
A Compilation and Optimization Model for

Aspect-Oriented Programs�

Hidehiko Masuhara1, Gregor Kiczales2,3, and Chris Dutchyn3

1 Graduate School of Arts and Sciences, University of Tokyo
2 Intentional Software Corporation

3 Department of Computer Science, University of British Columbia

Abstract. This paper presents a semantics-based compilation model
for an aspect-oriented programming language based on its operational se-
mantics. Using partial evaluation, the model can explain several issues in
compilation processes, including how to find places in program text to in-
sert aspect code and how to remove unnecessary run-time checks. It also
illustrates optimization of calling-context sensitive pointcuts (cflow), im-
plemented in real compilers.

1 Introduction

This work is part of a larger project, the Aspect SandBox (ASB), that aims to
provide concise models of aspect-oriented programming (AOP) for theoretical
studies and to provide a tool for prototyping alternative AOP semantics and
implementation techniques4.

In this paper we report one result from the ASB project—an operational-
semantics based explanation of the compilation and optimization strategy for
AspectJ-like languages[5, 9]. To avoid difficulties to develop formal semantics
directly from artifacts as complex as AspectJ, we used a simplified language.
It yet has sufficient features to discuss compilation and optimization of real
languages.

The idea is to use partial evaluation to perform as many tests as possible at
compile-time, and to insert applicable advice bodies directly into the program.
Our model also explains the optimization used by the AspectJ compiler for
calling-context sensitive pointcuts (cflow and cflowbelow).

Some of the issues our semantic model clarifies include:

– The mapping between dynamic join points and the points in the program
text, or join point shadows, where the compiler actually operates.

– What dispatch can be ‘compiled-out’ and what must be done at runtime.
– The performance impact different kinds of advice and pointcuts can have on
a program.

– How the compiler must handle recursive application of advice.

� An early version of the paper was presented at FOAL 2002, Workshop on Founda-
tions of Aspect-Oriented Languages at AOSD 2002.

4 http://www.cs.ubc.ca/labs/spl/projects/asb.html

Masuhara Hide
to appear in Proceedings of Compiler Construction (CC2003)

1.1 Join Point Models

Aspect-oriented programming (AOP) is a paradigm to modularize crosscutting
concerns[10]. An AO program is effectively written in multiple modularities—
concerns that are local in one are diffuse in another and vice-versa. Thus far,
several AOP languages are proposed[3, 9, 13, 14].

The ability of an AOP language to support crosscutting lies in its join point
model (JPM). A JPM consists of three elements:

– The join points are the points of reference that programs including aspects
can affect. Lexical join points are locations in the program text (e.g., “the
body of a method”). Dynamic join points are run-time actions, such as events
that take place during execution of the program (e.g., “an invocation of a
method”).

– A means of identifying join points. (e.g., “the bodies of methods in a par-
ticular class,” or “all invocations of a particular method”)

– A means of effecting at join points. (e.g., “run this code beforehand”)

In this paper, we will be working with a simplified JPM similar to the one
from AspectJ. (See Section 2.1 for details.)

The rest of the paper is organized as follows. Section 2 introduces our sim-
plified JPM, namely Pointcut and Advice (PA), and shows its interpreter. Sec-
tion 3 presents a compilation scheme for PA excluding context-sensitive point-
cuts, which are deferred to Section 4. Section 5 relates our study to other formal
studies in AOP and other compilation schemes. Section 6 concludes the paper
with future directions.

2 PA: Dynamic Join Point Model AOP Language

This section introduces our small join point model, namely Pointcut and Advice
(PA), which implements core features of the AspectJ’s dynamic join point model.
PA is modeled as an AOP extension to a simple object-oriented language. Its op-
erational semantics is given as an interpreter written in Scheme. A formalization
of a procedural subset of PA is presented by Wand, Kiczales and Dutchyn[19].

2.1 Informal Semantics

We first informally present the semantics of PA. In short, PA is a dynamic join
point model that covers core features of AspectJ on top of a simple object-
oriented language with classes, objects, instance variables, and methods.

Object Semantics. Figure 1 is an example program5. For readability, we use a
Java-like syntax in the paper6. It defines a Point class with one integer instance
variable x, a unary constructor, and three methods set, move and main.
5 For simplicity later in the paper, we are using one-dimensional points as an example.
6 Our implementation actually uses an S-expression based syntax.

class Point {
int x;
Point(int ix) { this.set(ix); }
void set(int newx) { this.x = newx; }
void move(int dx) { this.set(this.x + dx); }
void main() { Point p = new Point(1);

p.move(5); write(p.x); newline(); } }

Fig. 1. An Example Program. (write and newline are primitive operators.)

When method main of a Point object is executed, it creates another Point
object, and runs the constructor body. The main method then invokes method
move on the created object, reads the value of variable x of the object and
displays it.

Aspect Semantics. To explain the semantics of AOP features, we first define
the PA join point model.

Join Point. The join point is an action during program execution, including
method calls, method executions, object creations, and advice executions. (Note
that a method invocation is treated as a call join point at the caller’s side and
an execution join point at the receiver’s side.) The kind of the join point is the
kind of action (e.g., call and execution).

Means of Identifying Join Points. The means of identifying join points is the
pointcut mechanism. A pointcut is a predicate on join points, which is used to
specify the join points that a piece of advice applies to. There are five kinds of
primitive pointcuts, namely call(m), execution(m), new(m), target(t v),
and args(t v, . . .), three operators (&&, || and !), and two higher-order point-
cuts, namely cflow(p) and cflowbelow(p).

The first three primitive pointcuts (call, execution, and new) match join
points that have the same kind and signature as the pointcut. The next two
primitive pointcuts (target and args) match any join point that has values of
specified types. The three operators logically combine or negate pointcuts. The
last two higher-order pointcuts match join points that have a join point matching
their sub-pointcuts in the call-stack. These are discussed in Section 4 in more
detail. Interpretation of pointcuts is formally presented in other literature[19].

Means of Effecting at Join Points. The means of effecting at join points is the
advice mechanism. A piece of advice contains a pointcut and a body expression.
When a join point is created, and it matches the pointcut of the advice, the advice
body is executed. There are two types of advice, namely before and after7. A

7 For simplicity we omit around advice and after returning advice which can inspect
return values. However, our experimental implementation actually supports those
types of advice.

(define eval
(lambda (exp env jp)
(cond ((const-exp? exp) (const-value exp))

((var-exp? exp) (lookup env (var-name exp)))
((call-exp? exp) (call (call-signature exp)

(eval (call-target exp) env jp)
(eval-rands (call-rands exp) env jp) jp))

...)))
(define call
(lambda (sig obj args jp)
(execute (lookup-method (object-class obj) sig) obj args jp)))

(define execute
(lambda (method this args jp)
(eval (method-body method)

(new-env (append ’(this %host) (method-params method))
(append (list this (method-class method)) args))

jp)))

Fig. 2. Expression Interpreter.

before advice runs before the original action is taken place. Similarly, the after
runs after the completion of the original action.

The following example advice definition lets the example program to print a
message before every call to method set:

before : call(void Point.set(int)) && args(int z)

{ write("set:"); write(z); newline(); }

It consists of a keyword for the kind of the advice (before), a pointcut, and a
body in braces. The pointcut matches join points that call method set of class
Point, and the args sub-pointcut binds variable z to the argument to method
set. The body of the advice prints messages and the value of the argument.

When the Point program is executed together with the above advice, the
advice matches to the call to set twice (in the constructor and in method set),
it thus will print “set:1”, “set:6” and “6”.

2.2 Interpreter

The interpreter consists of an expression interpreter and several definitions for
AOP features including the data structure for a join point, wrappers for creating
join points, a weaver, and a pointcut interpreter.

Expression Interpreter. Figure 2 shows the core of the expression interpreter
excluding support for AOP features. The main function eval takes an expression,
an environment, and a join point as its parameters. The join point is an execution
join point at the enclosing method or constructor.

An expression is a parsed abstract syntax tree, which can be tested with
const-exp?, etc., and can be accessed with const-value, etc. An environment

(define call

(lambda (sig obj args jp)

(weave (make-jp ’call sig obj args jp)

(lambda (args jp) ...body of the original call...)

args)))

Fig. 3. A Wrapped Interpreter Function.

binds variables to mutable cells. An object is a Scheme data structure that has
a class information and mutable fields for instance variables.

The body of eval is a simple case-based test on expression types. Some
operations are defined as separated functions for the later extension of AOP
features.

Join Point. A join point is a data structure that is created upon an action in
the expression interpreter:8

(define-struct jp (kind name target args stack))

The kind field specifies the kind of the join point as a symbol (e.g., ’call). The
name field has the name of the method being called. The target and args fields
have the target object and the arguments of the method invocation, respectively.
The stack field will be explained in Section 4.

Wrapper. In order to advice actions performed in the expression interpreter, we
wrap the interpreter functions so that they create dynamic join points. Figure 3
shows how call—one of such a function—is wrapped. When a method is to be
called, the function first creates a join point that represents the call action and
applies it to weave, which executes advice applicable to the join point (explained
below). The lambda-closure passed to weave defines the action of the original
call, which is executed during the weaving process.

Likewise, the other functions including method execution, object creation,
and advice execution (defined later) are wrapped.

Weaver. Figure 4 shows the definition of the weaver. Function weave takes a
join point, a lambda-closure for continuing the original action, and a list of argu-
ments to the closure. It also uses advice definitions in global variables (*befores*
and *afters*). It defines the order of advice execution; it executes befores first,
then the original action, followed by afters last.

Function call-befores/afters processes a list of advice. It matches the
pointcut of each piece of advice against the current join point, and executes the
body of the advice if they match. In order to advise execution of advice, the

8 This non-standard Scheme construct defines a structure named jp with five fields
named kind, name, target, args, and stack.

(define weave
(lambda (jp action args)
(call-befores/afters *befores* args jp)
(let ((result (action args jp)))
(call-befores/afters *afters* args jp)
result)))

(define call-befores/afters
(lambda (advs args jp)
(for-each (call-before/after args jp) advs)))

(define call-before/after
(lambda (args jp)
(lambda (adv)
(let ((env (pointcut-match? (advice-pointcut adv) jp)))
(if env (execute-before/after adv env jp))))))

(define execute-before/after
(lambda (adv env jp)
(weave (make-jp ’aexecution adv #f #f ’() jp)

(lambda (args jp) (eval (advice-body adv) env jp))
’())))

Fig. 4. Weaver.

(define pointcut-match?
(lambda (pc jp)
(cond ((and (call-pointcut? pc) (call-jp? jp)

(sig-match? (pointcut-sig pc) (jp-name jp)))
(make-env ’() ’()))
((and (args-pointcut? pc)

(types-match? (jp-args jp) (pointcut-arg-types pc)))
(make-env (pointcut-arg-names pc) (jp-args jp)))
...
(else #f))))

Fig. 5. Pointcut Interpreter.

function execute-before/after is also wrapped. The lambda-closure in the
function actually executes the advice body.

Calling around advice has basically the same structure for the before and
after. It is, however, more complicated due to its interleaved execution for the
proceed mechanism.

Pointcut interpreter. The function pointcut-match? in Figure 5 matches a
pointcut to a join point. Due to space limitations, we only show rules for two
types of pointcuts. The first clause of the cond matches a call(m) pointcut to a
call join point that has a matching name field matches tom. It returns an empty
environment that represent ‘true’. The second clause matches an args(t x, . . .)
pointcut to any join point when args filed has values of types t, The result
in this case is an environment that binds variables x, . . . to the values in the
args field. The last clause returns false for unmatched cases.

3 Compiling Programs by Partial Evaluation

Our compilation scheme is to partially evaluate an interpreter, which is known
as the first Futamura projection[7]. Given an interpreter of a language and a pro-
gram to be interpreted, partial evaluation of the interpreter with respect to the
subject program generates a compiled program (called a residual program). By
following this scheme, partial evaluation of an AOP interpreter with respect to a
subject program and advice definitions would generate a compiled, or statically
woven program.

The effect of partial evaluation is removal of unnecessary pointcut tests.
While the interpreter tests-and-executes all pieces of advice at each dynamic
join point, our compilation scheme successfully inserts only applicable advice to
each shadow of join points. This is achieved in the following way:

1. Our compilation scheme partially evaluates the interpreter with respect to
each method definition.

2. The partial evaluator (PE) processes the expression interpreter, which vir-
tually walks over the expressions in the method. All shadows of join points
are thus instantiated.

3. At each shadow of join points, the PE further processes the weaver. Using
statically given advice definitions, it (conceptually) inserts test-and-execute
sequence of all advice.

4. For each piece of advice, the PE reduces the test-and-execute code into a
conditional branch that has either a constant or dynamic value as its con-
dition, and the advice body as its then-clause. Depending on the condition,
the entire code or the test code may be removed.

5. The PE processes the code that executes the advice body. It thus instantiates
shadows of join points in the advice body. The steps from 3 recursively
compiles ‘advised advice execution.’

We used PGG, an offline partial evaluator for Scheme[17], for partial evalu-
ation.

3.1 How the Interpreter is Partially Evaluated

An offline partial evaluator processes a program in the following way. It first
annotates expressions in the program as either static or dynamic, based on their
dependency on the statically known parameters. Those annotations are often
called binding-times. It then processes the program by actually evaluating static
expressions and by returning symbolic expressions for dynamic expressions. The
resulted program, which is called residual program, consists of dynamic expres-
sions in which statically computed values are embedded.

This subsection explains how the interpreter is partially evaluated with re-
spect to a subject program, by emphasizing what operations can be performed
at partial evaluation time. Although the partial evaluation is an automatic pro-
cess, we believe understanding this process is crucially important for identifying
compile-time information and also for developing better insights into design of
hand-written compilers.

Compilation of Expressions. The essence of the first Futamura projection is
to evaluate computation involving exp away. In fact, occurrences of exp in the
interpreter are annotated as static except for the first argument to execute in
function call. The argument is dynamic due to the nature of dynamic dispatch-
ing in object-oriented languages. We therefore invoke the partial evaluator for
each method definition, and replaced the function execute with the one that
dynamically dispatches on a receiver’s type. This standard partial evaluation
technique is known as ‘The Trick.’

The environment (env) is regarded as a partially-static data structure; i.e.,
the variable names are static and the values are dynamic. As a result, the partial
evaluator compiles variable accesses in the subject program into accesses to
elements of the argument list in the residual code.

Compilation of Advice. As is mentioned at the beginning of the section, our
compilation scheme inserts advice bodies into their applicable shadows of join
points with appropriate guards. Below, we explain how this is done by the partial
evaluator.

1. A wrapper (e.g., Figure 3) creates a join point upon calling weave. The first
two fields of the join point, namely kind and name, are static because they
only depend on the program text. The rest fields have values computed at
run-time. We actually split the join point into two data structures so that
static and dynamic fields are stored separately. With partial evaluators that
support partially static data structures[4], we would get the same result
without splitting the join point structure.

2. Function weave (Figure 4) is executed with the static join point, an
action, and dynamic arguments. Since the advice definitions are stati-
cally available, the partial evaluator unrolls the for-each in in function
eval-befores/afters.

3. The result of pointcut-match? can be either static or dynamic depend-
ing on the type of a pointcut. Therefore, the test-and-execute sequence (in
eval-before/after) becomes one of the following three:
Statically false: No code is inserted into compiled code.
Statically true: The body of the advice is partially evaluated; i.e., the

body is inserted in compiled code.
Dynamic: Partial evaluation of pointcut-match? generates an if expres-

sion with the body of advice in the then-clause and an empty else-clause.
Essentially, the advice body is inserted with a guard.

4. In the statically true or dynamic cases at the above step, the partial evaluator
processes the evaluation of the advice body. If the advice is applicable to more
than one join point shadows in a method, the compiled body is shared as a
Scheme function thanks to a mechanism in the partial evaluator. Since the
wrapper of the execute-before/after calls weave, application of advice to
the advice body is also compiled.

5. When the original action is evaluated, the residual code of the original ac-
tion is inserted. This residual code from weave will thus have the original
computation surrounded by applicable advice bodies.

(define point-move
(lambda (this1 args2 jp3)
(let* ((jp4 (make-jp ’execution ’move this1 args2 jp3))

(args5 (list (+ (get-field this1 ’x) (car args2))))
(jp6 (make-jp ’call ’set this1 args5 jp4)))

(if (type-match? args5 ’(int))
(begin (write "set:") (write (car args5)) (newline)))

(execute* (lookup-method (object-class this1) ’set)
this1 args5 jp6))))

Fig. 6. Compiled code of move method of Point class.

Compilation of Pointcut. In step 3 above, pointcut-match? is partially eval-
uated with a static pointcut and static fields in a join point. The partial evalua-
tion process depends on the type of the pointcut. For pointcuts that depend on
only static fields of a join point (e.g., call), the condition is statically computed
to either an environment or false. For pointcuts that test values in the join point
(e.g., target), the partial evaluator returns residual code that dynamically tests
the types of the values in the join point. For example, when pointcut-match?
is partially evaluated with respect to args(int x), the following expression is
returned as the residual code:

(if (types-match? (jp-args jp) ’(int))

(make-env ’(x) (jp-args jp))

#f)

Logical operators (namely &&, || and !) are partially evaluated into an ex-
pression that combines the residual expressions of its sub-pointcuts. The remain-
ing two pointcuts (cflow and cflowbelow) are discussed in the next section.

The actual pointcut-match? is written in a continuation-passing style so
that partially evaluator can reduce a conditional branch in call-before/after
for the static cases. This is a standard technique in partial evaluation, but is
crucially important to get right results.

3.2 Compiled Code

Figure 6 shows the compiled code for Point.move combined with the advice
given in Section 2.1. For readability, we post-processed the residual code by elim-
inating dead code, propagating constants, renaming variable names, combining
split join point structures, and so forth. The post-process was done automatically
except for renaming and combining.

The compiled function first creates a join point jp4 for the method execution,
a parameter list and a join point jp6 for the method call. The if expression
is the advice body with a guard. The guard checks the residual condition for
args pointcut. (Note that no run-time checks are performed for call pointcut.)
If matched, the body of the advice is executed. Finally, the original action is
performed.

As we see, advice execution is successfully compiled. Even though there is
a shadow of execution join points at the beginning of the method, no advice
bodies are inserted in the compiled function as it does not match any advice.

4 Compiling Calling-Context Sensitive Pointcuts

As briefly mentioned before, cflow and cflowbelow pointcuts can investigate
join points in the call-stack; i.e., their truth value is sensitive to calling context.
Here, we first show a straightforward implementation that is based on a stack
of join points. It is inefficient, however, and can not be compiled properly.

We then show an optimized implementation that can be found in AspectJ
compiler. The implementation exploits incremental natures of those pointcuts,
and is presented as a modified version of PA interpreter. We can also see those
pointcuts can be properly compiled by using our compilation scheme.

To keep discussion simple, we only explain cflow in this section. Extending
our idea to cflowbelow is easy and actually done in our experimental system.

4.1 Calling-Context Sensitive Pointcut: cflow

A pointcut cflow(p) matches to any join points if there is a join point that
matches to p in its call-stack. The following definition is an example advice
that uses a cflow pointcut. The cflow pointcut matches join points that are
created during method calls to move. When this pointcut matches a join point,
the args(int w) sub-pointcut gets the parameter to move from the stack.

after : call(void Point.set(int))

&& cflow(call(void Point.move(int)) && args(int w))

{ write("under move:"); write(w); newline(); }

As a result, execution of the Point program with two pieces of advice pre-
sented in Section 2.1 and above prints “set:1” first, “set:6” next, and then
“under move:5” followed by “6” last. The call to set from the constructor is
not advised by the advice using cflow.

4.2 Stack-Based Implementation

A straightforward implementation is to keep a stack of join points and to examine
each join point in the stack from the top when cflow is evaluated.

We use the stack field in a join point to maintain the stack. Whenever a
new join point is created, we record previous join point in the stack field (as is
done as the last argument to make-jp in Figure 3). Since join points are passed
along method calls, the join points chained by the stack field from the current
one form a stack of join points. Restoring old join points is implicitly achieved
by merely using the original join point in the caller’s continuation.

The following definition shows the algorithm to interpret cflow(p) that sim-
ply runs down the stack until it finds a join point that matches to p. If it reaches
the bottom of the stack, the result is false.

(define pointcut-match?

(lambda (pc jp)

(cond ((cflow-pointcut? pc)

(let loop ((jp jp))

(and (not (bottom? jp))

(or (pointcut-match? (pointcut-body pc) jp)

(loop (jp-stack jp))))))

...)))

The problem with this implementation is run-time overhead. In order to
manage the stack, we have to push9 a join point each time a new join point is
created. Evaluation of cflow takes linear time in the stack depth at worst. When
cflow pointcuts in a program match only specific join points, keeping the other
join points in the stack and testing them is waste of time and space.

4.3 State-Based Implementation

A more optimized implementation of cflow in AspectJ compiler is to exploit its
incremental nature. This idea can be explained by an example. Assume (as shown
previously) that there is pointcut “cflow(call(void Point.move(int)))” in a
program. The pointcut becomes true once move is called. Then, until the control
returns from move (or another call to move is taken place), the truth value of
the pointcut is unchanged. This means that the system only needs managing the
state of each cflow(p) and updating that state at the beginning and the end of
join points that make p true. Note that the state should be managed by a stack
because it has to be rewound to its previous state upon returning from actions.

This state-based optimization can be explained in the following regards:

– It avoids repeatedly matching cflow bodies to the same join point in the
stack by evaluating bodies of cflow upon creation of each join point, and
recording the result.

– It makes static evaluation (i.e., compilation) of cflow bodies possible be-
cause they are evaluated at each shadow of join points. As a result, manage-
ment of a cflow state is only taken place at shadows of join points matching
to the body of cflow.

– It evaluates cflow pointcut in constant time by merely peeking the top of a
stack of states for each cflow pointcut.

It is straightforward to implement this idea in the PA interpreter. Figure 7
outlines the algorithm. Before running a subject program, the system collects all
cflow pointcuts in the program, including those appear inside of other cflow
pointcuts, and stores in a global variable *cflow-pointcuts*. The system also
gives unique identifiers to them, which are accessible via pointcut-id. We re-
name the last field of a join point from stack to state, so that it stores the
current states of all cflow pointcuts.
9 By having a pointer to ‘current’ join point in parameters to each function, pop can

be automatically done by returning from the function.

(define weave
(lambda (jp action args)
(let ((new-jp (update-states *cflow-pointcuts* jp)))
...the body of original weave...)))

(define update-states
(lambda (pcs jp)
(fold (lambda (pc njp) ;; fold: (’a*’b->’a)*’a*’b list->’a

(let ((env (pointcut-match? (pointcut-body pc jp))))
(if env (update-state njp (pointcut-id pc) env)

njp)))
jp pcs)))

(define pointcut-match?
(lambda (pc jp)
(cond ((cflow-pointcut? pc) (lookup-state jp (pointcut-id pc)))

...)))

Fig. 7. State-based Implementation of cflow. (update-state jp id new-state) re-
turns a copy of jp in which id ’s state is changed to new-state . (lookup-state jp
id) returns the state of id in jp .

When evaluation of an expression creates a join point, it first updates
the states of all cflow pointcuts by wrapping weave by calling function
update-states. The function update-states evaluates the body of each cflow
pointcut, and updates the state only if the result is true. Otherwise, the state
is unchanged. Therefore, after partial evaluation, the code for updating state is
also eliminated when the body of the cflow is statically determined as false.
The conditional case for cflow pointcuts in pointcut-match? merely looks up
the state in the current join point.

Support for cflowbelow pointcuts is to extend the state to a pair of states.
We omit details due to space limitation.

Those two stack- and state-based implementations can also be understood as
initial- and final-algebra representations[18, etc.] of join points. The stack-based
implementation defines a join point as the following data structure:

(define-struct jp (kind name target args stack))

By noticing that the stack field of join points is accessed only for matching
the join points to the cflow pointcuts in the program, the structure can take a
final-algebra representation:

(define-struct jp (kind name target args r1 r2 ... rn))

where ri is the result of pointcut-match? on the i’th cflow pointcut in the
program. This is exactly what we have done for the state-based implementation.

4.4 Compilation Result

Figures 8 shows excerpts of compiled code for the Point program with the two
advice definitions shown before. The compiler gave _g1 to the cflow pointcut
as its identifier.

(let* ((val7 ...create a point object ...);----compiled code of p.move(5)
(args9 ’(5))
(jp8 (make-jp this1 args9 (jp-state jp3))))

(if (types-match? args9 ’(int))
(begin (execute* (lookup-method (object-class val7) ’move)

val7 args9
(state-update jp8 ’_g1 (new-env ’(w) args9)))

... write and newline ...)
... omitted ...))

(define point-move ;--------------------------compiled code of Point.move
(lambda (this1 args2 jp3)
(let* ((args5 (list (+ (get-field this1 ’x) (car args2))))

(jp6 (make-jp this1 args5 (jp-state jp3))))
(if (types-match? args5 ’(int))
(begin (write "set:") (write (car args5)) (newline)

(let* ((val7 (execute* (lookup-method (object-class this1)
’set)

this1 args5 jp6))
(env8 (state-lookup jp6 ’_g1)))

(if env8 (begin (write "under move:")
(write (lookup env8 ’w)) (newline)))

val7))
...omitted...))))

Fig. 8. Compiled code of p.move(5) and Point.main with cflow advice.

The first expression corresponds to p.move(5); in Point.main. Since the
method call to move makes the state of the cflow to true, the compiled code
updates the state of _g1 to an environment created by args pointcut in the join
point, and passes the updated join point to the method.

The next function shows the compiled move method. The second if expres-
sion and the preceding state-lookup are for the advice using cflow. It evaluates
the cflow pointcut by merely looking its state up, and runs the body of advice
if the pointcut is true. The value of variable w, which is bound by args pointcut
in cflow, is taken from the recorded state of cflow pointcut. Since the state is
updated when move is to be called, it gives the argument value to move method.

To summarize, our scheme compiles a program with cflow pointcuts into one
with state update operations at each join point that matches the sub-pointcut
of each cflow pointcut, and state look-ups in the guard of advice bodies. By
comparing the compiled code with the one generated by AspectJ compiler, we
observe that those two compilation frameworks insert update operations for the
cflow states into the same places.

5 Related Work

In reflective languages, some crosscutting concerns can be controlled through
meta-programming[8, 16]. Several studies successfully compiled reflective pro-
grams by using partial evaluation[2, 11, 12]. It is more difficult to ensure suc-

cessful compilation in reflective languages because the programmer can write
arbitrary meta-programs.

Wand, Kiczales and Dutchyn presented a formal model of the procedural
version of PA[19]. Our model is based on this, and used it for compilation and
optimizing cflow pointcuts.

Douence et al. showed an operational semantics of an AOP system[6]. In
their system, a ‘monitor’ pattern matches a stream of events from a program
execution, and invokes advice code when matches. A program transformation
system inserts code into the monitored program so that it triggers the monitor.
In our scheme, partial evaluator automatically performs this insertion.

Andrews proposed process algebras as a formal basis of AOP languages[1], in
which advice execution is represented as synchronized processes. ‘Compilation’
can be understood as removal of the synchronization. However, our experience
suggests that transformation techniques as powerful as partial evaluation would
be necessary to properly remove run-time checks.

6 Conclusion and Future Work

In this paper, we presented a compilation model to an aspect-oriented program-
ming (AOP) language based on operational semantics and partial evaluation
techniques. The model explains issues in AOP compilers including identifying
join point shadows, compiling-out pointcuts and recursively applying advice. It
also explains the optimized cflow implementation in AspectJ compiler.

The use of partial evaluation allows us to keep simple operational semantics
and to relate the semantics to compilation. It also helped us to understand the
data dependency in our interpreter by means of its binding-time analysis. We
believe this approach would be also useful to prototyping new AOP features with
effective compilation in mind.

Although our language supports only core features of practical AOP lan-
guages, we believe that this work could bridge between formal studies and prac-
tical design and implementation of AOP languages.

Future directions of this study could include the following topics. Optimiza-
tion algorithms could be studied for AOP programs based on our model, for
example, elimination of more run-time checks with the aid of static analysis[15].
Our model could be refined into more formal systems so that we could relate
between semantics and compilation with correctness proofs. Our system could
also be applied to design and test new AOP features.

Acknowledgments

The authors are grateful to Kenichi Asai, Oege de Moor, Kris de Volder, Mitchell
Wand and participants of FOAL2002 workshop for their comments on the pre-
vious version the paper. The discussion on the initial- and final-algebra repre-
sentations was first pointed out by Mitchell Wand. We would also like to thank

the anonymous reviewers for their comments. Most of the work is carried out
during the first author’s visit to University of British Columbia.

References

1. James H. Andrews. Process-algebraic foundations of aspect-oriented programming.
In Yonezawa and Matsuoka [20], pages 187–209.

2. Kenichi Asai, Satoshi Matsuoka, and Akinori Yonezawa. Duplication and par-
tial evaluation —for a better understanding of reflective languages—. Lisp and
Symbolic Computation, 9:203–241, 1996.

3. Lodewijk Bergmans and Mehmet Aksit. Composing crosscutting concerns using
composition filters. Communications of the ACM, 44(10):51–57, October 2001.

4. Anders Bondorf. Improving binding times without explicit CPS-conversion. In
ACM Conferenceon Lisp and Functional Programming, pages 1–10, 1992.

5. Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using AspectC to
improve the modularity of path-specific customization in operating system code.
In FSE-9, pages 88–98, 2001.

6. Rémi Douence, Olivier Motelet, and Mario Südholt. A formal definition of cross-
cuts. In Yonezawa and Matsuoka [20], pages 170–186.

7. Yoshihiko Futamura. Partial evaluation of computation process—an approach to a
compiler-compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999.
Reprinted from Systems, Computers, Controls, 2(5):45–50, 1971.

8. Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaob-
ject Protocol. MIT Press, 1991.

9. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In ECOOP 2001, pages 327–353,
2001.

10. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
ECOOP ’97, pages 220–242, 1997.

11. Hidehiko Masuhara, Satoshi Matsuoka, Kenichi Asai, and Akinori Yonezawa. Com-
piling away the meta-level in object-oriented concurrent reflective languages using
partial evaluation. In OOPSLA’95, pages 300–315, 1995.

12. Hidehiko Masuhara and Akinori Yonezawa. Design and partial evaluation of meta-
objects for a concurrent reflective language. In ECOOP’98, pages 418–439, 1998.

13. Doug Orleans and Karl Lieberherr. DJ: Dynamic adaptive programming in Java.
In Yonezawa and Matsuoka [20], pages 73–80.

14. Harold Ossher and Peri Tarr. Multi-dimensional separation of concerns using hy-
perspaces. Research Report 21452, IBM, April 1999.

15. Damien Sereni and Oege de Moor. Static analysis of aspects. In AOSD2003, 2003.
16. Brian Cantwell Smith. Reflection and semantics in Lisp. In Conference record of
Symposium on Principles of Programming Languages, pages 23–35, 1984.

17. Peter J. Thiemann. Cogen in six lines. In ICFP’96, 1996.
18. Mitchell Wand. Final algebra semantics and data type extension. Journal of
Computer and System Sciences, 19:27–44, 1979.

19. Mitchell Wand, Gregor Kiczales, and Chris Dutchyn. A semantics for advice and
dynamic join points in aspect-oriented programming. In Proceedings of FOAL2002,
pages 1–8, 2002.

20. Akinori Yonezawa and Satoshi Matsuoka, editors. Third International Conference
Reflection 2001, volume 2192 of Lecture Notes in Computer Science, 2001.

