
A COMPILER INTERMEDIATE REPRESENTATION FOR RECONFIGURABLE FABRICS

Zhi Guo
Department of Electrical Engineering

Walid Najjar
Department of Computer Science & Engineering

University of California, Riverside
{zguo, najjar}@cs.ucr.edu

ABSTRACT

An intermediate representation (IR) is a central structure
around which tools such as compilers and synthesis tools
are built. In this paper we propose such an IR specifically
designed for reconfigurable fabrics: CIRRF (Compiler
Intermediate Representation for Reconfigurable Fabrics).
We describe an initial implementation of CIRRF as part of
the ROCCC compiler for translating C code to VHDL. A
case study shows that our IR set is a solid foundation to
generate high-performance hardware.

1. INTRODUCTION

Several projects have looked at the translation of
traditional programming languages, such as C/C++ or
Java, to HDLs for mapping onto FPGAs or other similar
fabrics. This is a challenging task. The FPGA is an
amorphous mass of logic onto which the compiler must
create a data-path and schedule the computation. Such a
task requires the harnessing of technologies developed for
parallelizing compilers as well as those developed for
high-level synthesis. At the heart of each compiler or
synthesis tool is an intermediate representation (IR) around
which the tool is built. In this paper we propose CIRRF
(Compiler Intermediate Representation for Reconfigurable
Fabrics), an IR designed for the compilation of traditional
imperative, high-level languages, targeting reconfigurable
devices. CIRRF is intended to be an open standard
halfway-point representation between a high-level
language and a specific reconfigurable platform. A front
tool would translate C/C++, FORTRAN, or Java to
CIRRF. Back tools would map CIRRF to a specific target.
Loop and array transformations are dealt with in the front
tools; target-specific optimizations are implemented in the
back tools. CIRRF is designed to be both language and
target independent. It differs from traditional compiler IRs
in that it supports concurrency, both explicitly and
implicitly, as well as the instantiation of and accesses to
on-chip storage structures. It records information about
loop types, memory interfacing, instruction predication and
pipelining. Special instructions for efficient data-path
generation are introduced.

In this paper we describe an initial implementation of
CIRRF as part of the ROCCC compiler for translating C to
VHDL. The rest of this paper is organized as follows:
Section two reviews related work; Section three presents

CIRRF’s architecture; Section four discusses a case; and
section five concludes the paper.

2. RELATED WORK

The Streams-C [1] has three distinguished objects -
processes, streams and signals - in the user-input
abstraction. Abstract Syntax Tree (AST) is used to
partition a process into the data-path, encompassing basic
blocks and pipeline blocks, and control flow. A state
machine is generated for the control flow in the AST.
User-defined input or output streams form the interfaces
with memories.

Trident [2] uses LLVM (Low Level Virtual Machine
[3]) as a C/C++ front-end to produce low-level object
code. The low-level object code is transformed into a
predicated IR.

SA-C [4]’s input is a single-assignment high-level
synthesizable language. The SA-C compiler translates
loops into a data-dependence and control-flow (DDCF)
graph. A DDCF graph is flattened into a token-driven data-
flow graph. The DFG is eventually translated into an
abstract hardware architecture graph, which includes
timing information.

Pegasus [5] is the IR of the CASH compiler. Pegasus
decomposes a Control Flow Graph (CFG) into
hyperblocks, and hyperblocks are connected by merge and
other specialized nodes.

3. CIRRF ARCHITECTURE

CIRRF is the IR set of our high-level synthesis compiler,
the ROCCC (Riverside Optimizing Compiler for
Configurable Computing) compiler. ROCCC is built using
SUIF2 [7] and Machine-SUIF [8]. CIRRF consists of two
distinct but equivalent representations [Figure 1]. The Hi-
CIRRF format is essentially C code augmented with
macros while the Lo-CIRRF format is semantically similar
to assembly code. The advantage of this approach, which is
commonly used in various compiler IRs, is that it allows
the user to have multiple levels of entry into the IR.

Hi-CIRRF

 = C + macros low level statements

user directives

Lo-CIRRF

Figure 1 – CIRRF overview

Debugging, for example, would a lot easier at the Hi-
CIRRF level. A functional-cycle-accurate simulation of the
generated code would be feasible at the Lo-CIRRF level.
The macros in Hi-CIRRF are used to:
• Instantiate and access buffers.
• Indicate pipelining and clock-cycle level hardware

timing constrains. For example: imply back-end to
instantiate registers to eliminate recurrence; enforce a
pipeline delay for IP wrapper generation.

• Invoke hardware bitwise and arithmetic operations,
such as bit-insert, bit-extract, and minimum of two
values.

• Invoke hardware look-up tables and IP cores.
In Lo-CIRRF the code is similar to assembly code. It
consists of a data and control flow graph with the
following characteristics:
• Virtual statically single assigned registers.
• Register name indicates type (signed, unsigned) and

bit size.
• Predicators of predication-guarded instructions and

pipelining information of controller-controlled
instructions.

3.1. Hi-CIRRF
The ROCCC system performs conventional loop
transformations. It also carries out the following hardware-
specific analysis and transformations.
Scalar replacement. The front-end decouples a do-all
loop’s array accesses from computation. Figure 2 (a)
shows the original C code of a gray scale transformation
example. After undergoing scalar replacement, the
computation is isolated from memory accesses [Figure 2
(b)] by a smart buffer. The smart buffer will be synthesized
on configurable fabrics as the interface with memory. One
important characteristic of smart buffers is that they reuse
input data between iterations and push one iteration’s input
data initiatively to the data-path, rather than being accessed
by the data-path [9]. For a 3x3 window sliding over a two-
dimensional array, without the smart buffer, each pixel
needs to be read nine times from memory, while a smart
buffer reduces the memory access to three times. A smart
buffer of an unrolled loop can save more memory access.
The syntax of a two-dimensional smart buffer macro is:
smartbuffer2(input_array_name,address_index_1,
address_index_2, scalar_1, offset_1_1, offset_1_2,
 scalar_2, offset_2_1, offset_2_2, ……);
For example, in the smart buffer macro in Figure 2 (b), the
last three parameters (x4, 1, 1) stands for:

x4 = a[i+1][j+1];
The syntax of FIFO buffers is similar. Currently we have
the following constraints on buffer macros. An array can
only appear in at most one buffer macro. The address
indexes of buffers are also the loop counters. The operator
between an address index variable and the offset can only
be either addition of subtraction.

Feedback variable detection. The compiler detects scalar
recurrence between adjacent iterations. For example, for a
loop having a statement “sum = sum + a[i]”, to eliminate
the loop-carried dependency, the compiler replaces the sum
on the left and the sum on the right with store2next() macro
and load_previous() macro, respectively. These macros
guide the back-end to instantiate a feedback register to
store the current sum for the next iteration, and
consequently transform the loop to a do-all-loop.

The output from the front-end is in the forms of both
an IR file and an intermediate C with macros. Users could
do further optimizations and add pragmas onto the
intermediate C.

3.2. Lo-CIRRF
Starting from a conventional CFG, the compiler finds loops
and loop-depth. Loop types are recorded in the IR by
recovering them from user-added pragmas: Currently, these
include one-dimensional do-all loop, two-dimensional
perfect nested do-all loop, and non-do-all loop. The pre-
process phase of the back-end converts macros in Hi-
CIRRF into corresponding instructions. Particularly, buffer
macros are converted into buffer instructions and put into
separated nodes.

We categorize basic nodes into two types: do-all nodes
and non-do-all nodes. Lo-CIRRF records different data-
flow and scheduling information accordingly.

3.2.1. Building Lo-CIRRF for do-all nodes
For a do-all loop, Lo-CIRRF provides field to exploit both
instruction-level and loop-level parallelisms. The compiler
performs if-converse in a way that any node has at most
two predecessors.

In order to allow the data-path to execute multiple
loops simultaneously, the IR has a “execution level” field
for each instruction inside a do-all node so that each level is
an instantiation of one iteration. Statically single assigned

Figure 2 – A gray scale transformation example in C

variables are added by the compiler to duplicate a variable
if that variable’s definition reaches more than one level of
execution lower. Thereby, any variable’s definition is
always one execution level higher. Multiplexers are added,
and speculators are duplicated and propagated along with
execution levels. Notice that each execution level represents
a single iteration at a given execution phase.

Lo-CIRRF provides another field, “pipeline stage” to
record pipelining information. The instructions belonging
to the same execution level are either all latched or all non-
latched. Multiple consecutive execution levels may be
assigned into the same pipeline stage. Having both
execution level and pipeline stage separates data-flow
building and pipelining, and provides compiler designers
the opportunity to implement different pipelining strategies.

The compiler generates the smart buffers and output
FIFOs in VHDL at compile time [9], as well as the data-
paths [6].

3.2.2. Building Lo-CIRRF for non-do-all nodes
A non-do-all basic node either belongs to a non-do-all loop
or does not belong to any loop at all. Multiple instructions
might belong to the same execution level and can be
executed simultaneously to exploit instruction level
parallelism. Notice that for a non-do-all basic node, at most
one iteration is executed at a time.

Lo-CIRRF has a predication field for each instruction
to schedule the execution of non-do-all nodes. Each
pipeline stage is guarded by a predicator. The format is:

ADD $vr4, $vr3, $vr2, $vr1
vr4 is the destination operand and vr3 and vr2 are the
source operands. vr1 is the predicator, which is also a
source operand. Predicators are passed inside basic nodes
for scheduling purpose. A special instruction, PFW
(predicator forward), is used to pass a predicator from the
current stage to the next stage, which may be or may not be
in the same node:

PFW $vr2.u1, $vr1.u1
vr1 and vr2 are two predicators. The instructions guarded
by vr2 are one pipeline stage later than the ones guarded by
vr1. Their types are u1, which stands for unsigned one-bit.

The branch instructions of basic nodes are replaced by
Boolean instructions, whose destination operands are
evaluated by this basic node’s successor nodes.

Essentially, Lo-CIRRF describes a DFG, in which do-
all loop nodes are connected together by non-do-all nodes.
Then the compiler’s VHDL generator emits VHDL code
for the entire DFG, including buffers, at compile time.

4. CASE STUDY

In this case study, besides reporting the synthesis results of
the gray scale transformation example discussed in
previous sections, we examine CIRRF on another
application, an alternative finite impulse response filter

flag = 1;

 for (m = 0; m < 10; m = m + 1) {

 if(flag == 1) {

 for(i = 1; i < 251; i = i + 1)

 b[i]=(3*a[i-1]+5*a[i])+(7*a[i+1]+9*a[i+2])+11*a[i+3]; }

 else {

 for(j = 1; j < 251; j = j + 1)

 d[j]=(3*c[j-1]+5*c[j])+(7*c[j+1]+9*c[j+2])+11*c[j+3]; }

 flag = flag ^ 1;

 }

 return; }

The first highlighted segment is a 5-tap FIR reading array

a and writing array b, while the second highlighted

segment is a 5-tap FIR reading array c and writing array d.

flag switches the execution of these two segments

alternatively. The two inner loops are do-all loops, while

the outer loop (the one with loop counter m) is not.
Figure 3 – An alternative FIR example in C

Figure 4 – The DFG and IR of alternative FIR

(FIR).
Figure 3 shows the original C code. The two do-all

inner loops (the two highlighted regions) are executed
alternately. Each of these two inner loops is a 5-tap FIR.

Each FIR’s loop body is aggressively pipelined, and
the resulting data-path has a throughput of one iteration per
clock cycle [Figure 4 (a)]. All the non-do-all nodes are
predicated. We list the instructions of these nodes in Figure
4 (b). Node 2 and node 10 are the head and tail nodes of
the outer loop, respectively. The first instruction of node 2,
the ior instructions, produces the predicator (vr1321) for
the two instructions below it (pfw and sle) by examining a
valid output predicator from either node 1 (not shown), the
first active node; or node 11, the loop tail. Figure 4 (c)
depicts node 2’s circuit in detail. Guarded by vr1321, the
sle instruction asserts its destination operand when the
outer loop is done, or de-asserts its destination operand
when needing to execute a new outer loop iteration. Node
2’s pfw instruction forwards a valid vr1321 to the two
successor nodes, node 3 and node 11, for their predicator
evaluation. Node 3 enables one of the two FIRs by either
asserting or de-asserting vr1325, depending the value of
flag (vr78). Node 10 is activated by the done signal from
one of the FIRs’ loop controller and updates the value of
flag (vr230) and the loop counter m (vr233). Node 11
indicates the completion of the whole procedure.

Table 1 shows the synthesis results of the gray scale
transformation example discussed in previous sections and
the alternative FIR. The targeting FPGA is Xilinx
xc2v8000-5 with 46592 slices in total. The generated
VHDL are synthesized and placed-and-routed using Xilinx
ISE 6.2.03i. The second and the third columns are the data-
path’s bit-size and BRAM bus’s bit-size. # of slices and
clock rate are collected from place-and-route reports. The
last column is the number of do-all loop iterations executed
per clock cycle. For gray scale transformation, the
resulting data flow is capable of executing one iteration
every clock cycle. Notice we configure the BlockRAM’s
data bus (the third column) to have the same bit-size as that
of the data elements (pixels), and every iteration needs four
(2x2) pixels. Though the smart buffer reuses one column
of the pixels loaded in the previous iteration, it still needs
two cycles to load the remaining two new pixels. This
explains the reason that for the gray scale transformation
example, the number of iterations per cycle is 0.5. For the
alternative FIR, when either one of the two do-all loops is
active, the corresponding smart buffer exports one window
of data (five elements) to the data-path every clock cycle,
and therefore the circuit executes one iteration per cycle. #

of slices consists of the hardware of two do-all loops
(including the data-path and controller for each FIR) and
the hardware of the non-do-all nodes, as shown in Figure 4
(a).

5. CONCLUSION

We have presented CIRRF, an intermediate representation
for compiling high-level languages to reconfigurable
fabrics. CIRRF has two parts, Hi-CIRRF and Lo-CIRRF.
Hi-CIRRF is essentially C with macros. The macros are
used to record information associated with buffers,
pipelining, look-up tables, special operations etc. Lo-
CIRRF decomposes conventional CFGs into do-all loop
nodes and non-do-all nodes. The loop body instructions of
a do-all loop are placed into execution levels. Each
execution level is an instantiation of one iteration at
different execution phases. Lo-CIRRF provides a platform
for the compiler to aggressively pipeline do-all loops. Non-
do-all nodes are predicated in Lo-CIRRF and predicators
are passed within and between nodes.

We have shown, through case studies, how CIRRF
models the application examples and provides a solid
foundation for the compiler to generate efficient hardware.

6. REFERENCES

[1] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Lalinowski.
Stream-oriented FPGA computing in the Streams-C high
level language. In IEEE Symp. on FPGAs for Custom
Computing Machines (FCCM), 2000.

[2] J. Tripp, K. Peterson, C. Ahrens, J. Poznanovic, M. Gokhale.
Trident: An FPGA Compiler Framework for Floating-Point
Algorithms, int. Conference on Field Programmable Logic
and Applications (FPL 2005). Finland, 2005

[3] The LLVM Compiler Infrastructure. http://llvm.org/ 2006
[4] W. Najjar, W. Böhm, B. Draper, J. Hammes, R. Rinker, R.

Beveridge, M. Chawathe and C. Ross. From Algorithms to
Hardware - A High-Level Language Abstraction for
Reconfigurable Computing. IEEE Computer, August 2003.

[5] M. Budiu and S. C. Goldstein. Pegasus: An efficient
intermediate representation. Technical Report CMU-CS-02-
107, CMU, May 2002.

[6] Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers. Optimized
Generation of Data-path from C Codes for FPGAs, Int.
ACM/IEEE Design, Automation and Test in Europe
Conference (DATE 2005). Munich, Germany, March, 2005.

[7] SUIF Compiler System. http://suif.stanford.edu, 2006
[8] Machine-SUIF. 2006

http://www.eecs.harvard.edu/hube/research/machsuif.html
[9] Z. Guo, B. Buyukkurt, W. Najjar. Input Data Reuse In

Compiling Window Operations Onto Reconfigurable
Hardware, Proc. ACM Symp. On Languages, Compilers and
Tools for Embedded Systems (LCTES), Washington, DC,
June 2004.

Table 1 - Synthesis results of case study examples

 DP-size
(bit)

mem bus
bit-size

of
slices

clock
(MHz)

iter. per
cycle

gray scale tran. 16 16 318 59.7 0.5
altern. FIR 8 8 531 100 1

