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Abstract

SIMD (single-instruction multiple-data) instruction set extensions
are quite common today in both high performance and embedded
microprocessors, and enable the exploitation of a specific type of
data parallelism called SLP (Superword Level Parallelism). While
prior research shows that significant performance savings are pos-
sible when SLP is exploited, placing SIMD instructions in an ap-
plication code manually can be very difficult and error prone. In
this paper, we propose a novel automated compiler framework for
improving superword level parallelism exploitation. The key part
of our framework consists of two stages: superword statement gen-
eration and data layout optimization. The first stage is our main
contribution and has two phases, statement grouping and state-
ment scheduling, of which the primary goals are to increase SIMD
parallelism and, more importantly, capture more superword reuses
among the superword statements through global data access and
reuse pattern analysis. Further, as a complementary optimization,
our data layout optimization organizes data in memory space such
that the price of memory operations for SLP is minimized. The re-
sults from our compiler implementation and tests on two systems
indicate performance improvements as high as 15.2% over a state-
of-the-art SLP optimization algorithm.

Categories and Subject Descriptors D.3.4 [Processors]: Code
Generation, Compilers, Optimization

General Terms Design, Algorithms, Languages, Experimenta-
tion, Performance

Keywords SLP, SIMD, Scheduling, Data Layout, Compiler

1. Introduction

As a response to demands from the application side, many mi-
croprocessors today employ multimedia extensions/support. While
the implementation details of this support vary from one architec-
ture to another, it generally comes in form of vector/SIMD (single-
instruction multiple-data) instructions, which provide a mechanism
to accelerate the performance of various application programs. The
most popular commercial multimedia extensions include Intel’s
MMX/SSE/SSE2/SSE3/SSE4 [1, 14], AMD’s 3DNow! [23], and
IBM’s VMX/Altivec [13].
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While earlier multimedia extensions supported only small data
types, these newer extensions can operate on 128-bit superwords,
leading to a new type of data parallelism, called the Superword
Level Parallelism (SLP) [17]. Specifically, data can be packed in
superwords and operated using SIMD instructions, as illustrated
in Figure 1. It needs to be noted that SLP is different from well-
known vector level parallelism [9, 21, 22, 29] in that the latter can
only be applied to certain array-based codes where large amounts of
parallelism exists. By contrast, SLP can be applicable even if small
to moderate levels of parallelism is available in the application
code. While a knowledgeable programmer can exploit SLP by
manually transforming his/her code to short SIMD form, this is not
a very desirable option due to its difficulty and error-proneness.
More specifically, many data access patterns do not easily lend
themselves to this transformation, and, in most cases, performing
such code modifications requires an in-depth understanding of the
data dependences and data reuse patterns.

In this work, we propose and evaluate a novel compiler support
for improving SLP exploitation. In contrast to the prior efforts on
this topic [17, 25–28, 30, 31], we employ a holistic approach from
two perspectives. First, instead of depending on local heuristics that
can result in poor solutions in terms of parallelism and superword
access overheads, we take a more global view of the target applica-
tion code when capturing the data reuse patterns before committing
to optimization decisions. Second, we combine our main optimiza-
tion, i.e., superword statement generation, with a data layout opti-
mization stage to achieve further improvements.

Specifically, this paper makes the following contributions:
• We propose a compiler framework for SLP exploitation that

accommodates two stages, namely, superword statement genera-
tion and data layout optimization, to achieve auto-detection and op-
timization of SLP. The superword statement generation is our main
contribution and can be divided into two phases, i.e., statement
grouping and statement scheduling. The first phase determines how
statements are grouped for short SIMD operations, with the goal
of increasing SIMD parallelism and, more importantly, capturing
more superword reuses among the groups. The second phase de-
cides the execution sequence of the groups, as well as the order of
the statements within each individual group, in order to reduce the
vector register permutation overheads. Further, as a complementary
optimization, our data layout optimization analyzes the data access
patterns after the first stage, and re-organizes data in memory space
such that the price of memory operations for SLP is minimized.

• We implemented our framework in a compiler [33] and per-
formed experiments using 16 application programs on two differ-
ent commercial systems. Our experimental results indicate that the
proposed SLP framework performs better than an existing SLP
scheduling algorithm [17], and generates as much as 15.2% im-
provement over it.
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The remainder of this paper is organized as follows. The next
section explains SLP, goes over the prior work, and introduces
the motivation for this work. Section 3 gives an overview of our
compiler framework. Section 4 presents our main optimization,
i.e., superword statement generation. Section 5 describes our data
layout optimization strategy. Section 6 uses an example to illustrate
how our approach is applied. Section 7 discusses the experimental
results, and Section 8 concludes the paper.

2. Superword Level Parallelism

Most modern commercial microprocessors add support for multi-
media extensions [1, 13, 14, 23] to meet the demands of computation-
intensive multimedia applications. The core of these extensions is a
set of SIMD instructions that can operate on aggregate data objects
larger than a machine word, i.e., superwords, in the vector registers
in parallel. The newer extensions can now operate on superwords
of 128 bits, and the width of the SIMD data path is expected to
keep increasing.

One critical issue regarding the efficient utilization of multime-
dia extensions is the compiler support to release the programmer
from the burden of inserting short SIMD inline assembly routines
manually. However, traditional compiler techniques for automatic
parallelization on vector machines [6, 8–10, 12, 15, 18, 19, 24,
32, 34] can be efficient only when the applications expose large
amounts of data parallelism. They also rely on complex high-level
loop transformations and cannot deal with applications that are not
vectorizable, e.g., codes that have mostly scalar data.

To solve the above problem, Larsen and Amarasinghe [17] pro-
posed a new type of parallelism called the Superword Level Paral-
lelism (SLP), targeting multimedia extensions. Different from vec-
tor parallelism, SLP exploits fine-grained parallelism from basic
blocks rather than from loop nests. In [17], they first try to identify
isomorphic statements, which are statements with the same opera-
tions in corresponding positions. The operations in all isomorphic
statements should be in the same order, and the operands in the
corresponding positions should have the same data type. They then
group the isomorphic statements together as a superword statement
for concurrent execution. In Figure 1 for example, statements S1

and S2 are isomorphic and can be put together as a superword state-
ment < S1, S2 > for SIMD operation. An important advantage of
SLP is that it enables efficient utilization of multimedia extensions
even if the parallelism available in the application code is small
or moderate. Shin et al [26, 27] developed a strategy to manage
the vector register file as a compiler-controlled cache in order to
improve data locality when exploiting SLP [17]. In addition, they
[25, 28] derived large basic blocks using instruction prediction in
the presence of control flow to identify more superword level par-
allelism. Their studies are orthogonal to our approach proposed in
this paper. Tenllado et al [30, 31] presented techniques to efficiently
exploit SLP in applications where inner loops carry dependences.
Nuzman et al [22] investigated a compiler technique that supports
effective vectorization in the presence of interleaved data. Nuzman
and Zaks [21] also revisited outer-loop vectorization techniques for
short SIMD architectures. Barik et al [5] proposed to enable auto-
matic vectorization on a low-level IR closer to the machine-level,
and targeted at achieving compile time efficiency during dynamic
compilation. As opposed to the prior work, which are built upon
the original SLP algorithm [17], we propose an entirely different
strategy for extracting SLP.

A critical requirement in exploiting SLP is that the operands
in the superword statement need to be put together in a desired
order as superwords in vector registers for short SIMD operations.
If, however, the source operands in a superword are not available
in the vector register, expensive memory accesses and additional
vector register reshuffling/permutation instructions are needed to

bring the data from memory and to rearrange them on demand in
the vector register. This process is referred to as superword packing.
Similar overheads can be incurred during the process of scattering
the target operands in the superword for later uses, which is referred
to as superword unpacking. Prior studies [17, 25] show that the
superword packing/unpacking overheads can be so high that can
even offset the potential performance gains brought by SLP.

Therefore, it is of great importance to reduce the
packing/unpacking overheads as much as possible when exploit-
ing SLP. One important observation is that, if the superword used
in a superword statement already exists in the vector register, ac-
cessing its operands is almost free, without the need for expensive
memory accesses or any register reshuffling/permutation instruc-
tion. For example, in Figure 1, the superword < V1, V2 > used in
the superword statement < S3, S4 > can be obtained by directly
reusing it from < S1, S2 >. Or, in some other cases, even if a direct
reuse of superword is not possible but two superwords access the
same data with different orderings, we can still save memory ac-
cess overhead by only introducing the vector register permutation
instructions. For example, in Figure 1, the superword < V2, V1 >
used in < S5, S6 > can reuse the operands in < V1, V2 > of
< S3, S4 > by interchanging the positions of V1 and V2. Hence,
it is critical to locate and expose such reuses as much as possible
when generating SIMD codes.

The greedy algorithm proposed by Larsen and Amarasinghe
[17] and also employed in other related work [28, 31] tries to
achieve superword reuses based on local heuristics. The algorithm
targets basic blocks and starts by identifying isomorphic statement
pairs with adjacent memory accesses as the seed superword state-
ments. It then groups more isomorphic statements by following the
def-use and use-def chains so that reuses may be caught between the
newly generated superwords and the existing ones. The main prob-
lem with this algorithm is that the decision made at each step to
generate new superword statements highly depends on the existing
grouping decisions and the def-use/use-def chains, being oblivious
to the rest of the statements. In other words, this approach does not
have a global perspective. As a result, it is unable to fully utilize
the potential superword reuse opportunities available in the input
basic blocks. To address this problem, we introduce a new SLP
algorithm, of which the basic idea is to keep a global (an entire
basic block wide) view of all the statements regarding data access
and reuse patterns at each step when constructing new superword
statements. Thus, the grouping decisions made to increase super-
word reuses in our algorithm are based on a larger scope. To our
knowledge, this is the first work to introduce the concept of global
superword reuse optimization for exploiting SLP.

Though efficient exploitation of superword reuses is our main
optimization and can greatly reduce the number of
packing/unpacking operations as will be shown later, sometimes
these operations are still required, e.g., when a superword is re-
ferred for the first time in a basic block. The mandatory packing
operations can be costly and may reduce the potential performance
benefits. To alleviate this problem, it is desirable to have those
operands stored in an aligned and consecutive fashion in memory
space so that the number of memory operations could be minimized
during packing/unpacking. Prior work [17, 28] addressed this issue
by choosing some statements with contiguous memory accesses
as the seed superword statements. However, this can lead to poor
solutions in terms of superword reuses. In addition, this strategy
highly depends on the existing data layout of the data accessed.
By contrast, we believe that the data layout optimization fits better
when solving this issue in the sense that it has much less negative
effect on the exploration of superword reuses and, above all, it can
derive better access patterns from an SLP perspective. Henretty et
al [11] proposed a data layout transformation to avoid stream align-
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S1:  V1 = V3 + V5; 

S2:  V2 = V4 + V6; 

S3:   � = V1 × �;  

S4:   � = V2 × �; 

S5:   � = V2 ; 

S6:   � = V1 ; 

  
Figure 1. An example exploit-
ing superword level parallelism.

S1:  V1 = V3; 

S2:  V2 = V5; 

S3:  V5 = V7;  

S4:  V3 = V1 + V1; 

S5:  V5 = V2 + V5; 

     

Figure 2. An example basic
block.

ment conflict on processors with SIMD capabilities. However, they
specifically target stencil computations. In our compiler frame-
work, we explore a much more general data layout modification as
a post optimization to gain further benefits. To our knowledge, this
is also the first work that combines superword statement generation
with general data layout optimization to improve SLP exploitation.

3. Framework Overview

The input to our compiler framework is a set of basic blocks of
a program. For loop-intensive applications, loop unrolling can be
used to reveal more opportunities for short SIMD operations and
to fully utilize the superword datapath available in the underlying
architecture. Overall, there are three main goals that we want to
achieve in order to exploit SLP more efficiently: (1) increasing par-
allelism by generating more superword statements; (2) reducing the
number of superword packing/unpacking operations by achieving
more superword reuses; and (3) reducing the overhead of manda-
tory packing/unpacking operations by employing data layout opti-
mization.

Figure 3 gives an overview of the proposed compiler frame-
work, which mainly accommodates three modules: pre-processing,
holistic SLP optimizer, and post-processing. Taking the program
source code as input, the pre-processing module first applies trans-
formations including loop unrolling and alignment analysis, with
the objective of exposing more opportunities for SLP exploitation.
Next, our holistic SLP optimizer performs a set of SLP optimiza-
tions and generates vectorized code. Finally, the post-processing
module performs register allocation and other low-level optimiza-
tions, and outputs executable. As the main contribution of this
work, the holistic SLP optimizer adopts a two-stage strategy: super-
word statement generation and data layout optimization. At the first
stage, the statement grouping determines how to group statements
together for superword operations without fixing the ordering of
the statements in each superword statement, aiming at identifying
more (statement) groups as well as increasing the superword reuses
among the groups. On the other hand, the statement scheduling de-
cides the scheduling sequence of the groups and the order of the
statements within each group, in order to minimize the number of
vector register reshuffling/permutation instructions. To further in-
crease improvements, at the second stage, the data layout optimiza-
tion changes the memory layout of the data accessed in the super-
word statements, in an attempt to reduce the overhead of mandatory
packing/unpacking operations. It is to be noted that while the first
stage focuses on reducing the occurrences of packing/unpacking
operations, the second stage aims at reducing the number of mem-
ory operations and vector register reshuffling/permutation instruc-
tions involved in these operations.

4. Superword Statement Generation

As shown in Figure 3, the superword statement generation includes
two major phases: grouping and scheduling. Before going into the

Program  
Source Code 

Pre-Processing 
(loop unrolling, etc) 

Post-Processing 

(register allocation, etc) 

Holistic SLP 
Optimizer 

Statement 
Grouping 

Statement 
Scheduling 

Data Layout 
Optimization 

Executable  
Binary 

Superword  
Statement Generation 

Figure 3. Overview of our framework.

detailed descriptions of these two phases, we first give a formal
definition of the problem we are trying to solve in this section.

4.1 Problem Definition

Our SLP optimizer takes a set of basic blocks of an application
program code as the input. Each basic block consists of a se-
quence of statements S =< S1, S2, S3, ..., Sn >, where Si rep-
resents a single statement. Given an SIMD datapath width sup-
ported by the target architecture, our goal at this stage is to find a
scheduling of these statements for each basic block, represented by
D =< D1, D2, D3, ..., Dm >, such that the performance of the
basic block is maximized. Here, Di denotes either a single state-
ment from S, or a superword statement that contains multiple state-
ments. A scheduling D is said to be valid, if and only if it satisfies
the following four constraints:

1. There is no dependence between the statements in each su-
perword statement: ∀Di, if Di is a superword statement, then
∀Sp, Sq ∈ Di, Sp and Sq are dependence free.

2. The dependences between the statements in the sequence S are
preserved in D: if Sp δ Sq , and Sp ∈ Di, Sq ∈ Dj , then
Di δ Dj , where δ stands for a dependence relationship between
a source (single statement or superword statement, i.e., Sp or
Di), and a target (single statement or superword statement, i.e.,
Sq or Dj).

3. The statements within each superword statement are isomor-
phic, i.e., they contain the same operations in the same order.

4. The data width of the potential superword operation should
not exceed the datapath width supported by the underlying
architecture.

These constraints are necessary to guarantee the correctness of pro-
gram execution (i.e., preserve the original semantics) when exploit-
ing SIMD opportunities in the basic blocks.

We want to emphasize that, two schedulings D and D′ for
a basic block are identical, if and only if (1) they contain the
same set of SIMD groups (the concept of SIMD group is similar
to that of superword statement except that its statements are not
ordered), (2) the sequence of the single statements and SIMD
groups in both schedulings are the same, and (3) the ordering of
the statements in their corresponding superword statements are the
same. The first condition is crucial in that it determines how many
SIMD instructions are produced and more importantly, how many
superword reuses are generated. The second condition is used to
help maintain the dependences in the original program code and
bring superword reuses as closer as possible. The third condition
can affect the number of vector register permutation instructions
needed to reuse the superwords.
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{V1, V2}
{S1, S2}

{V3, V5}
{S1, S2}

{V1, V5}
{S1, S3}

{V3, V7}
{S1, S3}

{V3, V5}
{S4, S5}

{V1, V2}
{S4, S5}

{V1, V5}
{S4, S5}

Figure 4. The variable pack conflicting
graph of the example code in Figure 2.

S1

S2 S3

S4 S5
2/3

1/21/1

Figure 5. The statement grouping graph of
the example code in Figure 2.

{V1, V2}
{S1, S2}

{V3, V5}
{S1, S2}

{V1, V5}
{S1, S3}

Figure 6. The auxiliary graph for calculating
the weight of the candidate group {S4, S5}.

4.2 Grouping

We employ an iterative process to perform statement grouping. This
approach first uses a basic grouping algorithm to find groups of size
two, and then treats the groups already found as atomic statements,
and applies the basic grouping algorithm again to obtain groups of
larger sizes, until the target SIMD datapath is fully utilized. Thus,
we are able to cope with processors with wider SIMD devices. In
particular, in the basic grouping algorithm, we identify all possible
statement groups and evaluate their ”quality” (i.e., how much ben-
efit a statement group can potentially bring to the the final SIMD
code generated for an entire basic block) in order to decide which
groups will be chosen. In other words, each group decision is made
based on the global data access and reuse pattern analysis regarding
the superword reuses, instead of employing local/greedy heuristics.
Note that, in this phase, a superword is said to be reused, if the data
it contains are used more than once in the code, even for the case
with different orderings. The reason why we consider the latter case
also as a reuse is because it does not require expensive memory op-
erations between two usages, though it still needs vector register
permutation instructions.

4.2.1 The Basic Grouping Algorithm

To facilitate our explanation, we use the first-round grouping, to-
gether with an example (a basic block), shown in Figure 2, to de-
scribe the basic grouping algorithm, where we try to obtain SIMD
groups of size 2 (i.e., two statements).

The first step of our basic grouping algorithm is to identify the
candidate groups. A candidate group refers to a potential SIMD
group that contains two isomorphic statements {Si, Sj}, where
Si, Sj ∈ S. According to the scheduling constraints listed above,
there should be no dependence between these two statements, and
the superword size of the candidate group should not exceed the tar-
get SIMD datapath width. Note that, there is no ordering between
Si and Sj in the candidate group. In other words, the ordering of
the statements inside each group is ignored at this phase. Let C =
{C1, C2, · · · , Ct} denote the set of all t candidate groups identi-
fied in the basic block. Two candidate groups C1 and C2 from C
are said to be conflicting with each other, if they have a common
statement, e.g., C1 = {Sp, Sq} and C2 = {Sp, Sr}, or there exists
a dependence cycle between these two groups, e.g., C1 δ C2 and
C2 δ C1, because of the dependences between their member state-
ments. We can see that, in either case, conflicting candidate groups
cannot coexist; otherwise, it would lead to incorrect execution. For
example, the candidate group set for the code shown in Figure 2 is
C = {{S1, S2}, {S1, S3}, {S4, S5}}.

Based on the candidate group set, the second step builds a vari-
able pack conflicting graph. A variable pack refers to a set of
variables coming from the same position of different isomorphic
statements in a candidate group, e.g., {V1, V2} and {V3, V5} from
candidate group {S1, S2} in the example code (Figure 2), which
are expected to form superwords. Note that the variable packs

are brought about by the statement grouping. Similar to statement
grouping, we do not consider the ordering of the variables in a vari-
able pack at this step. The purpose of building the variable pack
conflicting graph is to capture all the conflicts between the candi-
date groups in C, but at a finer granularity using variable packs. In
this way, we can later refer to this graph for an accurate analysis of
the reuse information of variable packs (or superwords). The vari-
able pack conflicting graph V P = (V, T ) is constructed as follows:
we go over all the candidate groups in C one-by-one; for each can-
didate group {Sp, Sq}, we create a new set of nodes representing
all the variable packs generated from its statements. In addition, we
insert edges between these newly-built nodes and the nodes already
in the graph which were generated from candidate groups that con-
flict with {Sp, Sq}. It is to be noted that each node with variable
pack {Vi, Vj} is also tagged with its associated candidate group in-
formation, i.e., {Vi, Vj} {Sp,Sq}. Therefore, there may exist mul-
tiple nodes containing the same set of variables, but they are gen-
erated from different candidate groups. And, we distinguish them
from one another in the graph. Most importantly, if such nodes do
not have any edge among them, it means that the corresponding
variable packs can coexist in the transformed code with SIMD op-
erations. Thus, the number of such nodes in fact gives us the reuse
information of the corresponding superword, e.g., {Vi, Vj}. Figure
4 illustrates a variable pack conflicting graph built from the candi-
date group set of the example code shown in Figure 2.

Our third step is to build a statement grouping graph SG =
(V ′, T ′), using both the candidate groups identified earlier and
the variable pack conflicting graph obtained in the previous step.
Each node (∈ V ′) in this graph denotes a statement Sp from the
basic block, and each edge (∈ T ′) represents a candidate group
between two statements. That is, if two statements belong to the
same candidate group, there is an edge connecting them, e.g., S1

and S2 as shown in Figure 5. Moreover, the statement grouping
graph is a weighted graph, where the weight of each edge represents
an estimation of the “benefit”, i.e., the variable pack (superword)
reuses, that each candidate group can potentially bring to the entire
code. To calculate the weight of an edge between two statements
Sp and Sq from the candidate group {Sp, Sq}, we first construct
an auxiliary graph by extracting all packs (nodes) from the variable
packing graph V P , which are the same as those variable packs
appearing in {Sp, Sq} but do not conflict with them. Also, all
the edges among the extracted nodes in V P are maintained in
SG. For example, suppose we are calculating the weight of the
edge between statements S4 and S5 in Figure 5. The auxiliary
graph we construct is depicted in Figure 6. It includes all nodes
in Figure 4 that are the same as the variable packs of {S4, S5}
and can also coexist with them. However, in the auxiliary graph,
there may still exist edges among the nodes, which indicates that
the extracted nodes cannot be used together in any scheduling.
We introduce a greedy strategy to eliminate these conflicts: at
each step, we select a node that has the highest degree (i.e., one
with the largest number of edges connected to it), and remove
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{V1, V2}
{S1, S2}

{V3, V5}
{S1, S2}

Figure 7. The updated auxiliary graph af-
ter conflict elimination from Figure 6.

S4 S5
2/3

Figure 8. The updated statement graph
after the first grouping decision {S1, S2}.

{V3, V5}
{S4, S5}

{V1, V2}
{S4, S5}

{V1, V5}
{S4, S5}

Figure 9. The updated variable pack conflicting
graph after the first grouping decision {S1, S2}.

this node as well as all the edges associated with it. We repeat
this procedure until no edge is left in the auxiliary graph, e.g., as
shown in Figure 7. Now, by combining the remaining nodes in the
auxiliary graph, e.g., {V1, V2} {S1,S2} and {V3, V5} {S1,S2}, and
the variable packs from {Sp, Sq} in V P , e.g., {V3, V5} {S4,S5},
{V1, V2} {S4,S5} and {V1, V5} {S4,S5}, we can obtain an average
reuse of the variable packs (superwords) from {Sp, Sq} in the
entire basic block, e.g., 2/3 for {S4, S5}. This reuse value is
assigned as the weight of the edge between statements Sp and Sq

in SG. Therefore, the weight between two statements provides an
estimate of the potential benefit (in terms of superword reuses) for
the entire basic block (global effect), brought by grouping them
together as a superword statement in the final code.

The fourth step makes grouping decisions based on the state-
ment grouping graph SG constructed in the previous step. Specifi-
cally, we first sort all the edges in SG in a non-increasing order ac-
cording to their weights, and then select an edge that has the highest
weight. The two statements connected by this edge are then decided
to be grouped as a superword statement, e.g., {S1, S2} in Figure 5.
Note that, if two edges have the same weight, we randomly choose
one. Once a decision is made, we update the two graphs, namely,
SG and V P , as follows. In SG, we delete the nodes that repre-
sent the two statements in the SIMD group just found, as well as
all the nodes connected to them (i.e., the conflicting statements),
e.g., as shown in Figure 8. Similarly, in V P , we delete the nodes
that represent the variable packs generated from the newly decided
SIMD group, as well as all the nodes connected to them (i.e., the
conflicting variable packs), e.g., as displayed in Figure 9. We then
recalculate the weights of all retained edges in SG. We want to em-
phasize that, at this point, when we evaluate the global benefits (su-
perword reuses) of a candidate group, we take into account all the
variable packs that are the same as those of the SIMD groups deter-
mined so far. For example, when calculating the weight for the can-
didate group {S4, S5} in Figure 8, we need to consider {S4, S5}
and the already-decided group {S1, S2} together when building the
auxiliary graph. This process continues until no edge is left in the
statement graph SG, which means that we have exploited all the
opportunities for SIMD operations.

As stated earlier in Section 2, the essential difference between
our work and the original SLP algorithm [17] is that we take a
global (an entire basic block wide) view when exploiting super-
word reuses during grouping, instead of employing a local/greedy
heuristic. This is clearly reflected in the four steps involved in the
basic grouping algorithm described above. Especially, the first step
(identifying the candidate groups) provides all the grouping possi-
bilities before making any decision; the second step (building the
variable pack conflicting graph) retrieves information on the whole
set of possible superwords resulting from grouping, taking into ac-
count the conflicts among them; the third step (building the state-
ment grouping graph) then evaluates the benefits brought by each
candidate group to the whole basic block, by extracting data access
and reuse patterns from the variable pack conflicting graph; finally,
the fourth step (making grouping decisions) selects the most bene-
ficial one as the current grouping decision, which increases super-
word reuses across the basic block.

4.2.2 Iterative Grouping

In the basic grouping algorithm described above, the size of a gen-
erated SIMD group (superword statement) is two. If we simply use
the output of the first-round grouping to generate the final super-
word statements, the SIMD datapath width available in the under-
lying architecture may be underutilized. To solve this problem, we
extend our basic grouping algorithm using an iterative process to
obtain SIMD groups with larger sizes. The basic idea is that, af-
ter the first-round grouping, we treat each SIMD group {Sp, Sq}
as a new single statement, and each variable pack as a new sin-
gle variable. The original statement set of the input basic block is
then updated by adding these new statements. Next we apply the
basic grouping algorithm on the input basic block again, but with
the updated statement set. Note that some SIMD groups may not
be considered for further grouping because they already can fill
the SIMD datapath width. We iteratively employ this strategy until
the finally generated superword statements are able to exploit the
SIMD datapath width to the largest extent possible. Therefore, our
framework will be able to efficiently utilize the SIMD devices even
when/if datapath widths increase in the future.

4.3 Scheduling

The first phase (grouping) described above solves the problem of
grouping statements together as superword statements, and we fo-
cus on reducing expensive memory operations between two usages
by achieving more superword reuses. However, additional vector
register permutation instructions may still be needed if the same
data are arranged in different sequences in two superwords. In this
phase (scheduling), we try to solve two issues: (1) obtain a valid
execution sequence for all statements (including single statements
and superword statements) in the basic block and bring the super-
word reuses in the superword statements as close as possible; (2) fix
the ordering of the statements within each superword statement to
reduce the number of permutation operations as much as possible.
In particular, we are more concerned about the ordering between
superword statements and the statement ordering within each su-
perword statement, than the sequence between single statements or
between single statements and superword statements, as the former
has an impact on the number of vector reshuffling/permutation op-
erations needed, while the latter can be handled and optimized by
instruction scheduling to be invoked later.

We start by building a dependence graph among the gener-
ated superword statements, based upon the execution sequence
of the original single statements in the input basic block. In this
graph, each node denotes a superword statement, and each directed
edge indicates a dependence between the two connected superword
statements. Since the grouping phase already excludes the exis-
tence of any cyclic dependence, we are guaranteed to have at least
one valid scheduling for all superword statements, without elimi-
nating any of them. For this reason, as compared to [17], our frame-
work can retain more superword statements for SIMD operations.
Note that, in reality, this dependence graph can provide more than
one possibility of scheduling the superword statements. Thus we
are able to take advantage of this flexibility to bring more benefits.

Based on the dependence graph, we schedule the superword
statements and decide the ordering of the statements within each
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of them. We define a live superword set as a set of superwords that
are most likely in vector registers currently. Note that, in the live
superword set, the ordering of the statements of each superword is
determined. Initially, the live superword set is set as empty. We then
fetch from the dependence graph the ready superword statements,
of which all the dependencies have been resolved. These statements
are the candidates to be considered to be added into the target state-
ment execution sequence. Next, we calculate the number of reuses
between the superwords in each candidate superword statement and
the ones in the live superword set. The candidate statement with the
largest number of reuses is then selected as the next one to run, re-
sulting in closer superword reuses and higher probability of reuses
in the vector registers. We next decide an ordering for the state-
ments of the superword statement just chosen. Given a superword
statement of size N , there could be N ! different orderings. Yet we
can reduce this number by testing only those orderings that lead to
at least one direct superword reuse (i.e., reuse without any permu-
tation operation). In other words, to improve efficiency, we don’t
employ exhaustive search across all valid orderings. Among the
tested orderings, we choose the one that needs the smallest number
of permutation operations for all the superword reuses in the con-
sidered superword statement. Meanwhile, we update the live su-
perword set by inserting into it the newly ordered superwords and
removing from it those existing superwords that access the same
data. We then continue with our scheduling by fetching new ready
superword statements and repeating the above steps until all the
nodes in the dependence graph are processed.

It is to be noted that, by isolating the determination of the order-
ing of the statements in each superword statement from the group-
ing phase and postponing it to scheduling phase, our framework is
able to fully exploit both the direct and indirect superword reuses.
The latter is crucial as it can save expensive memory operations
by introducing only register permutation instructions, which is ne-
glected in the original SLP algorithm [17]. In addition, when deter-
mining the sequence for all statements (including single statements
and superword statements) in the basic block, we not only obtain a
valid scheduling, but also try to bring the superword reuses as close
as possible, which helps transform the reuses into data locality in
the vector register file.

After performing grouping and scheduling on the basic block,
we employ a similar cost model used in [16] to estimate the poten-
tial speed-ups brought by the transformed code, taking into account
all the important factors, e.g., the number of SIMD instructions, the
number of memory operations and the number of vector register
reshuffling/permutation instructions. If we realize that our transfor-
mation could potentially degrade the performance, we choose not
to apply it. Specifically, even though we are able to increase par-
allelism by introducing SIMD operations, the overheads (memory
access latencies/instructions, vector register instructions) brought
by packing/unpacking operations, could be so high that it may take
longer for the transformed code to finish. In this case, we skip the
current basic block and move on to the next one.

4.4 Pseudo Code

The pseudo-code of our basic grouping algorithm is given in Fig-
ure 10. In this algorithm, line 1 identifies the candidate statement
groups. Lines 2-11 build the variable pack conflicting graph, while
lines 12-18 initialize the statement grouping graph. As the key
part of our algorithm, Lines 21-42 make grouping decisions one
by one. More specifically, lines 22-30 construct an auxiliary graph
for weight calculation, based on current candidate group and the
decided groups. The conflicts in the auxiliary graph are resolved in
line 31, after which lines 32-38 calculate the weight (average super-
word reuse). Lines 40-41 choose the edge with the largest weight
as the current grouping decision, and update the variable pack con-

flicting graph as well as the statement grouping graph. Lines 21-42
repeat until all groups are identified. The complexity of our basic
grouping algorithm is O(E2

SG ×NV P ), where ESG is the number
of edges in the statement grouping graph and NV P is the number
of nodes in the variable packing conflict graph.

The second phase of our algorithm (scheduling), is given in Fig-
ure 11. Specifically, lines 1-9 form the dependence graph using the
detected groups, from which lines 10-13 initialize the set of ready
superword statements. Lines 15-18 select the superword statement
that has the highest number of superword reuses with the current
live superword set, as the next one in the statement execution se-
quence. Lines 19-27 determine the ordering of the statements in
the selected superword statement, aiming at reducing permutation
operations as much as possible. Finally, lines 28-35 update the live
superword set, the dependence graph, and the set of ready super-
word statements. The algorithm then moves on to decide the next
superword statement to put into the statement execution sequence.

5. Data Layout Optimization

The optimizations applied in previous section can reduce the num-
ber of packing/unpacking operations but cannot completely elim-
inate them. In fact, once a packing operation is required, its over-
head can be significant if the data it accesses are not aligned and
stored in memory in a contiguous fashion. The previously proposed
SLP algorithm [17] handles this issue by grouping together some
statements with contiguous memory accesses. However, this ap-
proach can lead to poor solutions in terms of superword reuses as
we have discussed in the previous sections, and more importantly,
it highly relies on the existing data layout. For this reason, in this
section, we introduce an additional step, called data layout opti-
mization, to further our benefits by reducing the number of mem-
ory operations and register instructions involved in the mandatory
packing/unpacking operations.

The basic idea behind our data layout optimization is to orga-
nize the superwords in the memory in a way such that the overhead
involved in loading them into vector registers (or writing them back
to memory from vector register) could be minimized. For example,
in Figure 13, assume the width of the SIMD datapath can hold two
basic data types and we decide to group statements S1 and S2 to-
gether after the first stage which yields two superwords: < a, b >
and < A[4i], A[4i + 3] >. Assume further that these two super-
words are currently not in vector registers during execution. Thus,
they need to be packed/unpacked into/from the vector registers be-
fore/after the SIMD operation. In this case, if variables a and b are
already contiguous and aligned in the memory, we only need one
memory operation to write < a, b > back. For the same reason, it
is also desirable to make the data accessed by A[4i] and A[4i + 3]
be contiguous and aligned in the memory space. In this work, we
mainly target at optimizing the data layout for two classes of super-
words, namely, scalar superword and array reference superword.
In the scalar superword, all involved variables are scalar, whereas
the array reference superword contains only array references. We
treat these two classes of superwords separately when applying our
data layout optimization. Specifically, we employ address assign-
ment for scalar superwords, while applying array transformation
and replication for the array reference superwords.

5.1 Optimization for Scalar Superword

We try to solve the problem of layout optimization for scalar super-
words by applying a similar strategy used in the offset assignment
problem in DSP code generation [20]. However, the difference is
that, in our case, the desired layout of the variables is determined by
our statement scheduling for SLP (i.e., superword statement gen-
eration) in the first stage. Specifically, our algorithm is an iterative
process and works as follows. We first sort all the scalar superwords
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Input: A sequence of statements of a basic block, S =<
S1, S2, S3, ..., Sn >
Output: A set of decided statement groups D

1: Identify candidate statement group set G;
2: Initialize V P ; //V P : variable pack conflicting graph.
3: for {Si, Sj} ∈ G do

4: for {Vi, Vj}, Vi ∈ Si.V and Vj ∈ Sj .V do

5: V P.V ← V P.V ∪ {{Vi, Vj} {Si,Sj}};
6: for {Vq, Vr} {Sq ,Sr} and {Sq, Sr}∩{Si, Sj} 6= ∅ do
7: V P.E ← V P.E∪
8: {{Vi, Vj} {Si,Sj}, {Vq, Vr} {Sq ,Sr}};
9: end for

10: end for

11: end for

12: Initialize SG; //SG: statement grouping graph.
13: for {Si, Sj} ∈ G do

14: for S ∈ {Si, Sj} and S /∈ SG.V do

15: SG.V ← SG.V ∪ {S};
16: end for

17: SG.E ← SG.E ∪ {{Si, Sj}};
18: end for

19: D ← ∅;
20: while SG.E 6= ∅ do
21: for {Si, Sj} ∈ SG.E do

22: Initialize AG; //AG: auxiliary graph.
23: for {Vi, Vj} {Sq ,Sr} ∈ V P.V do

24: if {Vi, Vj} {Si,Sj} ∈ V P.V and {Sq, Sr} 6=
{Si, Sj} and {{Vi, Vj} {Sq ,Sr}, {Vi, Vj} {Si,Sj}} /∈
V P.V then

25: AG.V ← AG.V ∪ {{Vi, Vj} {Sq ,Sr}};
26: end if

27: end for

28: for Pm, Pn ∈ AG.V and {Pm, Pn} ∈ V P.E do

29: AG.E ← AG.E ∪ {{Pm, Pn}};
30: end for

31: Resolve conflicts in AG;
32: //Calculate reuses for {Si, Sj}.
33: r ← 0;
34: for {Vi, Vj} appear in AG.V or D ∪ {{Si, Sj}} do
35: r ← r+ (N {Vi,Vj} − 1); //N {Vi,Vj}: the number

of occurence of {Vi, Vj}.
36: end for

37: W {Si,Sj} = r/Nt; //Nt: the number of pack types
in D ∪ {{Si, Sj}}.

38: SG.W ← SG.W ∪ {W {Si,Sj}};
39: end for

40: D ← D ∪ {Si, Sj}; // W {Si,Sj} = MAX(SG.W).
41: Update V P and SG;
42: SG.W ← ∅;
43: end while

Figure 10. Pseudo code for the basic
grouping phase.

Input: A set of decided statement groups D
Output: The ordering of the groups in D and the sequence
Q of the statements in each group D ∈ D

1: Initialize DG; //DG: group dependence graph DG.
2: for D ∈ D do

3: GDG.V ← GDG.V ∪ {D};
4: end for

5: for Di, Dj ∈ GDG.V do

6: if Di depends on Dj then

7: GDG.E ← GDG.E∪ < Di, Dj >;
8: end if

9: end for

10: Initialize LP and RD; //LP: set of live packs. RD: set
of ready groups.

11: for Di ∈ GDG.V and not∃ < Dj , Di >∈ GDG.E do

12: RD ← RD ∪ {Di};
13: end for

14: while RD = ∅ do
15: for D ∈ RD do

16: Nr = NumberOfReuses(D,LP);
17: end for

18: Choose D with largest Nr;
19: //Decide the sequence for statements in Di.
20: Q ← ∅; Q: the candidate sequence set for D.
21: for each sequence Q of D, such that D can directly

reuse one pack in LP do

22: Q ← Q∪ {Q};
23: end for

24: for Q ∈ Q do

25: Nr = NumberOfPermutations(D,Q,LP);
26: end for

27: Choose Q of D with smallest Np;
28: for each pack < Vi, Vj > from D in the order Q do

29: LP ← LP∪ < Vi, Vj >;
30: if < Vq, Vr >∈ LP and {Vq, Vr} = {Vi, Vj} then
31: LP ← LP − {< Vq, Vr >};
32: end if

33: end for

34: Update GDG;
35: Update RD;
36: end while

Figure 11. Pseudo code for the scheduling
phase.

Input: A set of superwords, P
Output: Data layout for P ′ ⊆ P

1: Initialize C; //C: set of scalar superwords;
2: Initialize Y; //Y: set of array reference superwords;
3: for P ∈ P do

4: if ∀V ∈ P, V is scalar then
5: C ← C ∪ {P};
6: else if ∀V ∈ P, V is read-only reference to the same

array then

7: Y ← Y ∪ {P};
8: end if

9: end for

10: //Layout optimization for scalar superwords.
11: while C 6= ∅ do
12: Sort C based on the occurences;
13: Select C ∈ C with the largest number of occurences;
14: Assign aligned memory slots to variables in C in the

same order;
15: for C′ ∈ C do

16: if C′ ∩ C 6= ∅ then
17: C ← C − {C′};
18: end if

19: end for

20: C ← C − {C};
21: P ′ ← P ′ ∪ {C};
22: end while

23: //Layout optimization for array reference superwords.
24: while Y 6= ∅ do
25: Sort Y based on the occurrences;
26: Select Y ∈ Y with the largest number of occurences;
27: R is a reference in Y ;
28: for R ∈ Y do

29: ~r is the memory access vector of R;
30: ~r ← Q~i+ ~O;
31: //Apply the first layout transformation for spatial

locality.
32: Obtain a transformation matrix M;
33: ~r1 ← Q1

~i+ ~O1; //Q1 = MQ and ~O1 = M ~O.

34: //Apply mapping/replication of data access by ~d

from A to B.

35: f(~d) ← (f ′(~d′),
qm,n−O′n−f ′(~d′)(qn,1,...,qn,m−1)

T

qn,m
L +

p); L: the number of references in Y ; p: the position
of R in Y ;

36: end for

37: Y ← Y − {Y };
38: P ′ ← P ′ ∪ {Y };
39: end while

Figure 12. Pseudo code for the data layout
optimization.

S1:  a = A[4i]; 

S2:  b = A[4i+3]; 

Figure 13. An example that benefits from data layout optimiza-
tion.

by their occurrences, followed by selecting the scalar superword
with the largest number of occurrences as the current one to ap-
ply layout optimization. The scalars in the selected superword are
then assigned consecutive memory locations in which the variables
are organized in the same order as they appear in the superword.
After that, we skip all the scalar superwords that share variable(s)
with the current one and thus have conflicting layout requirements.
We repeat the above process until all scalar superwords are pro-
cessed. It needs to be noted that, our data layout optimization may
not be able to handle all scalar superwords because of the existing
conflicts among them. However, we ensure that those with higher
access frequencies are handled with priority, as they are likely to
incur more packing/unpacking operations.

5.2 Optimization for Array Reference Superword

Within a loop nest, an array reference can access different data el-
ements in different iterations, which prevents us from treating it
simply as a scalar when applying layout optimization. One alterna-
tive is to take advantage of the access patterns of array references
to achieve the desired data layout. In this work, we focus on loop

nests in which the loop bounds and array references are affine func-
tions of the enclosing loop indices and loop independent variables.
As a result, we are able to utilize existing polyhedral model [7] for
our data layout optimization. In the polyhedral model, the mem-
ory access pattern of an array reference is represented as a memory
access vector ~r:

~r = Q~i + ~O, (1)

in which ~i is the iteration vector, Q is the memory access ma-

trix of size m × n, and ~O is the access offset vector. Based on
the access patterns of the variables in the array reference super-
words, we combine two different optimizations together when solv-
ing the data layout optimization problem, i.e., affine transforma-
tion and selective mapping/replication. It is to be noted that two
constraints need to be satisfied here. First, all references in the su-
perword are intra-array references, i.e., accessing the same array.
Second, since we use data replication and a given data element
may appear in two different memory locations, it can only be ap-
plied to read-only array references. The problem of data layout op-
timization for array reference superword can then be expressed as
follows. Given an array reference superword PA =< A( ~a1), ...,
A( ~ak), ..., A( ~an) > that accesses only array A, our goal is to ob-
tain a new array B from A such that the references in PA now
access array B and the data accessed are arranged contiguously in
the memory in the same order as they appear in PA.

Figure 14 gives an example that illustrates the basic idea of this
optimization. It assumes a SIMD datapath width of 2, and the array
reference superword is < A[4i], A[4i + 3] >. We can see that the
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access patterns of references A[4i] and A[4i+3] on array A require
two register loads and additional register reshuffling/permutation
operations to pack them in a superword. By contrast, if we can map
the elements of array A to array B as illustrated in the example, and
at the same time, change the original references to < B[2i], B[2i+
1] >, we need only one register load to pack them. As a whole, the
two references in the superword can now access the new array B in
an interleaved fashion.

]4[ iA ]34[ +iA

:A

:B

]2[ iB ]12[ +iB

Figure 14. Example layout optimization for array reference pack
< A[4i], A[4i + 3] >.

To put it in a more general way, after the optimization, the
access pattern of each individual reference to the new array is a
strided pattern. The stride lengths of all the references are the same
as the size of the superword, though the starting offsets of the
references can vary depending on their respective positions within
the superword. Therefore, the data transformation and replication
for all the references can be conducted in a uniform fashion. We
assume that the access pattern of a reference R to array A can
be described as an access vector ~r, as shown in Expression (1).
Besides, we assume that the default layout Ldefault adopted by the
compiler is row major. Our optimization then consists of two steps:
(1) affine transformation and (2) mapping to new array.

The first step is similar to data layout transformation for achiev-
ing spatial locality. Specifically, we start by determining the data
layout Lopt for reference R when considering only spatial local-
ity in the loop nest, which largely depends on the innermost loop
index. In other words, Lopt is a data layout which achieves con-
tiguous data accesses in successive iterations of the innermost loop.
Based on that, we obtain a transformation matrix M for array A by
solving the following equation:

LdefaultM = Lopt. (2)

After the transformation, the new reference R1 will access neigh-
boring data elements (may not be direct neighbors) of the trans-
formed array A in the innermost loop. The new memory access
vector r1 for R1 is:

~r1 = Q1
~i + ~O1, (3)

where Q1 = MQ and ~O1 = M ~O. Since the default layout is
assumed to be row major, the last column of the new memory ac-
cess matrix Q1 that denotes the new access pattern in the innermost
loop will be ~cn = (0, 0, ..., 0, qm,n)T .

In the second step, our goal is to map/replicate the data in the
transformed array A accessed by R1 to a new array B, using non-
affine transformations, so that the data elements accessed by R1

are stored in a strided manner within array B. The stride length is
equal to the length of the superword L, and the starting offset in
B is equal to p, which is the offset of R1 in the array reference
superword. Considering a simple case, if A is a one dimensional
array and R1 = A[ai + b], we map the data in index d accessed by
R1 in A to array B using the following function:

f(d) =
d − b

a
L + p. (4)

It is straightforward to prove that the above formula can be used
to express the mapping in the example in Figure 14. On the other
hand, if A is a two dimensional array, let us assume that Q1 =

 

 S1:  a = A[i]; 

 S2:  c = a × B[4i]; 

 S3:  g = q × B[4i-2];   

 S4:  b = A[i+1]; 

 S5:  d = b × B[4i+4]; 

 S6:  h = r × B[4i+2]; 

 S7:  A[2i] = d + a × c;   

 S8:  A[2i+2] = g + r × h; 

                           (a) 
   

 

  S1:  a = A[i]; 

  S4:  b = A[i+1];   
 

  S2:  c = a × B[4i]; 

  S5:  d = b × B[4i+4]; 
   

  S3:  g = q × B[4i-2]; 

  S6:  h = r × B[4i+2]; 
 

  S7:  A[2i] = d + a × c;   

  S8:  A[2i+2] = g + r × h; 
 

                             (b) 
   

 

     S1:  a = A[i]; 

 S4:  b = A[i+1];   

 S5:  d = b × B[4i+4]; 

 S3:  g = q × B[4i-2]; 
 

 S2:  c = a × B[4i]; 

 S6:  h = r × B[4i+2]; 

 S7:  A[2i]   = d + a × c ;   

 S8:  A[2i+2] = g + r × h ; 
 

                           (c)   

 

  S1:  a = A[i]; 

  S4:  b = A[i+1];   
 

  S5:  d = b × C[2i]; 

  S3:  g = q × C[2i+1]; 
   

  S2:  c = a × D[2i]; 

  S6:  h = r × D[2i+1]; 
 

  S7:  A[2i]   = d + a × c; 

  S8:  A[2i+2] = g + r × h; 
 

                             (d)    

1 

2 

3 

Figure 15. Example application of our SLP optimization and com-
parison. (a) Input basic block; (b) Optimization with the original
SLP algorithm [17]; (c) Optimization with our superword statement
generation; (d) Result obtained using our data layout optimization.

»

q11 0
q21 q22

–

and ~O1 = (o1, o2)
T . For a data access index ~d =

(d1, d2) in array A accessed by R1, we can apply the following
mapping function:

f(~d) = (
d1 − o1

q11

,
d2 − o2 − q21

d1−o1

q11

q22

L + p). (5)

We now discuss the general mapping/replication function for
an array A of N dimensions. We first obtain a new equation from

Equation (3) by removing the last dimension of vectors ~r1, ~i and
~O1, as well as the last row and the last column of Q1:

~r′
1

= Q′
1
~i′ + ~O′

1
, (6)

where Q′
1 is nonsingular. Given an array index ~d = (d1, d2, ..., dN )

in A accessed by R1, we first obtain a mapping function for
~d′ = (d1, d2, ..., dN−1):

f ′(~d′) = Q
′−1

1
( ~d′

1
−

~O′
1
). (7)

Next we obtain the final mapping/replication function for ~d to
ensure strided accesses to the new array B in the innermost loop:

f(~d) = (f ′(~d′),
qm,n − O′

n − f ′(~d′)(qn,1, ..., qn,m−1)T

qn,m

L+p). (8)

As stated before, our data layout optimization for array refer-
ence superwords are limited to intra-array and read-only references
in the affine loop nests. In addition, since we employ data map-
ping/replication, more memory space are needed to hold the repli-
cated data. In case the input data sizes retrieved by static analysis
are too large and/or the physical memory available is too small, we
can skip the layout transformation for array reference superwords,
and only perform layout optimization for scalar superwords.

The pseudo-code of our data layout optimization algorithm is
given in Figure 12. Lines 1-9 retrieve the scalar superwords and
array reference superwords, on which our algorithm is applicable.
Lines 10-22 and 23-39 then apply layout transformation to the
scalar superwords and array reference superwords, respectively.
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6. An Example

Figure 15 gives an example that illustrates our SLP optimization
on a basic block, and compares it with the original SLP algorithm
[17]. We assume that one superword can hold two variables. The
original input code is shown in Figure 15 (a).

In the figure, the first transformation is performed by the orig-
inal SLP algorithm. It starts by identifying the set of isomorphic
statements with contiguous memory accesses as the seed groups,
which are {< S1, S4 >}. It then follows the def-use/use-def chains
to obtain additional superword statements, i.e., < S2, S5 >, while
achieving superword reuses, < a, b >. The final set of generated
superword statements is {< S1, S4 >, < S2, S5 >, < S3, S6 >,
< S7, S8 >}, as shown in Figure 15 (b). We can see that, in the op-
timized code, there is only one superword reuse that can help save
one packing operation. That is, packing of < a, b > in < S2, S5 >
can be saved by reusing it in < S1, S4 >.

The second transformation in the example applies our first opti-
mization (superword statement generation) to the input code. Fol-
lowing the strategy described in Section 4 step by step, we obtain
the optimized code shown in Figure 15 (c), with the set of gen-
erated superword statements {< S1, S4 >, < S5, S3 >, < S2,
S6 >, < S7, S8 >}. The differences between Figure 15 (b) and
Figure 15 (c) mainly result from the grouping decisions for state-
ments {S2, S3, S5, S6}. Our framework chooses to group them as
{< S5, S3 >, < S2, S6 >}, instead of {< S2, S5 >, < S3, S6 >
}, as the former can bring more superword reuses to the whole basic
block. This is achieved by taking a global view whenever a group-
ing decision is made. As a result, in the transformed code (Figure
15 (c)), we obtain three superword reuses (< d, g >, < c, h >,
and < a, r >), compared to only one in Figure 15 (b). Thus, our
approach can bring more packing/unpacking reductions.

The third transformation shown performs data layout trans-
formation on the code in Figure 15 (c). Note that more pack-
ing/unpacking savings are obtained by optimizing the data layout
for both scalar superwords (< a, b >, < d, g > and < c, h >),
and array reference superword (< B[4i + 4], B[4i − 2] > and
< B[4i], B[4i + 2] >), using the strategy discussed in Section 5.
The generated code is given in Figure 15 (d), in which arrays C and
D are constructed using data replication and renaming. The boxes
that appear in (d) but not in (c) indicate additional benefits from
layout optimization. For example, when applying SIMD to S1 and
S4, (c) will introduce unpacking overhead for scalar references a
and b. But (d) will not, since a and b are already adjacent in mem-
ory after the layout transformation and can be written back together
from one vector register.

7. Experimental Evaluation

7.1 Implementation and Setup

We evaluated our compiler framework on two systems using 16
benchmarks. We implemented our SLP framework on top of the
SUIF 2.0 compiler infrastructure [4, 33]. We also implemented an
alternate algorithm proposed in [17] against which we compare
our proposed optimizations. In our implementation of the algo-
rithm in [17], we tried to optimize its performance as much as we
could. In both the implementations (ours and [17]), we included
pre-processing steps which perform alignment analysis and loop-
unrolling, with the purpose of exposing more superword level par-
allelism to the compiler. In other words, both the implementations
use exactly the same pre-processing steps. In addition, for both
the implementations, we map the register reshuffling/permutation
operations to native shuffling instruction set supported by the un-
derlying architecture, rather than loading/storing from/to physical
memory. In the following discussion, we refer to the first stage opti-
mization in our SLP framework (superword statement generation)

Table 1. Characteristics of the Intel Dunnington based machine.
Number of Cores 12 cores (2 sockets)

core Type Xeon CPU E7450(clocked at 2.40GHz)
L1 Data 32KB/core; 8-way; 64-byte line size

L2 total 18MB (6 × 3MB); 12-way; 64-byte line size
L3 total 24MB (2 × 12MB); 12-way, 64-byte line size

Table 2. Characteristics of the AMD Phenom II based machine.
Number of Cores 4 cores

Core Type AMD Phenom II ×4 (clocked at 3.00GHz)
L1 Data 64KB/core; 2-way; 64-byte line size

L2 total 2MB (4 × 512KB); 16-way; 64-byte line size
L3 total 6MB (1 × 6MB); 48-way, 64-byte line size

Table 3. Benchmark description.
cactusADM Solving the Einstein evolution equations

soplex Liner programming solver using simplex algorithm
lbm Lattice Boltzmann method
milc Simulations of 3-D SU(3) lattic gauge theory

SPEC2006 povray Ray-tracing: a rendering technique
[3] gromacs Performing molecular dynamics

calculix Setting up finite element equations and solves them
dealII Object oriented finite element software library
wrf Weather research and forecasting

namd Simulation of large biomolecular systems

ua Unstructured adaptive
ft 3-D Fast fourier transform (FFT)

NAS bt Block tridiagonal
[2] sp Scalar pentadiagonal

mg Multigrid to solve the 3-D possion PDE
cg Conjugate gradient

as Global, and the SLP algorithm proposed in [17] as SLP. The
version obtained by combining Global with our data layout opti-
mization (discussed in Section 5), is referred to as Global+Layout.
Finally, on both the systems, the native compiler-generated version
when SLP optimization is enabled is denoted as Native. In our ex-
periments, we compared these four schemes with each other as well
as the original applications that do not employ any SLP specific
optimization (scalar code). In terms of compilation overhead, com-
pared to the SLP version, our approach increased compilation time
by 27% on average.

Both the systems used in our experiments, Intel Dunnington
based machine and AMD Phenom II based machine, support the
SSE/SSE2 instruction set. They contain a set of 128-bit vector reg-
isters that enable two 64-bit, four 32-bit, eight 16-bit, or sixteen
8-bit operands to be processed concurrently. In particular, the Intel
Dunnington based machine has a dual hexa-core with Intel Xeon
CPU E7450 clocking at 2.40GHz, whereas the AMD Phenom II
based machine has a quad-core with AMD Phenom II X4 945 op-
erating at 3.00GHz. Table 1 and Table 2 give the detailed configu-
rations of these two commercial machines.

The set of benchmark programs used in this study are listed
in Table 3. We used all C and C++ floating-point benchmarks in
SPEC2006 [3] as well as six NAS benchmarks [2]. Our applications
exhibit diversity in terms of the types of inherent parallelism they
contain. For each benchmark, we used the largest input size avail-
able. The results reported below represent average values across
multiple runs with the same configuration, and collected using one
core by default (we present multicore results later).

7.2 Results

Our first set of results present the execution time reductions (on
the Intel architecture) brought by Global, SLP and Native, all nor-
malized, for each benchmark, to the execution time observed when
no SLP optimization is enabled (scalar code). In Figure 16, bench-
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Figure 16. Performance improvements in terms of execution times
on the Intel Dunnington based machine.
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Figure 17. Percentage dynamic instruction and packing/unpacking
overhead reductions brought by Global over SLP.
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Figure 18. Percentage elimination of dynamic instructions under
different datapath widths.
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Figure 19. Performance improvements in terms of execution times
with Global+Layout on the Intel Dunnington based machine.

marks on the x-axis are ordered from the one for which Global
generates the least improvement, to the one it generates the high-
est improvement. Based on the improvements achieved by Global,
we can divide our benchmarks into three categories (each category
is marked by its own box in Figure 16). We further observe that
our approach (Global) and SLP generate the same results in three
of all the benchmarks tested; however, in all the other applications,
Global consistently outperforms SLP. Our Global version performs
better over SLP when there are more valid scheduling candidates
and more potential superword reuses in a basic block. In addition,
SLP and Native result in the same output code and performance in
four applications.

To explain the performance difference between our approach
(Global) and SLP, we present in Figure 17 the reductions brought
by Global over SLP in terms of the dynamic instructions exe-
cuted (excluding the packing/unpacking instructions) and the pack-
ing/unpacking overheads. It can be seen that our approach cuts dy-
namic instructions and packing/unpacking operations of SLP on av-
erage by 14.5% and 43.5%, respectively. In particular, we observe
that Global achieves significant packing/unpacking instruction re-
ductions for most benchmarks tested, which shows the advantage
of our global strategy of extracting superword reuses.

We next study how close the results generated by our approach
(Global) are to the optimal potential improvements, i.e., if super-
word level parallelism could be fully exploited. Figure 18 plots the
percentage of dynamic instructions eliminated by Global over the
scalar code for a variety of hypothetical datapath widths. Recall
that both of our machines use superwords of 128 bits. When we
look at the results of 128-bit superword, we observe that, on aver-
age, nearly 49.1% of the dynamic instructions of the original appli-
cations (without any SLP optimization) are eliminated by Global.
Further, when we increase the datapath width to 1024 bits, this
value climbs to 54.5%. Considering that future architectures may
employ longer datapath widths, our approach can be more effective
in the future.

Figure 19 gives the results (execution time reductions over the
scalar code) of Global+Layout (results of Global are reproduced
here for ease of comparison). We can observe that our data lay-
out optimization brings additional benefits in seven of our bench-
marks (those benchmarks are marked using rectangles). The reason
why the layout optimization does not bring any benefit in the re-
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Figure 20. Performance improvements in terms of execution times
with Global+Layout on the AMD Phenom II based machine.

maining benchmarks is because its application is restricted by cer-
tain constraints as discussed in Section 5. In particular, we employ
data replication to optimize layout for the array reference super-
words, which has a negative impact on the cache behavior. In order
to achieve improvement, the benefit of layout optimization has to
outweigh the cost. Otherwise, in our implementation, we skip the
data optimization phase. It is to be noted that, when considering the
results of the SLP version in Figure 16, the highest performance
improvement Global+Layout brings over SLP is about 15.2%.

We also present results collected on our AMD system. Fig-
ure 20 plots the execution time reductions brought by Global and
Global+Layout over the scalar code, respectively. We see that, on
average, Global and Global+Layout bring 10.8% and 14.1% im-
provements, which are similar to the average improvements we
obtained on the Intel machine (12% and 14.9% for Global and
Global+Layout, respectively). We believe that, in cases where sav-
ings are lower (compared to the Intel machine) on the AMD ma-
chine, the main factor is the higher packing/unpacking costs.

Finally, we evaluate the effectiveness of our compiler (both
Global and Global+Layout) on multithreaded applications. For this
evaluation, we focus on the NAS benchmarks in our experimen-
tal suite, and present the execution time reductions over the scalar
code in Figure 21. These experiments are performed in our Intel
Dunnington based machine (with a total core count of 12, dis-
tributed over two sockets). Note that, in these plots, the y-axis gives
the execution time reductions brought by our approach over the
original application, with both of them running on the same num-
ber of cores. We clearly see that both of our approaches, Global
in Figure 21(a) and Global+Layout in Figure 21(b), bring consis-
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(a) Global only.
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(b) Global+Layout.

Figure 21. Performance improvements in terms of execution times
with different core counts (x-axis).

tent improvements across different core counts. The results become
slightly better when we increase the number of cores, mostly due
to the less-than-perfect scalability of the original applications.

8. Concluding Remarks

The main contribution of this paper is an automated compiler
framework that detects and exploits superword level parallelism
in application programs. We apply a two-stage strategy, namely,
superword statement generation and data layout optimization, to
increase SIMD level parallelism, reduce the number of super-
word packing/unpacking operations by extracting more superword
reuses, and reduce the overhead of mandatory packing/unpacking
operations by reorganizing data in the memory. The results col-
lected on two commercial systems (Intel and AMD) indicate that
the proposed SLP framework performs better than an existing SLP
scheduling algorithm, bringing as much as 15.2% performance im-
provement.
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