
Springer Real-Time Systems, Volume 46, Issue 2(2010)
DOI 10.1007/s11241-010-9101-x

A compiler framework for the reduction of worst-case

execution times

Heiko Falk · Paul Lokuciejewski

Received: June 16, 2009 / Accepted: June 12, 2010

Abstract The current practice to design software for real-time systems is tedious.

There is almost no tool support that assists the designer in automatically deriving safe

bounds of the worst-case execution time (WCET) of a system during code generation

and in systematically optimizing code to reduce WCET.

This article presents concepts and infrastructures for WCET-aware code gener-

ation and optimization techniques for WCET reduction. All together, they help to

obtain code explicitly optimized for its worst-case timing, to automate large parts

of the real-time software design flow, and to reduce costs of a real-time system by

allowing to use tailored hardware.

Keywords Real-Time · WCET · Compiler · Code Generation · Optimization

1 Introduction

Embedded systems often have to meet real-time constraints that make them real-

time systems. Today, software development for embedded systems relies on high-

level languages like C, and compilers. Modern compilers include a vast variety of

optimizations. However, they mostly aim at reducing average-case execution times

(ACETs). The effect of optimizations on worst-case execution times (WCETs) has not

been studied in-depth up to now. In addition, even modern compilers are often unable

to quantify the effect of an optimization since they lack precise timing models [37].

The research leading to these results has received funding from the European Community’s ArtistDesign

Network of Excellence and from the European Community’s Seventh Framework Programme FP7/2007-

2013 under grant agreement no 216008.

The final publication is available at www.springerlink.com

H. Falk (B) · P. Lokuciejewski

Computer Science 12, TU Dortmund University, 44221 Dortmund, Germany

E-mail: Heiko.Falk@tu-dortmund.de

P. Lokuciejewski

E-mail: Paul.Lokuciejewski@tu-dortmund.de



252

Currently, software design for real-time systems is tedious: they are often spec-

ified graphically using tools like e.g., ASCET. These tools automatically generate

C code which is compiled in the next step. Since usual compilers have no integrated

notion of timing, applied optimizations may lead to large WCET degradations. There-

fore, it is common industrial practice to disable almost all optimizations during com-

pilation. The code produced by the compiler is then manually fed into a WCET an-

alyzer that computes timing information. Only after this very final step in the entire

design flow, it can be verified if timing constraints are met. If not, the graphical design

is changed in the hope that the resulting C and assembly codes have a lower WCET.

Up to now, no tools exist that assist the designer to purposively reduce WCETs

of C or assembly code, or to automate the above design flow. In addition, hardware

ressources are heavily oversized due to the use of unoptimized code. Thus, it is desir-

able to have a WCET-aware compiler. Integrating WCET analysis into the compiler

itself has the following benefits: first, it extends the compiler by a WCET timing

model such that the compiler has a clear notion of a program’s worst-case behavior.

Second, this model is exploited by specialized compiler optimizations that reduce the

WCET. Thus, the designer no longer needs to use unoptimized code, cheaper hard-

ware platforms tailored towards the real software resource requirements can be used,

and the tedious work of manually reducing the WCET of auto-generated C code is

taken from the designer. Third, manual WCET analysis is no more required since this

is done transparently by the compiler, using its tight integration of a WCET analyzer.

This article presents concepts, infrastructures and optimizations for WCET-aware

code generation. All techniques discussed in this article are implemented and alto-

gether form the WCET-aware C Compiler WCC [52], the first and currently only

fully functional compiler which aims at fully automated WCET reduction at both

source code and assembly code level.

1.1 Motivation

Typically, an executable program exhibits a certain variability of execution times in-

fluenced by input data and interference from the environment. Among all possible

execution times of a program, the absolute maximum is the longest execution time a

program can ever take. This time is called worst-case execution time. Unfortunately,

it is in general very difficult or even impossible to determine the actual WCET of a

program since this would include to solve the halting problem. Instead of computing

the actual WCET, reliable upper bounds have to be determined by sound methods.

Two different approaches are used to estimate WCET bounds. The first approach

is measurement-based WCET analysis. Here, the program under analysis is executed

or simulated using some representative input values. A safety margin of e.g., 20% is

added to the measured execution times and the resulting value is considered as the

WCET. This approach is highly unsafe since no guarantee can be deduced that the

inputs used during measurement really lead to the program’s worst-case behavior.



253

If safe WCET guarantees for hard real-

time systems are needed, static program

analyses are used. The overall workflow of

the leading static WCET analyzer aiT [1]

is shown in Fig. 1. aiT applies static anal-

yses on its intermediate format for ex-

ecutable code (CRL2) to e.g., estimate

register values, loop iteration counts, and

cache and pipeline states. The Path Anal-

ysis stage computes a program’s global

WCET. For each block on a path P from

a program’s entry point to its end point, its

Loop Bound
Analysis

AbsInt’s
CRL2

CRL2 with
WCET

Estimates

Decoder
exec2crl

Value
Analysis

Path
Analysis

Pipeline
Analysis

Executable Cache
Analysis

Fig. 1 Workflow of the static WCET analyzer aiT

maximum execution time T is given after Pipeline Analysis. Using the determined

loop iteration counts, a block’s maximum number of executions C is estimated. The

WCET of P is the sum of the products T ∗C over all blocks of P. A program’s WCET

is computed by finding the maximum path WCET for all feasible paths. This maxi-

mization problem is modeled and solved using integer linear programming (ILP).

This path within a program’s control flow graph (CFG) which has the maximal

WCET is called the worst-case execution path (WCEP). Hence, the WCET of a pro-

gram is equal to the WCET of its WCEP. In the following, a path’s WCET will also

be called the path’s length. To reduce WCETs by a WCET-aware compiler, optimiza-

tions must exclusively focus on those parts of the program that lie on the WCEP.

Optimization of parts of the program aside the WCEP are ineffective, since they do

not shorten the WCEP and thus do not reduce the WCET. Therefore, optimization

strategies for WCET reduction must have detailed knowledge about the WCEP. Static

WCET analysis as shown above provides information about a program’s WCEP, but

solely knowing the WCEP is still insufficient for effective WCET reduction.

Consider the CFG of a function main in Fig. 2 that

consists of five basic blocks. Each of them has the indi-

cated WCET given in processor cycles. As can be seen, the

longest path through this CFG is main, a, b, c. This WCEP,

highlighted with solid arrows in the figure, leads to an over-

all WCET of 205 cycles.

main

b

c

a d

10 Cyc.

50 Cyc.

80 Cyc.

65 Cyc.

120
Cyc.

Fig. 2 Original example CFG

We assume that some WCET-aware optimization

reduces the WCET of basic block b, that lies on the

WCEP, from 80 cycles down to 40 cycles (cf. Fig. 3).

As can be seen, the WCEP after optimization of b is

main, d, c. Additionally, reducing b’s WCET by 40 cy-

cles does not reduce the overall WCET by 40 cycles.

Instead, the overall WCET now amounts to 195 cycles

main

b

c

a d

10 Cyc.

50 Cyc.

40 Cyc.

65 Cyc.

120
Cyc.

Fig. 3 CFG after optimization of b

which corresponds to an overall saving of only 10 cycles.

This example shows that the WCEP is unstable—it can switch from one path

within the CFG to a completely different one due to a decision taken by some op-

timization. Thus, a WCET-aware compiler is faced with the following challenges



254

which turn the development of WCET-aware optimizations into an even more de-

manding area of research compared to traditional compiler optimization:

– During the entire optimization process, WCET-aware optimizations must have

detailed knowledge of the current WCEP at any point in time.

– They must be aware of the fact that the WCEP may switch in the course of an

optimization and they thus have to recompute the WCEP whenever necessary.

– Additionally, optimization decisions should not only rely on local WCET data for

a single code block, since local WCET savings for a single block do not neces-

sarily translate into global WCET savings of the same order of magnitude.

This article is the first one to present a holistic approach and infrastructure for

WCET-aware code generation. The key contributions are that the proposed compiler

– is equipped with a precise WCET timing model during code optimization,

– applies static WCET analysis automatically in the background, without requiring

the compiler user to reason about assembly code structures that influence WCET

analysis. Instead, the user is urged to support WCET analysis at source code level,

– features various optimizations which are explicitly tailored towards WCET re-

duction and thus overcome the challenges listed above,

– applies WCET optimizations both at source code and at assembly code level. This

structure is advantageous since it helps to exploit the benefits of these different

abstraction levels individually. For example, optimizations that consider function

calls and function arguments are much more difficult to realize at assembly code

level. Likewise, it is difficult to apply memory allocation optimizations as pro-

posed in this article at the source code level since highly precise data on code

sizes or register interference is usually only available at assembly code level.

1.2 Related work

A very first approach to integrate WCET techniques into a compiler was presented

in [4]. Flow facts used for WCET analysis were annotated manually via source-level

pragmas. A fully pragma based approach is not promising since manual annotations

are tedious and error-prone. Additionally, the compiler targets the Intel 8051 which

is an inherently simple and predictable machine without pipeline and caches etc.

While mapping high-level code to object code, compilers apply various optimiza-

tions so that the correlation between high-level flow facts and the optimized object

code becomes very vague. To keep track of the influence of compiler optimizations

on high-level flow facts, co-transformation of flow facts is proposed in [11]. How-

ever, the co-transformer has never reached a fully working state, and several standard

compiler optimizations can not be modeled at all due to insufficient data structures.

The authors of [35] present techniques to transform program path information

which keep high-level flow facts consistent during GCC’s standard optimizations.

Their approach was thoroughly tested and led to precise WCET estimates. However,

compilation and WCET analysis are done in a decoupled way. The assembly file gen-

erated by the compiler is passed to the WCET analyzer together with the transformed



255

Parser
Code

Selector

aiT WCET
Analyzer

ANSI-C

Sources &

Flow Facts

ICD-C

Code

Generator

ICD-LLIR

WCET-
aware

Optimizations

Loop
Analyzer

Back-

Annotation

Memory
Hierarchy

Specification

WCET-
Optimized
Assembly

Linker
Script

Fig. 4 WCC compiler infrastructure

flow facts. Additionally, the proposed compiler is only able to process a subset of

ANSI C, and the modeled target processor lacks pipelines and caches.

In [56,57], the integration of a proprietarily developed WCET analyzer into a

compiler is presented. The compiler operates on a low-level intermediate representa-

tion (IR). Control flow information is passed to the timing analyzer which computes

the WCET of paths, loops and functions and passes this data back to the compiler.

This approach has the following limitations. First, the WCET analyzer works with

very coarse granularity since it only computes WCETs of paths, loops and functions.

WCETs for basic blocks or single instructions are unavailable. Thus, aggressive opti-

mization of smaller units like single basic blocks is infeasible. Second, WCET-related

data which is not the WCET itself is unavailable, too. This excludes e.g., execution

frequencies of basic blocks, value ranges of registers, predicted cache behavior etc.

Finally, WCET optimization at higher levels of abstraction like e.g., source code level

is infeasible since WCET-related data is not provided at source code level.

1.3 Overall compiler infrastructure and article outline

The WCET-aware C Compiler WCC [52] described in this article is a C compiler

for the Infineon TriCore TC1796 and TC1797 processors that are heavily used in the

automotive industry. WCC’s overall structure is depicted in Fig. 4. Those modules of

the compiler connected with solid arrows resemble a typical optimizing compiler:

Parser: The parser is fully compliant with ANSI C. It accepts several C source files

within a single compiler run and creates a high-level IR called ICD-C from them.

ICD-C: The ICD-C framework [28] is a data structure that provides a machine-

independent IR for C code. It features machine-independent code analyses and

optimizations. WCC uses ICD-C’s code selector interface to couple the front-end

with a tree-pattern matching based code selector for the TriCore processors.



256

Code Selector: The code selector translates ICD-C to a representation of TriCore

assembly. WCC’s grammar for the TC1796 / TC1797 consists of ca. 24,000 lines

of C++ code which results in the generation of highly efficient machine code.

ICD-LLIR: ICD-LLIR [29] is a data structure providing a retargetable low-level IR

for compiler back-ends. It includes various assembly-level analyses and optimiza-

tions. WCC’s TriCore processor description for ICD-LLIR consists of ca. 14,500

lines of C++ code which capture all aspects of the complex TriCore architecture.

Code Generator: The code generator finally emits valid assembly code from the

class structures of the TriCore ICD-LLIR within WCC’s back-end.

The key components which turn WCC into a unique WCET-aware C compiler are

depicted with dashed arrows in Fig. 4. Sections 2–6 describe these modules in more

detail. They deal with WCC’s memory hierarchy specification, integration of the aiT

WCET analyzer, flow facts, loop analyzer and back-annotation.

Based on this infrastructure, WCET-aware source code level optimizations (pro-

cedure cloning and positioning) are presented in Sects. 7–8, followed by WCET-

aware assembly code level optimizations (scratchpad and register allocation) in Sects.

9–11. Section 12 summarizes this article and gives an outlook on future work.

2 Specification of memory hierarchies

The performance of many systems in use today is largely dominated by the memory

subsystem. Due to the large speed gap between slow memories and fast processors,

execution times of software widely depend on the characteristics of the memory hier-

archy on the one hand, and on the characteristics of memory accesses performed by

the software on the other hand. Obviously, the WCET estimates produced by a static

WCET analyzer as described in Sect. 1.1 also heavily depend on the memories.

In the compiler environment described in this article where the WCET analyzer is

tightly integrated into the code generation process, it is in the duty of the compiler to

provide the WCET analyzer with detailed information about the underlying memory

hierarchy in order to obtain safe and tight WCET estimates. For this reason, WCC

includes an infrastructure to specify memory hierarchies.

But WCC uses this memory hierarchy infrastructure not only for WCET analysis.

In addition, WCC features many optimizations that exploit memory hierarchies by

moving parts of a program’s code and data onto fast memories to reduce WCETs.

These optimizations also rely on precise knowledge of the memory subsystem which

is provided by the infrastructure described in this section. Section 2.1 presents related

work, and Sect. 2.2 describes WCC’s memory hierarchy infrastructure.

2.1 Related work

Previous work on architecture description languages (ADLs) primarily focused either

on efficiently building cycle-true instruction set simulators, or on code generation

in a synthesizable hardware description language (HDL). Lisa [24] originally aims

at the automatic generation of application-specific hardware and of corresponding



257

simulators and low-level tools. It has also been extended towards automatic compiler

generation. For this purpose, a semantic instruction set model was added. Thus, Lisa

system specifications need to provide cycle-true timing models as well as semantical

information about a processor’s instruction set.

ArchC [3] was designed to support processor architecture description. Recently,

means to design memory hierarchies have been added. In analogy to Lisa, ArchC also

covers structural and behavioral aspects of a system model. In contrast to Lisa, ArchC

builds upon SystemC in order to specify timing and concurrency. Due to the strong

relationship between ArchC and SystemC, it is relatively straightforward to create an

instruction set simulator or to generate synthesizable HDL code from ArchC.

The Target Description Language TDL [30] focuses on retargetable optimization

of assembly code. It uses a structural description of a system’s resources that includes

memory and cache hierarchies. A behavioral instruction set description is the second

key part of TDL. Due to its vicinity to code optimization, TDL is the approach coming

closest to the memory hierarchy specification infrastructure of our WCC compiler.

2.2 Memory hierarchy specification

The approaches for architecture or memory hierarchy specification described in Sect.

2.1 base on powerful and retargetable ADLs. They feature sophisticated structural

and behavioral information that includes detailed timing models. WCC’s memory

hierarchy infrastructure differs from previous work in the following aspects:

– Due to the way how worst-case timing models are integrated into our compiler (cf.

Sect. 3), there is no need to equip WCC’s memory hierarchy specifications with

sophisticated timing models. For our purpose of supporting code optimizations,

only some key parameters like e.g., memory access latencies are sufficient.

– Since we do not focus on synthesizable HDL code generation, our infrastructure

does not need to provide precise, cycle-accurate timings, again. This turns WCC’s

memory hierarchy specification into a very lightweight infrastructure.

– Previous approaches were retargetable in that sense that they generated tools or

HDL code for different target processor architectures. For this purpose, ADLs

are usually equipped with detailed semantical information about the meaning of

a processor’s instruction set. In contrast, WCC does not require such semantical

instruction set information since we only consider the memory hierarchy. Thus,

retargetability of the memory hierarchy within WCC is achieved by simply up-

dating and reconfiguring a processor’s memories as described in the following.

Due to their focus on cycle-accurate timing, retargetability and HDL code gener-

ation, previous ADLs are very powerful but also very heavy tools. WCC’s memory

hierarchy infrastructure is designed to be lightweight and to only support optimiza-

tions which move parts of a program across different memories. This kind of mem-

ory allocation is usually performed by the linker during the final step of generating

an executable. Thus, the information usually available only while linking needs to be

provided already to the WCC compiler itself. This is because it is up to WCC in our

setup to decide on a program’s memory layout, and no longer up to the linker.



258

In a conventional environment where information on the memories is only avail-

able to the linker, the compiler is fully unaware of the available memories and thus

can not optimize the code for a given memory hierarchy. Making information about

a processor’s memories already available to the compiler has the advantage that all

tools involved in analysis and generation of machine code now have detailed knowl-

edge on the memory hierarchy. In our environment, the WCC compiler is fully aware

of the memories and can exploit them during optimization. Furthermore, WCC passes

this memory hierarchy information on to the WCET analyzer such that the computed

WCETs always reflect the actual memory layout as decided by the compiler. Finally,

WCC passes memory-related data on to the linker that produces executable code

which, again, reflects exactly the memory layout determined during compilation.

Making the compiler statically determine a program’s memory layout has the

drawback that dynamic code relocation, which is one of the key functions of modern

linkers, is infeasible. However, this is not a serious limitation for embedded hard real-

time systems, since dynamic relocation is not used there. Instead, the machine codes

of different real-time tasks produced by a compiler are combined with the kernel

of a real-time operating system (RTOS) during compile time so that a fully static

executable that includes the RTOS and its tasks is finally produced. In such systems,

application code is never loaded dynamically so that relocation is not an issue.

WCC provides a simple text file interface to specify memory hierarchies. Such a

memory specification describes different regions of a processor’s physical memory

hierarchy. For each physical memory region, the following attributes can be defined:

– the region’s base address and absolute length,

– access attributes like e.g., read, write, executable, allocatable,

– memory access times, specified in processor cycles,

– assembly-level sections that are allowed to be mapped to a memory region.

For caches, various attributes like

e.g., absolute sizes, line sizes or asso-

ciativity can be specified, too. Figure 5

shows a fragment of WCC’s memory

hierarchy specification for the Infineon

TriCore TC1796 processor.

# Data SRAM (DMU)

[DMU-SRAM]

origin = 0xc0000000

length = 0x10000 # 64K

attributes = RWA # read/write/allocatable

cycles = 6

sections = .data.sram

Fig. 5 Example for memory specification within WCC

Now that WCC is aware of the processor’s physical memories, program frag-

ments need to be moved to the present memories within the compiler’s back-end.

The low-level IR ICD-LLIR used by WCC maintains a set of assembly-level sections

that serve as containers for e.g., program code, uninitialized or pre-initialized data,

constants etc. sections directives in a memory specification (cf. Fig. 5) define a

mapping to which physical memory region an assembly section can be moved.

Memory allocation of program fragments is done by simply assigning ICD-LLIR

objects to such sections. Currently, functions, basic blocks and data objects like e.g.,

global variables or arrays can be assigned to sections. Our infrastructure provides

a convenient API to do such memory assignments of code and data. Symbol tables

allow to retrieve physical memory addresses per function, basic block, or data object.



259

Finally, the memory allocation decisions taken by WCC must be respected by all

subsequent WCET analysis and linkage stages. On the one hand, Sect. 3 describes

how WCET analysis within WCC adheres to a program’s actual memory layout. On

the other hand, the binary executable generated by WCC must exactly match the

memory layout decided by WCC. Since the executables are produced outside WCC

by an external linker, WCC automatically generates a GNU ld compatible linker

script and invokes the linker using this linker script. This way, the binary executable

is fully equivalent to the memory layout determined by WCC’s optimizations.

3 Integration of static WCET analysis into the compiler

Accurate WCET timing models are available in static WCET analyzers (cf. Sect. 1.1).

To include such models in the WCC compiler, they should not be re-implemented

from scratch inside the compiler. Rather, timing experts should develop timing an-

alyzers, while compiler developers should generate efficient code using aggressive

optimizations. Hence, WCC and the WCET analyzer aiT are two separate tools that

are tightly coupled at the compiler back-end, enabling a seamless exchange of infor-

mation. After providing an overview of related work, the integration of aiT’s timing

model into WCC is presented. For more details, please refer to [17].

3.1 Related Work

Most of the present WCET-aware compilation frameworks do not provide a seamless

integration of WCET analysis into a compiler. The authors of [35] present transfor-

mations of program path information during compiler optimization. However, compi-

lation and WCET analysis are fully decoupled. The assembly output of the compiler

is passed to the WCET analyzer together with further mandatory information on the

program’s control flow. Additionally, the proposed compiler only processes a limited

subset of ANSI C, and the modeled target processor lacks pipelines and caches.

The interactive compilation system VISTA [57] translates a C source code into

a low-level IR used for code optimizations. It includes a proprietary static WCET

analyzer that supports simple processors without caches like the StarCore SC100.

VISTA contains a loop analysis which is only able to detect simply structured loops,

hence most loop iteration counts must be provided manually. Unlike WCC, recursive

code can not be analyzed. The used WCET analyzer has a limited scalability, enabling

the analysis of only small program codes. In contrast to WCC, VISTA lacks a high-

level IR, therefore no WCET-aware source code optimizations can be developed.

Heptane [7] is a static WCET analyzer with multi-target support for simple pro-

cessors like StrongARM 1110 or Hitachi H8/300. It expects a C source code as input

that is parsed into a high-level IR. Next, the code can be translated into a low-level IR.

Heptane solely supports WCET-driven assembly optimizations, e.g., predictable page

allocations. The WCET can be computed either at source code level via a tree-based

approach using combination rules for source code statements or via an ILP-based

method that operates on a CFG extracted from the task’s binary. Since Heptane does



260

not support a detection of infeasible paths, the derived upper bounds may be consid-

erably overestimated, as compared to WCC’s integrated timing analysis. Moreover,

compiler optimizations are not supported and must be disabled to avoid a mismatch

between the syntax tree and the control flow graph.

SWEET [21] is a static WCET analyzer with a research focus on flow analysis. It

incorporates different techniques for the calculation of loop iteration counts and the

detection of infeasible paths. Due to the missing import of WCET data into a com-

piler framework, the development of compiler optimizations that aims at a WCET

reduction is not possible. To avoid a mismatch between the high-level IR, where

the flow analyses are performed, and the object code used for the WCET analysis,

assembly level optimizations are not allowed. In addition, SWEET is coupled to a

research compiler which is only able to process a subset of ANSI C. The supported

pipeline analysis is limited to in-order pipelines and does not consider timing anoma-

lies. SWEET’s target architectures are the ARM9 and NEC V850E processor.

An integration of a static WCET analyzer into a compiler framework called TU-

BOUND was presented in [44]. It allows to apply source code optimizations since

flow facts specified as pragmas in the ANSI C code are automatically updated. This

is achieved by extending supported optimizations by a mechanism that keeps flow

facts consistent. This approach resembles the handling of flow facts in the WCC

framework. However, in contrast to WCC’s 27 flow fact aware source code optimiza-

tions, [44] reports about three supported optimizations. Assembly optimizations are

not available in TUBOUND due to a missing compiler back-end support. Currently,

TUBOUND supports the simple C167 processor, which lacks caches and a pipeline.

3.2 Conversion from LLIR to CRL2

WCET analysis takes place at the assembly/binary level since processor-specific in-

formation and machine code is unavailable at higher abstraction levels. Thus, the

WCET analyzer aiT is coupled to the WCC compiler at the LLIR level (cf. Fig. 4).

CRL2 is aiT’s exchange format which stores the application under WCET anal-

ysis and all of aiT’s analysis results. Since both LLIR and CRL2 are low-level IRs,

a mutual translation of their CFGs is straightforward. The CFGs of both IRs con-

sist of functions. Each function is a list of basic blocks connected via edges. Basic

blocks in turn are a sequence of instructions. In both IRs, an instruction consists of

several operations to express the implicit parallelism of e.g., VLIW machines. Due

to the analogy of both IRs, it is basically sufficient to traverse the LLIR CFG and to

generate corresponding CRL2 components to construct an equivalent CRL2 CFG.

The conversion of LLIR to CRL2 is complicated by the fact that CRL2 is gener-

ated from a binary executable, i.e., it relies on information produced by an assembler

and a linker. In contrast, LLIR is an assembly level IR that lacks this information.

This becomes apparent when converting LLIR to CRL2 operations. The latter re-

quires a unique opcode that denotes the machine code of the operation. However, this

opcode is in general unavailable at assembly level and must be computed by WCC,

taking operation characteristics like the involved operands, operation size or address-



261

ing modes into account. More details about the respective algorithm can be found

in [17].

Another key difference between both IRs is that CRL2 relies on physical ad-

dresses while LLIR uses symbolic names for addresses. To bridge this semantic gap,

the IR conversion exploits WCC’s memory hierarchy specification (cf. Sect. 2) which

provides the required physical information at assembly level. Using WCC’s memory

hierarchy API, physical addresses for LLIR basic blocks and operations are com-

puted. In addition, branch targets of jump operations, which are represented by sym-

bolic block labels, are translated into physical addresses. Similarly, symbolic labels

involved in accesses to global variables via load/store operations are converted.

3.3 Transparent invocation of aiT

Using the conversion from LLIR to CRL2, WCC produces a CRL2 file that represents

the program for which WCET timing data is required. Fully transparent to the user,

WCC invokes aiT on this CRL2 file. The compiler takes control over the WCET

analyzer and performs its value, loop bound, cache, pipeline, and path analysis.

As a consequence, the WCET analyzer is completely encapsulated in WCC. The

compiler user is unaware of the fact that timing analysis is performed in the back-

ground. The user does not get in touch with the configuration of parameters manda-

tory to run a static WCET analysis. The burden of setting up a valid run-time environ-

ment for aiT is taken away from the user and is completely managed by WCC. Also,

WCC can automatically compute data that increases the precision of the WCET anal-

ysis, e.g., possible addresses of memory accesses, and pass them to aiT. Otherwise,

these specifications require a tedious and error-prone definition by the user.

3.4 Import of worst-case execution data

After aiT is invoked, the analyzer’s results are inserted into a final CRL2 file which

represents a program’s CFG enriched with all the WCET data computed by aiT. The

last step for the complete integration of aiT’s timing model into WCC consists of

traversing this final CRL2 file, extracting its WCET data and importing this data

into WCC’s back-end by attaching it to the ICD-LLIR. The following list gives an

overview about the WCET-related data made available within the WCC this way:

– WCET of the entire program, of each function, and each basic block,

– worst-case call frequency per function,

– worst-case execution frequency per basic block,

– worst-case execution frequency per CFG edge,

– execution feasibility of each CFG edge,

– safe approximation of register values,

– encountered I-cache misses per basic block.

Currently, WCC does not make use of context-sensitive information. All provided

compiler optimizations have a static view of the code where different calling contexts



262

are not distinguished. Hence, context-sensitive data computed by aiT is accumulated

over all calling contexts and imported into WCC as context-insensitive information.

4 Flow fact specification and transformation

A program’s execution time (on a given hardware) is strongly determined by its con-

trol flow, i.e., the execution order of instructions or basic blocks, as modeled by the

CFG. Usually, constructs like e.g., loops or (conditional) branches express control

flow. Static WCET analysis [23] is undecidable since it is undecidable to compute

how many times a general loop iterates. Since loop iteration counts are crucial for a

precise WCET analysis, and since they can not be computed for arbitrary loops in

general, they need to be specified by the user of a static WCET analyzer.

Besides loops known from high-level programming languages, any cycle in a

program’s CFG needs to be annotated manually by the user. These user-provided

annotations that specify the control flow are usually called flow facts. This section

explains the mechanisms for flow fact specification and transformation within WCC.

Static WCET analysis can be divided into the following three areas [46]:

1. Program execution paths should be defined at source code level, since a manual or

automatic creation of this data at low abstraction levels is tedious and error-prone.

WCC’s ways for flow fact specification is subject of Sect. 4.1.

2. The transformation of this information from the source code level to the machine

code level, where the actual static WCET analysis takes place, has to be auto-

mated. Section 4.2 describes WCC’s mechanisms for flow fact updates.

3. Computation of WCET estimates for a program has to be done at a low level of

abstraction close to the target architecture (cf. Sect. 1.1).

4.1 Specification of flow facts

Flow facts describe the set of possible execution paths of a program [34]. To make

WCET analysis feasible, the available flow facts must limit the execution count of

every statement of a program. User-provided flow facts should be specified inside the

source code since this way, only the code base needs to be maintained, and not the

source codes plus some external flow fact files which are potentially forgotten.

In general, a static WCET analyzer requires the following kinds of flow facts to

perform safe and precise WCET analysis:

– Loop iteration counts

– Recursion depths

– Execution frequency of an instruction, relative to some other instruction

The WCC compiler fully supports source-level flow facts by means of ANSI C

pragmas. The WCC user can annotate C source codes using either Loop Bound (cf.

Sect. 4.1.2) or Flow Restriction (cf. Sect. 4.1.3) flow facts. A survey of work related

to the area of flow fact specification is provided in the following section.



263

4.1.1 Related work

Static WCET analyzers do timing analysis of executable code. Thus, machine code

level flow facts are required. WCET analyzers usually include loop analyzers, but

they determine loop iteration counts only for simple classes of loops. Hence, WCET

analyzers rely on user-provided flow facts. For WCET analysis, the user must pro-

vide the machine code to be analyzed and a specification file that contains (among

other annotations) flow facts. Using hexadecimal addresses in the specification file, a

flow fact is related to those pieces of code it actually describes. Obviously, flow fact

specification at machine code level is a very tedious and cumbersome issue.

In [13], scopes are defined as hierarchical groups of basic blocks such that a

scope can be reached at most once via its header node within a program’s CFG. Flow

facts in [13] are a triple (scope, context, constraint)where scope refers to a

scope for which a flow fact is to be specified, context is a particular calling context

of the scope, and constraint is an inequation over the execution frequencies of ba-

sic blocks. Since it relies on basic blocks, this approach is feasible for low-level flow

fact specification. However, it does not assist a user in high-level program analysis,

which is the key motivation of WCC’s flow facts presented in this section.

An ANSI C extension to specify flow facts is proposed in [32,33]. Using markers

and scopes, the user of wcetC specifies loop iteration counts and inequations that

relate the execution count of one code fragment to the execution count of some other

piece of code. The main drawback of wcetC is its incompatibility with the ANSI C

standard which prevents wcetC to be compiled with any available ANSI C compiler.

All currently known approaches have in common that flow facts are meant to

specify execution counts of CFG nodes. Internally, however, flow facts are always

transformed and are finally attached to CFG edges. During this conversion, a loss of

either precision or of expressiveness of the specified information can be expected. In

addition, previous approaches are unable to transform and to keep flow facts consis-

tent during all the optimizations applied by an optimizing compiler [14,34].

In contrast to related work, WCC’s flow facts fully comply with the ANSI C

standard, since ANSI C pragmas are used to specify flow facts. The user can annotate

execution frequencies of ANSI C statements (i.e., CFG nodes), and WCC internally

attaches this data to CFG nodes to avoid conversions that possibly degrade precision.

4.1.2 Loop bounds

Loop bounds specify limits of iteration counts of regular loops. Here, regular loops

are for-, while-do- and do-while-loops of ANSI C with the following properties:

– they have only one single entry node (single-entry loops), and

– they must have a well-defined termination condition.

For such loops, loop bound flow facts allow to specify the minimum and maxi-

mum iteration counts. In its current state of implementation, loop bounds have to be

unsigned integer values—symbolic constants are currently not supported:

LOOPBOUND |= loopbound min NUM max NUM

NUM |= Non-negative Integer



264

For example, the following snippet of C code specifies that the shown loop body

is executed exactly 100 times:

Pragma( "loopbound min 100 max 100" )
for ( i = 1; i <= 100; i++ )
Array[ i ] = i * fact * KNOWN VALUE;

In the future, loop bound flow facts could be extended by an equality operator

such that only one single value needs to be specified for exact loop iteration counts.

However, allowing to provide a minimum and maximum loop iteration count enables

to annotate data-dependent loops. If e.g., maxIter is some data-dependent function

parameter that ranges from 50 to 100, a data-dependent loop is annotated as follows:

Pragma( "loopbound min 50 max 100" )
for ( i = 1; i <= maxIter; i++ )
Array[ i ] = i * fact * KNOWN VALUE;

4.1.3 Flow restrictions

For irregular loops (e.g., multi-entry loops, loops without explicit termination con-

dition or loops that use goto-statements), loop bound annotations are inapplicable.

Instead, WCC provides flow restriction annotations which allow to relate the execu-

tion frequency of one C statement with that of other statements.

In order to use flow restrictions, some auxiliary annotations called markers are

required which attach an identifying string to some source code statement. WCC’s

markers are identical to labels known from ANSI C or assembly code:

MARKER |= marker NAME

NAME |= Identifier

For example, the following piece of code attaches the identifier outermarker for

further use to a source code statement:
Pragma( "marker outermarker" )
Statement A ;

Using the identifiers specified by markers, complex flow restriction annotations

can be defined according to the following EBNF syntax:

FLOWRESTRICTION |= flowrestriction SIDE COMPARATOR SIDE

COMPARATOR |= >= | <= | =

SIDE |= SIDE + SIDE | NUM * REFERENCE

REFERENCE |= NAME | Function Name

Flow restrictions allow to specify linear dependencies between arbitrary positions

in the C source code. E.g., the flow restriction below annotates a triangular loop:

Pragma( "marker outermarker" )
Statement A ;

for ( i = 0; i < 10; i++ )
for ( j = i; j < 10; j++ )

Pragma( "marker innermarker" )
Statement B ;

Pragma( "flowrestriction 1*innermarker <= 55*outermarker" );

It states that the execution frequency of the code marked by innermarker is at

most 55 times larger than that of statement A marked by marker outermarker.

Similarly, recursion depths are specified via flow restrictions. For example, the C

code below shows how to annotate a recursion that computes Fibonacci within WCC:



265

int fib( int i ) int main()
{ {
if ( ( i == 0 ) || int In = fib( 7 );

( i == 1 ) ) Pragma( "marker recursion" );
return 1; Pragma( "flowrestriction \

1*fib <= 41*recursion" );
return fib( i - 1 ) +

fib( i - 2 ); return In;
} }

4.2 Flow fact transformation

Flow facts must be transformed by the WCC compiler whenever it changes the code’s

abstraction level or it applies control flow changes. This is supported by techniques

called flow fact translation (cf. Sect. 4.2.1) and flow fact update (cf. Sect. 4.2.2).

4.2.1 Flow fact translation

Due to the fact that source-level flow facts are highly desirable, there is a semantic

gap between the place where flow facts are specified (C code) and where they are

actually used for static WCET analysis (assembly code). WCC is inherently aware

of this semantic gap and closes it using flow fact translation. Whenever WCC lowers

the level of abstraction during compilation, a flow fact manager is responsible for

the translation of all flow facts from the previous higher abstraction level to the lower

level. More precisely, the flow fact managers are active during the following compiler

stages:

From ANSI C to ICD-C: The first flow fact manager extracts loop bound, marker

and flow restriction pragmas from the C source codes and attaches these flow

facts to objects of ICD-C. All required classes of the ICD-C IR are made flow

fact-aware and thus allow to hold user-specified flow facts.

From ICD-C to ICD-LLIR: Code selection translates the source-level IR ICD-C

into ICD-LLIR machine code. Another flow fact manager thus translates all ICD-

C flow facts to ICD-LLIR flow facts and attaches them to the corresponding LLIR

objects. During this stage, it is guaranteed that the ICD-LLIR flow facts are se-

mantically equivalent to the ICD-C flow facts.

From ICD-LLIR to CRL2: The third flow fact manager within WCC takes care of

translating all ICD-LLIR flow facts to equivalent CRL2 flow facts so that the

static WCET analyzer aiT is able to perform a precise WCET analysis.

4.2.2 Flow fact update

Flow fact translation by itself is insufficient to guarantee that the flow facts passed

to aiT are semantically equivalent to the specifications provided at source code level.

This is caused by the optimizations WCC applies at ICD-C and ICD-LLIR level.

Currently, WCC includes 42 different optimizations. 27 of them take place within

ICD-C, the other 15 ones in ICD-LLIR. Many optimizations restructure loops to in-

crease performance, but loop optimizations are particularly critical when flow facts



266

are present. This is because restructuring of a loop potentially yields changed iteration

counts which, in turn, have to be reflected by the attached flow facts. E.g., unrolling

the following loop by a factor of two invalidates attached flow facts completely:

Pragma( "loopbound min 100 max 100" )
for ( i = 1; i <= 100; i++ )
Array[ i ] = i * fact * KNOWN VALUE;

The following loop would result from unrolling:

Pragma( "loopbound min 100 max 100" )
for ( i = 1; i <= 100; i += 2 ) {
Array[ i ] = i * fact * KNOWN VALUE;
Array[ i + 1 ] = (i + 1) * fact * KNOWN VALUE;

}

The flow fact states that the unrolled loop body is executed exactly 100 times

which is not true since it is executed only 50 times. As a result, heavily overestimated

WCET bounds can be expected from static timing analysis for this example.

Thus, all optimizations of WCC are made fully flow fact-aware using built-in flow

fact update techniques. They ensure that safe and precise flow facts are maintained

for each individual optimization. For the above example, the update mechanisms pro-

duce the flow fact Pragma( "loopbound min 50 max 50" ) after loop unrolling. WCC’s

update mechanisms support some fundamental operators on flow facts like e.g.,

– creation, copying and deletion of loop bounds and flow restrictions,

– displacement of the min/max interval of a loop bound,

– replacement of a flow restriction by another equivalent flow restriction, and

– replacement of a flow restriction by an inequivalent flow restriction if no fully

equivalent replacement can be determined. This inequivalent flow fact is com-

puted conservatively, such that it leads to an overapproximation of execution fre-

quencies, but not to an unsafe underapproximation.

All basic operations of ICD-C and ICD-LLIR that create, delete or move state-

ments or basic blocks were extended to automatically update flow facts via the tech-

niques described above. WCC’s optimizations were finally made flow fact-aware by

using the aforementioned basic flow fact operators and by explicitly adjusting flow

facts whenever such basic operations are not sufficient.

5 Automated loop bound analysis

WCC’s goal is to fully automatically reduce WCETs, and WCET analysis requires

the existence of flow facts. Manual flow fact annotation (cf. Sect. 4) becomes tedious

and even infeasible even at the source code level if the program to be annotated is

long, or if it is automatically generated by some high-level specification tool. To

relieve the user from this burden and to establish an automated framework for WCET

reduction, a static loop analyzer that produces flow facts for ICD-C was integrated.

Our loop analyzer bases on abstract interpretation [8], a theory of a sound ap-

proximation of program semantics. It is applied at source code level since this level

of abstraction provides valuable information, such as data types, which is lost when

code is translated into a low-level IR. To accelerate loop analysis, the analyzed code is



267

preprocessed using program slicing [26], a technique that excludes statements irrele-

vant for the loop analysis. Moreover, we introduce a novel polyhedral loop evaluation

that further decreases analysis times. WCC’s loop analyzer has proven to be of supe-

rior quality—among all tools participating in the WCET Tool Challenge 2008 [25],

it was the only one which solved all flow facts related analysis problems.

First, we give a survey of related work in Sect. 5.1 and introduce abstract interpre-

tation in Sect. 5.2. Program slicing and our novel polyhedral evaluation are presented

in Sects. 5.3 and 5.4, resp., followed by results achieved on real-life benchmarks in

Sect. 5.5. A detailed description of the analysis can be found in [39].

5.1 Related work

Static loop analysis is crucial for different fields of applications. Besides WCET anal-

ysis, the knowledge of loop iteration counts can be used for aggressive loop optimiza-

tions or to assist feedback-directed compiler optimizations. In [22], a pattern-based

approach to determine loop iteration counts of assembly programs is presented. It

exclusively analyses the parts of the assembly code that represent loops, while the re-

maining instructions are ignored. This way, loops relying on function parameters can

not be analyzed. To solve this problem, the authors provide a mechanism that allows

to specify value ranges for unknown variables, making their analysis semi-automatic.

The approach developed in [22] has been adapted to programs written in the high-

level language C by Kirner in [31]. Again, loop analysis does not automatically suc-

ceed for all types of loops. Mandatory information that can not be extracted during the

static analysis must be provided by the user in the form of source code annotations.

In contrast to pattern-based analyses, [9] uses an interprocedural data-flow based

loop analysis at assembly level. This has the advantage that the loop analysis does not

strictly rely on pre-defined code patterns a particular compiler generates, but on the

semantics of the instruction set of a specific target machine. As stated by the authors,

the analysis works best for well-structured loops and supports only a simple modifi-

cation of the loop counter by exclusively allowing additions of constant intervals.

A different approach for a fully automatic static loop analysis at source code level

was described in [15]. The authors involve a data flow analysis based on abstract inter-

pretation. Representing values by intervals, a loss of precision is introduced making

the concrete program semantics decidable. Based on this approximation, a determi-

nation of loop bounds is enabled. This work was used in [21] to assist static WCET

analysis. It was extended to determine bounds of nested loops as well as to detect

infeasible paths, i.e., paths that are not taken in particular execution contexts and

which should thus be excluded from WCET analysis to avoid WCET overestimation.

To further improve and accelerate this loop analysis, the authors combine different

standard program analyses like program slicing and invariant analysis [16].

5.2 Abstract interpretation

Static loop analysis includes solving the halting problem and is thus undecidable.

For concrete program semantics, an automatic loop analysis that determines loop



268

iteration counts for all types of loops is not feasible. However, by introducing ab-

stract semantics, which is a superset of the concrete program semantics covering all

possible concrete cases, the loss of information makes the analysis computable. The

abstraction is accomplished by a technique called abstract interpretation.

The fundamental idea of abstract interpretation is to find a compromise between

analysis precision and analysis run time. A reduction of information is achieved by

mapping a possibly infinite set of program states, typically consisting of the value of

the program counter (program point) and a set of variables (or memory locations),

into a finite set of abstract states. A static analysis using abstract interpretation aims

at assigning sets of possible variable values (abstract states) to CFG edges.

The main drawback of abstract interpretation is its iterative behavior in loops

which might slow down the analysis such that it becomes impractical. In particular,

such an explosion of analysis times can be observed during the analysis of loops with

high iteration counts where each loop iteration is interpreted individually.

WCC’s loop analyzer combines abstract interpretation with mechanisms to avoid

its iterative behavior. They rely on interprocedural program slicing and polyhedral

loop analysis that determine loop iteration counts and variable values by examining

the loop body exactly once. If these advanced techniques succeed in computing loop

bounds, classical abstract interpretation is omitted for this loop, leading to an accel-

erated analysis. Otherwise, classical abstract interpretation needs to be applied.

5.3 Interprocedural program slicing

Program slicing [55] is a static analysis that finds statements of a program that are

relevant for a particular computation, defined by the slicing criterion. A slicing crite-

rion is a pair 〈q,V 〉 where q is a program point and V is a subset of program variables

at q. The slice w.r.t. 〈q,V 〉 is a subset of the program with all statements that might

affect the variables in V , i.e., variables that might either be used or defined at q.

WCC’s loop analysis uses loop exit conditions as slicing criterion. By taking all

relevant data and control dependencies into account, the resulting program slice con-

tains all statements that are relevant to determine loop iteration counts. Slicing is

supported by a context-sensitive pointer alias analysis. Contexts introduce a distinc-

tion between different calls to a given function, enabling a more precise analysis.

Slicing is run before the actual loop analysis for two reasons. First, it acceler-

ates loop analysis [47], since slicing the code in advance strips all superfluous state-

ments. Considering the relevant subset of the program, the fixed-point iteration dur-

ing abstract interpretation usually finds a solution in less time. Second, the innovative

polyhedral loop evaluation (cf. Section 5.4) requires simple loop bodies to infer fi-

nal abstract states without repetitive iterations. Bodies of original loops are often too

complex for this static evaluation but after slicing, the required prerequisites are met.

5.4 Polyhedral loop evaluation

A polyhedron P is an N-dimensional geometrical object defined as a set of linear

inequations: P :=
{

x ∈ Z
N | Ax = a,Bx ≥ b

}

for A,B ∈ Z
m×N and a,b ∈ Z

m and m ∈



269

N. A polyhedron is called a polytope if ‖P‖ < ∞. Polytopes are often employed in

compiler optimizations to represent loop nests and affine condition expressions. Their

formal definition enables efficient code transformations. Typical fields of application

are program execution parallelization or the optimization of nested loops [18].

WCC’s polyhedral loop evaluation is motivated by the observation that a large

number of loops consists of statements not affecting the calculation of loop iterations.

Typical examples are initialization procedures found in many embedded applications.

The main task of such procedures is to initialize arrays and other data structures.

Afterwards, this initialized data is used to compute output data, e.g., an output stream

of an image compression algorithm, but it is not influencing the execution frequency

of loops. Slicing recognizes those meaningless statements for loop analysis and does

not evaluate them further. This often results in loops with almost empty loop bodies.

Loops to be analyzed by the polyhedral evaluation must meet certain constraints

that specify the structure of the loop and the type of statements in the loop body. The

first class of requirements concerns the structure of loops including their conditional

statements, e.g., if -statements. These restrictions are imposed by the polytope mod-

els and their violation would make a polytope evaluation infeasible. The requirements

concern loop exit conditions which must either depend on a constant or a program

variable which is not modified within the loop body. Moreover, it must be ensured

that all condition statements are affine expressions. It should be noted that these con-

straints are often met by well-structured loops found in many applications, thus they

do not inhibit a successful application of WCC’s non-iterative loop evaluation. The

second class of constraints refers to the loop body statements. Assignment expres-

sions in a sliced loop body need to be transformable to the ANSI C assignment oper-

ators =, += or -= with variables or constants as right-hand-sides of the assignments.

If the conditions are met, the loop iteration counts required for the evaluation of

statements are statically determined in the next step. Results from this phase allow

a fast static evaluation of statements in a single step without the need to analyze the

statements iteratively. The problem of finding the loop iteration counts is equivalent

to computing the number of integer points in a (parametric) polytope. To efficiently

count the integer points, Ehrhart polynomials [50] are used.

Considering all integer points of a polytope might yield an over-approximation.

The total number of integer points represents the number of loop iterations if the loop

counter is incremented by one, thus other modifications to the counter must be ade-

quately modeled. Also, additional exit edges that affect the control flow in the loop

body, e.g., in the case of break or continue statements, must be taken into account.

They are modeled as further polytopes and their intersection with the polytope rep-

resenting the loop nest yields the precise solution space. For some loops found in

real-life benchmarks having an empty loop body after program slicing, counting of

integer points is already sufficient to determine the loop iteration counts statically.

Using these loop iteration counts, execution frequencies of condition-dependent

basic blocks, which might obviously differ from the loop iteration counts, are com-

puted. The conditions are modeled by polytopes and an intersection with the loop

polytope allows to compute execution frequencies for both the then and else-part.

The last step is the static evaluation of statements within the loop based on the

loop iteration counts and basic block execution frequencies from the previous step.



270

Table 1 Precision of loop analysis

Benchmark suite # Benchmarks # Loops Analyzable Exact

MRTC 32 152 100% 99%

DSPStone 37 152 98% 93%

MediaBench/MiBench 6 162 99% 98%

UTDSP 14 88 100% 88%

Misc. 7 153 100% 100%

Total/Average 96 707 99% 96%

The goal is to evaluate modifications of variables within the loop like b+=a without

a repetitive abstract interpretation. These final variable values are used to determine

iteration counts for loops that are analyzed afterwards.

WCC’s loop analysis can be used in two different ways. It can either be used as

a stand-alone tool that produces loop information in a human-readable form, or as

a module integrated into WCC. In the latter case, the loop analyzer automatically

generates flow facts and passes them to the flow fact manager relieving the user from

manually annotating flow facts. Figure 4 (cf. p. 255) depicts the analyzer’s integration

into WCC. It operates on the ICD-C IR and starts with slicing that marks statements

relevant for loop bound computations. After that, loop analysis using the modified

abstract interpretation and polytope models is done. At this point, the loop bound

information for the program under analysis can be generated.

5.5 Results

To show the efficacy of our static loop analyzer, a total of 96 benchmarks was ex-

tensively analyzed and evaluated. The benchmarks come from the test suites MRTC,

DSPstone, MiBench, MediaBench, UTDSP, and our own set of real-life benchmarks.

The different types of the suites were chosen to point out that our loop analysis can

successfully handle applications of different domains. All measurements were per-

formed on a single core of an Intel Xeon CPU with 2.40 GHz and 8 GB RAM. For

the sake of clarity, we provide a comprehensive overview of the results and discuss

more interesting cases in more detail in the following.

5.5.1 Determination of loop iteration counts

Table 1 presents the evaluation of the loop analysis precision. The table shows for

each benchmark suite the number of benchmarks, the number of contained loops, the

percentage of loops that were successfully analyzed (column Analyzable) and the per-

centage of loops for which our loop analysis produces exact non-over-approximated

results (column Exact). All percentages of Table 1 relate to column Loops.

The 96 benchmarks contain 707 loops in total. On average, 99% of those loops

could be successfully analyzed. This means that for those loops, loop analysis pro-

duced safe results in terms of loop iteration counts which are never under-approxi-

mated, but might be over-approximated. The small fraction of 1% loops that could

not be analyzed is mainly due to technical restrictions of our alias analysis.



271

Table 2 Run times of loop analysis

Benchmark Benchmark suite Basic Slicing Polytope

matmul MRTC 8.4 s 2.4 s (28%) 0.8 s (1%)

hamming Misc. 0.4 s 0.3 s (80%) 0.2 s (62%)

g721 DSPstone 80.2 s 70.5 s (88%) 71.3 s (89%)

fft DSPstone 920.7 s 119.7 s (13%) 110.5 s (12%)

matrix1 DSPstone 0.8 s 0.09 s (12%) 0.03 s (4%)

mult 10 10 UTDSP 4.6 s 3.6 s (78%) 3.7 s (80%)

The last column of Table 1 shows the percentage of loops for which exact iteration

counts were computed. On average, our analysis produced exact results for 96% of the

loops. The remaining 4%, including the non-analyzable 1% of loops of the previous

column, could not be exactly analyzed, i.e., the loop iteration counts were afflicted

with an over-approximation. The main reason for the imprecision comes from the

analysis of pointers which can not always be precisely evaluated in a static analysis.

However, most of the over-approximations introduced only a marginal error ranging

between 8% and 51% w.r.t. the exact results. Thus, the results are still acceptable.

Slicing was successfully applied to all benchmarks. The number of statements

irrelevant for loop analysis ranges from 2% to 88%, showing that computations in

many programs do not affect loop iteration counts. 21% of the loops were analyzable

via the innovative polytope-based loop evaluation, which shows that the prerequisites

of this polyhedral evaluation are not too restrictive and are often met in real-life code.

5.5.2 Analysis time

Besides the precision of the analysis, the second crucial issue for static program anal-

yses is their complexity expressed in terms of analysis time. In general, the analysis

times highly depend on the program structure and the loop iteration counts. If our

polyhedral loop evaluation can not be applied, the analysis based on abstract interpre-

tation must consider each loop iteration separately. On average, smaller benchmarks

require a few seconds for the analysis, while the analysis time for larger benchmarks

such as MiBench’s GSM encoder takes on average less than 4 minutes.

The impact of the different techniques on the analysis run time of some example

benchmarks is shown in Table 2. Column Basic represents the absolute run time of

the basic loop analysis based on abstract interpretation. The fourth column (Slicing)

depicts the analysis run time after program slicing, while the last column (Polytope)

indicates the measured run times after the application of the polytope-based fast loop

evaluation (including slicing). In addition, values in parentheses found in the fourth

and fifth column represent the relative run times w.r.t. the third column.

Table 2 shows that slicing significantly decreases analysis times. For matmul, a

reduction of 72% was achieved. matmul also benefits from the polytope approach. It

contains some loops that can be statically evaluated using the polyhedral model that

leads to a further reduction in time of 27%. For other benchmarks like mult 10 10,

slicing reduces the analysis time by 22%. For mult 10 10 the test whether the poly-



272

tope approach can be applied was negative, thus slightly increasing the analysis time

by 2% and forcing the analysis to switch back to the basic (iterative) loop evaluation.

Considering all 96 evaluated benchmarks, 38 benchmarks benefit from program

slicing leading to a decreased analysis time. For 13 of these benchmarks, the analysis

time could be further improved by switching from the iterative approach based on

abstract interpretation to the polytope-based non-iterative approach.

6 Back-annotation of WCET data

WCC’s infrastructure described so far allows the effective WCET reduction by opti-

mizations applied at ICD-LLIR level where WCET estimates are imported from aiT

and made accessible to the compiler. Still, high-level WCET-aware optimizations that

take place at the source code level are not yet supported due to the lack of WCET tim-

ing information at the level of the ICD-C IR. However, high-level optimizations that

focus on function call and loop transformations exhibit a large potential for WCET

reduction. Thus, a WCET model for ICD-C is highly desired. To transform WCET

timing data from assembly to the source code level, a bridge between both abstraction

levels of the code is required, which is realized by WCC’s back-annotation.

6.1 Mapping of low-level to high-level structures

To raise the abstraction level of the WCET timing model from assembly to source

code level, a connection between ICD-LLIR and ICD-C must be established. Map-

ping between coarse-grained objects, e.g., compilation units (source code files) and

functions, is trivial. Each ICD-C compilation unit has a unique file name and its trans-

lation into machine code results in one ICD-LLIR compilation unit. This relationship

is exploited and mapping between compilation units of the two IRs is done with the

file name as a key. Mapping between functions of both abstraction levels is achieved

using the unique function names as key. Care needs to be taken only for functions

that have static storage in the sense of ANSI C. Since several static functions with

the same name may exist, both function and file name is used as mapping key.

Mapping of basic blocks from ICD-LLIR to ICD-C is more complicated since a

1:1 mapping does not always exist. By definition, a basic block is a code fragment

with a single entry and exit point where jumps can only occur at the block’s end.

Function calls, which implicitly modify the control flow, can be handled in two dif-

ferent ways. They can either represent a basic block boundary, i.e., a new basic block

begins after a function call, or they are considered as regular statements/instructions

that do not explicitly modify the control flow. The former definition is used within

ICD-LLIR, while the latter is used by ICD-C. Due to the varying definitions and

assembly-level optimizations that modify the basic block structure, the relationship

of basic blocks represents an n:m mapping in general. The following relationships

between assembly- and source-code basic blocks (ICD-LLIR:ICD-C) may occur:



273

1:1 Relation: Sequential code with no control flow modification

as shown on the right is represented in both IRs as a single basic

block, thus a mapping is again obvious. For all ICD-LLIR basic

blocks for which such a bijective 1:1 relation holds, a mapping to

{
c += 2;

b += c;

res = a + b;

}

ICD-C basic blocks can be achieved using the block label as key.

n:1 Relation: A source code fragment with a function call as

depicted right is represented by a single ICD-C basic block. It cor-

responds to two ICD-LLIR basic blocks due to the call of foo. Sim-

ilar n:1 situations occur in the presence of the logical AND (&&), OR

(||), and conditional (?) operators of ANSI C since they implicitly

{
a = a / 2;

a += 100;

a = foo( a );

return a;

}

modify the control flow. They are typically used in complex conditions with multiple

comparisons which are covered by a single ICD-C block. In contrast, each compar-

ison is represented in ICD-LLIR by an individual basic block. Thus, mapping of

ICD-LLIR basic blocks to ICD-C blocks becomes surjective for n:1 relations. Using

basic block labels, several ICD-LLIR blocks are mapped to a single ICD-C block.

1:m Relation: For the code shown right, two ICD-C blocks

represent the loop body and the exit condition. This loop is mod-

eled by only one ICD-LLIR block since the computations of the

do {
a--;

sum += a;

} while ( a > 0 );

loop body, the test of the exit condition and the conditional jump back to the loop

header is a sequence of code without any control flow modifications in between.

WCET data of ICD-LLIR blocks with a 1:m relation must not be attached to all

m ICD-C blocks. Otherwise, the m-fold storage of equal WCET data in ICD-C would

falsify the ICD-C timing model and lead to a global WCET of a program that is larger

than that computed by aiT. Thus, WCET data is attached to only one of the m ICD-C

blocks, called the reference block. The remaining m− 1 ICD-C blocks simply point

to that reference block to enable forwarding of requests of back-annotation data.

Since WCC’s code selector is the interface between the source- and assembly-

level IRs, it also determines the relationships between ICD-C and ICD-LLIR blocks

and the corresponding mappings. We extended all WCC optimizations applied af-

ter code selection to automatically update all mappings when modifying ICD-LLIR

blocks. The integration of the back-annotation is depicted in Fig. 4 (cf. p. 255).

6.2 Transformed data during back-annotation

After establishing the connection between assembly- and source-level basic blocks

using the mappings presented above, WCET timing data attached to ICD-LLIR basic

blocks can be back-annotated to ICD-C. In addition, information from the compiler

back-end is imported. The following data is transformed during back-annotation:

– WCET for the entire program, functions, and basic blocks

– Information whether an ICD-C block lies on the WCEP

– Worst-case execution frequency per CFG edge

– Execution feasibility of blocks and CFG edges

– Number of I-cache misses per basic block encountered during WCET analysis

– Code size and amount of spill code per assembly-level basic block



274

After back-annotation, detailed WCET timing data is present in ICD-C. To show

the effectiveness of this mechanism, this data is used by WCC’s WCET-aware, high-

level optimizations Procedure Cloning and Procedure Positioning in the following.

7 WCET-aware procedure cloning

Procedure cloning is a standard optimization of functions that are often called with

constants as arguments. If the caller invokes a callee with constant arguments, the

callee can be cloned, the constant parameters are removed from the parameter list and

are instead imported into the clone. This is beneficial for two reasons. First, it may en-

able further optimizations like e.g., constant propagation or folding in the clone. Sec-

ond, calling overhead is reduced since the constant parameters are no longer passed

between caller and callee. WCC applies cloning at source code level, early in the op-

timization process, to enable potential for a large number of following optimizations.

In addition, changing function calls and parameters is easier at this abstraction level.

In contrast to previous work, the impact of procedure cloning on the WCET of

embedded real-time applications was studied for the first time using WCC [40,41].

7.1 Impact of procedure cloning on WCET estimation

Typical embedded real-time source codes often contain loops l whose iteration counts

depend on a parameter p of the function f that surrounds this loop. In addition, such

a function f can be called from various places, with different values for p. This code

structure has a negative impact on the WCET computed by a timing analyzer.

This is due to the flow fact annotation of such loops l. Since f is called from many

places with possibly different arguments p, the effective iteration counts of l can vary

seriously, depending on the context with which parameters f is called. Many WCET

analyzers apply context-sensitive analyses that take context information of each call

into account. If a data-dependent loop can be statically analyzed, information on con-

stant parameter values is used to compute precise WCET data for each individual

context of l. However, real-life loops are often too complex to be analyzed at assem-

bly level. Thus, this loop analysis only succeeds for a limited class of loops.

For this reason, most real-life loops require flow fact specification either manually

by the user or by WCC’s loop analyzer. The flow facts for such data-dependent loops

must cover all possible contexts in which the loop may be executed in order to result

in safe WCET estimates. Hence, the upper bound of such flow facts must represent

the global maximum of iterations executed by such a loop over all contexts in which

f is called, equivalently the same holds for the lower bound. Since such flow facts

for data-dependent loops do not consider possible different execution contexts of a

function f , the flow facts are safe but lead to a highly overestimated WCET.

WCC applies WCET-aware cloning if a caller invokes a callee f that has data-

dependent loops l, and if the iterations of l depend on a parameter p of f that is

constant. Cloning creates a specialized version f ′ of f that has constant loop bounds

w.r.t. p. The data-dependence of l is broken by cloning so that highly precise flow



275

facts for f ′ result. Hence, cloning is a way to express different calling contexts at

the source code level that eliminates the need to maintain context-sensitive data (cf.

Sect. 3.4). It thus enables high-precision WCET analysis of such clones. Consider the

following code before cloning and its annotated flow facts (cf. Sect. 4):

int f( int *x, int n, int p ) { int main() {
Pragma( "loopbound min 2 max 2000" ) ... f( y, 2000, 5 ); ...
for ( i = 0; i < n; ++i ) { ... f( z, 2, 5 );

x[i] = p * x[i]; return f( a, 2, 5 );
if ( i == 10 ) { ... } }

}
return x[n];

}

f contains a loop that depends on the function parameter n. Within main, f is

called three times, once with n=2,000 and twice with n=2. To obtain safe WCET es-

timates, f’s loop must be annotated with a minimum of 2 and a maximum of 2,000

iterations. A WCET analyzer has to compute safe results, thus 2,000 iterations are as-

sumed in the worst case for each execution of this loop. For each call of f with n equal

2, a significant overestimation is introduced leading to imprecise WCET estimates.

The application of our WCET-aware procedure cloning transforms this code snip-

pet into a code that is better accessible for high-precision WCET analyses:

int f( int *x, int n, int p ) { int f 2 5( int *x ) {
Pragma( "loopbound min 2000 \ Pragma( "loopbound min 2 \

max 2000" ) max 2" )
for ( i = 0; i < n; ++i ) { for ( i = 0; i < 2; ++i ) {

x[i] = p * x[i]; x[i] = 5 * x[i];
if ( i == 10 ) { ... } if ( i == 10 ) { ... }

} }
return x[n]; return x[2];

} }

int main() {
... f( y, 2000, 5 ); ...
... f 2 5( z );
return f 2 5( a );

}

Cloning yields more precise loop bound annotations for the original function f.

In addition, a specialized version f 2 5 of f for the values 2 and 5 of parameters n

and p is created. The loop in f 2 5 is no longer data-dependent. Hence, precise flow

facts now state that the loop iterates exactly twice. This way, WCC’s cloning helps

to produce high-quality flow facts for static WCET analysis, which considerably im-

proves the tightness of WCET estimates. This optimization is WCET-aware since it is

only applied to those functions that enable a more precise WCET analysis of loops in

order to keep code size increases resulting from cloning small. Moreover, functions

are sorted in advance by their WCETs to clone those functions first that promise the

largest WCET reduction. The required data is provided by WCC’s back-annotation.

7.2 Results

Figure 6 shows the impact of procedure cloning on the WCET estimates of three

complex real-life benchmarks. The 100% base line denotes the WCET estimates of



276

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

epic gsm mpeg2 average

Standard Cloning WCET-aware Cloning

R
e

la
ti

v
e

W
C

E
T

E
S

T
[%

]

Fig. 6 Relative WCETs after procedure cloning

the original code optimized using constant folding, constant propagation and dead

code elimination. These optimizations are applied to simplify the code structure and

to remove dead code which can be detected even without cloning. The dark bars

represent the WCET when the code is additionally optimized by standard cloning,

while the light bars show results for WCET-aware procedure cloning.

As can be seen, standard and WCET-aware cloning reduce WCET estimates com-

parably. Maximal reductions were observed for mpeg2 that contains two functions

that were cloned. The first one realizes a full-search motion detection. In this func-

tion, another procedure is called that computes the distance between frame blocks.

After cloning, the code contains a dedicated version of the Fullsearch algorithm for

each block size. The loop bounds in the nested functions can again be defined more

precisely. For standard and WCET-aware cloning, WCET estimates are reduced by

63.6% and 62.7%, resp. For other benchmarks, similar improvements were achieved.

On average, standard cloning outperforms WCET-aware cloning merely by 1.3%.

This is due to the fact that it clones more functions compared to WCET-aware cloning

since also functions that do not allow a more detailed specification of flow facts are

transformed. These clones can be further optimized by other standard optimizations.

However, this extensive cloning significantly increases code sizes. epic exhibits

the maximal code size increases by 693.7% after standard cloning. Since WCET-

aware cloning only transforms functions that promise a WCET reduction, it increases

code size by only 357.9%. This still high increase is due to a very uncommon struc-

ture of epic—it contains 32 functions that were cloned many times. Unlike this ex-

treme case, the code size of gsm remained almost unchanged, while WCET-aware

cloning increased the code size of mpeg2 by 127.0%. It can be seen that cloning rep-

resents a trade-off between WCET reduction and code expansion. To cope with the

risk of an undesirable code size increase, the new optimization provides a parameter

to control the maximally permitted code expansion during the transformation.

8 WCET-aware procedure positioning

Procedure Positioning aims to improve I-cache behavior by reducing the number of

cache conflict misses. Caches reduce the average memory access time by exploiting

spatial and temporal locality. The former refers to the reference of contiguous mem-

ory locations. The latter means that particular memory locations are accessed within

a short period of time. Due to an inappropriate layout of a piece of code in memory,

temporal locality may, however, degrade cache performance, if memory locations be-

ing accessed temporally close to each other are mapped to the same cache lines. This



277

leads to an eviction of cache contents and repetitive cache refills. Procedure position-

ing uses call frequencies to reorder functions and reduce cache thrashing. This section

gives an overview of our approach for WCET-aware procedure positioning [40].

8.1 Related work

I-caches mainly profit from a code reorganization at procedure and basic block level.

Tomiyama [49] proposes two code placement methods for basic blocks to reduce

the cache miss rate using ILP. Hwu and Chang [27] propose a compiler with an in-

tegrated instruction placement algorithm that reduces page faults. In [36], a cache

profiling system identifies hot spots by providing cache performance information at

source code level. After an automatic classification into compulsory, capacity and

conflict misses, the profiler suggests appropriate standard program transformations

to improve cache performance. The work of [42] does not use profiling data but static

information and additionally, in contrast to the previously cited works, requires the

exact knowledge of the cache architecture. Their idea is to prevent different segments

of code executed in a loop to be mapped into the same cache area by code replication.

Static cache analysis is essential for a WCET analyzer for cache-based proces-

sors. Its goal is to classify each memory access as a cache hit or miss. Ferdinand uses

must and may analysis based on abstract interpretation [20]. The former determines

if a memory access is always a cache hit while the latter computes if the access may

be a hit. This approach is also used in aiT, the WCET analyzer integrated into WCC.

8.2 WCET-centric call graph-based positioning

Procedure Positioning uses a call graph whose set of nodes represents program proce-

dures. Edges denote calling relationships between procedures and are weighted with

call frequencies which, for ACET optimization, are gained using profiling.

In contrast to the standard, profiling-based optimizations, we extract input data

for the call graph from a WCET analyzer. This fundamental difference makes our

approach more reliable. Profiling data is critical since it reflects the program exe-

cution for a particular set of input data, i.e., profiling the program under test with

varying inputs may yield different results. For more complex programs that consist

of numerous input-dependent execution paths, it is almost infeasible to find represen-

tative input values. This may lead to a call graph that is annotated with profiling data

that does not represent some particular program executions. The optimized code will

possibly not improve cache behavior and may even suffer performance degradation.

Our approach does not rely on representative input data. Edge weights are com-

puted by a WCET analyzer and are invariant for all program executions. They are

used for the construction of our WCET-centric call graph. Those edges with the heav-

iest weight potentially combine the most promising functions for optimization. These

functions are reordered and are placed next to each other in the ICD-C IR. In the next

step, the code selector processes the IR function-wise, i.e., each source code function

is translated into an equivalent assembly function while preserving the order of the

functions. This function order in the ICD-LLIR yields the desired memory layout.



278

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

expint g721 enc. g723 enc. gsm dec. gsm enc. mpeg2 average

Greedy Positioning Heuristic Positioning

R
e

la
ti

v
e

W
C

E
T

E
S

T
[%

]

Fig. 7 Relative WCETs after greedy and heuristic procedure positioning

8.3 Greedy WCET-aware positioning approach

It is well-known that the impact of a memory layout modification on caches is hardly

predictable. Therefore, a greedy approach that evaluates the impact of a particular

procedure rearrangement on the WCET seems promising. In case a WCET reduction

was achieved, this novel memory layout is considered as a new starting point for

the next optimization cycle, and the next most promising function for positioning

is considered. Hence, the approach successively reduces the WCET and guarantees

that no degradation of the WCET is accepted. The greedy approach is an iterative

algorithm that processes a single edge of the WCET-centric call graph during each

iteration cycle. Each cycle performs a WCET analysis to update the WCET timing

data to be used during the next iteration and to keep track of possible WCEP changes.

8.4 Heuristic WCET-aware positioning approach

Due to the possibly large number of time-consuming WCET analyses of the greedy

approach, a fast heuristic was developed that just uses the data of the WCET-centric

call graph for the initial input program. In contrast to the greedy approach, the heuris-

tic performs exactly one WCET analysis to construct the initial call graph.

The speed advantages come at the cost of efficacy. First, the reordering of pro-

cedures is based exclusively on the initial call graph and is performed without re-

evaluating its impact on the WCET. Hence, also undesired WCET increases are ac-

cepted. Second, WCEP switches are not considered. Since the call graph is not up-

dated, the heuristic approach operates on an outdated WCET-centric call graph if the

WCEP changes. The applied positionings would then possibly not affect the WCET.

8.5 Results

Figure 7 shows the results for greedy and heuristic procedure positioning. 100% cor-

respond to the WCET estimates of the original code of different real-life benchmarks

from the MRTC and MediaBench suites compiled with optimization level -03. It can

be seen that a WCET reduction was achieved for most benchmarks. The greedy algo-

rithm achieved an average WCET reduction by 10%, while the heuristic reduced the

WCET by 4% on average.

The results strongly depend on the initial order of the benchmarks’ procedures.

If the original memory layout already yields a good cache performance, positioning



279

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

expint g721 enc. g723 enc. gsm dec. gsm enc. mpeg2 average

Cloning w/o Positioning Cloning with Positioning

R
e

la
ti

v
e

W
C

E
T

E
S

T
[%

]

Fig. 8 Relative WCETs after positioning and cloning

might lead to smaller improvements than for benchmarks that lead to more cache

conflict misses. Moreover, tiny benchmarks whose text section is small enough to fit

entirely into the cache (e.g., expint) do not profit from this optimization since no

conflict misses can occur. However, applications that completely fit into the (usually)

small I-cache of a resource-restricted embedded system are very uncommon.

For all benchmarks, greedy positioning achieved better results since it does not

allow a degradation of the WCET. This might result in a local optimum missing the

global minimum as could be potentially achieved by the heuristic approach. However,

for the considered benchmarks, this case did not arise. The heuristic approach might

worsen the WCET as experienced for gsm enc. Hence, it is worthwhile to invest time

for the optimization to achieve best results, as done by our greedy approach.

In addition, we combined WCET-aware procedure cloning (cf. Sect. 7) with pro-

cedure positioning. The results of Fig. 6 show WCETs when cloning is done for

a system with disabled caches. Any newly created function clone was placed behind

the last function in the code with no regard to cache effects. Figure 8 shows results for

a combination of procedure cloning and WCET-aware procedure positioning particu-

larly for cache-based systems. 100% correspond to the WCETs of the benchmarks in

their unoptimized versions. Combined procedure cloning and procedure positioning

achieves WCET reductions of up to 64%. These results allow two conclusions.

First, procedure cloning and positioning are best suited in a cache-based system.

Although inserting clones increases code size, the benefits of the improved WCETs

exceed the drawbacks that may emerge from more cache conflict misses due to the

increased working set. Second, combined cloning and positioning achieves better

results for most benchmarks. Both techniques in concert aim at compensating conflict

misses due to the function clones. Obviously, the achieved benefits are smaller than

those of Fig. 7 since positioning was only applied to the clones instead of all functions

in the program. However, the complexity of positioning is negligible so that it should

be applied to all functions in combination with cloning, for even better results.

Unlike the WCET, procedure positioning does not influence the code size since

the applied re-allocations of functions do not require any additional code.

9 WCET-aware scratchpad allocation of program code

Caches are problematic for hard real-time systems. Due to their hardware control,

it is difficult to predict memory access latencies for many popular cache architec-

tures, and statically analyzed WCET estimates may be heavily overestimated. Even

techniques like e.g., procedure positioning (cf. Sect. 8) do not eliminate this inherent



280

problem. Thus, designers of safety-critical real-time systems often disable caches,

which leads to a low average-case performance since each memory access is served

by the slow main memory. Scratchpad memories (SPMs) have both a good average-

and worst-case performance. This section presents a WCET-aware static SPM alloca-

tion of program code, where the scratchpad contents is pre-computed at compile time

and remains unchanged during run time. Due to the use of ILP, our SPM allocations

are optimal and result in a minimal WCET for architectures without I-caches.

9.1 Related work

Compiler-guided SPM allocation to reduce ACET or energy dissipation has been

studied intensely in the past. Due to the vast amount of related literature, we only refer

to [54,51] where various ILP-based approaches for SPM allocation are presented.

This section thus lists only contributions related to worst-case execution times.

In [53], the impact of SPMs on WCET prediction is studied. Based on an ILP

for energy minimizing SPM allocation, the effect of this energy reduction strategy on

WCET is evaluated. Even though significant WCET reductions were reported, that

work is not a true WCET-aware optimization and does not consider WCEPs at all.

Software controlled caches that allow to lock loaded cache lines so that they are

not evicted, behave like SPMs. In [5], a genetic algorithm for static I-cache locking is

used. However, this approach does not necessarily yield optimal results. An explicit

search for the CFG’s WCEP is performed in [19] and the I-cache is locked along the

found WCEP. This approach repeatedly examines the CFG and is thus expensive to

perform. In contrast, [45] applies multiple optimization steps along the current WCEP

without recomputing the WCEP. After a couple of optimization steps, the partially

optimized CFG is analyzed, the WCEP is updated and optimization resumes.

In [48], a fully ILP-based solution for static SPM allocation of data that reduces

WCET is presented. It serves as basis for WCC’s SPM allocations. However, it does

not allocate code onto SPMs and suffers from several limitations that prevent it from

optimizing real-life programs. This literature study shows that no unified ILP-based

SPM allocation for program code currently exists which is able to reduce WCET.

9.2 Structure of the ILP for program code scratchpad allocation

Section 9.2.1 presents the ILP model of a function’s control flow. Section 9.2.2 ex-

tends the ILP to allocate consecutive blocks. A program’s global control flow, capac-

ity constraints and objective function are subject of Sects. 9.2.3 to 9.2.5, resp.

9.2.1 ILP constraints modeling the control flow of a function

In the following, that part of our ILP for SPM allocation of program code is presented

that moves individual basic blocks in their entirety onto the SPM. This is done under

simultaneous consideration of possibly switching WCEPs by formulating ILP con-

straints that inherently model the longest path which starts at a certain basic block.



281

xi =

{

1 if basic block bi is assigned to memspm

0 if basic block bi is assigned to memmain
(1)

ci = Ci
main ∗ (1− xi)+Ci

spm ∗xi (2)

wL
exit = cL

exit (3)

∀bi ∈V \{bL
exit} : ∀(bi,bsucc) ∈ E : wi ≥ wsucc + ci (4)

cL = wL
entry ∗CL

max (5)

The following equations represent ILP variables using lowercase letters whereas

constants use uppercase letters. The ILP uses one binary decision variable xi per basic

block bi of a program (cf. (1)). xi states if bi is allocated to main memory (memmain)

or to the SPM (memspm). A block bi of a function F causes some costs ci (cf. (2)),

i.e., bi’s WCET depending on whether bi is allocated to main memory or to the SPM.

For reducible CFGs, an innermost loop L of F has exactly one back-edge that

turns it into a cyclic graph. Not considering this back-edge turns L’s CFG into an

acyclic graph. This acyclic graph without L’s back-edge is denoted as GL = (V,E)
in the following. Each node of GL represents a single basic block. Without loss of

generality, there is exactly one unique exit basic block bL
exit of loop L in GL and one

unique entry node bL
entry. The WCET wL

exit of bL
exit is set to the costs of bL

exit (cf. (3)).

The WCET of a path from a node bi (different from bL
exit) to bL

exit must be greater or

equal than the WCET of any successor of bi in GL, plus bi’s costs (cf. (4)).

Variable wL
entry thus represents the WCET of all paths of the innermost loop L if

L is executed exactly once. To model several executions of L, all CFG nodes v ∈ V

of GL are merged to a new super-node vL. The costs of vL are equal to L’s WCET if

executed once, multiplied by L’s maximal loop iteration count CL
max (cf. (5)).

Replacing a loop L by its super-node vL in a function’s CFG may turn another loop

L′ of function F that immediately surrounds L into an innermost loop with acyclic

CFG G′

L. Hence, (3)–(5) can be formulated analogously for L′. This way, the inner-

most loops of F are successively collapsed in the CFG so that ILP constraints that

model F’s control flow are created from the innermost to the outermost loops.

A program’s WCEP can switch during optimization only at a basic block bi that

has more than one successor because only there, forks in the control flow are possible.

Since (4) is created for each successor of bi, variable wi always reflects the WCET

of any path starting from bi—irrespective of which of the successors actually lies on

the current WCEP. This way, (4) realizes the implicit consideration of (switching)

WCEPs in the ILP. The structure of the ILP constraints of (2)–(5) was originally

proposed by [48]. However, these basic constraints of Suhendra et al. need to be

refined substantially to obtain a functional SPM allocation for program code. The

following sections describe our extensions to the original ILP formulation.

9.2.2 ILP constraints allocating consecutive basic blocks

The variables xi allow to place a block bi in the SPM independent of the allocation of

any other block b j. This independence is particularly problematic for typical proces-

sors. If a block bi is allocated to main memory and an immediate successor b j of bi is



282

jpi
impl = (xi ⊗ x j)∗Phigh (6)

jpi
uncond = (xi ⊗ x j)∗Phigh (7)

+(xi ⊗ x j)∗

(

1− ∏
bk∈Fig. 9b)

(xi ⊗ xk)

)

∗Plow

jpi
cond = (xi ⊗ xk)∗Phigh +(xi ⊗ x j)∗Phigh (8)

+(xi ⊗ x j)∗

(

1− ∏
bk∈Fig. 9c)

(xi ⊗ xk)

)

∗Plow

jpi =



















jpi
impl if jump of bi is implicit

jpi
uncond if jump of bi is unconditional

jpi
cond if jump of bi is conditional

0 else

(9)

wL
exit = cL

exit + jpL
exit (10)

∀bi ∈V \{bL
exit} : ∀(bi,bsucc) ∈ E : wi ≥ wsucc + ci + jpi (11)

placed on the SPM, jumps must ensure that bi still reaches b j. Due to the limited off-

set that can be encoded as target of jump operations, and due to the usually too large

distance between the address spaces of SPM and main memory, a single jump opera-

tion is often insufficient to jump from bi to b j. Instead, the jump target address must

be computed and stored in an address register so that a register-indirect jump can be

used. Thus, branching from bi to b j may require several machine operations which

constitute a severe jumping overhead. This overhead is avoided if both bi and b j are

placed in the same memory. Thus, the ILP should consider this jumping overhead

and allocate consecutive blocks to the same memory to reduce jumping overhead.

Processors usually support different

jump scenarios (cf. Fig. 9). An implicit

jump transfers control from bi to b j

without a jump operation in bi. An un-

conditional jump always jumps from bi

to b j. Finally, a conditional jump branches

from bi to either b j unconditionally or to

bk implicitly.

b
i

b
k

bj

b
i

a) Implicit b) Unconditional c) Conditional

bj

b
i

b
k

bj

Fig. 9 Typical jump scenarios

The variables xi, x j and xk for the basic blocks bi, b j and bk, resp., provide the

information whether jumping overhead needs to be considered within the ILP or not.

If a jump from bi to b j is implicit and bi and b j are placed in different memories,

a penalty should be added since this jump across different memories leads to a large

jumping overhead. In contrast, no penalty is added if both bi and b j lie in the same

memory, because both blocks are allocated adjacently so that no jump is required.

The jump penalty for implicit jumps from bi to b j is thus defined in (6). The operator

⊗ denotes the Boolean XOR of two binary variables. XOR can be modeled in an ILP,

but we omit these constraints for the sake of brevity. Phigh is a constant that penalizes

jumps across different memories due to their large jumping overhead.

An unconditional jump from bi to b j bypasses some other blocks bk (cf. Fig. 9b)

that must also be considered, since they state if a jump from bi to b j is needed at all.



283

cpi =











wF
entry +(xi ⊗ xF

entry)∗Phigh if bi calls F

+(xi ⊗ xF
entry)∗Plow

0 else

(12)

∀bi ∈V \{bL
exit} : ∀(bi,bsucc) ∈ E : wi ≥ wsucc + ci + jpi + cpi (13)

si =































(xi ∧x j)∗Simpl if jump of bi is implicit

(xi ∧x j)∗Suncond if jump of bi is unconditional

(xi ∧xk)∗Simpl if jump of bi is conditional

+(xi ∧x j)∗Suncond

(xi ∧xF
entry)∗Scall if bi calls F

0 else

(14)

∑
bi

(Si ∗xi + si) ≤ Sspm (15)

wmain

entry  min. (16)

If bi and b j are placed in different memories, Phigh is applied again. If they are placed

in the same memory mem, and if no other block bk that originally laid between bi and

b j is allocated to mem, bi and b j are adjacent in mem. Thus, no jump from bi to b j

is needed at all and no penalty is applied. If any bk is placed between bi and b j in

mem, an unconditional jump from bi to b j is needed that is penalized by Plow which

is lower than Phigh. The penalty for unconditional jumps is thus given in (7).

Since a conditional jump combines implicit and unconditional jumps (cf. Fig. 9c),

its penalty is the combination of (6) and (7) (cf. (8)). Depending on bi’s jump scenario,

the overall jump penalty jpi is defined in (9). jpi is added to the basic control flow

constraints (cf. (3) and (4)) as defined in (10) and (11).

9.2.3 ILP constraints modeling the global control flow

Up to this point, the ILP of (1)–(11) only models the control flow of a single function

F . Without loss of generality, each function F has one dedicated entry block bF
entry.

For bF
entry, the ILP variable wF

entry denotes the WCET of any path that starts at bF
entry,

assuming that F is called exactly once. However, a block bi of a function F ′ may call

a function F . Here, F’s WCET (i.e., variable wF
entry) has to be added to bi’s WCET.

Also, a function call penalty is added to bi’s WCET since branching overhead in

analogy to Sect. 9.2.2 occurs if bi and bF
entry reside in different memories. As a result,

the overall function call penalty cpi for a block bi is defined in (12). cpi is finally

added to the control flow constraint of (11) as shown in (13).

Equation (13) is the constraint which is finally generated for our ILP per block

bi and per successor bsucc of bi. Equation (13) assumes non-recursive functions. Due

to the practical irrelevance of recursion for embedded real-time software [12], this

assumption holds even if support of recursion could be added to the ILP.

9.2.4 Scratchpad capacity constraint

For a valid SPM allocation, the size of all blocks put on the SPM must not exceed

the SPM’s size. Previous work on ILP-based SPM allocation universally assumed a



284

fixed block size so that it can be used as constant factor in the ILP. However, this is an

over-simplification. Section 9.2.2 discussed that different jump operations are needed,

depending on the jump scenario of a block bi that jumps to b j: no jump is needed if bi

and b j are adjacently placed in the same memory. A conventional jump is needed if

bi and b j are placed in the same memory, but not adjacently. Finally, complex address

computations and register-indirect jumps realize jumps across different memories.

Obviously, these jump scenarios influence a block bi’s size so that it depends on

the ILP’s decision variables in practice. To cope with such variable block sizes, we

fall back to the jump scenarios (cf. Fig. 9). In the ILP, we only consider bi’s size if bi

is put on the SPM since we assume a main memory large enough to hold the entire

program. For a block bi placed in the SPM, a new variable si denotes bi’s growth in

size in bytes if bi’s successors b j are kept in main memory. Depending on bi’s jump

scenario, or if bi contains a function call, si is computed as shown in (14).

For each jump scenario, dedicated constants Simpl, Suncond and Scall are used that

represent bi’s growth in bytes for the different jump scenarios. Using si, the SPM

capacity constraint which ensures the validity of an SPM allocation is defined as

shown in (15). In (15), Si denotes bi’s byte size in its original form without any cross-

memory jumps. Sspm represents the available SPM size in bytes.

9.2.5 Objective function

The ILP aims to minimize a program’s WCET by assigning basic blocks to the SPM.

Due to (12) and (13), variable wF
entry models the WCET of function F which includes

the WCETs of all functions called by F , plus some abstract jump penalties. Since

function main is the unique entry point of an entire program, variable wmain

entry denotes

the WCET of a program including all penalties. As a consequence, the value of this

decision variable needs to be minimized by the ILP as shown in (16).

This objective function seems surprising since WCET analysis usually relies on

a maximizing ILP due to the Implicit Path Enumeration Technique (IPET) [38]. It

is a very general technique that models execution paths not as ordered sequences of

basic blocks, but instead using the blocks’ successor/predecessor relations and their

respective execution counts. Due to this generality that arbitrary paths in the CFG can

be taken, IPET searches the maximal flow through a CFG using a maximizing ILP.

In contrast, the ILP presented in this section assumes that loops are reducible

and have the single-entry/single-exit property. Thus, we do not need to consider ar-

bitrary CFG paths. Instead, this assumption allows to simply model paths that start

at a certain node bi and end at an exit node bL
exit (cf. (4)). Since (4) uses the greater-

equal operator to specify a safe upper bound of block bi’s WCET, our ILP can safely

minimize its objective function, in contrast to traditional WCET analysis.

9.3 Implementation issues

Since the ILP for SPM allocation of program code relies on information about the

size and jump scenario of each block, it is evident that this optimization is realized at

assembly code level within WCC. WCC’s infrastructure (cf. Sects. 2–5) is employed



285

to turn the ILP of Sect. 9.2 into a fully functional optimization. In particular, it serves

to extract all constants used by the ILP from the assembly code.

Equation (2) depends on constants Ci
main and Ci

spm that represent a block bi’s

WCET if it is put either in main memory or in the SPM, resp. Ci
main is obtained within

WCC by placing the whole program in main memory and performing a WCET anal-

ysis as described in Sect. 3. Afterwards, the whole program is virtually assigned to

the SPM using WCC’s memory hierarchy infrastructure (cf. Sect. 2). Another WCET

analysis of this program yields the values Ci
spm. These two required WCET analyses

are performed within WCC prior to solving the ILP for SPM allocation. Thus, WCET

analyses and SPM allocation are decoupled from each other so that the seemingly an-

tagonistic objective functions of their ILPs do not interfere with each other.

Equation (5) relies on a loop’s maximal iteration count CL
max. In our compiler,

CL
max can stem from user-specified flow facts or from our loop analyzer (cf. Sect. 5).

Irrespective of its origin, flow fact mechanisms (cf. Sect. 4) keep CL
max up to date

during WCC’s optimizations so that always correct values are used by our ILP.

The jump penalties Phigh and Plow (cf. Sect. 9.2.2) do not rely on our compiler

infrastructure. WCET analyses of code for the different jump scenarios revealed that

the values 16 and 8 are appropriate for the considered TriCore architecture.

Equation (14) uses constants Simpl, Suncond and Scall that model the size of the

additional code required to jump from bi to b j if bi is allocated to the SPM but b j

is not. Due to the TriCore-specific jumping code and the different jump scenarios of

(14), Simpl and Suncond equal to 10 bytes and Scall is equal to 12 bytes.

The size Si (cf. (15)) of a basic block without consideration of a jump operation at

the end of bi can be computed easily by enumerating all instructions of bi and accu-

mulating their sizes. The totally available scratchpad size Sspm, however, is extracted

again from WCC’s memory hierarchy infrastructure (cf. Sect. 2).

After solving the ILP, the decision variables xi specify where to place each block

bi. Using WCC’s memory hierarchy API, the program code is finally transformed

such that it adheres to the allocation decisions taken by the ILP. In addition, WCC

emits a linker script to generate an executable that reflects the ILP’s SPM allocation.

9.4 Evaluation

This section evaluates the ILP for WCET-aware SPM allocation of code. For bench-

marking, WCC’s optimization level -O2 with 35 different optimizations was activated

so that our SPM allocation was applied to already highly optimized code. The TriCore

TC1796 includes a 48 kB large program code SPM. From these 48 kB, 1 kB is re-

served for system code so that 47 kB remain. A program SPM access takes one cycle

and an access to the uncached main memory (i.e., program Flash) takes 6 cycles.

We applied our ILP to 73 different real-life benchmarks. The simplest ones con-

tain 4 basic blocks, the most complex one 585. Code sizes range from 52 bytes up

to 18 kB with an average of 2.8 kB per benchmark. Since these code sizes are much

smaller than the totally available SPM size, we artificially limit the available SPM

space for benchmarking. For each benchmark, SPM sizes of 10%, 20%, . . . , 100%

of the benchmark’s code size were used. Our results show the WCET estimates of all



286

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Relative SPM Size [%]

R
e
la

ti
v
e

W
C

E
T

E
S

T
[%

]

g721_encode

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Relative SPM Size [%]

R
e
la

ti
v
e

W
C

E
T

E
S

T
[%

]

cover

Fig. 10 Relative WCETs after WCET-aware SPM allocation of code for representative benchmarks

benchmarks produced by the WCET analyzer aiT that result from our WCET-aware

SPM allocator as a percentage of the WCET when not using the program SPM at all.

Figure 10 shows the impact of our SPM allocation on the WCET estimates of

two representative benchmarks. g721 encode (size: 3,204 bytes) exhibits a steady

WCET decrease with increasing SPM size. Already for tiny SPMs of only 10% of

the program’s size, the WCET after our optimization amounts to 71% of the original

WCET, i.e., WCET was reduced by 29%. If the benchmark entirely fits into the SPM,

the resulting WCET is 52.2% of the original WCET which leads to savings of 47.8%.

cover (size: 2,670 bytes) exhibits stepwise WCET reductions. At 40%, 70% and

100% of SPM size, our ILP moves exactly those loops with the highest savings onto

the SPM. Thus, WCET savings of 10.2%, 34.9% and 44.3% were achieved, resp.

On average over all 73 benchmarks,

steadily decreasing WCETs were observed

for increasing SPM sizes (cf. Fig. 11). Al-

ready for tiny SPMs, WCETs decrease to

92.6% of the WCET without any SPM

which corresponds to a WCET reduction of

7.4%. For SPMs large enough to hold en-

tire benchmarks, average WCETs of only

60% of the original WCET were obtained

which leads to overall savings of 40%.

A basic block’s size depends on its

memory allocation so that the ILP poten-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Relative SPM Size [%]

A
v
g

.
R

e
la

ti
v
e

W
C

E
T

E
S

T
[%

]

Fig. 11 Average WCETs after WCET-aware

SPM allocation of code

tially changes the benchmarks’ code sizes (cf. Sect. 9.2.4). It turned out that these

changes are negligible. We observed a maximal code size increase by 128 bytes for

our benchmarks. On average over all 73 benchmarks, code sizes increased by 0.02%.

The complexity of our ILP-based SPM allocator is negligible, too. For all 73

benchmarks, the ILP solver cplex only takes one or two CPU seconds on an Intel

Xeon machine that runs at 2.4 GHz. Compared to this, the two WCET analyses re-

quired to generate the constants Ci
spm and Ci

main (cf. Sect. 9.3) are more expensive, but

they also terminate within a few CPU minutes for our largest benchmarks.



287

10 WCET-aware scratchpad allocation of program data

In analogy to Sect. 9, this section presents an ILP for SPM allocation of program

data. Here, program data denotes global data or local data with static storage. The

ILP described in the following also relies on the techniques proposed by Suhendra et

al. [48] and is thus very similar to that of Sect. 9. Therefore, we just provide a very

compact description of this ILP without a further detailed survey of related work.

Instead, we just briefly highlight that on the one hand, Suhendra’s work suffers

from several limitations that prevent it from being applied to real-life programs. E.g.,

a way to automatically determine which data is accessed by each basic block is miss-

ing, which is mandatory to formulate an ILP for SPM allocation of data.

On the other hand, [10] present a hybrid approach for dynamic SPM allocation

of data that combines an ILP with an iterative heuristic. First, the current WCEP

is computed, and an ILP tailored for this particular WCEP determines which data

to place on the SPM. Next, the WCEP is updated and some more SPM contents is

computed using ILP. In contrast, the following section presents a fully ILP-based

SPM allocation. As was done in Sect. 9, we assume a processor without D-cache.

10.1 Structure of the ILP for program data scratchpad allocation

A binary variable yi per data object di of a program specifies if a data object is put in

main memory or in SPM (cf. (17)). For SPM allocation of data, a block b j’s WCET

depends on the placement of all data objects accessed by b j. Each block b j causes

some costs c j. c j reflects b j’s WCET depending on whether the data objects accessed

by b j are put in main memory or in the SPM (cf. (18)). Here, C j denotes b j’s WCET

if all data objects accessed by b j are placed in main memory. Gi, j is a constant that

denotes the WCET reduction of b j if data object di is put on the SPM.

As was done in Sect. 9.2.1, the WCET of a loop’s exit node bL
exit is set to the costs

of bL
exit (cf. (19)) and the WCET of a path from b j to bL

exit must be greater or equal

than the WCET of any successor of b j, plus b j’s costs (cf. (20)). For an entire loop

L with entry node bL
entry, variable wL

entry denotes the WCET of all paths in L if L is

executed exactly once. Again, the innermost loop L is collapsed, a new super-node

vL is created and vL’s costs are defined as shown in (21). Equation (20) is formulated

for each successor of b j so that variable w j reflects the WCET of any path that starts

at b j. Thus, (20) realizes the implicit consideration of (switching) WCEPs in the ILP.

For a function F with entry node bF
entry, wF

entry denotes the WCET of any path

that starts at bF
entry, if that F is called exactly once. If a block b j calls a function F ,

a call penalty cp j per block b j is introduced (cf. (22)). cp j is added to the control

flow constraint of (20), and the resulting Equation (23) is the constraint that is finally

generated for our ILP per block b j and per successor bsucc of b j.

In contrast to Sect. 9.2.4, allocating data objects does not change the objects’ size.

Thus, the data objects’ sizes are true constants in our ILP that can easily be computed

by WCC. Hence, the SPM capacity constraint is defined as shown in (24). Si denotes

the byte size of object di, and Sspm is the available data SPM size in bytes.



288

yi =

{

1 if data object di is assigned to memspm

0 if data object di is assigned to memmain
(17)

c j = C j − ∑
di∈data objects

Gi, j ∗yi (18)

wL
exit = cL

exit (19)

∀b j ∈V \{bL
exit} : ∀(b j ,bsucc) ∈ E : w j ≥ wsucc + c j (20)

cL = wL
entry ∗CL

max (21)

cp j =

{

wF
entry if b j calls F

0 else
(22)

∀b j ∈V \{bL
exit} : ∀(b j ,bsucc) ∈ E : w j ≥ wsucc + c j + cp j (23)

∑
di∈data objects

(Si ∗yi) ≤ Sspm (24)

wmain

entry  min. (25)

In analogy to Sect. 9.2.5, the above ILP optimally reduces WCETs by minimizing

variable wmain

entry that denotes the entire program’s WCET (cf. (25)).

10.2 Implementation issues

As for the SPM allocation of code, the ILP for SPM allocation of data is realized

at assembly code level. Equation (18) uses the constants C j and Gi, j. C j represents

the WCET of block b j and is obtained within WCC by allocating all data objects to

main memory and performing a WCET analysis as described in Sect. 3. Gi, j models

the gain achieved for block b j if a data object di is moved from main memory to the

SPM. To obtain Gi, j, it must be known how often b j accesses di. This information is

generally difficult to compute and requires massive support by WCC’s infrastructure.

Since modern processors usually are load-store machines, address registers keep

addresses, and dedicated load/store operations use them to access memory. To obtain

the required data access information per block b j, one needs to know the address reg-

isters’ contents for each load/store in b j. The WCET analyzer aiT already provides

such an address register analysis (cf. Sects. 1.1 and 3.4). Hence, the WCET analysis

used to obtain the constants C j also provides register analysis results. If aiT deter-

mines that a certain load/store accesses an address range that belongs to exactly one

data object, we have highly precise data access information for that load/store.

Unfortunately, aiT can not always compute address register values this precisely.

To obtain more precise information, WCC includes a pointer alias analysis. Since aiT

works on assembly code level, we complement its low-level analysis by an alias anal-

ysis at the ICD-C source code level. WCC’s alias analysis has the following features:

– interprocedural analysis that considers data flow between functions,

– context-sensitive function argument/return value analysis using summaries [43],

– inclusion-based analysis for high precision [2],

– field-sensitive analysis that provides data on element accesses of composed types.



289

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

SPM Size [bytes]

petrinet

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

SPM Size [bytes]

fsm

Fig. 12 Relative WCETs after WCET-aware SPM allocation of data for representative benchmarks

Using this alias analysis, the ICD-C IR contains information about the location a

pointer variable points to for each pointer dereferencing expression. This information

is preserved during code selection so that points-to data is available in WCC’s back-

end. Additionally, the code selector creates points-to data for array and struct accesses

using the regular C operators . and [ ]. This points-to information complements

aiT’s analysis and is used to determine which data object is accessed by a load/store.

Accumulating the points-to information over all operations of a block b j yields how

many times a data object di is accessed by b j. Multiplying this value by the speed

difference between main memory and SPM finally yields the needed constants Gi, j.

All other constants required by the ILP for SPM allocation of program data (i.e.,

CL
max, Si and Sspm) are determined by the WCC compiler in analogy to Sect. 9.3.

10.3 Evaluation

The Infineon TriCore TC1796 fea-

tures a data SPM of 56 kB accessible in

one cycle and 64 kB of data main mem-

ory with 6 cycles access latency. It does

not feature a D-cache per se. From the

available data SPM, 12 kB are reserved

for the stack and 4 kB are used for the

TriCore’s Context Save Area so that a

total of 40 kB remains for free use by

our SPM allocation. Our ILP was ap-

plied to only those benchmarks that con-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

SPM Size [bytes]

Fig. 13 Average WCETs after WCET-aware

SPM allocation of data

tain global data or local data with static storage. During benchmarking, SPM sizes

between 8 bytes and 40 kB were used (cf. Fig. 12). Our results show the WCET

estimates of all benchmarks that result from our WCET-aware SPM allocator as a

percentage of the WCET when not using the data SPM at all.

Figure 12 shows the impact of our WCET-aware data SPM allocation on the WCET

estimates of two representative benchmarks. petrinet is a Petri net simulation that

uses 6 global variables of only 72 bytes size in total. Some of these variables are

accessed very frequently, and our ILP clearly identifies how often each variable is

accessed by which basic block and moves the most beneficial variables onto the data

SPM. Hence, already a tiny data SPM of 8 bytes leads to WCETs after our optimiza-

tion of only 82.5% of the original WCET, i.e., WCET was reduced by 17.5%. A 32



290

bytes large SPM leads to a relative WCET of 71.4% which corresponds to a total

WCET reduction of 28.6%. If the entire global data of petrinet fits into the SPM,

a WCET of 69.7% was achieved which translates to an overall reduction by 30.3%.

fsm (electric window lifter control) exhibits a more steady WCET reduction. fsm

uses 98 global variables to save the automaton’s state. All these variables are at most

4 bytes large, some of them are accessed frequently, some only rarely. For an 8 bytes

SPM, a relative WCET of 93.5% was observed that leads to a WCET reduction of

6.5%. Increased SPM sizes translate to reduced WCETs as shown in Fig. 12. The best

results were obtained for SPMs of size 256 bytes or larger. Here, our optimization

achieves relative WCETs of 78.6% which corresponds to improvements of 21.4%.

On average over all benchmarks, WCETs decreased steadily for increasing data

SPM sizes (cf. Fig. 13). Already for small SPMs, average WCETs decrease to 97.4%

of the WCET without any SPM which corresponds to a WCET reduction of 2.6%.

For the real TriCore architecture with its 40 kB SPM, average WCETs of only 79.8%

of the original WCET were obtained which leads to overall savings of 20.2%.

For the considered TriCore architecture, no additional assembly instructions have

to be generated by this optimization. Instead, only the memory locations of the vari-

ables assigned to the SPM need to be adjusted. Thus, our SPM allocation of data does

not modify code size at all. In analogy to Sect. 9, the complexity of the ILP for data

SPM allocation is negligible in practice. Solving times of at most two CPU seconds

were observed on an Intel Xeon machine that runs at 2.4 GHz.

11 WCET-aware register allocation

Register allocation is considered to be the most important compiler optimization. Its

goal is to use a processor’s registers most efficiently to reduce slow main memory

accesses. Due to the increasing speed gap between processors and memories, register

accesses are orders of magnitudes faster than memory accesses. However, memory

accesses can not be totally avoided, since the amount of temporary variables (aka.

virtual registers VREGs) at a certain place in a program can exceed the number of

available physical processor registers (PHREGs). In such a situation, spill code is

inserted during register allocation that swaps out a register to memory and back.

Current register allocators usually decide heuristically where to insert spill code.

Due to a lack of precise models, compilers are unaware of the impact of spill code on

a program’s execution time. Especially for real-time systems, badly placed spill code

can have a dramatic impact on a program’s WCET. The following sections present a

WCET-aware graph coloring register allocator. Its main contributions are its explicit

use of WCET data during optimization and the automatic update of WCET data in

the course of the optimization to cope with the inherent instability of the WCEP.

Since WCC is the very first compiler to include a technique for WCET-aware reg-

ister allocation, no related work currently exists. All previously published approaches

for register allocation only focus either on ACET or on code size. Nowadays, graph

coloring is the standard register allocation technique. Due to its outstanding impor-

tance, it is discussed in more detail in the following section.



291

11.1 Traditional graph coloring

Traditional graph coloring based register allocation (GC) was originally published

in [6]. An interference graph G = (V,E) contains a node for each VREG of a function

and for each of the C available PHREGs. An undirected edge e = {v,w} is added to

E whenever nodes v and w interfere, i.e., if they either represent VREGs which are

simultaneously alive and thus should not share the same PHREG, or if a VREG v

must not be allocated to PHREG w for architectural reasons.

GC assigns one of C colors that denote the PHREGs to each node v ∈V such that

no two adjacent nodes have the same color. According to [6], this is done as follows:

Build: Construct the interference graph G = (V,E).
Simplify: Iteratively remove each v ∈ V from G that has a degree < C, push v onto

stack S. This step removes all nodes from G which are always colorable due to

the small amount of adjacent nodes.

Spill: After simplify, each node v has degree ≥ C. Select one node v ∈V , mark v as

potential spill, remove v from G, push v onto S. If V 6= /0, continue with simplify.

Select: Iteratively pop nodes v from S, re-insert them into G. If v is not a potential

spill, assign a free color c to v. If v is a potential spill, there may be a free color c.

If this is the case, assign c to v. Else, don’t color v and mark v as actual spill.

Start over: If there are actual spills v ∈V , insert a load operation before each use of

v and a store operation after each definition of v and continue with build.

By inserting spill operations before uses and after definitions of an actual spill v,

v’s lifetime is split into smaller intervals in the hope that these smaller intervals will

only interfere with lifetimes of fewer VREGs in the next iteration of the above algo-

rithm. This register allocator has proven to have high quality and has a complexity of

O(n logn), where n is the number of a program’s instructions.

A crucial issue of this allocator is which node v to choose as potential spill during

the spill stage. Related literature proposes several heuristics for this purpose:

– Select nodes according to the order in which VREGs occur in the compiler’s IR.

– Select the node v with highest degree, since spilling this node reduces the degree

of many other nodes in G so that it is more likely to maximize the number of

nodes with degree < C after spilling v.

– Select a node v depending on the degree of v, on the number of operations o that

use or define v, on the register pressure around o and on the loop nesting level of

each such operation o.

The above list shows that no formal timing model is used during spilling. Due to

a lack of such models, heuristics try to estimate the impact of spilling on code quality.

Not surprisingly, one heuristic is better in some cases, and another heuristic is better

in other cases. Due to the missing link between the heuristic’s estimates and actual

timing data, a register allocator may be guided into a wrong direction.



292

11.2 WCET-aware graph coloring

Due to the spill heuristics discussed in Sect. 11.1, current register allocators have no

direct control over where spill code is generated, since only simplified measures are

used. This can have severe effects on a program’s WCET, because traditional spill

heuristics may now lead to spill code generation along the WCEP.

A WCET-aware register allocator needs to know the worst-case execution fre-

quencies per CFG node. Unfortunately, static WCET analysis can not be applied

to obtain this data for a program P. This is because P is not executable since it

uses VREGs instead of PHREGs. Hence, there are cyclic dependencies between reg-

ister allocation and WCET analysis—in addition to the requirements discussed in

Sect. 1.1—which must be broken in order to obtain a WCET-aware register allocator.

Conventional register allocators try to keep as many VREGs in PHREGs as pos-

sible and move a VREG to memory only if really necessary. The traditional way

of thinking thus assumes optimistically that all VREGs fit into the physical regis-

ter file and that only exceptionally, a VREG is moved to memory. Graph coloring

(cf. Sect. 11.1) also follows this strategy: it first removes all colorable nodes from

the interference graph, and only after that, a decision on one single potential spill is

taken.

However, this strategy is infeasible for WCET-aware register allocation. The in-

termediate code produced during all the steps and iterations of traditional graph col-

oring is not executable and thus, no WCEP can be determined. For WCET-aware

graph coloring, we propose the opposite way of thinking: we assume pessimistically

that all VREGs are kept in memory. Our register allocator thus moves VREGs from

memory to PHREGs. This has the advantage that the IR generated in the course of

register allocation is always executable so that WCEPs can be determined.

The WCET-aware graph

coloring algorithm is shown

in Fig. 14. In a loop, it han-

dles one basic block per it-

eration (lines 2 to 13). For

a program P’s IR that is in-

put to register allocation, the

algorithm maintains a copy

P′ which is fully spilled, i.e.,

where all VREGs of P are

marked as actual spills and

load/store operations are in-

serted for spilling (lines 3

and 4). This fully spilled IR

is statically analyzed by the

WCC compiler to obtain the

1 IR WCET-GC-RA( IR P ) {
2 while ( true ) {
3 IR P

′ = P.copy();

4 P
′.spillAllVREGs();

5 set<basicBlock> WCEP = computeWCEP( P
′ );

6 if ( getVREGs( WCEP ) == /0 )

7 break;

8 basicBlock b
′ = getMaxSpillCodeBlock( WCEP );

9 basicBlock b = getBlockOfOriginalP( b
′ );

10 list<virtualRegister> vregs = getVREGs( b );

11 vregs.sort( occurrences of VREG in b );

12 traditionalGraphColoring( P, vregs );

13 }
14 traditionalGraphColoring( P, getVREGs( P ) );

15 return P;

16 }

Fig. 14 Algorithm for WCET-aware graph coloring

current WCEP, which is feasible since P′ does not contain any VREGs (line 5).

Among all blocks on the current WCEP, the block b′ with highest spill code exe-

cution in the worst case is chosen. Worst-case spill code execution is the product of

the number of inserted spill operations per block and the block’s worst-case execution



293

frequency as computed by the WCET analyzer (line 8). For b′ within the fully spilled

IR P′, its counterpart b in the IR P still which contains VREGs is searched (line 9).

Block b is the most critical one along the current WCEP. Hence, all VREGs of b

should be kept in PHREGs. However, if register pressure is too high, spilling of some

of b’s VREGs should lead to only minimal spill code execution in b in the worst case.

Therefore, all VREGs v of b are sorted by their number of occurrences in b (line

11). Since spill code generation always inserts a load before (store after) each use

(definition) of v, v’s occurrences in b correlate with the amount of spill code needed

in b to spill v. This sorting is a precedence which VREGs are better candidates for

spilling and which ones are not. It is passed to a standard graph coloring allocator

(line 12) that actually maps these VREGs to PHREGs. After that, b′ is put in a black-

list to prevent it from being selected again by line 8 during a later iteration. For

the sake of simplicity, this black-listing is omitted in Fig. 14. After basic block b is

processed, the allocation loop iterates and updates the current WCEP again (line 5).

If the current WCEP does not contain any more VREGs, the allocation loop is left

(lines 6 and 7). However, the IR P might still contain VREGs after leaving the loop.

This happens e.g., for basic blocks in the CFG which have never been on the WCEP—

such blocks have never been considered during the allocation loop. However, they

still need to be allocated. To obtain a fully allocated IR, all remaining VREGs in P

are passed to a final run of the traditional graph coloring register allocator (line 14).

For this final run, the applied spill heuristic does not matter. This is because even

in the worst case where all remaining VREGs would be spilled, the blocks that still

contain VREGs in line 14 will never ever lie on the WCEP and thus never influence

P’s global WCET. If they lay on the WCEP, they would have been captured by the

allocation loop—in contradiction to the loop’s exit condition. Hence, it is sufficient to

pass an arbitrary precedence list of VREGs to the standard graph coloring allocator.

For the sake of simplicity, we just use the order in which VREGs occur in P here.

11.3 Evaluation

Since register allocation needs information about the liveness and interference of

VREGs and about a processor’s physical registers, it can only be applied at assembly

code level. The TriCore’s register file has 16 data and 16 address registers. However,

not all of them can be used freely by a register allocator. Several registers are used

e.g., to realize function calling conventions or serve as stack or return address pointer

so that we use a total of 14 data and 10 address registers. Benchmarking used WCC’s

optimization level -O3 such that register allocation is always applied to already highly

optimized code. In all experiments, spilling uses the TriCore’s highly efficient SPM

memory with 1 cycle access latency.

We used 46 different benchmarks from various domains to evaluate our WCET-

aware register allocator: some are small filter and sorting routines, others are large

and complex audio/video codecs. Their basic block counts range from 7 to 808. All

benchmarks have in common that register pressure is high so that spill code must be

generated. Figure 15 shows the WCETs of all benchmarks after WCET-aware register



294

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

a
d
p
c
m

_

v
e
ri
fy

c
jp

e
g
_

tr
a
n
s
u
p
p

c
o
m

p
r
e
s
s c

rc

d
ijk

s
tr
a

d
u
ff

e
d
g
e
_

d
e
te

c
t

e
d
n

e
p
ic

e
x
p
in

t

fd
c
t

ff
t_

1
0
2
4

ff
t_

2
5
6 fi

r

fi
r2

d
im

g
s
m

g
s
m

_

e
n
c
o
d
e

h
2
6
3

h
2
6
4
d
e
c
_

b
lo

c
k

h
2
6
4
d
e
c
_

m
a
c
r
o

ii
r_

4
_

6
4

ii
r_

b
iq

u
a
d
_

N

jfd
c
ti
n
t

la
tn

rm
_

3
2
_

6
4

lm
s
fi
r_

8
_

1

lm
s
fi
r_

3
2
_

6
4 lp

c

lu
d
c
m

p

m
a
tm

u
lt

m
a
tr
ix

2
_

fi
x
e
d

m
a
tr
ix

2
_

fl
o
a
t

m
d
5

m
in

v
e
r

m
u
lt
_

1
0
_

1
0

m
u
lt
_

4
_

4

n
d
e
s

p
ri
m

e

q
m

f_
r
e
c
e
iv

e

q
m

f_
tr
a
n
s
m

it
q
u
rt

ri
jn

d
a
e
l_

e
n
c

s
e
le

c
t

s
h
a

s
p
e
c
tr
a
l

s
ta

rt
u
p

v
3
2
_

b
e
n
c

A
v
e
ra

g
e

R
e
la

ti
v
e

W
C

E
T

E
S

T
[%

]

Fig. 15 Relative WCETs after WCET-aware register allocation

allocation as a percentage of the WCETs that result from traditional graph coloring

(cf. Sect. 11.1) which selects the node with highest degree as spill heuristic.

WCET-aware register allocation reduces the WCETs of all benchmarks consid-

erably. For qurt, the WCET after WCET-aware register allocation is 93.1% of the

original WCET, i.e., WCET was reduced by 6.9%. For all other benchmarks, even

higher gains were observed. spectral exhibits the largest WCET reductions: the

WCET after our register allocation is only 24.1% of the original WCET which leads

to savings of 75.9%. On average over all 46 benchmarks, a WCET of 68.8% of the

original WCET was achieved so that WCETs were reduced by 31.2% on average.

For all 46 benchmarks, we observed an average increase of the benchmarks’ text

section of 29.8%, with a maximal increase of 298% for dijkstra. However, this is

the only benchmark with such extreme increases. dijkstra is a very small code so

that the insertion of only few additional spill instructions leads to excessive percental

code size increases. These increases stem from the fact that our WCET-aware register

allocator generates more spill code if this helps to keep the WCEP free of spill code.

Even though our register allocator performs a WCET analysis for the allocation

of each basic block along the WCEP which leads to a total of 1,979 WCET analy-

ses during allocation of all 46 benchmarks, the run times of our algorithm are still

moderate. Register allocation of all benchmarks took a total of 12:15 CPU-hours on

an Intel Xeon at 2.4 GHz. Of course, this is much longer than the overall 7:40 CPU

minutes used by graph coloring, but it is still acceptable if high code quality for hard

real-time systems is required.

12 Conclusions and future work

This article presents the WCET-aware C Compiler WCC that aims at code optimiza-

tion to reduce WCETs. WCET-aware optimization needs a complex compiler infras-

tructure. The exploitation of memory hierarchies for WCET reduction requires de-

tailed information about memories inside the compiler. Obviously, a tight integration

of a WCET analyzer into the compiler is mandatory for WCET-aware optimization.

Since WCET analysis relies on flow facts, WCC provides sophisticated mechanisms

for source-level flow fact annotation. Besides user-provided flow facts, WCC includes

an innovative loop analyzer that derives flow facts automatically. A back-annotation

module is finally used to perform WCET-aware optimization at source code level.



295

On top of this infrastructure, the WCET-

aware optimizations procedure cloning and po-

sitioning, scratchpad memory allocation and

register allocation are integrated into WCC.

Each of them reduces the WCETs of typical

benchmarks between 3% and 48% on aver-

age. To clearly show the performance of the

entire WCC framework, we applied WCET-

aware register allocation, scratchpad allocation

of both code and data, and procedure posi-

tioning to the matmult benchmark. Since this

benchmark does not exhibit any potential for

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

1) -O2 2) -O2 +

RegAlloc

3) -O2 +

RegAlloc +

Code-SPM

4) -O2 +

RegAlloc +

Code-SPM +

Data-SPM

5) -O2 +

RegAlloc +

Code-SPM +

Data-SPM +

ProcPos

W
C

E
T

E
S

T
[C

y
c

le
s

]

matmult

Fig. 16 WCETs after sequence of WCET-

aware optimizations

procedure cloning, this optimization is excluded here.

Figure 16 shows the absolute WCETs achieved by this combination of our novel

techniques. All our WCET-aware optimizations are applied on top of WCC’s opti-

mization level -O2. The X-axis of Fig. 16 shows the different optimization sequences

applied to matmult; they are labeled from 1) to 5) in the figure.

As can be seen, register allocation reduces the WCETs achieved by optimization

level -O2 by 284,000 cycles which corresponds to a reduction by 37.7%. The sub-

sequent activation of our SPM allocation of program code yields a further reduction

by 120,000 cycles. Compared to the previous bar 2), this translates to a reduction

by 24.5%. Additionally enabling the SPM allocation of data reduces the WCET by

another 135,000 cycles which—again compared to the previous bar 3)—corresponds

to a percental decrease by 36.4%. Procedure positioning finally reduces the absolute

WCETs by 8,000 extra cycles. Comparing this absolute reduction with the previous

bar 4) of Fig. 16 shows that procedure positioning reduces WCETs by 3.4%.

This example shows that the savings individually achieved by our optimizations

add up if applied in combination. In total, the optimizations described in this article

are able to reduce the WCET of the matmult example from 775,720 cycles down to

227,794 cycles which corresponds to an overall reduction by more than 70%.

In the future, more WCET-aware optimizations will be integrated into WCC. This

particularly includes function inlining, loop unswitching, dynamic SPM allocations

and ILP-based register allocation. Besides pure WCET-aware optimizations, we will

consider multi-objective optimizations to achieve trade-offs between real-time con-

straints and other optimization criteria like e.g., energy dissipation.

Acknowledgements The authors would like to thank AbsInt Angewandte Informatik GmbH for their

support related to WCET analysis using the aiT framework.

References

1. AbsInt Angewandte Informatik GmbH. aiT: worst-case execution time analyzers. http://www.

absint.com/ait, 2010.
2. L. O. Andersen. Program analysis and specialization for the C programming language. PhD thesis,

University of Copenhagen, Copenhagen, 1994.
3. R. Azevedo, S. Rigo, M. Bartholomeu, et al. The ArchC architecture description language and tools.

Int J Parallel Program, 33(5):453–484, 2005.



296

4. H. Börjesson. Incorporating worst case execution time in a commercial C-compiler. Master’s thesis,

Uppsala University, Department of Computer Systems, Uppsala, Sweden, 1996.

5. A. M. Campoy, I. Puaut, A. P. Ivars, et al. Cache contents selection for statically-locked instruction

caches: an algorithm comparison. In Proceedings of ECRTS, Palma de Mallorca, Spain, 2005.

6. G. J. Chaitin, M. A. Auslander, et al. Register allocation via coloring. Comput Lang, 6, 1981.

7. A. Colin and I. Puaut. A modular and retargetable framework for tree-based WCET analysis. In

Proceedings of ECRTS, Delft, Netherlands, 2001.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In Proceedings of POPL, Los Angeles, USA, 1977.

9. C. Cullmann and F. Martin. Data-flow based detection of loop bounds. In Proceedings of WCET,

Pisa, Italy, 2007.

10. J.-F. Deverge and I. Puaut. WCET-directed dynamic scratchpad memory allocation of data. In Pro-

ceedings of ECRTS, Pisa, Italy, 2007.

11. J. Engblom. Worst-case execution time analysis for optimized code. Master’s thesis, Uppsala Univer-

sity, Department of Computer Systems, Uppsala, Sweden, 1997.

12. J. Engblom. Static properties of commercial embedded real-time programs, and their implication for

worst-case execution time analysis. In Proceedings of RTAS, Vancouver, Canada, 1999.

13. J. Engblom and A. Ermedahl. Modeling complex flows for worst-case execution time analysis. In

Proceedings of RTSS, Orlando, USA, 2000.

14. J. Engblom, A. Ermedahl, M. Sjödin, et al. Towards industry strength worst-case execution time

analysis. In Proceedings of SNART, Linköping, Sweden, 1999.

15. A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of execution time. In

Proceedings of Euro-Par, Passau, Germany, 1997.

16. A. Ermedahl, C. Sandberg, J. Gustafsson, et al. Loop bound analysis based on a combination of

program slicing, abstract interpretation, and invariant analysis. In Proceedings of WCET, Pisa, Italy,

2007.

17. H. Falk, P. Lokuciejewski, and H. Theiling. Design of a WCET-aware C compiler. In Proceedings of

ESTIMedia, Seoul, Korea, 2006.

18. H. Falk and P. Marwedel. Control flow driven splitting of loop nests at the source code level. In

Proceedings of DATE, Munich, Germany, 2003.

19. H. Falk, S. Plazar, and H. Theiling. Compile time decided instruction cache locking using worst-case

execution paths. In Proceedings of CODES+ISSS, Salzburg, Austria, 2007.

20. C. Ferdinand, R. Heckmann, M. Langenbach, et al. Reliable and precise WCET determination for a

real-life processor. In Proceedings of EMSOFT, Tahoe City, USA, 2001.

21. J. Gustafsson, A. Ermedahl, C. Sandberg, et al. Automatic derivation of loop bounds and infeasible

paths for WCET analysis using abstract execution. In Proceedings of RTSS, Rio de Janeiro, Brazil,

2006.

22. C. Healy, M. Sjödin, V. Rustagi, et al. Bounding loop iterations for timing analysis. In Proceedings

of RTAS, Denver, USA, 1998.

23. R. Heckmann and C. Ferdinand. Worst-case execution time prediction by static program analysis. In

Proceedings of IPDPS, Santa Fe, USA, 2004.

24. A. Hoffmann, T. Kogel, A. Nohl, et al. A novel methodology for the design of application specific

integrated processors (ASIP) using a machine description language. IEEE TCAD, 20(11), 2001.

25. N. Holsti, J. Gustafsson, G. Bernat, et al. WCET tool challenge 2008: report. In Proceedings of

WCET, Prague, Czech Republic, 2008.

26. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In Proceedings

of PLDI, Atlanta, USA, 1988.

27. W.-m. W. Hwu and P. P. Chang. Achieving high instruction cache performance with an optimizing

compiler. In Proceedings of ISCA, Jerusalem, Israel, 1989.

28. Informatik Centrum Dortmund e. V. ICD-C compiler framework. http://www.icd.de/es/icd-c,

2010.

29. Informatik Centrum Dortmund e. V. ICD-LLIR low-level intermediate representation. http://www.

icd.de/es/icd-llir, 2010.

30. D. Kästner. TDL: a hardware description language for retargetable postpass optimizations and analy-

ses. In Proceedings of GPCE, Erfurt, Germany, 2003.

31. M. Kirner. Automatic loop bound analysis of programs written in C. Master’s thesis, Technische

Universität Wien, Vienna, Austria, 2006.

32. R. Kirner. Integration of static runtime analysis and program compilation. Master’s thesis, Technische

Universität Wien, Vienna, Austria, 2000.



297

33. R. Kirner. The programming language wcetC. Technical report, Technische Universität Wien, Vienna,

Austria, 2001.

34. R. Kirner. Extending optimising compilation to support worst-case execution time analysis. PhD

thesis, Technische Universität Wien, Vienna, Austria, 2003.

35. R. Kirner and P. Puschner. Transformation of path information for WCET analysis during compilation.

In Proceedings of ECRTS, Delft, Netherlands, 2001.

36. A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC benchmarks: a case study. IEEE

Comput, 27(10), 1994.

37. E. A. Lee. Absolutely positive on time: what would it take? IEEE Comput, 2005.

38. Y.-T. S. Li and S. Malik. Performance Analysis of Embedded Software Using Implicit Path Enumer-

ation. In Proceedings of DAC, pages 456–461, San Francisco, USA, 1995.

39. P. Lokuciejewski, D. Cordes, H. Falk, et al. A fast and precise static loop analysis based on abstract

interpretation, program slicing and polytope models. In Proceedings of CGO, Seattle, USA, 2009.

40. P. Lokuciejewski, H. Falk, and P. Marwedel. WCET-driven cache-based procedure positioning opti-

mizations. In Proceedings of ECRTS, Prague, Czech Republic, 2008.

41. P. Lokuciejewski, H. Falk, M. Schwarzer, P. Marwedel, and H. Theiling. Influence of procedure

cloning on WCET prediction. In Proceedings of CODES+ISSS, Salzburg, Austria, 2007.

42. A. Mendlson, S. S. Pinter, and R. Shtokhamer. Compile time instruction cache optimizations. ACM

SIGARCH Comput Arch News, 22(1), 1994.

43. E. M. Nystrom, H.-S. Kim, and W.-m. W. Hwu. Bottom-up and top-down context-sensitive summary-

based pointer analysis. In Proceedings of SAS, Verona, Italy, 2004.

44. A. Prantl, M. Schordan, and J. Knoop. TuBound—a conceptually new tool for worst-case execution

time analysis. In Proceedings of WCET, Prague, Czech Republic, 2008.

45. I. Puaut. WCET-centric software-controlled instruction caches for hard real-time systems. In Pro-

ceedings of ECRTS, Dresden, Germany, 2006.

46. P. Puschner and A. Burns. A review of worst-case execution-time analysis. Real-Time Syst, 18(2/3),

2000.

47. C. Sandberg, A. Ermedahl, J. Gustafsson, et al. Faster WCET flow analysis by program slicing. ACM

SIGPLAN Not, 41(7), 2006.

48. V. Suhendra, T. Mitra, A. Roychoudhury, et al. WCET centric data allocation to scratchpad memory.

In Proceedings of RTSS, Miami, USA, 2005.

49. H. Tomiyama and H. Yasuura. Code placement techniques for cache miss rate reduction. ACM

TODAES, 2(4), 1997.

50. S. Verdoolaege, R. Seghir, K. Beyls, et al. Analytical computation of Ehrhart polynomials: enabling

more compiler analyses and optimizations. In Proceedings of CASES, Washington, USA, 2004.

51. M. Verma and P. Marwedel. Advanced memory optimization techniques for low-power embedded

processors. Springer, 2007.

52. WCET-aware Compilation. http://ls12-www.cs.tu-dortmund.de/research/activities/

wcc, 2010.

53. L. Wehmeyer and P. Marwedel. Influence of memory hierarchies on predictability for time constrained

embedded software. In Proceedings of DATE, Munich, Germany, 2005.

54. L. Wehmeyer and P. Marwedel. Fast, efficient and predictable memory accesses—optimization algo-

rithms for memory architecture aware compilation. Springer, 2006.

55. M. D. Weiser. Program slices: formal, psychological, and practical investigations of an automatic

program abstraction method. PhD thesis, University of Michigan, Ann Arbor, USA, 1979.

56. W. Zhao, W. Kreahling, D. Whalley, et al. Improving WCET by optimizing worst-case paths. In

Proceedings of RTAS, San Francisco, California, 2005.

57. W. Zhao, P. Kulkarni, D. Whalley, et al. Tuning the WCET of embedded applications. In Proceedings

of RTAS, Toronto, Canada, 2004.



298

Heiko Falk received his Ph.D. in Computer Science from the Uni-

versity of Dortmund (Germany) in 2004. From 2004 on until today, he

works as assistant professor in the embedded systems group at the TU

Dortmund.

His Ph.D. focused on high-level source code optimizations. Typical em-

bedded multimedia applications only use a small fraction of their exe-

cution time to compute audio or video data. Most of the execution time

is used to evaluate complex control flow. Motivated by this observation,

Dr. Falk developed novel techniques for control flow optimization at the

source code level.

In the last years, the focus of his work is on code generation and opti-

mization for performance and predictability of safety-critical real-time

systems. The WCC compiler initially established by him and developed

by the research team led by Dr. Falk is the currently only known com-

piler which is able to systematically reduce the worst-case execution time (WCET) of programs by tightly

integrating static timing analyses into the code generation and optimization stage.

Paul Lokuciejewski received the diploma degree in Applied Com-

puter Science from the University of Dortmund, Germany, in 2005.

Afterwards, he has been working with Prof. Peter Marwedel as a mem-

ber of the embedded systems group at Dortmund. In 2010, he received

the Ph.D. degree in Computer Science from TU Dortmund. His re-

search focus is on worst-case execution time aware compilation tech-

niques for real-time systems. As key researcher in Dortmund’s WCC

compiler team, Dr. Lokuciejewski developed several novel WCET-aware

optimizations operating at both the source code and assembly level of the

program code.


