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Abstract. Performance understanding and prediction are extremely im-
portant goals for guiding the application of program optimizations or in
helping programmers focus their efforts when tuning their applications.
In this paper we survey current approaches in performance understand-
ing and modeling for high-performance scientific applications. We also
describe a performance modeling and prediction approach that relies
on the synergistic collaboration of compiler analysis, compiler-generated
instrumentation (to observe relevant run-time input values) and multi-
model performance modeling. A compiler analyzes the source code to
derive a discrete set of parameterizable performance models. The mod-
els use run-time data to define the values of their parameters. This ap-
proach, we believe, will allow for higher performance modeling accuracy
and more importantly to more precise identification of what the causes
of performance problems are.

1 Introduction

Despite the tremendous peak performance of high-end computing architectures,
they deliver abysmally poor performance for current scientific and engineering
applications. As these applications have millions of lines of source code and
manipulate vast amounts of data, manual instrumentation and program under-
standing are infeasible. The standard approach to the problem of performance
understanding relies on tools that profile the code execution and provide aggre-
gate measures of performance. While it is useful to know that a given do loop has
substantial L1 cache misses or TLB misses, that information gives little insight
on how to remedy the performance problems.

The effects of compiler optimizations exacerbate this problem. Compilers ap-
ply a wide variety of transformations making it very difficult to map the effects of
the code into high-level programming abstractions developers can reason about.
We believe the key to address the problems of performance understanding and
prediction is to develop techniques that take into account the effects of compilers
at the instruction level and reason about the mapping of the instructions to the
target architecture. To be useful such tools must be automated and must retain
as much information about the high-level programming abstractions as possible.
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This paper describes a performance modeling and prediction approach that
uses traditional compiler analysis techniques, both at the source code level and
assembly level, in collaboration with empirical performance modeling techniques.
The compiler isolates sequences of instructions (called basic blocks in the com-
piler parlance) and maps them to high-level programming abstractions. Asso-
ciated with each basic block the compiler builds a set of discrete performance
models tailored for specific run-time execution scenarios. For example a cache
miss or a TLB miss may lead to severe pipelining execution problems. In or-
der to determine which of the set of models to apply the compiler generates
and executes a skeleton of the application. The execution of the skeleton, will
allow the compiler to extract the relevant run-time data which was identified
statically. The compiler then feeds the information gathered by the skeleton and
derives the actual model parameters and frequency of application of each model
to predict the overall performance of the original application with its real data.

If successful this approach would provide, we believe, not only more accu-
rate performance prediction but as a by-product, an understanding of what
the cause-effect relations of program constructs on the performance are. The
proposed performance modeling techniques can also be used as part of a fully
automated program optimization tool. Such a tool would iterate over a given sec-
tion of the code trying out several transformations observing which sequences of
transformations would lead to better predicted performance before committing
to the application of such transformations.

The remainder of this paper is organized as follows. In the next section we
survey current approaches to performance modeling and understanding in high-
performance scientific applications. Section 3 describes in more detail the mod-
eling approach proposed in this paper. Section 4 describes three applications of
the proposed approach followed by a brief discussion of the research challenges
in Sect. 5. Finally we summarize this presentation in Sect. 6.

2 State-of-the-Art

We now describe current approaches in the area compiler optimizations specif-
ically by addressing performance-aware compilation systems and feedback-
directed optimizations. We also describe various efforts in performance modeling
and prediction for large parallel codes on current and future processor architec-
tures.

2.1 Performance-Aware Compilation

In may instances the lack of statically available information may prevent the
compiler from applying program transformations more aggressively or simply
from applying them all together. Several systems address this problem by a
combination of static information and run-time testing. The inspector/executor
approach dynamically analyzes the values in index arrays to automatically par-
allelize computations that access irregular meshes [1]. Speculative approaches
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optimistically execute loops in parallel, rolling back the computation if the par-
allel execution violates the data dependences [2]. Dynamic compilation systems
enable code generation at run time [3,4] allowing the compiler to exploit knowl-
edge about input values and hence generate more efficient code. The Dynamo
system [5] continuously optimizes code based on performance data gathered in-
crementally at run-time.

As an alternative, researchers have develop approaches in which the com-
piler generates for selected computation sections a limited set of compiled ver-
sions each of which corresponds to the application of a particular set of program
transformations. At run-time the generated code selects which version of the
code to choose based on a set of compiler generated predicates or even by evalu-
ating the performance of each alternative implementation and choosing the one
with highest performance. This approach can be done entirely automatic as in
[6] or with the involvement of the programmer to specify application specify
adaptation and optimization strategies as in [7].

There are several on-going research projects in empirical optimization of sci-
entific libraries through basic performance driven selection of multiple code vari-
ants (e.g., ATLAS [8] or PhiPAC[9]). In these projects the compiler generates
many implementation of the same computation, e.g., matrix-multiply, for differ-
ent optimization strategies in a purely off-line fashion and then selects, based on
previous executions, which version performs best for each target architecture.

The GrADS[10] project aims at extending the notion of compile-time and
run-time by creating a malleable object code that can be configured to a wide
variety of resource availability scenarios. A configurable object program contains,
in addition to the application code, strategies for mapping the application to
different collections of resources and a resource selection model that provides
an estimate of the performance of the application on a specific collection of
resources. The GrADS approach project also relies on notions of performance
contract to specify when reconfiguration of application code or resources should
be triggered to maintain acceptable performance levels.

2.2 Performance Prediction

Other researchers have developed static estimators to guide the application of
program transformations with the ultimate goal of improving performance.

For example in [11] the authors have developed a series of empirical models
for the impact of data distribution in the performance of parallel applications
on distributed memory machines. The system first ”trains” the estimator with
known communication and data partition patterns found in kernel routines and
use the resulting estimator models for complete applications.

In the context of the POLARIS system researchers have also developed a
methodology for statically predicting the performance of applications using a
combination of static analysis and profiling information[12]. The approach uses
source code analysis information to derive analytical expressions defining the
number of expected L1 cache misses and basic arithmetic operators as a function
of loop bounds and uses architecture characteristics e.g. number of functional



A Compiler Approach to Performance Prediction 919

units and pipelining depth). Using these analytical expression and real run-time
data such as loop bounds the compiler can predict the overall execution time.

2.3 Performance Modeling & Understanding

Other researchers have also modeled application performance based on the high-
level definition of the problem rather than directly on the code implementation.
Kerbyson et.al [13] describe a series of modeling case studies where they use
the data and computation partitions as well as their own empirical model for
communications to define analytical expressions that track very well the observed
performance on multiprocessor machines.

Other approaches have focused on modeling program behavior for large-scale
parallel and distributed applications (e.g., [14,15]). This work aims at under-
standing the sources of the applications’ performance. In [16] the authors devel-
oped a set of simple models to capture the memory and communication behavior
of each application. These metrics are capture include the cache-miss ratios and
memory bandwidth via simulation and then convolved with the target archi-
tecture parameters to determine the expected performance. This approach aims
at attaining better accuracy then back-of-the-envelope calculations without the
extreme cost of cycle-level accuracy.

Other researchers have also studied the scalability of parallel scientific com-
putations by empirical measurements using statistical instrumentation with cur-
rently available performance monitoring tools regarding computation and com-
munication. In [17] the authors use the observed metrics to refine the explana-
tions of the factors that influence application performance and scalability.

3 Empirical Modeling

Performance modeling techniques offer an alternative way of enabling the com-
piler to derive and possibly select a set of program transformations. This mod-
eling approach is particularly valuable in scenarios in which the application can
take an extremely long time to execute making profiling impractical or when
attempting to predict the performance on future architectures.

3.1 Overview

The modeling approach described here and depicted in Fig. 1 relies on collabora-
tion between static compiler analysis and run-time data, but unlike post-mortem
profiling uses cues from the execution of a skeleton of the original code to derive
better performance prediction models.

During a first phase the compiler identifies the application’s control-flow-
graph (CFG) isolating the basic blocks of instructions and retaining the mapping
between relevant instructions (such as loads and stores) to the high-level pro-
gramming constructs such as array accesses and arithmetic expressions. While
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Fig. 1. Performance modeling approach

in general this seems a daunting problem given the various internal and target-
specific compiler transformations, we believe it is possible to develop effective
techniques that derive a mapping that will allow the compiler to provide useful
information to the programmer. The recent experience with the HPCView[18]
tool supports this claim. During this phase the compiler collects static informa-
tion for each basic block such as the number of memory references and address
calculations along with floating-point and integer operations1

For each basic block the compiler also derives a set of possible execution
scenarios. These scenarios are based on the values of particular run-time variables
that are bound to significantly affect the performance. For example a given loop
might exhibit very distinct performance if the arrays it accesses are not in cache
and/or if the stride of the accesses is larger than the cache line size. While in
some cases the compiler can understand statically which of the array references
are bound to create performance problems in other cases the stride of the access
depends on the values of other variables. In other cases, such as conflicting
misses the compiler can only determine this information once the array have
been laid out in the code’s virtual address space. Based on the assumptions
for each scenario the compiler then derives a performance model. This model is
parameterizable by run-time values such as loop bounds; array access stride or
even the layout of the various arrays and their relative position in memory.

In order to determine the exact values of the various parameter models the
compiler must determine the exact run-time values of the program variables
that can affect the parameters of the various performance models for each pro-

1 Collecting such static metrics by looking at the source is bound to lead to terribly
inflated metrics as compilers apply program transformations such as common code
elimination enabled by similarities in array indexing.
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gram section. To derive these values the compiler generates a skeleton program
based on the original code and runs it with the original code inputs. This skele-
ton program bypasses some of the code of the original application as the exact
outputs are not relevant but retains the values of a set of variables (e.g., loop
bounds) that are important for modeling purposes. The exact set of variables
whose values need to be captured by the skeleton program are derived statically
by compiler analysis. The compiler then executes the skeleton program and col-
lects the actual data values. Using the run-time values the compiler selects which
of the pre-analyzed models to apply for each code section. Using the resulting
output metrics for each selected model (by evaluation analytical performance ex-
pressions associated with that model using actual run-time values) the compiler
derives execution estimates for the performance contributions of each region.

3.2 Program Skeletons

In many of these situations analyzing the structure of the computation and
run-time variable values such as loop bounds and array access strides provides
valuable information for the purpose of performance modeling and prediction
of run-time execution. This data can be obtained, in many cases, by simple
inspection of a subset of the variable the program manipulates. The example in
Fig. 2 illustrates a case where the out of 4 array accesses, only 1 has variable
stride and is bound to create substantial cache or TLB misses.

In the skeleton code the do loop is eliminated and instead the code extracts
the relevant information to apply to an execution the model. It saves in an
internal data structure the values of n, mstride and records which arrays have
long and small access strides. The arithmetic functions abs and sqrt as well
as the loop have been removed and the corresponding execution time can be
accounted by using target architecture dependent constants. When encountering
control-flow that is dependent on computed values, the compiler must use profile-
based data about the frequency with which each of the branches was taken or
retain in the skeleton code the computation that conditional statements depend
on. While in the worst case scenario a given conditional statement would force
the execution of the entire application, we believe that many computations will
not elicit this behavior. As a fallback position the compiler can rely on accurate
profiling [19] information regarding the frequency of the execution of each branch
and bypass the information the execution of a skeleton code provides.

3.3 How to Derive Models

The model for each basic block of instructions in the code is derived by looking at
the data dependences between the data required by each instruction. Internally
the compiler builds a data-flow graph for each basic block and determines the
set of data that is generated in register for each block as well as the set of data
values generated to be used by other blocks.

Using the target architecture description in terms of the number of functional
units, pipelines and their depth the compiler can derive a set of performance
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mstride = ...
do ip=1,n
b(ip) = two*vx(ip) + abs(...)
b(ip) = sqrt(...)*face(mstride*ip)

enddo

mstride = ...
call save(address,mstride,n)
if(mstride .gt.cache line) then

call record long stride(address,array,”face”)
else

call record unit stride(address,array,”face”)
endif
call record unit stride(address,array,”a”)
call record unit stride(address,array,”b”)
call record unit stride(address,array,”vx”)

Fig. 2. Skeleton Extraction Example (original code on the left, skeleton on the right)

analytical expressions for a set of scenarios and determine for each of these
scenarios what the expected performance is in terms of consumed clock cycles
and peak performance the execution of the code section would take. For example,
if one of the various memory references in the basic block causes a TLB miss
that leads to a pipeline stall (due to data dependences) this leads to a substantial
decrease in overall performance. Another scenario could explore the performance
consequences of the references to the sparse array not being in cache. For each
of the scenarios, the corresponding model can be obtained either empirically
and/or by using target architecture cycle level accurate simulations.

The compiler analyzes a discrete set of such scenarios and enumerates the
corresponding models. When generating the skeleton code the compiler also gen-
erates code to abstract, and keep track at run time, of the portion of the processor
state that is relevant to each model. While in general this approach can lead to
a full blown functional-level processor architecture simulation we believe it is
possible to develop simple models for selected components of the architecture
whose poor performance provide important insight into the overall program be-
havior. Tracking the values of consecutive array accesses by inspection of the
corresponding indices, for example, allows compilers to signal which of the array
references will clearly lead to potential performance problems.

4 Applications

4.1 Compiler Optimizations

Compiler writers have a wide range of program transformations at their disposal
to attempt to improve the quality of the generated executable code. Unfortu-
nately it is not easy to determine statically what the best sequence of program
transformations is.

A compilation and program optimization system could use the approach out-
line above by using performance profiling information of previous runs to refine
the performance models. This knowledge would help the compiler to select which
optimization strategies are likely to produce better results. Because the perfor-
mance of generated codes can varies widely with distinct data input characteris-
tics, the compiler could use the performance models to select a set optimization
strategies geared towards different data settings. The compiler would generate
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multiple code version of the same computation and select at run-time which of
the selected code versions to use based on the assumptions for each code version.

4.2 Generating Performance Assertions

In the quest for understanding the performance bottlenecks of their applica-
tions researchers have developed the mechanism of performance assertions [20].
The current practice calls for the programmers to manually specify what the
performance assertions would be.

Using this mechanism programmer must examine selected portions of their
code and determine manually what a reasonable performance expectation a given
segment of the code should deliver. When violated, the corresponding perfor-
mance violation handling code (typically a write statement) will indicate the
location and nature of the violation. Besides being tedious and error prone this
process is highly non-portable. A given performance assertion might be accept-
able to one target architecture but very unrealistic in another. This leads to an
excessive number of spurious performance assertions violations which detracts
the programmer from its main purpose find the real performance bottleneck
problems. The automated approach proposed in this paper would aims at de-
riving the performance assertion directly from architecture specifications only
raising performance assertion exceptions when a given threshold metrics say
10% of peak performance were predicted and providing additional information
about why the performance model is reaching that particular performance level.

4.3 Interactive Performance Understanding

Ultimately it is the programmer who can profoundly impact the performance
of its application. We foresee the application of the techniques proposed in this
paper as part of interactive performance understanding systems that allow pro-
grammer to understand which data structure are substantially impacting per-
formance and provide insight why and what to do about it. For example, pro-
grammers often use pointer variables for extreme flexibility. In the contexts of
tight numeric intensive loop dereferencing pointers to retrieve/store data from/to
memory might lead to severe pipeline stalling. Based on poor performance esti-
mates suggested by its pipeline models the compiler could suggest the program-
mer to restructure its code by converting pointer access in the tight numeric
loop to array accesses to a temporary array variable which the programmer
loads (using a pointer-based only loop) before the numeric loop is executed.

5 Research Challenges

While appealing this approach raises several implementation and design chal-
lenges in building an automated and effective performance modeling and predic-
tion systems for large scientific codes. First, how accurate can this approach be?
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If the models are too simple the effort might not warrant the benefits; if too ex-
pensive the quantity and quality of the parameters might be as hard to extract as
examining the impact of each instruction. Is there a meaningful middle-ground?
Second, can basic blocks of instructions be meaningfully mapped to high-level
programming constructs so as to provide good high-level program information
about performance problems? Third, what is the precision of this approach in the
presence of more sophisticated architectural features that are so hard to model?
Forth, is it feasible for a static compiler analysis to generate a code skeleton
to extract a set of meaningful parameters for each model? Can the implemen-
tation effectively capture a limited set of context representative of a wide set
of execution scenarios? Finally, and given the large scale nature of the target
applications, how does this approach scale?

6 Summary

In this paper we described an approach that relies on the synergistic collabora-
tion of static compiler analysis, compiler-generated instrumentation (to observe
relevant real run-time input values) and multi-model performance modeling of
sequences of instruction for the target architecture (derived empirically and cal-
ibrated and validated off-line by cycle-accurate simulations). While there are
many challenges to a practical implementation of the proposed approach we
believe it is possible to build a program analysis tool that can deliver realis-
tic performance estimates that are useful to programmers in understanding the
source of their applications’ performance issues.
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