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Abstract

We present a recurrent neural network for feature bindirtgssemsory segmenta-
tion, the competitive layer model (CLM). The CLM uses topaqgnically structured
competitive and cooperative interactions in a layered ogtwo partition a set of input
features into salient groups. The dynamics is formulatediwa standard additive re-
current network with linear threshold neurons. Contextelations among features are
coded by pairwise compatibilities which define an energyfiam to be minimized by
the neural dynamics. Due to the usage of dynamical winrier-&d circuits the model
gains more flexible response properties than spin modekgofientation by exploiting
amplitude information in the grouping process. We provdyitaresults on the con-
vergence and stable attractors of the CLM, which generabizker results on winner-
take-all networks, and incorporate deterministic anmeglior robustness against local
minima. The piecewise linear dynamics of the CLM allows aéineigensubspace
analysis which we use to analyze the dynamics of binding mjuwtction with an-
nealing. For the example of contour detection we show howCh#! can integrate
figure-ground segmentation and grouping into a unified model

1 Introduction

From the viewpoint of brain theory (von der Malsburg 1981n der Malsburg 1995), fea-
ture binding may provide one of the basic sensory infornmapioocessing principles. A
key question is then what are the neural correlates of binghocesses? In addition to
the importance of this question regarding our understandfrbrain function, there is also
great interest in using similar mechanisms for patterngeition applications like image
segmentation and object recognition.

A large body of neural network research has focused on bjndiodels based on tempo-
rally correlated neural activity (von der Malsburg 1981knsilated by neurophysiological
findings (Singer & Gray 1995; Eckhorn 1994) which supportrectional role of synchro-
nized activity in perceptual processes. Correlation-tbdeature binding has been mod-
elled by phase-coupled oscillators (Baldi & Meir 1990; Satisky, Golomb, & Kleinfeld
1991), where, however, problems are slow convergence andettessity of all-to-all con-
nections for robust synchrony. Other non-linear oscitlatmdels have been developed
(von der Malsburg & Buhmann 1992; Schillen & Konig 1994)t ere only tested on
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small networks and highly simplified test images. Relaxatiscillators (Somers & Kopell
1993; Terman & Wang 1995) show long range synchrony also hithl connections and
have been applied to region-based image segmentation (&&agnan 1997) and auditory
segregation (Brown & Wang 1997). A problem is the limited t@mof groups which can
be stably represented (about 5), which can only be overcgrivegroducing algorithmic ab-
stractions of the original model. A phase averaging mod# wile-based interactions has
been applied to the extraction of contour saliency by Yen 8kEi (1998). Nevertheless,
successful applications to the segmentation of real-wdalh are still rather exceptional
(Wang & Terman 1997; Yen & Finkel 1998). This is mainly causgdhe high dynamical
complexity of these models, which makes their simulatiostlgcand their analytic study a
difficult task.

A different approach to feature binding are spin models,civliiave been developed
for computer vision (Geman, Geman, Graffigne, & Dong 1990radk & Horaud 1993;
Opara & Worgotter 1998) and combinatorial optimisatigplécations (Peterson & Soder-
berg 1989; Blatt, Wiseman, & Domany 1997). Each featuregeasented by a spin variable
which attains one of a discrete set of spin states and a lgrafitwo features corresponds
to both sharing the same spin states. With regard to apiplicathese models have the great
advantage of being derived from energy or cost functioncklwbharacterize the stable out-
put states as their minima. This energy-based approadblisk&s a link to pairwise cluster-
ing (Rose & Fox 1993; Hofmann & Buhmann 1997) and labelindgfmms in combinatorial
optimisation (Kamgar-Parsi & Kamgar-Parsi 1990). Relaxatabeling (Rosenfeld, Hum-
mel, & Zucker 1976), a standard technique in the field of pattecognition, also falls into
this category of energy-based labeling iteration schetdesinel & Zucker 1983; Pelillo
1994). Although offering a conceptual approach to binditgse models share certain
drawbacks regarding their biological plausibility, sirtbey either require iterative discrete
cluster update procedures (Opara & Worgotter 1998; Bldiseman, & Domany 1997) or
complex normalizing nonlinearities (Peterson & Soderld€3§9; Rosenfeld, Hummel, &
Zucker 1976; Hummel & Zucker 1983).

Since grouping is an intensively studied subject in compwtgon, there exist a vari-
ety of other algorithms such as based on Markov Random FH@dman & Geman 1984),
variational approaches (Mumford & Shah 1989), and curvéutiom (Kimia, Tannenbaum,
& Zucker 1995). See also (Wang & Terman 1997) for other reladderences. Recent work
has stressed the importance of grouping for dealing withotwusion problem (August,
Siddiqgi, & Zucker 1999; Elder & Zucker 1996). Another recemproach to segmenta-
tion has used normalized cuts (Shi & Malik 1997) to combirgestanalysis with graph
partitioning based on feature similarities.

In this contribution we analyse the competitive layer mdéetter 1990; Wersing, Steil,
& Ritter 1997) (CLM) which realises an energy-based appnidadeature binding in a stan-
dard additive recurrent neural network with linear thrégdhmeurons. Similar to spin mod-
els, a feature is assigned to one of a set of labels which #eetsd by a columnar local
winner-take-all (WTA) circuit. These columns are coupledl&teral interactions which
determine preferred bindings according to the mutual caiipy of the features. The
neurons which represent the same label assignment argedranlayers which are orthog-
onal to the columnar structure (see Fig. 1). As was shown ergilg & Ritter 1999), the
attractors of the CLM provide feasible solutions to relé@atabeling problems. Ontrup &
Ritter (1998) have applied the CLM to texture segmentatiased on features derived from
Gabor filter banks, and shown that the method performs wedlwide range of image data.



The CLM energy function approach is similar to the quadratiergy function of Potts-
Mean-Field (PMF) approaches to combinatorial optimizatid\n important difference is
that the CLM is formulated as a piecewise linear system, land &llows to use the tools of
eigensubspace analysis for an inspection of the bindingggso Our results extend previous
results on single-column WTA networks (Sum & Tam 1996; Hakat 1998) to the layered
multi-column case. By using dynamical WTA circuits as opgab$o strict normalizations
in PMF, the model gains more flexible and biologically pléleiresponse properties. We
show how this can be used advantageously in the groupingmbers and figure-ground
segmentation.

In Section 2 we introduce the CLM architecture and discusaithin properties of its
binding dynamics. Section 3 is devoted to a general thealednalysis, which covers con-
vergence, attractors and an eigensubspace analysis of MewEh relation to the grouping
properties. In Section 4 an efficient simulation procedsrstated, which we used for the
application to contour grouping presented in Section 5ti@e6 discusses the results with
respect to binding properties, noise tolerance and bicédgelevance.

2 The CLM feature binding model

2.1 The CLM architecture

The CLM consists of a set df layers of feature-selective neurons (see Fig.1). We denote
the activity of a neuron at positionin layer « by z,, and denote as eolumn r the set of

the neuron activities,,, « = 1... L that share a common positionin each layer. We
associate each column with a particular “feature” whichasalibed by a parameter vector
m,. A typical feature example are local edge elements whicltlaaeacterized by position
and orientationm, = (z,,y,,0,). More complex features were used by Ontrup & Ritter
(1998) for texture segmentation, which employed a vectdoad| Gabor filter responses at
different spatial frequencies and orientations.

A binding between two features, represented by colurmarsdr’, is expressed by simul-
taneous activities,3 > 0 andz, 4 > 0 that share a common layé: Therefore, binding
is achieved by having each (activated) columassign its feature to one (or several, but see
below) of the layersy, interpreting the activityr,, as a measure for the certainty of that
assignment. All the neurons in a columiare equally driven by an external inplyt which
is to be interpreted as the significance of the detectionaitifer by a preprocessing step.
The afferent input., is fed to the activitiez:,, with a connection weighf, > 0.

Within each layerx the activities are coupled by the lateral interactigin which cor-
responds to the degree of compatibility between featusesdr’ and which is a symmetric
function of the feature parametefs;, = f*(m,, m,/) = f*(m,,,m,). The interactions
f, determine which pattern configurations, if elicited as\agtipattern within a single
layer o, will be mutually supporting among their constituent p&ff% > 0) or instead suf-
fer mutual inhibition ., < 0). Two examples for lateral interactions motivated by Gesta
laws of perceptual grouping are shown in Figure 2. The laietaraction pattern may be
identical in all the layers or different to allow greater flality; a very useful case, which
we dicuss for the purpose of perceptual grouping, is therparation of a “ground” layer to
perform simultaneous grouping and figure-ground segmentéee Sec. 5). The number
of layers need not correspond to the number of groups, sorcsufficiently many layers
only those are active that carry a salient segment.
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Figure 1: The CLM architecture. For each input feature ahgiin each layer a responding
neuron. A vertical WTA circuit implements a topographic gmtition between layers. Lat-
eral interactions characterize compatibility betweenuiess and guide the binding process.

The purpose of the layered arrangement in the CLM is to eafardynamical assign-
ment of the input features to the layers, using the contéitt@mation stored in the lateral
interactions. The assignment is realized by a columnar Wiféuit, which uses mutual
symmetric inhibitory interactions with strengﬂﬁ“ﬁ = I?® > 0 between neural activities
zrq andz, g that share a common column

The combination of afferent inputs and lateral and veriit@ractions can be combined
into the standard additive activity dynamics

o = —pa+ 0 (e = 3 1P+ 3 E 30 + 2y ) (1)
B r!

= —Zpq t+ U(Era + mra),

whereo(z) = max(0, z) is a non-saturating linear threshold transfer functiond Bp, +
Zro 1S the total input to neurom,.,. The additional self-excitatory term simplifies the fol-
lowing computations and can be compensated for by takfhg= 2, — §,,.

2.2 Energy Formulation and Binding Dynamics

The dynamics (1) has an energy function of the form

E=-Y Jihora+ % NN 1P asawns - % SN i amia. )
ro o rr!

r  af

The energy satisfiedF / 0z, = —E,q, Which makesZ nonincreasing under the dynamics
(1),d/dtE = -3, Era(—2ra + 0(Era + 2,4)) < 0, since (1) confines the activities to
be nonnegative (see App. 1). Thus the attractors of the digsafh) are the local minima
of (2) under constraints,, > 0. While the vertical interaction&™ establish the columnar

WTA process, the lateral interactiofi§, contribute in the quadratic energy as a sum over
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Figure 2. Examples of lateral interactions for perceptualiging. An “OnCenterOffSur-

round” interaction which is excitatory for short distan@gl weakly inhibitory for larger

distances is capable of clustering according to proximitpaints. Different symbols de-

note activity in different layers. The Gestalt principle adntinuity can be modelled by
a local cocircular interaction of edge elements that lismglourves of constant curvature
combined with a weak long-range inhibition to separateediit segments.

all pairwise compatibilities within groups. If we interprihe negative value of the energy
as the overall quality of the grouping, the aim of the dynani) is to reach a globally
minimal or almost minimal energy state.

The quadratic summation approach is similar to the cormdipg Potts spin mean field
free energy (Peterson & Soderberg 1989)

1
Epyrp = ~3 Z Zfﬁn,xmmwa + TZ Ty 108 Tpg,
a rr! ro

which is to be minimized subject to the weighting constraint ., = 1. On the contrary,
in a Potts spin model there is no explicit representatiomaifierent input and the columnar
activity must always sum to one due to its probabilisticriptetation. The additional convex
entropy term that is weighted by the temperature pararietéases the local minima of (3)
towards soft columnar assignments, since it attains itSrmim atz,, = 1/L. Minimal
solutions to (3) can then be obtained by the recurrent dycemi

oFralT .
FT‘Dé = E frr’ xr’a
,,.I

" >gefe/T
which implements a columnar WTA circuit that is graduallyagiened by decreasing (or
“annealing”)T — 0.

(3)

(4)

Tra = —ZTra



The CLM dynamics (1) provides a similar soft competition estie between all pos-
sible groupings in the different layers of the model. Thedhaeighting constraint and
divisive nonlinearity (4), however, are replaced by a maegifile WTA circuit, that is cou-
pled dynamically to the afferent inpét. and permits a contextual modulation of the input
according to the salience of the grouping, but also reqaireadditional stability analysis.
Perceptual context effects of this kind have been observadiide range of physiological
(Gilbert 1992; Kapadia, Ito, & Westheimer 1995) and psydhsical (Kovacs & Julesz
1993; Field, Hayes, & Hess 1992; Polat & Sagi 1994) studiesour later eigensubspace
analysis of the CLM dynamics reveals, the columnar WTA dyicans driven by eigen-
modes that depend on the lateral interaction pattern andgevbmenvalues characterize
the rate of the group formation. The analysis motivates ahen@ism for slowing down
the lateral mode dynamics for increased grouping qualitadiging a self-inhibitory cou-
pling at each neuron of the fonﬁ';;}, = f% — T4,,», whereT > 0 is the strength of this
self-inhibition. This leads to a new CLM energy

E=E+T)Y 27, (5)
T

which adds an analog convex term that biases the local mitdwards graded assignments
and thus makes the WTA more soft. Similar to annealing in thigssHmodel (Peterson &
Soderberg 1989), we can then use a gradual lowering of thieitoty self-couplingT to
sweep from graded assignments to the final unique assigraséhe final grouping result.

A time course of the dynamics with and without self-inhibjt@nnealing performing
contour grouping is shown in Figure 3. Annealing results mwch more regular group for-
mation process, which produces groups proceeding hiecatlshfrom more to less salient
groups. The slowing down of the dynamics, however, resnltstradeoff for convergence
time. Whether annealing is necessary depends on the coitlgpdéxhe input pattern with
respect to the lateral interactions. Two problems that lmeeen emphasized by Wang &
Terman (1997) are long-range coherence with local intenastand the proper separation
of different segments. Self-inhibitory annealing incesagong-range coherence, and also
reduces the necessary strength of global inhibition foresiig separation, by a reinforce-
ment of the corresponding dynamical modes, which we distudgtail in the following
section.

3 Theoretical Analysis

The dynamics (1) is a nonlinear dynamical system which atssif a series of continuously
connected linear systems. An alternative dynamical implgation is of the form

Tra = Wrallra (6)

which avoids the occurrence of tla€.)-nonlinearities and instead enforces the constraint
zro > 0 by a set of “switching variables”

0 for 2, =0, E., <0
Wra = { (7)

1 else

This reformulation corresponds to constrained gradiestelat in the energy (2) which
naturally makes? nondecreasingd/dt E = — 3", w,oE2, < 0. Since both dynamics
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b) Activity dynamics with self-inhibitory annealing

Figure 3: Activity dynamics and group formation in the CLMh& neural activity is dis-
played by different symbols for different layers with syrhbize representing activity value.
The lateral interaction is locally cocircular with a weablghl inhibition as in Fig. 2. A typ-
ical time-course of the dynamics is shown in a). After initiation with random activity
values first all activities within in a column are equallyieetin all layers. After that, dy-
namical modes, which break the symmetry between layersedaumation of groups. The
“soft competition” between the group assignments lastdl the columnar WTA circuit
has caused an assignment to one of the layers. The modessarehyi the eigenmodes
of the lateral interaction pattern. The main problems angl@nge coherence with local
interactions and a proper separation of different groupagiented groupings can occur
especially for very short-ranged interactions due to faptession of modes which lead to
fragmented groups. b) shows how the mechanism of selfitohybannealing can be used
to suppress these fragmenting modes. During the dynangcsttbngth of self-inhibition is
lowered, which has the effect of making the columnar WTAuirtess strict and increases
the “soft competition” between grouping assignments ohglsi feature. Fluctuations due
to fragmented modes are smoothed out. The groups are tHeredifated in a sequence,
where the most salient structures appear first.



share the same energy function they converge to the saraetats which are local minima
of (2) and may be considered as dynamically equivalent. eSine formulation (6) has the
advantage of simplifying the linear analysis by shifting tfonlinearity to the boundary
wherez,., = 0, in the following we mainly consider the form (6). Neverthes we prove
our results in Appendix A in a form which also applies to theldgically more plausible
and thus conventional form (1).

Our theoretical analysis is first based on a discussion ofrtbéel attractors and the
conditions for convergence. We then discuss with an eidmpace analysis which of the
attractors are preferred by the recurrent dynamics andiskswith a synthetic example,
how this relates to the properties of the binding processempnted by the CLM.

3.1 Convergence and Assignment

Networks composed of non-saturating linear thresholdaoreuas in (1) or (6) may be un-
bounded if the excitatory interactions are not balancedufijcgent inhibition. Hahnloser

(1998) has discussed the stability for a single WTA circuaid given a criterion based on
global inhibition. The following theorem, which we prove time appendix, states that in
fact local inhibition is sufficient to ensure boundednesstiie@ CLM system of layerwise
coupled WTA columns.

Theorem 1. If 6,4 > OWith ko = IP*—f5 =37, max(0, fS, ), thenthe CLM dynamics
is bounded. If 0 < z,4(0) < M for al r,a, where M = max,(J,h,/krq) then 0 <
Zra(t) < M for al r,aandt > 0.

The factors,., control the stability margin and the maximal amplificatidritee inputs
h,. They are positive, if the self-interaction strengflf — f. of a neuron is larger than the
sum of the excitatory connections,. ., max(0,f,],) converging onto it. If in the simplest
caseJ, = e — J for all r, a, B, the afferent input and vertical interaction terms can
be combined in the energy to the tethd ", (h, — >8 w)z. We can interpret this as
a penalty term with/ as a constraint multiplier enforcing the condition, thag fHummed
activity in a column is equal to the inpét. Unlike in the usual penalty function approach
to combinatorial optimisation problems, in the framewofksensory segmentation as we
consider here a strict enforcement of this constraint isgimdble. If we choosd close to
the stability margin of Theorem 1, the penalty term derivemih the vertical interactions
no longer dominates over the lateral interactions and themoowise activity is strongly
influenced by lateral effects; we return to this point aftating the next theorem.

Essential to the columnwise WTA approach is that we obtairopgr assignment of the
features, that is, a state where each columaontains at most a single nonvanishing activity
zr4 > 0. The conditions on the vertical interactions for this assignt property to hold

are stated in the following theorem:

Theorem 2. Let F,, = ) . f% 2., denote the lateral feedback of neuron r, a. If the
lateral interaction is self-excitatory, f¢. > 0 for all r, , and the vertical interactions satisfy

r

1o PP < (1#%)2 for all «, B, then an attractor of the CLM has in each column r either
i) at most one positive activity z,4 with

J, F?"& ~
mrazm%hﬂ“@’ x5 =0 for all B # a, (8)



where & = &(r) is the index of the maximally supporting layer characterized by
F.s > Frﬁ for all 8 #+ @&, 0r

i) all activities 2,4, « = 1,...,L in a column » vanish and F,, < —J,.h, for all
a=1,...,L.

This theorem states that as long as there are self-exgitaitaractions within each
layer, and the vertical cross-inhibition is sufficientlyostg, the CLM converges to a unique
assignment of features to the layer with maximal lateratifeek F.,. A central result
is that, due to the layered topology of the network, this dugisrequire arbitrarily large
vertical couplings. Also note that the lack of an upper sdtan is essential for the WTA
behaviour, because it allows to exclude spurious ambigataiss. Nonzero activities are
only stable due to a dynamical equilibrium and not due toratittn. Douglas et al. (1995)
and Hahnloser (1998) have argued for the plausibility of thirm of dynamical stability
since cortical neurons rarely operate close to saturafid lateral and vertical feedback
modulates the input intensity by an amount that is depenoietie ratios o **, F,, and
J-. Consider again the simple examplg = I#% = J, for all r, a, 3 where, according
to Theorem 2, the output of the only active neuron in a colusmthén given bye,.; =
h, + F.4/J. This shows that by lowering the lateral effects can be increased and we
obtain a context-dependent activity distribution, whitii eemains sensitive to the input
intensities. Note that the additional self-inhibitory aating by choosing;;}, =% —T6pp
for T sufficiently large violates the condition of Theorem 2 arafle to stable states with
multiple nonzero activity within a column, as the followieggensubspace analysis shows.

3.2 Eigensubspace Analysis

After we have discussed the possible attractors of the medehow turn to the discus-
sion which of them will be preferred by the dynamics. Since @LM time development
is defined by the piecewise linear differential equation (8¢ can apply the method of
eigensubspace analysis to obtain a solution in the linearaitg where the constraints are
inactive. We consider the important special case of a lateteractionf?, = f,,, that is
identical for all layers. For simplicity we také. = I8P = J for all r,a, B as constant.
As we will show in this section, the special form of two topgikcal “orthogonal” inter-
actions allows us to characterise the global eigenmodegpletaly in terms of the lateral
eigenmodes.

Apart from constraints, the system is described by the tidgaamics

Tro = Jhy + Z G?ﬁxr’ﬁa (9)
r'B

wherer‘f, = —J 0y + dopfrp. Introducing theV x L vectors

x = (x1,...,xz) With x, =(214,...,ZN) and (20)
h:(ho,...,hg) with h():(hl,...,hN) (11)

we can write this as

% = Jh + Gx (12)



whereG is a linear transformation in the spak& *V¥ ® RX*% and can be decomposed as
G =f®Id*L — J1dV*N g 1ExE (13)

with Id as the identity an@”“* " as anL x L-matrix of 1's. Equation (13) shows that an or-
thonormal eigenvector basfs*?, A;,} for G can be obtained from orthonormal eigenvector
bases {b%, \;}i—1..n and{q?, 1, },—1..z for f andI“* respectively:

vi1=b'®q’, i=1...N,y=1...IL, (14)

q”, u, can be calculated analytically. Here, we only use that tisé digenvector obvi-
ously is given by

ql = ]‘/\/E(]‘”]')’ 151 =L, (16)

while the remaining orthogonal eigenvectors have zerawaaesys = us = --- = ur, =
0. This has a direct geometrical interpretation. We can ditite eigenmodes of the linear
system into two classes:

e DC-Subspace: This is the subspace spanned by the eigenmodes
vil = 1/VI(bE, ..., bY), Ajg=X\—JL (17)

which contains the coherent eigenmodes which have equab@oents in all layers.
For sufficiently largeJ all the corresponding eigenvalugg, are negative.

e AC-Subspace: This is the orthogonal subspace spanned Bntiaéning eigenvectors
V7 = (gbl,.. . qlbY),  Aiy = N (18)

which contain the eigenmodes causing differences in theitgcpatterns between
layers and which have a zero mean summed over columns. Tigemvalues\;,
are given by the eigenvalueg of the lateral interactiod,,, alone and ard, — 1
degenerate due to the symmetry between layers.

The linear dynamics can be completely characterized by itlensubspaces and the
location of the fixed point which is determined by the inhomiogous inpuh. Relative to
the fixed point, the components, (t) = (x(t) — x') - vi? develop according te;,(t) =
ci,y(O)eAin. This corresponds to exponential growth for positive eigires, while negative
eigenvalues lead to attracting affine constraint surfadéshnpass through the fixed point.

By expanding the fixed point equation= 0 in the basisv’” we obtain the following
expansion of the fixed point? in powers of);/JL (note thath and thus alse" has no
component in the AC space):

1 1 Xi ; Ai )2

F 4 i i i

=—hy+—=Y —=(b" hg)b ). 1

Yo T 0+LZZ_:JL( 0) +O(JL) (19)
Therefore, ifJL > \; we can approximate the fixed point kf, = h,/L. We can
now draw a sketch (see Fig.4) of the initial CLM dynamics méffigg to our eigensubspace
analysis.

We assume that thi; are sorted in descending order > Xy > - > Ayx
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Figure 4: Sketch of the linear dynamics for two layers. Shasa the activity trajecto-
ries for the two activitiese,1, 2 of a single column-. Starting from small initial values
(grey square) the activities quickly approach the fixed p&ih and the constraint surface
Y a=1.2 Lra = hy in the DC subspace. Then the dynamics in the orthogonal ASpste
drives the WTA process until only one layer is active.

Supposér,. > 0 for all » and we initialise the system with small positive random galu
0 < z,4(0) < h,. For sufficiently largeJL > \; all eigenmodes in the DC-subspace
have large negative eigenvalues. Therefore the initite stél be rapidly projected onto the
affine subspac®”, z,o = 3, xL, orthogonal to the DC-subspace which passes through
the fixed point. The rapid projection dynamics in the DC spaowes the activities away
from the zero boundary and thus keeps the initial dynamiesati Now, the modes in the
AC-subspace with positive eigenvaluksdevelop differences between layers on a slower
timescale, since their eigenvalues have smaller abscédiie vThe principal AC-mode with
the largest positive eigenvalue dominates the AC-subsggaamics in this initial phase
and determines the timescale of the WTA dynamics which dré@mme activities to zero in
a column while others are increased. After some of the &ieivieach zero level, they no
longer contribute to the linear dynamics and the nonlitgsitaking effect by introducing
a new segment of the piecewise linear dynamics with differesulting eigenmodéesSince
then the symmetry between layers is broken, the coupled WhAmhics gets more complex
in the general case, by subsequently driving the unassigolethns towards an assigned
state as can be seen by comparison with Figure 3. For requddrighly symmetric patterns,
however, which we discuss in the following section, the fgraluping result can be already
obtained from the dominant mode in the initial linear phasine dynamics.

The suggested mechanism of self-inhibitory annealing moshngf;;}, =f% —Tép
shifts all eigenvalues by, = \; — T. If T'is greater than the critical vali& = \;, then all
eigenvalues are negative and the unassigned fixed p8iig asymptotically stable, which
is analogous to Potts mean field models (Peterson & Sodet98@). If thenT is lowered
from the critical value, at first only thie'-AC modes acquire a positive eigenvalue and grow
exponentially away from the fixed point. The following seatidiscusses how this can be
employed to increase the grouping quality.

2The resulting interaction matrix is of the form.aw, 3G
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3.3 Coherence, Separation, and Self-Inhibitory Annealing

Let us consider two simple stimulus examples for the congwauping lateral interaction
to discuss the binding problems of long-range coherencesapdration referring to the
previous eigensubspace analysis. The first stimulus densisa circle, composed aV
regularly placed edge elements (see Fig. 5). We assume ¢hedimvneglect the effect of all
other columng’ which are at subthreshold activity (i.é,. < 0), and therefore consider
the lateral eigenvectors only from the resultiNgx N lateral interaction matriX,.,. of the
active features. The contour grouping lateral interactias two contributions, the local
cocircular interactionf¢%¢® (see App.2) and a global inhibition with strength giving
togetherf®, = fff,c"c — k. Since the overall interaction pattern is rotationallyangnt on
the circle, the eigenvectors of the interaction are theaitkcosine waves on the circle with
corresponding spatial frequencies.

We first assumé = 0. Each edge shares positive interactions in a local neighlood
range and the zeroth order (constant) cosine With= 1 is the eigenvector with largest
eigenvaluer; = Y, fSo°rC, equal to the sum over the local cocircularity values. The
corresponding global AC modes coherently increase anddserthe activity on the circle
in the different layers. The next two modes with degener@fernsaluesi, 3 < A; are the
first order sine and cosine waves, which split the circle tato halves. The gap between
A1 andX, 3 determines whether the coherent mode dominates over th@érating modes.
It is a general property of local interactions that this gapds to zero, if the range of the
interactions tends to zefo.Since the difference between the modes grows exponentially
also the time the system stays in the initial linear moderdetes the degree of coherence.
By shifting the spectrum of the lateral interaction with #edf-inhibitory additionf! , =
f..n — Té,., this time is increased. This can be used to dynamically mgspthe spurious
b23 modes, however also reduces the overall convergence rate.

Now suppose we add a second equal and well-separated sucle that there are no

local cocircular interactions between the circles (see ¥jg Now the task is not only to
achieve coherence on the circles, but also proper separafimce the lateral interaction
pattern is exchange-symmetric between the circles, theneg@gtors of the composite sys-
tem are symmetric and antisymmetric combinations of thglsinircle eigenvectors with
the same eigenvalues. The modegsandb?, responsible for separating and grouping to-
gether the circles, respectively, are degenerate itk )5 without any global inhibition.
If we now add the global lateral inhibition by choosihg> 0, only theb? mode undergoes
a change in eigenvalue, since all other modes have a zerocotmmpwithin this global con-
stant inhibition. The effect of is then given by shifting the eigenvalug of the spurious
mode to the valua, — 2kN. Therefore, ifk is sufficiently large, the mode which separates
the two circles coherently is dominant. There is, howeueplavious limitation to increas-
ing k, since a strong global inhibition destabilizes the cohesenithin a circle. Similarly,
for the single circle the inhibition lowers the eigenvaluetlte single coherent mode by
Al = A1 — kN. Therefore, to achieve both long-range coherence andatépaonly small
values ofk are possible, for our applications we choése z/N, where0 < z < 1.

The picture gets considerably more complex if there are ncoraplex interacting

3Suppose the spatial exponential decay of the cocircularantion is replaced by a hard cut-off function,
such that the interaction of two perfectly cocircular featuon the circle at angular positiops, ¢, € [0, 27]
isf,., = 1if |¢. — ¢.| < D andf,,. = 0 otherwise. The difference between the coherent nigde- 1
and the first fragmenting modé$ = sin(¢,),b> = cos(¢,) is in the limit of sufficiently small feature spacing
given by2(D — sin(D)) — 0 for D — 0.
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Lateral Eigenvectors

Figure 5: Lateral eigenvectors of the contour groupingradgon. The top row shows
the lateral eigenvectors of the lateral interactions onattive features of this circle in-
put pattern. Vector components are shown as black (posting white (negative) edges
with thickness proportional to magnitude. To achieve a paritebinding on the circle, the
eigenvalue); of the coherent modb! must be sufficiently large compared to the eigen-
values), 3 of the circle-splitting mode®?:3. For two well-separated circles (middle row)
the eigenvectors are symmetric and antisymmetric combmmabf the single circle eigen-
vectors. Without global inhibition, the modé&é andb? are degenerate. A weak global
inhibition suffices to lower the eigenvalug and thus suppress the unwant€dmode. For
more complex inputs (lower row) the succession of eigereatonstitutes a multi-scale
hierarchy. The principal eigenmode separates the circle from the crossing line and the
short lines.b* andb® drive the segregation of the short lines. The simple séiibitory
annealing scheme proposed in section 3.3 can be interpasthikrarchically suppressing
subsequent eigenmodes resulting in a hierarchical graupeftton process.

13



groups in the feature input as the lower example in Fig.5 shoWhe sign-distribution

of the lateral eigenvectors constitutes a multi-scalean@ry of the structures in the input.
By gradually lowering the self-inhibitioff’, which can be understood as a type of annealing
process with regard to the energy function of the dynamiessed modes are expressed in a
hierarchical sequence, as can be seen by looking back &t Fig.

4 Simulation

The CLM dynamics can be simulated in principle in paralleldny differential equation
integrator like the Euler or Runge-Kutta method. Also, doighie piecewise linearity, an
analog VLSI implementation may be even simpler than clasisauits incorporating sig-
moid transfer functions. If simulated on a serial procestmre is an alternative approach
which replaces the explicit trajectory integration by aidagpearch for fixed point attrac-
tors. This can be done by iteratively solving the fixed poiguaions which is largely
facilitated by the piecewise linearity of the model (Ont&Ritter 1998). This iterative
solution procedure, also known as a Gauss-Seidel appra@schl$o been extensively used
for Markov Random Field approaches to image segmentati@sd Green, Higdon, &
Mengersen 1995). The algorithm in conjunction with an exgmial annealing schedule for
the temperature parametBrcan be implemented in the following way:

1. Initialize all z,, with small random val ues ar ound
Tro(t =0) € [hy/L — €, h, /L + €.
Initialize T" with T =1T..

2. Do N-L times: Choose (r,a) random y and update
Tro = max(0, ), where

é - JThT - Z,B;éa Igﬁmrﬁ + Zr’;ér fra;"mr’a
B Iee —f2 4+ T '
3. Decrease T by T:=nT, with 0<n<1l Coto step 2 until
conver gence.

The single activity update in step 2 corresponds to soluiregfixed point equation for
this activity with all other activities held constant. Fbetfigure-ground setup as described
in section 2 the critical temperature is given By = \,..{f-~}. This asynchronous
dynamics converges (Ontrup & Ritter 1998) due to a convergeasult on asynchronous
iteration in neural networks by Feng (1997). We observedeadgain of roughly a factor
of ten compared to Euler integration at comparable soluigadity. For simulation without
self-inhibitory annealing simply sét = 0.

5 Application to Contour Grouping

5.1 Related Work

Itis long known that in the early stages of visual informatgyocessing in visual cortex area
V1 many neurons can be found (Hubel & Wiesel 1962) that regporocal oriented edge
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elements within their classical receptive field. One of theganissues in vision research
are the mechanisms which are used by the visual system gratgethese local elements
into global salient contours to facilitate robust bounddegection and object recognition.
This process has been considered (Sajda & Finkel 1994; ZuUskébins, & Iverson 1989)

as being composed of two components: the process of enhantewhere local edge

information is combined cooperatively for smooth and sal@ontours, and the process of
segmentation or grouping, where separate contour eleramnéssigned to different groups.

Recent neural models of contour integration have mainlydged on the enhancement
stage of visual processing. Many models of orientationniyirdre composed of compet-
itive orientational “OnCenterOffSurround” interactiomgthin hypercolumns (Ben-Yishai,
Lev Bar-Or, & Sompolinsky 1995; Mundel, Dimitrov, & Cowan38), that are modulated
by experimentally found horizontal or lateral long rangeiactions (Gilbert 1992; Weliky,
Kandler, Fitzpatrick, & Katz 1995) to produce contextudéefs. Enhancement through fea-
ture linking is addressed by the model of Yen & Finkel (1996n% Finkel (1998), which,
however, requires rule-based interactions and globaligctiormalizations. Li (1998) has
stated a more biologically plausible dynamical model fontoar integration in area V1
and discusses properties of the oscillatory correlatiorieé model which may be useful to
facilitate synchronization-based segmentation. As tealte of Li (1998) demonstrate, the
complex excitatory and inhibitory interactions lead tatalited and less predictable corre-
lations for more complex visual scenes, leaving the quesifaa robust grouping process
mostly unanswered.

In the following we present the application of the CLM as a ra@groach to the group-
ing stage of contour integration. To keep the model simptetarallow for the application
to large feature sets of real images, we do not consider thergion of local orientation
within a hypercolumn and leave this to a preprocessing Stbp.essential WTA then does
not operate between local orientation alternatives withimypercolumn, but between dif-
ferent grouping alternatives of the edge feature with fix@al orientation.

5.2 The CLM Contour Grouping Model

We suppose that in an initial integration step the local exdigemation has been subsampled
and preprocessed. As a result of the preprocessing, we agbatrwithin a localized area
only a single edge detector is active at an optimally tunézhtation. We therefore consider
a set of idealized edge feature detectors, indexed by{1, ..., N} and characterized by
position, local orientation and an associated edge irtienaiueh,,.

The CLM Contour Grouping Model is then composed of a sdt tdyersa € 1,..., L
where L — 1 “figure” layers are provided to respond to salient contowugs and a sin-
gle “ground” layer is provided to capture the backgrounduess. The pairwise lateral
interaction between edge features in the figure layers isliimed in Figure 6. The exci-
tatory component links edges that are co-circular, i.etaigentially to a common circle,
with a tolerance that admits small deviations. This oritoital field is superimposed with
a Gaussian distance-dependent component. This excitiatigmaction field is similar to
recent models (Parent & Zucker 1989; Yen & Finkel 1998; Li8P9A similar interac-
tion pattern between orientation sensitive cells has bésereed experimentally (Gilbert,
1992; Weliky et al., 1995). The local inhibitory componestof comparable magnitude
as the excitatory field and insensitive to orientation agyested by experimental findings
(DeAngelis et al., 1994). To support the separation of rencointour parts an additional
weak long-range inhibition is necessary, which has no tibedogical counterpart in the
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Figure 6: Lateral interaction for contour grouping. a) Tharwise interaction depends
on difference vectod and two unit vectorsi;, ny encoding orientation for computational
convenience. b) shows the resulting interaction patterrafsingle horizontal edge at the
center. Sampled at surrounding positions and orientatiblagk edges share excitatory,
grey edges share inhibitory interaction with the centrgleed_ength codes for interaction
strength.

experimentally observed lateral connection structur&he complete lateral interaction,
given asf'e, and the preprocessing stage which we employed for theréegneration
are defined in Appendix B.

The lateral interaction§?, are then given a$., = mé,, for the ground layer and
asfo;! = feocre — k in the figure layers. The parameter > 0 defines a self-coupling
against which lateral interactions in the figure layers noashpete to “pop out” a feature
from the ground layer. The weak global inhibition strengtivas chosen a8 = 0.3/N.
The vertical interactions and input strength are choserlggas J, = 1% = J with
J > J, = max, Y. o(f,), whereJ, is the critical value implied by the stability margins
of Theorem 1. We used a value &#f= 1.1J..

The application of the CLM contour grouping model to a reahgm is shown in Figure
7. The preprocessing (see App. B) results in a set of featinese object and background
textures produce a noisy background. To obtain a robustpgrgufor the complex scene
of interacting edge elements, annealing in T was necessasre we used an exponential
schedule as described in Section 4 wijtk= 0.99. The grouping result is shown in Fig. 7c.
By an appropriate choice of the ground layer strengtk= 3.5, which must approximately
match the sum over the cocircular interactions of an edgeighzart of a proper contour,
the salient contours are detected as single groups. Simegeaages lack the lateral support
of aligned edges, they are then captured by the ground laykioa sufficiently many avail-
able layers only those containing salient segments willdize The lateral interactions
cause an amplification of salient low-intensity contourtheiit enhancing noisy fragments.
To demonstrate that this amplitude-dependent modulasi@nuicial in the model, we com-
pared the CLM grouping result to a Potts spin mean field modhblegual lateral interaction
structure and annealing. Spin models generally lack théyatm represent additional am-
plitude information. The result in Fig. 7d illustrates thiais makes them more sensitive to
noise in the image, because noisy aligned elements may founosis groups. Since we

*Wang & Terman (1997) have speculated about the thalamusdimgthe global inhibition.
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Figure 7: Grouping of a natural image. An input image a) ippreessed to generate a set
of =~ 2000 edge features displayed in b). The edge input interfsitis visualized as the
thickness of the displayed elements. The noise from thedsaokd and fruit textures has
low amplitude, however, cannot be suppressed by threstgpldithout losing low contrast
contours of the objects. ¢) shows the grouping result for M@kchitecture with 20 figure
layers and one ground layer. The symbols (7 symbdiéack,light, and dark grey) represent
activity in different layers with symbol size proportional magnitude. The ground layer
is omitted. The scale of the lateral cocircularity inteiaatis displayed in the upper left
corner. The CLM grouping gives 11 segments, which achievidemtification of the most
important curve elements in the presence of backgrounde naibere some of the layers
remain inactive. The low-intensity edges of the pear andeappe amplified due to the
supporting lateral interaction on the salient contoursshaws the grouping by a Potts spin
system with the same interactions. Due to the lack of ang#iinformation the model has a
strong tendency to “hallucinate” curves which cannot be pensated by the ground layer.
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were not able to produce significantly better results alsearying parameters: andk we
conclude that the amplitude-dependent dynamics in the Glddd in this setting to a better
signal-noise separation for complex input patterns.

Figure 8 shows the performance of the CLM with the same paeamsettings and iden-
tical annealing on more complex image data, where for aaldarage the number of layers
is not sufficient to allow a single layer for each salient segtnIn that case the dynamics
tries to find a compromise by combining segments into the sayee such that their mutual
inhibition is minimal and thus the overall energy level imimal. This results in a tendency
to prefer a combination of parallel segments, which arersépa by a distance larger than
the local inhibition field of the cocircular interaction. pminciple, it would be possible to
suppress multiple segments within a layer by raising theajlnhibition. This, however,
in turn poses an upper limit on the maximum size of a stablmsetj since then the global
inhibition may exceed the local cocircular support. Theetioourse of the dynamics dur-
ing self-inhibitory annealing illustrates the resultinggtarchical group formation process
which initially expresses the most salient groups in thélalvke layers.

6 Discussion

6.1 Binding Properties

The CLM binding model shares some components with othentdgading models. For
the contour grouping example that we have considered, tbalanteractions are based on
a local compatibility combined with a weak global inhibitiowhich is the same for LE-
GION (Wang & Terman 1997) and the ECU spin update model (Ofaftrgotter 1998).
The LEGION model also uses a mechanism to perform figurergreegmentation by sup-
pressing features with low lateral support. The main diffiee lies in the dynamical imple-
mentation, which for the CLM is given by a consistent modehefiral activity dynamics
in a layered system of coupled WTA columns. For the local @angrouping model, long-
range coherence and separation are enforced by a selftanliibnnealing mechanism, that
causes controlled expression of dynamical modes, but afdts in a tradeoff for conver-
gence time. Another CLM application to texture segmentaf@ntrup & Ritter 1998), has
shown that for sufficiently dense and long-ranged featuierations, the CLM performs
well also without annealing. The models of Wang & Terman {@d@hd Opara & Worgotter
(1998) employ mechanisms similar to region growing and hmen successfully applied
to the task of greyscale segmentation of image data, howewdrelieve that the complex
interactions of overlapping and intersecting curve elemenight pose problems for their
application to contour grouping.

Our eigensubspace analysis reveals an interesting pdmatieeen the grouping dynam-
ics in the CLM and the oscillatory synchronizations in thatoaorr integration model of Li
(1998). If we restrict ourselves to lateral interactionsichihare only excitatory, then the
dominant oscillation mode in that model has the same eiggéoveomponents as the dom-
inant grouping mode in the CLM. Therefore, a similar mechamof suppressing spurious
eigenmodes could be used to improve the synchronizatiopepties in that model. We
consider a combination of synchronization-based and apachanisms as a promising
approach to more realistic models of cortical feature igdiwhich have enough computa-
tional power to be used for sensory segmentation tasks.
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Figure 8: Grouping Results. The figure shows the CLM groupesplts for two other
images with identical parameter settings and 20+grounérayfor the “leena” imagex(
2000 features) the CLM gives 18 segments which cover the mostrgationtours. The
ground layer strength introduces a minimum size that a segmest have to collect enough
lateral support, thus smaller contour segments are nolvezsand would require a multi-
scale extension of the model. Low intensity edges are emlgaacbrim and the top of the
hat. The lower aerial image=(3500 features) is taken from (Yen & Finkel 1996). Due to the
presence of more salient contours than layers, some lagtrallg carry more than a single
segment, like e.g. the “black circle” layer, which has thvegical groups in the upper left
corner and the center of the image. This illustrates a tesydencombine parallels into the
same layer which is most efficient with regard to the energgllef the global grouping.
The lower row shows the sequence of emerging groups wherritayvehe self-inhibition
from left to right. 19



6.2 Selective Amplification and Noise Tolerance

A main difference of the CLM compared to spin models of segatén is the explicit us-
age of amplitude information in the input. The usage of dyisalV/TA circuits results in
a context-dependent amplitude modulation which enharalensgroups due to their sup-
porting lateral interactions. Our comparison to a Potta spbdel shows that this results in
a better noise tolerance for the contour grouping exampiés grocess has been discussed
by Li (1998) and Li & Dayan (1999) as selective amplificatid¥e have considered a setup
where only the contributions of a set of coarsely sampletufea are active, while others
are omitted from the model. This decreases the ability thubialate contours, since we do
not have a full range of feature detectors at all orientatamin the model by Li (1998). This
also excludes a direct “filling in” of contours which are noégent in the input. To ensure
a proper operation of the model in an extended case of feafirall orientations, it would
be necessary, similar as in (Li 1998), to increase the tbtdsbf the non-saturating linear
transfer function from zero to a finite positive value to sigss the activation of neurons
with zero afferent input.

6.3 Biological Relevance

The key principle of the CLM architecture is the encodingeztire bindings by the assign-
ment to separate populations of laterally interconnectetilacally competitive neurons.
A biologically realistic interpretation of the CLM archdtire may be expressed either in
terms of the prominent layered structure of the real visodkes, or it may be implemented
in the rich local connectivity structure of a single neurddiager itself. Here, we want to
restrict our discussion on the macaque monkey primary Msrgex, area V1, which is one
of the most intensively studied regions of the brain.

Although it is known that neurons in the granular and sugerglar layers of the pri-
mary visual cortex are connected via horizontal connestifrconsiderable lateral spread
(Rockland & Lund 1983) there is currently no experimentabdavailable which supports
the idea of specific inhibitory (competitive) interactidmstween disjunct modules of later-
ally interconnected neurons. However, the CLM model itlatgts, that this principle could
be easily implemented in a simple neural circuit and theesfee propose to look for related
anatomical structures as an interesting experimentaltiquesrhe presence of sufficiently
many layers to carry each salient segment in an image is bgtatify in the visual sys-
tem, albeit it may be useful from a technical applicationspof view. Nevertheless, since
our suggested self-inhibitory control mechanism togeittidgr the figure-ground separation
allows for a concentration on the most salient groups, adidnhumber of layers may not
form a severe restriction.

The principle of feature binding within competitive and ally segregated layers may
help to process visual information via different routesothgh the cortical neuropile. For
example, there is evidence of local topographic inhibitietween those layers in area V1
which receive the majority of afferent inputs from the LGNulhel & Wiesel 1972); the
principal input layerdC o and4C 3 are coupled by reciprocal inhibitory interneurons (Lund
1987) (varietiesx-3, 8-3). Since thex and 3 sublayers are characterized by different re-
sponse properties (Blasdel & Fitzpatrick 1984; Hawken &erni984) as well as different
spread of lateral connections (Yoshioka, Levitt, & Lund 49% putative interpretation of
the inhibitory circuitry could be that feature binding inckasublayer is performed by such
a competitive interaction. Moreover, the neurons in lay@n and4C S project to different
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target layers within area V1, which in turn contain key sétsfferent neurons to other cor-
tical areas (Yoshioka, Levitt, & Lund 1994; Yabuta & Callan&998). Therefore, a binding

of features to different depth of layer 4C may form the bas$ithe subsequent processing
stages.

The layered structure of the CLM involves a certain degrerenfral redundancy and
could be considered as a “waste” of neural hardware. The fiaedivired layers might seem
less flexible than the synchronization-based approactghnd@rries additional information
into the temporal domain. Models have shown, however, thaiptex interactions lead to
strong limitations with regard to stability and separatadrthe groupings. We suggest the
principle of topological segregation, as used in the CLMamsdditional binding principle
which could improve the robustness and stability of theuigmabinding processes.
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Appendix A: Proof of Theorems

We consider the CLM dynamical system as

0 for 2, =0, E. <0

20
1 else (20)

Tra = WpraFra, Where wp, = {
Bro=Johy = Iz 4> i, (21)
B '

whereJ, > 0, ¥ = I7* > 0, andf 2, = £, .

Theorem 1. If ko > OWithk,o = I,?“—f,?;,—ZT,# max (0, f,%,), then the CLM dynamics
isbounded. If 0 < z,,(0) < M for all r,«, where M = max,(J,h,/krq) then 0 <
Tra(t) < M for al r,cand t > 0.

Proof. We prove the boundedness by constructing a hypercube irgie domain which
cannot be left by the dynamics. Singg, > 0 for z,, = 0 the dynamics cannot leave the
positive domain if initialised withe,,(0) > 0 and thereforer,,(¢) > 0 forallt > 0. The
(r, a)-face of the hypercube is defined by

Tra =M, zpg<M for r'#£rorp+a. (22)

We now show how to choos¥ such that:,, < 0 for all z,, on the facdr, ), causing the
system to stay inside the hypercube. On fage) we haver,, = M > 0 and therefore
wrq = 1. Hence

Fra = Johy =Y IPms +> g (23)
B !
< Jphy — X0 + forxr + Z max(0,f 7 )Ty g (24)
r!'#r
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where we have omitted negative off-diagonal terms. We caninsert (22) and obtain

Fra < Jphp — (1% — £ = max(0,f%)) M (25)

’#T‘
= Johy — kpoeM <0 if M > Johy /e (26)
Therefore, if we choos@! > max,(J,h,/krq) thenz, < 0 on all faces. O

Note that the conditions aof.,, in Theorem 1 do not imply diagonal dominance of the global
interaction matrixc®?, since they do not take into account the vertical crosshitibns I,?‘B

7./1

Corollary 1. Under the conditions of Theorem 1 the dynamical system
Trq = —Tpa + U(Era + mra) (27)
where o(z) = max(0, ) isbounded under the same conditions.

Proof. Sincew,qFErq < 0if and only if —z,, + o(FErq + 7o) < 0, the conditions on
the faces of the constructed box hold equivalently for thiermative formulation of the
dynamics. O

In the following we state sufficient conditions on the latexad vertical interactions
that ensure the convergence to an unambiguous state, wittoone active layer within a
column. We define the lateral feedbakk, within a layer byF,, = >/ f %, 24.

Theorem 2. If the lateral interaction is self-excitatory, f&. > 0 for all r, o, and the vertical

interactions satisfy 72177 < (I27)2 for all o, B then an attractor of the CLM has in each
column r either

i) at most one positive activity 5 with

Iy Fra
= Taah +Iaa’

Ty Taa

2,5 =0 for al B # &, (28)

where & = &(r) is the index of the maximally supporting layer characterized by
F.s > FT[; for all 8 # aor

i) all activities z,, « = 1,..., L in a column » vanish and F,, < —J,.h, for all
a=1,...,L.

Proof. Suppose an equilibrium? has two positive actlvmes: ap > 0 in a columnr at
two layersa and 3. Then the constraint is inactive,., s = 1, henceammﬁ = 0. Now
consider a small perturbation within this column of the farm = ., €,3 = ng, €1or =0
for all otherr’, o/. Expanding the quadratic functidii about the equilibrium we obtain for
AFE under this perturbation with all linear components vamgtat the equilibrium

2AE = Y (I?P8,y — Sapfi)eratrs (29)
rr'af

= 1202 + IPPng + 2I2P namg — 552 — £5mj (30)

< Ifana + Ifﬁ UL + QIT NaMp - (31)
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If we can state a perturbatidn,, 7) for which AE < 0 thenx’ can be no local minimum
and therefore be no attractor of the gradient-descent dipsarfhe quadrati¢2 x 2) form
(31) has at least one negative eigenvalyer Ay if A; s = I,?”‘Ifﬁ — (1’,9[3)2 < 0. Then,
however, exists a perturbatidn., nz) with AE < 0. If equality hoIds,I,?‘aIfﬁ = (I,Elﬁ)2
then)\; = 0 or A»=0 and we can state a perturbation from the null-space fochwtiien
AFE < 0 due tof 2, fﬁ > 0. So, we have shown by contradiction that an attractor caa hav
at most one positive activity in a column.

Now consider casf): Let @ denote the layer index of the positive activity in rewThe
constraint is then inactive far,, and active foe,5..4. Hence

0= FEyq = Jrhy — I8%C,4 + Fra, (32)
0> Eypza = Jrhe — I2%%,5 + Frpza, (33)

which proves casé). Caseii) gives just the remaining possible stable equilibria which a
not covered by). O

Appendix B: Preprocessing and Cocircular Interaction

The edge features are generated by subdividing the imag@dm-overlapping small sub-
rectangles. On each subrectangle 3x3 pixel Sel@idy operators are applied which sam-
ple the intensity gradient information at orthogonal dii@ts. Within each subrectangle we
choose an edge feature indexedsbgt the position of maximum squared Sobel response
and a unit orientation vector in the direction of the normedi Sobelk andy components.
The inputh, is given by the squared Sobel response added by a smalMeasitistant. We
observed that this slightly raising of the zero level im@®the ability to enhance low input
contours through lateral effects. The constant was choséenapercent of the maximum
edge intensity. The original pixel sizes of the images &rbsampling wer298 x 284
(fruit still life), 224 x 224 (leena image) and80 x 380 (aerial image).

The co-circular interaction of two edges at positians= (r¥,ry) andry = (r%,rY)
with a difference vectod = r; — ry, d = ||d|| andd = d/d, and unit orientation vectors
n; = (nf,nY), ny = (n%, n}) (see Fig.6) is given by

FEO((r1, fa1), (r2, 1a))

_ 9(a1a2q)(e—d2/R2—C2S) _ Ie—2d2/R2,

A A ~ ~

wherea; = nfd, — ni{d,, az = nid, — nidy, ¢ = 0y ny andf(z) = 1 forz > 0
andf(xz) = 0 otherwise is necessary to exclude skewed symmetric eddespdrameter
R controls the spatial range, which is smaller for the inlityitcomponent. The degree
of co-circularity is given byC' = |i; - d| — |hy- d| which is equal to zero if both edges
lie tangentially to a common circle. The paramefer> 0 controls the sharpness of the
co-circularity constraint and > 0 controls the strength of the local inhibition. For all
the simulations in this paper, the spatial dimensions weaed into a unit square, and the
parameters werg& = 0.1, S = 300, I = 0.5, m = 3.5.
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