; xr2 of a single columnr. Starting from small initial values
(grey square) the activities quickly approach the fixed point xF and the constraint surfaceP�=1;2 xr� = hr in the DC subspace. Then the dynamics in the orthogonal AC subspace
drives the WTA process until only one layer is active.

Supposehr > 0 for all r and we initialise the system with small positive random values0 < xr�(0) � hr. For sufficiently largeJL � �i all eigenmodes in the DC-subspace
have large negative eigenvalues. Therefore the initial state will be rapidly projected onto the
affine subspace

P� xr� = P� xFr� orthogonal to the DC-subspace which passes through
the fixed point. The rapid projection dynamics in the DC spacemoves the activities away
from the zero boundary and thus keeps the initial dynamics linear. Now, the modes in the
AC-subspace with positive eigenvalues�i develop differences between layers on a slower
timescale, since their eigenvalues have smaller absolute value. The principal AC-mode with
the largest positive eigenvalue dominates the AC-subspacedynamics in this initial phase
and determines the timescale of the WTA dynamics which drives some activities to zero in
a column while others are increased. After some of the activities reach zero level, they no
longer contribute to the linear dynamics and the nonlinearity is taking effect by introducing
a new segment of the piecewise linear dynamics with different resulting eigenmodes.2 Since
then the symmetry between layers is broken, the coupled WTA dynamics gets more complex
in the general case, by subsequently driving the unassignedcolumns towards an assigned
state as can be seen by comparison with Figure 3. For regular and highly symmetric patterns,
however, which we discuss in the following section, the finalgrouping result can be already
obtained from the dominant mode in the initial linear phase of the dynamics.

The suggested mechanism of self-inhibitory annealing by choosingf 0 �rr0 = f �rr � TÆrr0
shifts all eigenvalues by�0i = �i�T . If T is greater than the critical valueT
 = �1, then all
eigenvalues are negative and the unassigned fixed pointxF is asymptotically stable, which
is analogous to Potts mean field models (Peterson & Soderberg1989). If thenT is lowered
from the critical value, at first only theb1-AC modes acquire a positive eigenvalue and grow
exponentially away from the fixed point. The following section discusses how this can be
employed to increase the grouping quality.

2The resulting interaction matrix is of the form!r�!r0�G��rr0 .
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3.3 Coherence, Separation, and Self-Inhibitory Annealing

Let us consider two simple stimulus examples for the contourgrouping lateral interaction
to discuss the binding problems of long-range coherence andseparation referring to the
previous eigensubspace analysis. The first stimulus consists of a circle, composed ofN
regularly placed edge elements (see Fig. 5). We assume that we can neglect the effect of all
other columnsr0 which are at subthreshold activity (i.e.hr0 < 0), and therefore consider
the lateral eigenvectors only from the resultingN �N lateral interaction matrixfrr0 of the
active features. The contour grouping lateral interactionhas two contributions, the local
cocircular interactionf cocircrr0 (see App.2) and a global inhibition with strengthk, giving
togetherf �rr0 = f cocircrr0 � k. Since the overall interaction pattern is rotationally invariant on
the circle, the eigenvectors of the interaction are the sineand cosine waves on the circle with
corresponding spatial frequencies.

We first assumek = 0. Each edge shares positive interactions in a local neighbourhood
range and the zeroth order (constant) cosine withb1r = 1 is the eigenvector with largest
eigenvalue�1 = Pr0 f cocircrr0 , equal to the sum over the local cocircularity values. The
corresponding global AC modes coherently increase and decrease the activity on the circle
in the different layers. The next two modes with degenerate eigenvalues�2;3 < �1 are the
first order sine and cosine waves, which split the circle intotwo halves. The gap between�1 and�2;3 determines whether the coherent mode dominates over the fragmenting modes.
It is a general property of local interactions that this gap tends to zero, if the range of the
interactions tends to zero.3 Since the difference between the modes grows exponentially,
also the time the system stays in the initial linear mode determines the degree of coherence.
By shifting the spectrum of the lateral interaction with theself-inhibitory additionf 0rr0 =frr0 � TÆrr0 , this time is increased. This can be used to dynamically suppress the spuriousb2;3 modes, however also reduces the overall convergence rate.

Now suppose we add a second equal and well-separated circle,such that there are no
local cocircular interactions between the circles (see Fig. 5). Now the task is not only to
achieve coherence on the circles, but also proper separation. Since the lateral interaction
pattern is exchange-symmetric between the circles, the eigenvectors of the composite sys-
tem are symmetric and antisymmetric combinations of the single circle eigenvectors with
the same eigenvalues. The modesb1 andb2, responsible for separating and grouping to-
gether the circles, respectively, are degenerate with�1 = �2 without any global inhibition.
If we now add the global lateral inhibition by choosingk > 0, only theb2 mode undergoes
a change in eigenvalue, since all other modes have a zero component within this global con-
stant inhibition. The effect ofk is then given by shifting the eigenvalue�2 of the spurious
mode to the value�2� 2kN . Therefore, ifk is sufficiently large, the mode which separates
the two circles coherently is dominant. There is, however, an obvious limitation to increas-
ing k, since a strong global inhibition destabilizes the coherence within a circle. Similarly,
for the single circle the inhibition lowers the eigenvalue of the single coherent mode by�01 = �1 � kN . Therefore, to achieve both long-range coherence and separation only small
values ofk are possible, for our applications we choosek = z=N , where0 < z � 1.

The picture gets considerably more complex if there are morecomplex interacting
3Suppose the spatial exponential decay of the cocircular interaction is replaced by a hard cut-off function,

such that the interaction of two perfectly cocircular features on the circle at angular positions�r; �r0 2 [0; 2�℄
is frr0 = 1 if j�r � �r0 j < D and frr0 = 0 otherwise. The difference between the coherent modeb1r = 1
and the first fragmenting modesb2r = sin(�r); b3r = 
os(�r) is in the limit of sufficiently small feature spacing
given by2(D � sin(D)) ! 0 for D ! 0.
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Figure 5: Lateral eigenvectors of the contour grouping interaction. The top row shows
the lateral eigenvectors of the lateral interactions on theactive features of this circle in-
put pattern. Vector components are shown as black (positive) and white (negative) edges
with thickness proportional to magnitude. To achieve a coherent binding on the circle, the
eigenvalue�1 of the coherent modeb1 must be sufficiently large compared to the eigen-
values�2;3 of the circle-splitting modesb2;3. For two well-separated circles (middle row)
the eigenvectors are symmetric and antisymmetric combinations of the single circle eigen-
vectors. Without global inhibition, the modesb1 andb2 are degenerate. A weak global
inhibition suffices to lower the eigenvalue�2 and thus suppress the unwantedb2 mode. For
more complex inputs (lower row) the succession of eigenvectors constitutes a multi-scale
hierarchy. The principal eigenmodeb1 separates the circle from the crossing line and the
short lines.b4 andb5 drive the segregation of the short lines. The simple self-inhibitory
annealing scheme proposed in section 3.3 can be interpretedas hierarchically suppressing
subsequent eigenmodes resulting in a hierarchical group formation process.
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groups in the feature input as the lower example in Fig.5 shows. The sign-distribution
of the lateral eigenvectors constitutes a multi-scale hierarchy of the structures in the input.
By gradually lowering the self-inhibitionT , which can be understood as a type of annealing
process with regard to the energy function of the dynamics, these modes are expressed in a
hierarchical sequence, as can be seen by looking back at Fig.3.

4 Simulation

The CLM dynamics can be simulated in principle in parallel byany differential equation
integrator like the Euler or Runge-Kutta method. Also, due to the piecewise linearity, an
analog VLSI implementation may be even simpler than classiccircuits incorporating sig-
moid transfer functions. If simulated on a serial processor, there is an alternative approach
which replaces the explicit trajectory integration by a rapid search for fixed point attrac-
tors. This can be done by iteratively solving the fixed point equations which is largely
facilitated by the piecewise linearity of the model (Ontrup& Ritter 1998). This iterative
solution procedure, also known as a Gauss-Seidel approach has also been extensively used
for Markov Random Field approaches to image segmentation (Besag, Green, Higdon, &
Mengersen 1995). The algorithm in conjunction with an exponential annealing schedule for
the temperature parameterT can be implemented in the following way:

1. Initialize all xr� with small random values aroundxr�(t = 0) 2 [hr=L� �; hr=L+ �℄:
Initialize T with T = T
.

2. Do N � L times: Choose (r; �) randomly and updatexr� = max( 0; � ), where� = Jrhr �P� 6=� I��r xr� +Pr0 6=r f �rr0xr0�I��r � f �rr + T :
3. Decrease T by T := �T, with 0 < � < 1. Go to step 2 until

convergence.

The single activity update in step 2 corresponds to solving the fixed point equation for
this activity with all other activities held constant. For the figure-ground setup as described
in section 2 the critical temperature is given byT
 = �maxffrr0g. This asynchronous
dynamics converges (Ontrup & Ritter 1998) due to a convergence result on asynchronous
iteration in neural networks by Feng (1997). We observed a speed gain of roughly a factor
of ten compared to Euler integration at comparable solutionquality. For simulation without
self-inhibitory annealing simply setT = 0.

5 Application to Contour Grouping

5.1 Related Work

It is long known that in the early stages of visual information processing in visual cortex area
V1 many neurons can be found (Hubel & Wiesel 1962) that respond to local oriented edge
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elements within their classical receptive field. One of the major issues in vision research
are the mechanisms which are used by the visual system to integrate these local elements
into global salient contours to facilitate robust boundarydetection and object recognition.
This process has been considered (Sajda & Finkel 1994; Zucker, Dobbins, & Iverson 1989)
as being composed of two components: the process of enhancement, where local edge
information is combined cooperatively for smooth and salient contours, and the process of
segmentation or grouping, where separate contour elementsare assigned to different groups.

Recent neural models of contour integration have mainly focused on the enhancement
stage of visual processing. Many models of orientation tuning are composed of compet-
itive orientational “OnCenterOffSurround” interactionswithin hypercolumns (Ben-Yishai,
Lev Bar-Or, & Sompolinsky 1995; Mundel, Dimitrov, & Cowan 1997), that are modulated
by experimentally found horizontal or lateral long range interactions (Gilbert 1992; Weliky,
Kandler, Fitzpatrick, & Katz 1995) to produce contextual effects. Enhancement through fea-
ture linking is addressed by the model of Yen & Finkel (1996, Yen & Finkel (1998), which,
however, requires rule-based interactions and global activity normalizations. Li (1998) has
stated a more biologically plausible dynamical model for contour integration in area V1
and discusses properties of the oscillatory correlations in the model which may be useful to
facilitate synchronization-based segmentation. As the results of Li (1998) demonstrate, the
complex excitatory and inhibitory interactions lead to distorted and less predictable corre-
lations for more complex visual scenes, leaving the question of a robust grouping process
mostly unanswered.

In the following we present the application of the CLM as a newapproach to the group-
ing stage of contour integration. To keep the model simple and to allow for the application
to large feature sets of real images, we do not consider the generation of local orientation
within a hypercolumn and leave this to a preprocessing step.The essential WTA then does
not operate between local orientation alternatives withina hypercolumn, but between dif-
ferent grouping alternatives of the edge feature with fixed local orientation.

5.2 The CLM Contour Grouping Model

We suppose that in an initial integration step the local edgeinformation has been subsampled
and preprocessed. As a result of the preprocessing, we assume that within a localized area
only a single edge detector is active at an optimally tuned orientation. We therefore consider
a set of idealized edge feature detectors, indexed byr 2 f1; : : : ; Ng and characterized by
position, local orientation and an associated edge intensity valuehr.

The CLM Contour Grouping Model is then composed of a set ofL layers� 2 1; : : : ; L
whereL � 1 “figure” layers are provided to respond to salient contour groups and a sin-
gle “ground” layer is provided to capture the background features. The pairwise lateral
interaction between edge features in the figure layers is visualized in Figure 6. The exci-
tatory component links edges that are co-circular, i.e. lietangentially to a common circle,
with a tolerance that admits small deviations. This orientational field is superimposed with
a Gaussian distance-dependent component. This excitatoryinteraction field is similar to
recent models (Parent & Zucker 1989; Yen & Finkel 1998; Li 1998). A similar interac-
tion pattern between orientation sensitive cells has been observed experimentally (Gilbert,
1992; Weliky et al., 1995). The local inhibitory component is of comparable magnitude
as the excitatory field and insensitive to orientation as suggested by experimental findings
(DeAngelis et al., 1994). To support the separation of remote contour parts an additional
weak long-range inhibition is necessary, which has no direct biological counterpart in the
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Figure 6: Lateral interaction for contour grouping. a) The pairwise interaction depends
on difference vectord and two unit vectorsn1;n2 encoding orientation for computational
convenience. b) shows the resulting interaction pattern for a single horizontal edge at the
center. Sampled at surrounding positions and orientations, black edges share excitatory,
grey edges share inhibitory interaction with the central edge. Length codes for interaction
strength.

experimentally observed lateral connection structure.4 The complete lateral interaction,
given asf cocircrr0 , and the preprocessing stage which we employed for the feature generation
are defined in Appendix B.

The lateral interactionsf �rr0 are then given asf1rr0 = mÆrr0 for the ground layer and
as f�>1rr0 = f cocircrr0 � k in the figure layers. The parameterm > 0 defines a self-coupling
against which lateral interactions in the figure layers mustcompete to “pop out” a feature
from the ground layer. The weak global inhibition strengthk was chosen ask = 0:3=N .
The vertical interactions and input strength are chosen equally asJr = I��r = J withJ > J
 = maxrPr0 �(frr0), whereJ
 is the critical value implied by the stability margins
of Theorem 1. We used a value ofJ = 1:1J
.

The application of the CLM contour grouping model to a real image is shown in Figure
7. The preprocessing (see App. B) results in a set of featureswhere object and background
textures produce a noisy background. To obtain a robust grouping for the complex scene
of interacting edge elements, annealing in T was necessary,where we used an exponential
schedule as described in Section 4 with� = 0:99. The grouping result is shown in Fig. 7c.
By an appropriate choice of the ground layer strengthm = 3:5, which must approximately
match the sum over the cocircular interactions of an edge that is part of a proper contour,
the salient contours are detected as single groups. Since noisy edges lack the lateral support
of aligned edges, they are then captured by the ground layer and for sufficiently many avail-
able layers only those containing salient segments will be active. The lateral interactions
cause an amplification of salient low-intensity contours without enhancing noisy fragments.
To demonstrate that this amplitude-dependent modulation is crucial in the model, we com-
pared the CLM grouping result to a Potts spin mean field model with equal lateral interaction
structure and annealing. Spin models generally lack the ability to represent additional am-
plitude information. The result in Fig. 7d illustrates thatthis makes them more sensitive to
noise in the image, because noisy aligned elements may form spurious groups. Since we

4Wang & Terman (1997) have speculated about the thalamus providing the global inhibition.
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d) Potts spin grouping
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Figure 7: Grouping of a natural image. An input image a) is preprocessed to generate a set
of � 2000 edge features displayed in b). The edge input intensityhr is visualized as the
thickness of the displayed elements. The noise from the background and fruit textures has
low amplitude, however, cannot be suppressed by thresholding without losing low contrast
contours of the objects. c) shows the grouping result for a CLM architecture with 20 figure
layers and one ground layer. The symbols (7 symbols� black,light, and dark grey) represent
activity in different layers with symbol size proportionalto magnitude. The ground layer
is omitted. The scale of the lateral cocircularity interaction is displayed in the upper left
corner. The CLM grouping gives 11 segments, which achieve anidentification of the most
important curve elements in the presence of background noise, where some of the layers
remain inactive. The low-intensity edges of the pear and apple are amplified due to the
supporting lateral interaction on the salient contours. d)shows the grouping by a Potts spin
system with the same interactions. Due to the lack of amplitude information the model has a
strong tendency to “hallucinate” curves which cannot be compensated by the ground layer.
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were not able to produce significantly better results also byvarying parametersm andk we
conclude that the amplitude-dependent dynamics in the CLM leads in this setting to a better
signal-noise separation for complex input patterns.

Figure 8 shows the performance of the CLM with the same parameter settings and iden-
tical annealing on more complex image data, where for an aerial image the number of layers
is not sufficient to allow a single layer for each salient segment. In that case the dynamics
tries to find a compromise by combining segments into the samelayer such that their mutual
inhibition is minimal and thus the overall energy level is minimal. This results in a tendency
to prefer a combination of parallel segments, which are separated by a distance larger than
the local inhibition field of the cocircular interaction. Inprinciple, it would be possible to
suppress multiple segments within a layer by raising the global inhibition. This, however,
in turn poses an upper limit on the maximum size of a stable segment, since then the global
inhibition may exceed the local cocircular support. The time course of the dynamics dur-
ing self-inhibitory annealing illustrates the resulting hierarchical group formation process
which initially expresses the most salient groups in the available layers.

6 Discussion

6.1 Binding Properties

The CLM binding model shares some components with other recent binding models. For
the contour grouping example that we have considered, the lateral interactions are based on
a local compatibility combined with a weak global inhibition, which is the same for LE-
GION (Wang & Terman 1997) and the ECU spin update model (Opara& Wörgötter 1998).
The LEGION model also uses a mechanism to perform figure-ground segmentation by sup-
pressing features with low lateral support. The main difference lies in the dynamical imple-
mentation, which for the CLM is given by a consistent model ofneural activity dynamics
in a layered system of coupled WTA columns. For the local contour grouping model, long-
range coherence and separation are enforced by a self-inhibitory annealing mechanism, that
causes controlled expression of dynamical modes, but also results in a tradeoff for conver-
gence time. Another CLM application to texture segmentation (Ontrup & Ritter 1998), has
shown that for sufficiently dense and long-ranged feature interactions, the CLM performs
well also without annealing. The models of Wang & Terman (1997) and Opara & Wörgötter
(1998) employ mechanisms similar to region growing and havebeen successfully applied
to the task of greyscale segmentation of image data, howeverwe believe that the complex
interactions of overlapping and intersecting curve elements might pose problems for their
application to contour grouping.

Our eigensubspace analysis reveals an interesting parallel between the grouping dynam-
ics in the CLM and the oscillatory synchronizations in the contour integration model of Li
(1998). If we restrict ourselves to lateral interactions which are only excitatory, then the
dominant oscillation mode in that model has the same eigenvector components as the dom-
inant grouping mode in the CLM. Therefore, a similar mechanism of suppressing spurious
eigenmodes could be used to improve the synchronization properties in that model. We
consider a combination of synchronization-based and spatial mechanisms as a promising
approach to more realistic models of cortical feature binding, which have enough computa-
tional power to be used for sensory segmentation tasks.
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Figure 8: Grouping Results. The figure shows the CLM groupingresults for two other
images with identical parameter settings and 20+ground layers. For the “leena” image (�2000 features) the CLM gives 18 segments which cover the most salient contours. The
ground layer strength introduces a minimum size that a segment must have to collect enough
lateral support, thus smaller contour segments are not resolved and would require a multi-
scale extension of the model. Low intensity edges are enhanced at brim and the top of the
hat. The lower aerial image (�3500 features) is taken from (Yen & Finkel 1996). Due to the
presence of more salient contours than layers, some layers actually carry more than a single
segment, like e.g. the “black circle” layer, which has threevertical groups in the upper left
corner and the center of the image. This illustrates a tendency to combine parallels into the
same layer which is most efficient with regard to the energy level of the global grouping.
The lower row shows the sequence of emerging groups when lowering the self-inhibition
from left to right. 19



6.2 Selective Amplification and Noise Tolerance

A main difference of the CLM compared to spin models of segmentation is the explicit us-
age of amplitude information in the input. The usage of dynamical WTA circuits results in
a context-dependent amplitude modulation which enhances salient groups due to their sup-
porting lateral interactions. Our comparison to a Potts spin model shows that this results in
a better noise tolerance for the contour grouping example. This process has been discussed
by Li (1998) and Li & Dayan (1999) as selective amplification.We have considered a setup
where only the contributions of a set of coarsely sampled features are active, while others
are omitted from the model. This decreases the ability to hallucinate contours, since we do
not have a full range of feature detectors at all orientations as in the model by Li (1998). This
also excludes a direct “filling in” of contours which are not present in the input. To ensure
a proper operation of the model in an extended case of features at all orientations, it would
be necessary, similar as in (Li 1998), to increase the threshold of the non-saturating linear
transfer function from zero to a finite positive value to suppress the activation of neurons
with zero afferent input.

6.3 Biological Relevance

The key principle of the CLM architecture is the encoding of feature bindings by the assign-
ment to separate populations of laterally interconnected and locally competitive neurons.
A biologically realistic interpretation of the CLM architecture may be expressed either in
terms of the prominent layered structure of the real visual cortex, or it may be implemented
in the rich local connectivity structure of a single neuronal layer itself. Here, we want to
restrict our discussion on the macaque monkey primary visual cortex, area V1, which is one
of the most intensively studied regions of the brain.

Although it is known that neurons in the granular and supergranular layers of the pri-
mary visual cortex are connected via horizontal connections of considerable lateral spread
(Rockland & Lund 1983) there is currently no experimental data available which supports
the idea of specific inhibitory (competitive) interactionsbetween disjunct modules of later-
ally interconnected neurons. However, the CLM model illustrates, that this principle could
be easily implemented in a simple neural circuit and therefore we propose to look for related
anatomical structures as an interesting experimental question. The presence of sufficiently
many layers to carry each salient segment in an image is hard to justify in the visual sys-
tem, albeit it may be useful from a technical applications point of view. Nevertheless, since
our suggested self-inhibitory control mechanism togetherwith the figure-ground separation
allows for a concentration on the most salient groups, a limited number of layers may not
form a severe restriction.

The principle of feature binding within competitive and spatially segregated layers may
help to process visual information via different routes through the cortical neuropile. For
example, there is evidence of local topographic inhibitionbetween those layers in area V1
which receive the majority of afferent inputs from the LGN (Hubel & Wiesel 1972); the
principal input layers4C� and4C� are coupled by reciprocal inhibitory interneurons (Lund
1987) (varieties�-3, �-3). Since the� and� sublayers are characterized by different re-
sponse properties (Blasdel & Fitzpatrick 1984; Hawken & Parker 1984) as well as different
spread of lateral connections (Yoshioka, Levitt, & Lund 1994), a putative interpretation of
the inhibitory circuitry could be that feature binding in each sublayer is performed by such
a competitive interaction. Moreover, the neurons in layer4C� and4C� project to different
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target layers within area V1, which in turn contain key sets of efferent neurons to other cor-
tical areas (Yoshioka, Levitt, & Lund 1994; Yabuta & Callaway 1998). Therefore, a binding
of features to different depth of layer 4C may form the basis of the subsequent processing
stages.

The layered structure of the CLM involves a certain degree ofneural redundancy and
could be considered as a “waste” of neural hardware. The fixedhardwired layers might seem
less flexible than the synchronization-based approach, which carries additional information
into the temporal domain. Models have shown, however, that complex interactions lead to
strong limitations with regard to stability and separationof the groupings. We suggest the
principle of topological segregation, as used in the CLM, asan additional binding principle
which could improve the robustness and stability of the feature binding processes.
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Appendix A: Proof of Theorems

We consider the CLM dynamical system as_xr� = !r�Er�; where !r� = (0 for xr� = 0 ; Er� < 01 else ; (20)Er� = Jrhr �X� I��r xr� +Xr0 f �rr0xr0�; (21)

whereJr > 0, I��r = I��r > 0, andf �rr0 = f �r0r.
Theorem 1. If �r� > 0 with �r� = I��r �f �rr�Pr0 6=rmax(0; f �rr0), then the CLM dynamics
is bounded. If 0 � xr�(0) � M for all r; �, where M = maxr(Jrhr=�r�) then 0 �xr�(t) �M for all r; � and t > 0.

Proof. We prove the boundedness by constructing a hypercube in the positive domain which
cannot be left by the dynamics. Since_xr� � 0 for xr� = 0 the dynamics cannot leave the
positive domain if initialised withxr�(0) � 0 and thereforexr�(t) � 0 for all t � 0. The(r; �)-face of the hypercube is defined byxr� = M; xr0� �M for r0 6= r or � 6= �: (22)

We now show how to chooseM such that_xr� � 0 for all xr� on the face(r; �), causing the
system to stay inside the hypercube. On face(r; �) we havexr� = M > 0 and therefore!r� = 1. Hence_xr� = Jrhr �X� I��r xr� +Xr0 f �rr0xr0� (23)� Jrhr � I��r xr� + f �rrxr� +Xr0 6=rmax(0; f �rr0)xr0� (24)
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where we have omitted negative off-diagonal terms. We can now insert (22) and obtain_xr� � Jrhr � �I��r � f �rr �Xr0 6=rmax(0; f �rr0)�M (25)= Jrhr � �r�M � 0 if M � Jrhr=�r� (26)

Therefore, if we chooseM � maxr(Jrhr=�r�) then _xr � 0 on all facesr.
Note that the conditions on�r� in Theorem 1 do not imply diagonal dominance of the global
interaction matrixG��rr0 , since they do not take into account the vertical cross-inhibitionsI��r .

Corollary 1. Under the conditions of Theorem 1 the dynamical system_xr� = �xr� + �(Er� + xr�) (27)

where �(x) = max(0; x) is bounded under the same conditions.

Proof. Since!r�Er� � 0 if and only if �xr� + �(Er� + xr�) � 0, the conditions on
the faces of the constructed box hold equivalently for this alternative formulation of the
dynamics.

In the following we state sufficient conditions on the lateral and vertical interactions
that ensure the convergence to an unambiguous state, with only one active layer within a
column. We define the lateral feedbackFr� within a layer byFr� =Pr0 f �rr0xr0�:
Theorem 2. If the lateral interaction is self-excitatory, f�rr > 0 for all r; �, and the vertical
interactions satisfy I��r I��r � (I��r )2 for all �; � then an attractor of the CLM has in each
column r either

i) at most one positive activity xr�̂ withxr�̂ = JrI �̂�̂r hr + Fr�̂I �̂�̂r ; xr� = 0 for all � 6= �̂; (28)

where �̂ = �̂(r) is the index of the maximally supporting layer characterized byFr�̂ > Fr� for all � 6= �̂ or

ii) all activities xr�, � = 1; : : : ; L in a column r vanish and Fr� � �Jrhr for all� = 1; : : : ; L.

Proof. Suppose an equilibriumxF has two positive activitiesxFr�;� > 0 in a columnr at

two layers� and�. Then the constraint is inactive,!r�;� = 1, hence �E�xr�;� = 0. Now
consider a small perturbation within this column of the form�r� = ��; �r� = �� ; �r0�0 = 0
for all otherr0; �0. Expanding the quadratic functionE about the equilibrium we obtain for�E under this perturbation with all linear components vanishing at the equilibrium2�E = Xrr0��(I��r Ærr0 � Æ��f �rr0)�r��r0� (29)= I��r �2� + I��r �2� + 2I��r ���� � f �rr�2� � f �rr�2� (30)� I��r �2� + I��r �2� + 2I��r ���� : (31)
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If we can state a perturbation(��; ��) for which�E < 0 thenxF can be no local minimum
and therefore be no attractor of the gradient-descent dynamics. The quadratic(2� 2) form
(31) has at least one negative eigenvalue�1 or �2 if �1�2 = I��r I��r � (I��r )2 < 0. Then,
however, exists a perturbation(��; ��) with �E < 0. If equality holds,I��r I��r = (I��r )2
then�1 = 0 or �2=0 and we can state a perturbation from the null-space for which then�E < 0 due tof �rr; f �rr > 0. So, we have shown by contradiction that an attractor can have
at most one positive activity in a column.

Now consider casei): Let �̂ denote the layer index of the positive activity in rowr. The
constraint is then inactive forxr�̂ and active forxr� 6=�̂. Hence0 = Er�̂ = Jrhr � I �̂�̂r xr�̂ + Fr�̂; (32)0 > Er� 6=�̂ = Jrhr � I �̂�̂r xr�̂ + Fr� 6=�̂; (33)

which proves casei). Caseii) gives just the remaining possible stable equilibria which are
not covered byi).
Appendix B: Preprocessing and Cocircular Interaction

The edge features are generated by subdividing the image into non-overlapping small sub-
rectangles. On each subrectangle 3x3 pixel Sobelx andy operators are applied which sam-
ple the intensity gradient information at orthogonal directions. Within each subrectangle we
choose an edge feature indexed byr at the position of maximum squared Sobel response
and a unit orientation vector in the direction of the normalized Sobelx andy components.
The inputhr is given by the squared Sobel response added by a small positive constant. We
observed that this slightly raising of the zero level improves the ability to enhance low input
contours through lateral effects. The constant was chosen as ten percent of the maximum
edge intensity. The original pixel sizes of the images before subsampling were298 � 284
(fruit still life), 224� 224 (leena image) and380 � 380 (aerial image).

The co-circular interaction of two edges at positionsr1 = (rx1 ; ry1) andr2 = (rx2 ; ry2)
with a difference vectord = r1 � r2, d = jjdjj andd̂ = d=d, and unit orientation vectorsn̂1 = (nx1 ; ny1), n̂2 = (nx2 ; ny2) (see Fig.6) is given byf cocirc((r1; n̂1); (r2; n̂2))= �(a1a2q)�e�d2=R2�C2S�� Ie�2d2=R2 ;
wherea1 = nx1 d̂y � ny1d̂x; a2 = nx2 d̂y � ny2d̂x; q = n̂1 � n̂2 and�(x) = 1 for x � 0
and�(x) = 0 otherwise is necessary to exclude skewed symmetric edges. The parameterR controls the spatial range, which is smaller for the inhibitory component. The degree
of co-circularity is given byC = jn̂1 � d̂j � jn̂2 � d̂j which is equal to zero if both edges
lie tangentially to a common circle. The parameterS > 0 controls the sharpness of the
co-circularity constraint andI > 0 controls the strength of the local inhibition. For all
the simulations in this paper, the spatial dimensions were scaled into a unit square, and the
parameters wereR = 0:1, S = 300, I = 0:5, m = 3:5.
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