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ABSTRACT 

An intermediate representation (IR) is a central structure 
around which tools such as compilers and synthesis tools 
are built. In this paper we propose such an IR specifically 
designed for reconfigurable fabrics: CIRRF (Compiler 
Intermediate Representation for Reconfigurable Fabrics). 
We describe an initial implementation of CIRRF as part of 
the ROCCC compiler for translating C code to VHDL. A 
case study shows that our IR set is a solid foundation to 
generate high-performance hardware. 

1. INTRODUCTION 

Several projects have looked at the translation of 
traditional programming languages, such as C/C++ or 
Java, to HDLs for mapping onto FPGAs or other similar 
fabrics. This is a challenging task. The FPGA is an 
amorphous mass of logic onto which the compiler must 
create a data-path and schedule the computation. Such a 
task requires the harnessing of technologies developed for 
parallelizing compilers as well as those developed for 
high-level synthesis. At the heart of each compiler or 
synthesis tool is an intermediate representation (IR) around 
which the tool is built. In this paper we propose CIRRF 
(Compiler Intermediate Representation for Reconfigurable 
Fabrics), an IR designed for the compilation of traditional 
imperative, high-level languages, targeting reconfigurable 
devices. CIRRF is intended to be an open standard 
halfway-point representation between a high-level 
language and a specific reconfigurable platform. A front 
tool would translate C/C++, FORTRAN, or Java to 
CIRRF. Back tools would map CIRRF to a specific target. 
Loop and array transformations are dealt with in the front 
tools; target-specific optimizations are implemented in the 
back tools. CIRRF is designed to be both language and 
target independent. It differs from traditional compiler IRs 
in that it supports concurrency, both explicitly and 
implicitly, as well as the instantiation of and accesses to 
on-chip storage structures. It records information about 
loop types, memory interfacing, instruction predication and 
pipelining. Special instructions for efficient data-path 
generation are introduced. 

In this paper we describe an initial implementation of 
CIRRF as part of the ROCCC compiler for translating C to 
VHDL. The rest of this paper is organized as follows: 
Section two reviews related work; Section three presents 

CIRRF’s architecture; Section four discusses a case; and 
section five concludes the paper. 

2. RELATED WORK 

The Streams-C [1] has three distinguished objects - 
processes, streams and signals - in the user-input 
abstraction. Abstract Syntax Tree (AST) is used to 
partition a process into the data-path, encompassing basic 
blocks and pipeline blocks, and control flow.  A state 
machine is generated for the control flow in the AST. 
User-defined input or output streams form the interfaces 
with memories. 

Trident [2] uses LLVM (Low Level Virtual Machine 
[3]) as a C/C++ front-end to produce low-level object 
code. The low-level object code is transformed into a 
predicated IR. 

SA-C [4]’s input is a single-assignment high-level 
synthesizable language. The SA-C compiler translates 
loops into a data-dependence and control-flow (DDCF) 
graph. A DDCF graph is flattened into a token-driven data-
flow graph. The DFG is eventually translated into an 
abstract hardware architecture graph, which includes 
timing information. 

Pegasus [5] is the IR of the CASH compiler. Pegasus 
decomposes a Control Flow Graph (CFG) into 
hyperblocks, and hyperblocks are connected by merge and 
other specialized nodes. 

3. CIRRF ARCHITECTURE 

CIRRF is the IR set of our high-level synthesis compiler, 
the ROCCC (Riverside Optimizing Compiler for 
Configurable Computing) compiler. ROCCC is built using 
SUIF2 [7] and Machine-SUIF [8]. CIRRF consists of two 
distinct but equivalent representations [Figure 1]. The Hi-
CIRRF format is essentially C code augmented with 
macros while the Lo-CIRRF format is semantically similar 
to assembly code. The advantage of this approach, which is 
commonly used in various compiler IRs, is that it allows 
the user to have multiple levels of entry into the IR. 
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Figure 1 – CIRRF overview 



Debugging, for example, would a lot easier at the Hi-
CIRRF level. A functional-cycle-accurate simulation of the 
generated code would be feasible at the Lo-CIRRF level. 
The macros in Hi-CIRRF are used to: 
• Instantiate and access buffers. 
• Indicate pipelining and clock-cycle level hardware 

timing constrains. For example: imply back-end to 
instantiate registers to eliminate recurrence; enforce a 
pipeline delay for IP wrapper generation.  

• Invoke hardware bitwise and arithmetic operations, 
such as bit-insert, bit-extract, and minimum of two 
values. 

• Invoke hardware look-up tables and IP cores. 
In Lo-CIRRF the code is similar to assembly code. It 
consists of a data and control flow graph with the 
following characteristics: 
• Virtual statically single assigned registers. 
• Register name indicates type (signed, unsigned) and 

bit size. 
• Predicators of predication-guarded instructions and 

pipelining information of controller-controlled 
instructions. 

3.1. Hi-CIRRF 
The ROCCC system performs conventional loop 
transformations. It also carries out the following hardware-
specific analysis and transformations. 
Scalar replacement. The front-end decouples a do-all 
loop’s array accesses from computation. Figure 2 (a) 
shows the original C code of a gray scale transformation 
example. After undergoing scalar replacement, the 
computation is isolated from memory accesses [Figure 2 
(b)] by a smart buffer. The smart buffer will be synthesized 
on configurable fabrics as the interface with memory. One 
important characteristic of smart buffers is that they reuse 
input data between iterations and push one iteration’s input 
data initiatively to the data-path, rather than being accessed 
by the data-path [9]. For a 3x3 window sliding over a two-
dimensional array, without the smart buffer, each pixel 
needs to be read nine times from memory, while a smart 
buffer reduces the memory access to three times. A smart 
buffer of an unrolled loop can save more memory access. 
The syntax of a two-dimensional smart buffer macro is: 
smartbuffer2(input_array_name,address_index_1, 
address_index_2, scalar_1, offset_1_1, offset_1_2, 
 scalar_2, offset_2_1, offset_2_2, ……); 
For example, in the smart buffer macro in Figure 2 (b), the 
last three parameters (x4, 1, 1) stands for: 

x4 = a[i+1][j+1]; 
The syntax of FIFO buffers is similar. Currently we have 
the following constraints on buffer macros. An array can 
only appear in at most one buffer macro. The address 
indexes of buffers are also the loop counters. The operator 
between an address index variable and the offset can only 
be either addition of subtraction. 

Feedback variable detection. The compiler detects scalar 
recurrence between adjacent iterations. For example, for a 
loop having a statement “sum = sum + a[i]”, to eliminate 
the loop-carried dependency, the compiler replaces the sum 
on the left and the sum on the right with store2next() macro 
and load_previous() macro, respectively. These macros 
guide the back-end to instantiate a feedback register to 
store the current sum for the next iteration, and 
consequently transform the loop to a do-all-loop. 

The output from the front-end is in the forms of both 
an IR file and an intermediate C with macros. Users could 
do further optimizations and add pragmas onto the 
intermediate C. 

3.2. Lo-CIRRF  
Starting from a conventional CFG, the compiler finds loops 
and loop-depth. Loop types are recorded in the IR by 
recovering them from user-added pragmas: Currently, these 
include one-dimensional do-all loop, two-dimensional 
perfect nested do-all loop, and non-do-all loop. The pre-
process phase of the back-end converts macros in Hi-
CIRRF into corresponding instructions. Particularly, buffer 
macros are converted into buffer instructions and put into 
separated nodes.  

We categorize basic nodes into two types: do-all nodes 
and non-do-all nodes. Lo-CIRRF records different data-
flow and scheduling information accordingly. 

3.2.1. Building Lo-CIRRF for do-all nodes 
For a do-all loop, Lo-CIRRF provides field to exploit both 
instruction-level and loop-level parallelisms. The compiler 
performs if-converse in a way that any node has at most 
two predecessors.  

In order to allow the data-path to execute multiple 
loops simultaneously, the IR has a “execution level” field 
for each instruction inside a do-all node so that each level is 
an instantiation of one iteration. Statically single assigned 

 
Figure 2 – A gray scale transformation example in C 



variables are added by the compiler to duplicate a variable 
if that variable’s definition reaches more than one level of 
execution lower. Thereby, any variable’s definition is 
always one execution level higher. Multiplexers are added, 
and speculators are duplicated and propagated along with 
execution levels. Notice that each execution level represents 
a single iteration at a given execution phase. 

Lo-CIRRF provides another field, “pipeline stage” to 
record pipelining information.  The instructions belonging 
to the same execution level are either all latched or all non-
latched. Multiple consecutive execution levels may be 
assigned into the same pipeline stage. Having both 
execution level and pipeline stage separates data-flow 
building and pipelining, and provides compiler designers 
the opportunity to implement different pipelining strategies. 

The compiler generates the smart buffers and output 
FIFOs in VHDL at compile time [9], as well as the data-
paths [6]. 

3.2.2. Building Lo-CIRRF for non-do-all nodes 
A non-do-all basic node either belongs to a non-do-all loop 
or does not belong to any loop at all. Multiple instructions 
might belong to the same execution level and can be 
executed simultaneously to exploit instruction level 
parallelism. Notice that for a non-do-all basic node, at most 
one iteration is executed at a time.  

Lo-CIRRF has a predication field for each instruction 
to schedule the execution of non-do-all nodes. Each 
pipeline stage is guarded by a predicator. The format is: 

ADD   $vr4, $vr3, $vr2,   $vr1 
vr4 is the destination operand and vr3 and vr2 are the 
source operands. vr1 is the predicator, which is also a 
source operand. Predicators are passed inside basic nodes 
for scheduling purpose. A special instruction, PFW 
(predicator forward), is used to pass a predicator from the 
current stage to the next stage, which may be or may not be 
in the same node: 

PFW  $vr2.u1,  $vr1.u1 
vr1 and vr2 are two predicators. The instructions guarded 
by vr2 are one pipeline stage later than the ones guarded by 
vr1. Their types are u1, which stands for unsigned one-bit. 

The branch instructions of basic nodes are replaced by 
Boolean instructions, whose destination operands are 
evaluated by this basic node’s successor nodes.  

Essentially, Lo-CIRRF describes a DFG, in which do-
all loop nodes are connected together by non-do-all nodes. 
Then the compiler’s VHDL generator emits VHDL code 
for the entire DFG, including buffers, at compile time. 

4. CASE STUDY 

In this case study, besides reporting the synthesis results of 
the gray scale transformation example discussed in 
previous sections, we examine CIRRF on another 
application, an alternative finite impulse response filter 

flag = 1; 

 for (m = 0; m < 10; m = m + 1) { 

   if(flag == 1) { 

    for(i = 1; i < 251; i = i + 1)  

     b[i]=(3*a[i-1]+5*a[i])+(7*a[i+1]+9*a[i+2])+11*a[i+3]; }      

      else            { 

    for(j = 1; j < 251; j = j + 1)  

     d[j]=(3*c[j-1]+5*c[j])+(7*c[j+1]+9*c[j+2])+11*c[j+3];  } 

   flag = flag ^ 1;  

  } 

 return;  } 

 

 
The first highlighted segment is a 5-tap FIR reading array 

a and writing array b, while the second highlighted 

segment is a 5-tap FIR reading array c and writing array d. 

flag switches the execution of these two segments 

alternatively. The two inner loops are do-all loops, while 

the outer loop (the one with loop counter m) is not.  
Figure 3 – An alternative FIR example in C 

 
Figure 4 – The DFG and IR of alternative FIR  



(FIR).  
Figure 3 shows the original C code. The two do-all 

inner loops (the two highlighted regions) are executed 
alternately. Each of these two inner loops is a 5-tap FIR. 

Each FIR’s loop body is aggressively pipelined, and 
the resulting data-path has a throughput of one iteration per 
clock cycle [Figure 4 (a)]. All the non-do-all nodes are 
predicated. We list the instructions of these nodes in Figure 
4 (b). Node 2 and node 10 are the head and tail nodes of 
the outer loop, respectively. The first instruction of node 2, 
the ior instructions, produces the predicator (vr1321) for 
the two instructions below it (pfw and sle) by examining a 
valid output predicator from either node 1 (not shown), the 
first active node; or node 11, the loop tail. Figure 4 (c) 
depicts node 2’s circuit in detail. Guarded by vr1321, the 
sle instruction asserts its destination operand when the 
outer loop is done, or de-asserts its destination operand 
when needing to execute a new outer loop iteration. Node 
2’s pfw instruction forwards a valid vr1321 to the two 
successor nodes, node 3 and node 11, for their predicator 
evaluation. Node 3 enables one of the two FIRs by either 
asserting or de-asserting vr1325, depending the value of 
flag (vr78). Node 10 is activated by the done signal from 
one of the FIRs’ loop controller and updates the value of 
flag (vr230) and the loop counter m (vr233). Node 11 
indicates the completion of the whole procedure.  

Table 1 shows the synthesis results of the gray scale 
transformation example discussed in previous sections and 
the alternative FIR. The targeting FPGA is Xilinx 
xc2v8000-5 with 46592 slices in total. The generated 
VHDL are synthesized and placed-and-routed using Xilinx 
ISE 6.2.03i. The second and the third columns are the data-
path’s bit-size and BRAM bus’s bit-size. # of slices and 
clock rate are collected from place-and-route reports. The 
last column is the number of do-all loop iterations executed 
per clock cycle. For gray scale transformation, the 
resulting data flow is capable of executing one iteration 
every clock cycle. Notice we configure the BlockRAM’s 
data bus (the third column) to have the same bit-size as that 
of the data elements (pixels), and every iteration needs four 
(2x2) pixels. Though the smart buffer reuses one column 
of the pixels loaded in the previous iteration, it still needs 
two cycles to load the remaining two new pixels. This 
explains the reason that for the gray scale transformation 
example, the number of iterations per cycle is 0.5. For the 
alternative FIR, when either one of the two do-all loops is 
active, the corresponding smart buffer exports one window 
of data (five elements) to the data-path every clock cycle, 
and therefore the circuit executes one iteration per cycle. # 

of slices consists of the hardware of two do-all loops 
(including the data-path and controller for each FIR) and 
the hardware of the non-do-all nodes, as shown in Figure 4 
(a). 

5. CONCLUSION 

We have presented CIRRF, an intermediate representation 
for compiling high-level languages to reconfigurable 
fabrics. CIRRF has two parts, Hi-CIRRF and Lo-CIRRF. 
Hi-CIRRF is essentially C with macros. The macros are 
used to record information associated with buffers, 
pipelining, look-up tables, special operations etc. Lo-
CIRRF decomposes conventional CFGs into do-all loop 
nodes and non-do-all nodes. The loop body instructions of 
a do-all loop are placed into execution levels. Each 
execution level is an instantiation of one iteration at 
different execution phases. Lo-CIRRF provides a platform 
for the compiler to aggressively pipeline do-all loops. Non-
do-all nodes are predicated in Lo-CIRRF and predicators 
are passed within and between nodes. 

We have shown, through case studies, how CIRRF 
models the application examples and provides a solid 
foundation for the compiler to generate efficient hardware.  
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Table 1 - Synthesis results of case study examples 

 DP-size 
(bit) 

mem bus  
bit-size 

# of 
slices 

clock 
(MHz) 

iter. per 
cycle 

gray scale tran. 16 16 318 59.7 0.5 
altern. FIR 8 8 531 100 1 


