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A COMPLEMENTARY SET THEORY FOR QUATERNARY
CODE DESIGNS

BY RAHUL MUKERJEE1 AND BOXIN TANG2

Indian Institute of Management Calcutta and Simon Fraser University

Quaternary code (QC) designs form an attractive class of nonregular fac-
torial fractions. We develop a complementary set theory for characterizing
optimal QC designs that are highly fractionated in the sense of accommodat-
ing a large number of factors. This is in contrast to existing theoretical results
which work only for a relatively small number of factors. While the use of
imaginary numbers to represent the Gray map associated with QC designs fa-
cilitates the derivation, establishing a link with foldovers of regular fractions
helps in presenting our results in a neat form.

1. Introduction. Fractional factorial designs have received much attention
due to their theoretical elegance and practical applicability to such diverse fields
as engineering, agriculture and medicine. While the literature on regular designs
arising from defining equations is now quite rich, in recent years it has been in-
creasingly recognized that nonregular designs can potentially perform even better.
See [6, 12, 15] for detailed reviews and further references.

A significant development in nonregular two-level designs over the last few
years has been the use of quaternary codes (QC) for construction of such designs,
henceforth referred to as QC designs. Xu and Wong [16] pioneered work in this
direction and this was followed up by [7–9, 18]. As noted by these authors, QC
designs can have an edge over their regular counterparts under commonly used
criteria. Moreover, these designs are relatively straightforward to construct and
have simple design representation.

The present article aims at developing a theory for optimal QC designs which
accommodate a large number of factors and hence are attractive from the practi-
cal viewpoint of experimental economy. Our theory covers, in particular, highly
fractionated designs with relatively large run sizes. These have been hitherto unex-
plored in the context of QC designs but, as discussed in [14], can be of much use
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in modern day applications. For instance, our findings are applicable to run sizes
128, 256, 512 and 1024 with 96–112, 224–240, 448–480 and 960–992 factors,
respectively. No result, either computational or theoretical, is as yet available on
optimal QC designs in these cases. For example, the 128- or 256-run design tables
in [16] cover up to 64 factors. On the other hand, the results in [7, 9, 18] on 1/4th,
1/8th, 1/16th or 1/64th fractions, though theoretically appealing, are applicable
only when the number of factors is small compared to the run size, for example,
they together cater only to the cases of 10, 11, 12 or 14 factors for run size 256.

Indeed, the existing approaches for theoretical study of QC designs, such as
those based on induction [9], trigonometric formulation [18] or code arithmetic [7],
get increasingly involved and unmanageable as the degree of fractionation in-
creases. To overcome this difficulty, we develop a complementary set theory, via
the use of imaginary numbers, which considerably facilitates the task of finding
optimal QC designs in such situations. While the use of complementary sets for
the study of QC designs is inspired by the corresponding development in the reg-
ular case [2, 3, 11], neither our final results nor their method of derivation can be
anticipated from the latter.

The commonly used optimality criteria in selecting factorial fractions are res-
olution, aberration and projectivity, as introduced briefly later in this section. In
our setup where the number of factors exceeds half the run size, regular designs
have resolution three and projectivity two, while following [5, 16], QC designs
have resolution at least 3.5 and projectivity at least three. In other words, with re-
gard to resolution and projectivity, QC designs have an edge over regular ones. So,
there will be a strong case in favor of QC designs, justifying their use in practice,
provided they compete well with regular designs under the minimum aberration
(MA) criterion as well. This necessitates identification, in our highly fractionated
setup, of minimum aberration quaternary code (MA QC) designs, which is pre-
cisely the focus of the present work. Thus, in addition to strengthening the cur-
rently available theory of QC designs, our results facilitate their comparison with
regular MA designs and help in making a choice between the two.

Before concluding the Introduction, we briefly recall some definitions. A two-
level design D in N runs and q factors is represented by an N × q matrix with
elements ±1, where the rows and columns are identified with the runs and fac-
tors, respectively. The aliasing index of any subset H of k columns of D is de-
fined as ρk(H ;D) = |mean{Schur(H)}|. Here Schur(H ) is the Schur product of
the columns in H , that is, each element of Schur(H ) is the product of the corre-
sponding elements of the columns in H , and mean {Schur(H)} is the arithmetic
mean of the elements of Schur(H ); see [4, 5]. Clearly, we have 0 ≤ ρk(H ;D) ≤ 1.
The columns in S are fully aliased, partially aliased or unaliased according as
ρk(H ;D) equals 1, lies strictly between 0 and 1, or equals 0, respectively. For
1 ≤ k ≤ q , let

ρk,max(D) = maxρk(H ;D), Ak(D) = ∑{
ρk(H ;D)

}2
,(1)
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the maximum and the sum being over all H of cardinality k. Write r for the
smallest integer such that ρr,max(D) > 0. Then the resolution of D is defined [5]
as R(D) = r + 1 − ρr,max(D), while the MA criterion calls for sequential min-
imization of the components of the vector (A1(D), . . . ,Aq(D)), known as the
wordlength pattern (WLP) of D [10, 17]. These definitions apply to all two-level
designs, regular or not, and reduce to the corresponding combinatorial definitions
in the regular case. Finally, following [1], design D is said to have projectivity
p if p is the largest integer such that every p-factor projection of D contains a
complete 2p factorial design, possibly with some points replicated.

2. Quaternary code designs in 22n runs and an even number of factors.

2.1. Preliminaries. Let C be the quaternary linear code given by the n × s

generator matrix G = [g1 · · ·gs] whose columns are n × 1 vectors, n ≥ 2, over
the set of integers Z4 = {0,1,2,3} (mod 4). The code C, consisting of 4n (= 22n)

codewords, each of size s, can be described as

C = {(
u′g1, . . . , u

′gs

)
:u = (u1, . . . , un)

′, uj ∈ Z4,1 ≤ j ≤ n
}
,(2)

where the primes stand for transposition and each of u′g1, . . . , u
′gs is reduced

mod 4. The Gray map, which replaces each element of Z4 with a pair of two
symbols according to the rule

0 → (1,1), 1 → (1,−1), 2 → (−1,−1), 3 → (−1,1),(3)

transforms C into a binary code D, called the binary image of C. With its code-
words as rows, D is a 22n × (2s) matrix having entries ±1. In this sense, with
columns and rows identified with factors and runs, respectively, D represents a
QC design in 2s two-level factors and 22n runs.

In order to meet the essential design objective of keeping all main effects or-
thogonally estimable at least when interactions are absent, the QC design D con-
structed as above must be an orthogonal array of strength two. Xu and Wong [16]
showed that D meets this basic requirement if and only if (a) none of g1, . . . , gs

has each entry even, that is, 0 or 2, and (b) no two of these vectors are multiples
of each other over Z4. They also noted that if these conditions hold, then D has
resolution at least 3.5 and hence projectivity at least three. So, hereafter we con-
sider only those QC designs which satisfy (a) and (b). Then each g1, . . . , gs has
an odd element and, without loss of generality, the first odd element in each of
these is 1. Following [16] again, there are altogether v = (4n − 2n)/2 such vectors
over Z4. Let � be the collection of these v vectors. For example, if n = 2, then
� = {(0,1)′, (1,0)′, (1,1)′, (1,2)′, (1,3)′, (2,1)′}. The task of obtaining an MA
QC design then amounts to finding a subset S = {g1, . . . , gs} of � such that the
design D arising from G = [g1 · · ·gs] sequentially minimizes A3(D), . . . ,Aq(D),
where q = 2s. The first two terms of the WLP, A1(D) and A2(D), are dropped
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here since they equal zero for any such D. The case s = v is trivial, for then S = �

is the unique choice of S. Therefore, in the rest of this section, we consider s < v.
For highly fractionated designs which form our main focus, s is large. Hence,

instead of considering S = {g1, . . . , gs} directly, it will be more convenient and
insightful to work with S̄, the complement of S in �. This is motivated by what one
does in the study of regular designs, but there are major differences. For example,
the counterpart of � in the regular case is a finite projective geometry, while the
vectors in our � are not even on a finite field. This warrants the development of
new techniques of proof for the present problem.

2.2. MA criterion in terms of complementary set. We now proceed to formu-
late the MA criterion in terms of the complementary set S̄ introduced above. To
that effect, from (2) note that the 22n rows of D can be indexed by the 22n vectors
u = (u1, . . . , un)

′ over Z4. Let � be the collection of all such u. For any u (∈ �),
write θ ′

u for the corresponding row of D. Clearly, as D has 2s columns and ele-
ments ±1, θ ′

uθw = 2cuw −2s, where cuw is the number of coincidences between θ ′
u

and θ ′
w . In view of the equivalence between the MA and minimum moment aberra-

tion (MMA) criteria as established in [13], it is clear that sequential minimization
of A3(D), . . . ,Aq(D) is equivalent to that of M3(D), . . . ,Mq(D), where

Mk(D) = ∑
u∈�

∑
w∈�

(
θ ′
uθw

)k
, 3 ≤ k ≤ q.(4)

In order to achieve further simplification, taking due cognizance of the structure
of a QC design, let i = √−1 and, for any integer z, write

ψ(z) = (
iz + i3−z)/(1 − i).(5)

Since the Gray map (3) is equivalent to z → (ψ(−z),ψ(z)), z ∈ Z4, by (2), the
row θ ′

u of D can be written explicitly as

θ ′
u = (

ψ
(−u′g1

)
,ψ

(
u′g1

)
, . . . ,ψ

(−u′gs

)
,ψ

(
u′gs

))
.(6)

For any u ∈ �, let σu be the sum of the elements of θ ′
u. Then, from (5) and (6),

after some algebra,

θ ′
uθw = σu−w, u,w ∈ �,(7)

where u − w is reduced mod 4; cf. Theorem 3 in [16]. Now, for any fixed w ∈ �,
as u equals every member of �, so does u − w. Hence, by (4) and (7), Mk(D) =
22nmk(D), where

mk(D) = ∑
u∈�

σk
u , 3 ≤ k ≤ q,(8)

and sequential minimization of A3(D), . . . ,Aq(D) reduces to that of m3(D), . . . ,

mq(D). Note that the mk(D) involve only the row totals of D rather than scalar
products of rows, and hence are much simpler than the Mk(D).
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We next express the σu and hence the quantities mk(D) in terms of the comple-
mentary set S̄. Recall that S = {g1, . . . , gs}. Hence, if we write � = {g1, . . . , gv},
where v = (4n − 2n)/2 as before, then S̄ = {gs+1, . . . , gv}. Analogously to D, let
D̄ be the QC design, in 2(v − s) two-level factors and 22n runs, arising from the
generator matrix Ḡ = [gs+1 · · ·gv]. For u ∈ �, write σ̄u as the sum of elements of
the row of D̄ which is indexed by u. By (5) and the counterpart of (6) for D̄,

σ̄u =
v∑

j=s+1

(
iu

′gj + i−u′gj
)
, u ∈ �.(9)

Also, let �0 consist of the 2n vectors in � which have all elements even, and define
δu as 1 or 0 according to whether u belongs to �0 or not. Trivially, by (5), (6) and
(9),

σu = 2s, σ̄u = 2(v − s) if u = (0, . . . ,0)′.(10)

The following lemma connects σu and σ̄u for nonnull u.

LEMMA 1. Let u(∈ �) be nonnull. Then σu = −(2nδu + σ̄u).

By (8), (10) and Lemma 1, mk(D) = constant + (−1)km̄k for each k, where

m̄k = ∑
u∈�

(
2nδu + σ̄u

)k
,(11)

and the constant does not depend on D. Hence, in the quest of an MA QC design,
one needs to find S̄ so as to maximize m̄3, then minimize m̄4, then maximize m̄5,
and so on.

2.3. Characterization of MA designs. Since each gj has an odd element,
from (9), (11) and the definitions of �0 and δu, arguments similar to but sim-
pler than those in the proof of Theorem 1 below show that m̄3 = constant + F3,
where the constant does not depend on S̄ and

F3 = 3
(
2n) ∑

u∈�0

σ̄ 2
u + ∑

u∈�

σ̄ 3
u .(12)

We first explore S̄ so as to maximize m̄3 or, equivalently, F3. The set S̄ =
{gs+1, . . . , gv} is called even if gj + gk has all elements even for every s + 1 ≤
j, k ≤ v. Then the following theorem, which is a main result of this section, holds.

THEOREM 1. (a) The inequality F3 ≤ 3(22n+2)(v − s)2 holds for every S̄.
(b) Equality holds in (a) if and only if S̄ is even.

In order to apply Theorem 1, one needs to know when an even set S̄ exists. The
next lemma settles this issue.
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LEMMA 2. There exists an even set S̄ if and only if v − s ≤ 2n−1.

For v − s ≤ 2n−1, Theorem 1 and Lemma 2 significantly reduce the prob-
lem of finding an MA QC design, since one needs to consider only sets S̄ =
{gs+1, . . . , gv}, which are even. Then each row of Ḡ = [gs+1 · · ·gv] has either
all elements odd or all elements even. Indeed, Ḡ has a row with all elements odd,
because S̄ ⊂ �. Since the row space of Ḡ remains invariant under elementary row
operations, without loss of generality, let

Ḡ =
[

1 1′
v−s−1

0n−1 2B

]
,(13)

where 0n−1 is the column vector of n − 1 zeros, 1′
v−s−1 is the row vector of v −

s − 1 ones, and B is an (n − 1) × (v − s − 1) binary matrix. Clearly, B can be
interpreted as the generator matrix of a regular design, say, d , in v − s − 1 two-
level factors and 2n−1 runs (these runs are not distinct in case B has less than full
row rank). Our next theorem characterizes the MA property of S̄ in terms of the
much simpler regular design d . Here Ak(d), k ≥ 1, denotes the WLP of d and
A1(d) = A2(d) = 0, because the columns of Ḡ are distinct and, as a result, those
of B are distinct and nonnull.

THEOREM 2. Let v − s ≤ 2n−1. Then S̄ yields an MA QC design in 2s factors
and 22n runs if and only if the matrix B is so chosen that the associated two-level
regular design d sequentially minimizes A2r−1(d) + A2r (d), for r = 2,3, . . . , etc.

Theorem 2 suggests a connection with the full foldover of d , a point which is
confirmed by its proof in the Appendix. To apply this theorem, one needs to con-
sider all nonisomorphic choices of d and select one from among them meeting the
condition of the theorem. The extensive tables of two-level regular designs avail-
able in the literature are very useful in this regard. We now present two illustrative
examples followed by a design table where, for notational simplicity, any binary
column vector with 1 in positions h1, . . . , hr and zeros elsewhere is represented by
h1 · · ·hr . Thus, the binary matrix, with columns (1,0,0)′, (0,1,0)′, (1,1,0)′ and
(0,0,1)′ is denoted by [1 2 12 3].

EXAMPLE 1. Let n = 4, that is, v = 120, and v − s = 5. Then there are two
nonisomorphic choices of B , namely, [1 2 12 3] and [1 2 3 123]. Both entail
A3(d) + A4(d) = 1 and hence satisfy the condition of Theorem 2, leading to MA
QC designs in 230 factors and 256 runs.

EXAMPLE 2. Let n = 5, that is, v = 496, and v − s = 10. Table 3A.2 in [6]
lists all nonisomorphic choices of B along with the WLPs (A3(d), . . . ,A9(d)) of
the corresponding two-level regular designs d . These are as shown below:
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(i) B = [1 2 12 3 13 4 14 234 1234], WLP = (4, 14, 8, 0, 4, 1, 0);
(ii) B = [1 2 12 3 13 4 24 34 1234], WLP = (6, 9, 9, 6, 0, 0, 1);

(iii) B = [1 2 12 3 13 23 4 14 234], WLP = (6, 10, 8, 4, 2, 1, 0);
(iv) B = [1 2 12 3 13 23 4 14 24], WLP = (7, 9, 6, 6, 3, 0, 0);
(v) B = [1 2 12 3 13 23 123 4 14], WLP = (8, 10, 4, 4, 4, 1, 0).

The choice in (ii) uniquely minimizes A3(d)+A4(d) and hence yields an MA QC
design in 972 factors and 1024 runs. Incidentally, the design d associated with (ii)
does not itself have MA as a two-level regular fraction in 9 (= v − s − 1) factors
and 16 (= 2n−1) runs.

For each n = 3,4,5 and v − s ≤ 2n−1, Table 1 shows the columns of B so that
the associated d satisfies the condition of Theorem 2 and hence yields an MA QC
design in 2s factors and 22n runs. In the event of nonuniqueness as in Example 1,
only one such B is shown. The cases v − s = 0 and 1 are not considered in Table 1
because if v − s = 0, then S̄ = � is the unique choice of S̄, while if v − s = 1,
then the matrix B does not arise in (13) and it suffices to take S̄ as the singleton
set consisting of (1,0, . . . ,0)′.

3. Quaternary code designs in 22n runs and an odd number of factors.
A QC design with an odd number of factors is constructed as follows. First con-
struct a QC design Deven in 2(s + 1) two-level factors and 22n runs as in Section 2
starting from the generator matrix [g1 · · ·gs gs+1], where s + 1 ≤ v. Each vector
g1, . . . , gs, gs+1 contributes two columns to Deven via the Gray map (3). Delete a

TABLE 1
Choice of B leading to an MA QC design via Theorem 2

n = 3 n = 5
v − s Columns of B v − s Columns of B

2 1 2 1
3 1 2 3 1 2
4 1 2 12 4 1 2 3

5 1 2 3 4
n = 4 6 1 2 3 4 1234
v − s Columns of B 7 1 2 12 3 4 34
2 1 8 1 2 12 3 13 4 24
3 1 2 9 1 2 12 3 13 4 24 34
4 1 2 3 10 1 2 12 3 13 4 24 34 1234
5 1 2 12 3 11 1 2 12 3 13 23 4 14 24 34
6 1 2 12 3 13 12 1 2 12 3 13 23 123 4 14 24 34
7 1 2 12 3 13 23 13 1 2 12 3 13 23 123 4 14 24 124 34
8 1 2 12 3 13 23 123 14 1 2 12 3 13 23 123 4 14 24 124 34 134

15 1 2 12 3 13 23 123 4 14 24 124 34 134 234
16 1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234
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column of Deven to get a QC design Dodd in 2s + 1 factors and 22n runs. Without
loss of generality, suppose the second column contributed by gs+1 is deleted. Then
as in (6), the rows of Dodd are given by

θ ′
odd,u = (

ψ
(−u′g1

)
,ψ

(
u′g1

)
, . . . ,ψ

(−u′gs

)
,ψ

(
u′gs

)
,ψ

(−u′gs+1
))

,
(14)

u ∈ �.

Let σodd,u be the sum of the elements of θ ′
odd,u. By (5) and (14), analogously to (7),

for u,w ∈ �, the scalar product θ ′
odd,uθodd,w equals σodd,u−w or σodd,w−u accord-

ing to whether w′gs+1 is even or odd, respectively. Here u − w and w − u are
reduced mod 4. Hence, arguing as in Section 2, finding an MA QC design calls for
sequential minimization of mk(Dodd), 3 ≤ k ≤ q , where

mk(Dodd) = ∑
u∈�

σk
odd,u.(15)

It again helps to consider the set S̄ = {gs+1, . . . , gv} even though it is no longer
a truly complementary set because of the partial contribution of gs+1 to Dodd. Let

σ̄odd,u = ψ
(
u′gs+1

) +
v∑

j=s+2

{
ψ

(−u′gj

) + ψ
(
u′gj

)}
, u ∈ �.(16)

Evidently, σodd,u = σu + ψ(−u′gs+1) and σ̄odd,u = σ̄u − ψ(−u′gs+1) for each u,
recalling the definitions of σu and σ̄u. Hence, by (5) and (10), if u = (0, . . . ,0)′,
then σodd,u = 2s + 1 and σ̄odd,u = 2(v − s) − 1, while by Lemma 1, if u(∈ �)

is nonnull, then σodd,u = −(2nδu + σ̄odd,u). As a result, by (15), mk(Dodd) =
constant + (−1)km̄odd,k for each k, where

m̄odd,k = ∑
u∈�

(
2nδu + σ̄odd,u

)k
,(17)

and the constant does not depend on Dodd. Hence, as before, in order to obtain
an MA QC design, one needs to find S̄ so as to maximize m̄odd,3, then mini-
mize m̄odd,4, then maximize m̄odd,5, and so on. In particular, analogously to (12),
m̄odd,3 = constant + Fodd,3, where

Fodd,3 = 3
(
2n) ∑

u∈�0

σ̄ 2
odd,u + ∑

u∈�

σ̄ 3
odd,u.(18)

We now have the following counterpart of Theorem 1 for an odd number of
factors.

THEOREM 3. (a) The inequality Fodd,3 ≤ 3(22n){2(v − s) − 1}2 holds for ev-
ery S̄.

(b) Equality holds in (a) if and only if S̄ is even.
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For v − s ≤ 2n−1, by Theorem 3 and Lemma 2, only even sets S̄ = {gs+1, . . . ,

gv} need to be considered in order to find an MA QC design. Then the matrix Ḡ =
[gs+1 · · ·gv] can be represented as in (13) via a binary matrix B and the link with
the associated regular design d in v−s −1 two-level factors and 2n−1 runs is again
useful. As usual, denote the WLP of d by Ak(d), k ≥ 1, where A1(d) = A2(d) = 0.
Also, write A0(d) = 1 and Ak(d) = 0 for k > v − s − 1. For r = 2,3, . . . , define

E2r (d) =
2r∑

k=0

(
v − s − 1 − k

〈r − k/2〉
)

2kAk(d),(19)

where the combination is interpreted as zero if 〈r − k/2〉, which is the largest
integer in r − k/2, exceeds v − s − 1 − k.

THEOREM 4. Let v − s ≤ 2n−1. Then S̄ yields an MA QC design in 2s + 1
factors and 22n runs if and only if the matrix B is so chosen that the associated
two-level regular design d sequentially minimizes E2r (d), for r = 2,3, . . . , etc.

Since σ̄odd,u and m̄odd,k are more involved than their counterparts in Section 2, it
is natural that in general the E2r (d) in Theorem 4 look more complicated than the
A2r−1(d)+A2r (d) in Theorem 2. By (19), however, E4(d) = constant+8A3(d)+
16A4(d), where the constant does not depend on d . So, minimization of E4(d)

simply calls for that of A3(d) + 2A4(d) and, as shown below, this alone is often
helpful.

EXAMPLE 1 (continued). Let n = 4, that is, v = 120, and v − s = 5. Then out
of the two nonisomorphic choices of B , namely, [1 2 12 3] and [1 2 3 123], the
first one uniquely minimizes A3(d) + 2A4(d) and hence, by Theorem 4, yields an
MA QC design in 231 factors and 256 runs.

EXAMPLE 2 (continued). Let n = 5, that is, v = 496, and v − s = 10. Then
among the five nonisomorphic choices of B shown earlier, the one in (ii) uniquely
minimizes A3(d) + 2A4(d) and hence, by Theorem 4, yields an MA QC design in
973 factors and 1024 runs.

Indeed, for each n = 3,4,5 and v − s ≤ 2n−1, one can check that either (a) there
is a unique B up to isomorphism or (b) the B shown in Table 1 uniquely minimizes
A3(d) + 2A4(d) and hence, by Theorem 4, leads to an MA QC design in 2s +
1 factors and 22n runs. For v − s = 1, the matrix B does not arise in (13) and
one only has to take S̄ as the singleton set consisting of (1,0, . . . ,0)′. Therefore,
in conjunction with what was found in Section 2, we get, in particular, MA QC
designs in (i) 64 runs and 48–56 factors, (ii) 256 runs and 224–240 factors, and
(iii) 1024 runs and 960–992 factors. While the MA designs in (i) can be seen to
agree with those reported in [16], the ones in (ii) and (iii) are new.
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4. Quaternary code designs in 22n−1 runs. Consider again the 22n-run QC
designs D and Dodd, in 2s and 2s + 1 factors, introduced in Sections 2 and 3. Sup-
pose the last rows of the generator matrices, [g1 · · ·gs] for D and [g1 · · ·gs gs+1]
for Dodd, have all elements even. Then by (5), (6) and (14), the row indexed by
u = (u1, . . . , un)

′ in either design remains the same if un is replaced by un + 2
(mod 4), that is, the 22n runs of the design can be split into two identical halves.
Following [16], any one of these halves represents a 22n−1-run QC design. It has
the same number of factors and, by (1), the same WLP as the corresponding origi-
nal design D or Dodd, and hence has MA if and only if so does the original design.
Therefore, depending on whether the number of factors is even or odd, it suffices
to find an MA QC design D or Dodd based on a generator matrix as stated above
and then take one of its two identical halves as the final design in 22n−1 runs.

To adapt the complementary set theory for this purpose, observe that not all vec-
tors in the reference set � now qualify as columns of the generator matrix, but that
only the ones with last element even do so. Write �0 = {g1, . . . , gv0} for the collec-
tion of these qualifying vectors, where v0 = 4n−1 − 2n−1. Let S̄ = {gs+1, . . . , gv0}
be the complement of S = {g1, . . . , gs} in �0. Define σu, σ̄u, mk(D) and m̄k as
in Section 2, and σodd,u, σ̄odd,u, mk(Dodd) and m̄odd,k as in Section 3, with v re-
placed by v0 in σ̄u and σ̄odd,u; cf. (9) and (16). Then one can check that σu = 2s,
σ̄u = 2(v0 − s), σodd,u = 2s + 1 and σ̄odd,u = 2(v0 − s) − 1 if u has first n − 1
elements 0 and last element 0 or 2, and that the conclusion of Lemma 1 remains
unaltered for every other u. Therefore, despite working with �0 rather than �, we
still have mk(D) = constant + (−1)km̄k and mk(Dodd) = constant + (−1)km̄odd,k

for each k, where the constants do not depend on D or Dodd. Furthermore, in the
representation (13) for an even set S̄ via Ḡ, each vector in S̄ has last element even
and hence S̄ ⊂ �0, as required here.

From the above, it is evident that the findings in Sections 2 and 3 as well as
Table 1 continue to remain valid in the present setup, with v simply replaced by
v0, thus leading to 22n−1-run MA QC designs in 2s factors, 0 ≤ v0 − s ≤ 2n−1,
and 2s + 1 factors, 1 ≤ v0 − s ≤ 2n−1. As a result, we get, in particular, MA QC
designs in (i) 128 runs and 96–112 factors, and (ii) 512 runs and 448–480 factors.

EXAMPLE 3. Let n = 4, that is, v0 = 56, and v0 − s = 6. Then from Table 1,
B = [1 2 12 3 13] and, hence, by (13),

S̄ = {
(1,0,0,0)′, (1,2,0,0)′, (1,0,2,0)′, (1,2,2,0)′, (1,0,0,2)′, (1,2,0,2)′

}
.

If one (i) finds the complement S = {g1, . . . , gs} of S̄ in �0 and (ii) constructs a
design D in 100 factors and 256 runs from the generator matrix [g1 · · ·gs], then
any one of the two identical halves of D is an MA QC design in 100 factors and
128 runs.
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EXAMPLE 4. Let n = 5, that is, v0 = 240, and v0 − s = 7. Then from Table 1,
B = [1 2 12 3 4 34] and, hence, by (13),

S̄ = {
(1,0,0,0,0)′, (1,2,0,0,0)′, (1,0,2,0,0)′, (1,2,2,0,0)′, (1,0,0,2,0)′,

(1,0,0,0,2)′, (1,0,0,2,2)′
}
.

Now, if one (i) finds the complement S = {g1, . . . , gs} of S̄ in �0, (ii) con-
structs a design Deven in 468 factors and 1024 runs from the generator matrix
[g1 · · ·gs gs+1], where gs+1 = (1,0,0,0,0)′, and (iii) deletes the last column of
Deven (i.e., the second column contributed by gs+1) to get a design Dodd in 467
factors and 1024 runs, then any one of the two identical halves of Dodd is an MA
QC design in 467 factors and 512 runs.

5. Comparison with regular MA designs and concluding remarks. In a
highly fractionated setup, our results explore the best that can be achieved by QC
designs under the MA criterion and hence facilitate comparison with their regular
counterparts. Indeed, as seen below, MA QC designs obtained here compete very
well with MA regular designs. For illustration, we consider the cases of N = 128
and 256 runs and recall that for these N , our results yield MA QC designs for
96 ≤ q ≤ 112 and 224 ≤ q ≤ 240, where q is the number of factors.

For N = 128, MA QC designs have (i) the same WLP as MA regular designs
if 96 ≤ q ≤ 99 or 109 ≤ q ≤ 112, and (ii) the same A3 but a little larger A4 if
100 ≤ q ≤ 108. In the first case, MA QC designs clearly outperform MA regular
designs because of higher resolution and projectivity. For most practical purposes,
in the second case too the same features of MA QC designs far outweigh their
slightly higher aberration. For instance, if q = 103, then the A4 values for the
MA QC and MA regular designs are 35,707 and 35,705, respectively, while both
have A3 = 1360. Thus, the marginally larger A4 for the MA QC design is more
than compensated by the fact that it has projectivity at least three, while the MA
regular design has as many as 1360 three-factor projections which do not contain
a complete 23 factorial.

For N = 256, MA QC designs have (i) the same WLP as MA regular designs
if 224 ≤ q ≤ 227 or 237 ≤ q ≤ 240, and (ii) the same A3 but marginally larger
A4 if 228 ≤ q ≤ 236, for example, if q = 228, then the A4 values for the MA QC
and MA regular designs are 434,057 and 434,056, respectively, while both have
A3 = 7616. This has the same implications as before in favor of MA QC designs.
The same pattern is seen to persist for larger N .

It will be of interest to extend the present results to QC designs which are less
highly fractionated than the ones considered here, that is, for which the size of
S̄ exceeds 2n−1. In view of Lemma 2, then the bounds in Theorems 1 and 3 are
not attainable and, therefore, one cannot have neat results in terms of even sets.
However, Lemma 1 as well as Lemma 3 and equations (23), (24), (34), (35) in
the Appendix continue to hold and should be useful in replacing the bounds in
Theorems 1 and 3 by sharper, attainable ones. We conclude with the hope that the
present endeavor will generate more interest in this area.
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APPENDIX: PROOFS

PROOF OF LEMMA 1. For u ∈ �, consider the row of [DD̄] which is indexed
by u. This row is of the form (6) with s there replaced by v. Hence, by (5), analo-
gously to (9),

σu + σ̄u =
v∑

j=1

(
iu

′gj + i−u′gj
)
.(20)

By the definitions of �, � and �0, the union of the sets {gj ,−gj }, 1 ≤ j ≤ v,
equals � − �0. Hence by (20), σu + σ̄u = ∑

w∈� iu
′w − ∑

w∈�0
iu

′w . The lemma

now follows, noting that (i)
∑

w∈� iu
′w = 0 for nonnull u, (ii)

∑
w∈�0

iu
′w = 0 if

u has an odd element, and (iii)
∑

w∈�0
iu

′w = 2n if u has all elements even, since
then u′w = 0 mod 4, for every w ∈ �0. �

In order to prove Theorem 1, we require some notation and another lemma. For
any n×1 vector g with integer elements, define α(g) as 1 or 0 according to whether
g is null (mod 4) or not. Recall that S̄ = {gs+1, . . . , gv}. For s + 1 ≤ j, k, h ≤ v, let

βjkh = α(gj + gk + gh) + α(gj + gk − gh) + α(gj − gk + gh)
(21)

+ α(gj − gk − gh).

LEMMA 3. (a) For each j, k, h, βjkh = 0 or 1.
(b) For any fixed j, k, (i) βjkh = 0 for all h, if gj + gk has all elements even,

(ii) βjkh = 1 for at most two choices of h, otherwise.

PROOF. (a) This follows noting that the right-hand side of (21) cannot have
a pair of terms both of which equal 1. For instance, if the first two terms equal 1,
then gj +gk +gh = 0 (mod 4) and gj +gk −gh = 0 (mod 4). So 2gh = 0 (mod 4),
which is impossible as gh has an odd element. The same argument applies to any
other pair of terms.

(b) If gj + gk has all elements even, then the same holds for gj − gk . As gh

has an odd element, then all terms on the right-hand side of (21) vanish, that is,
βjkh = 0. Next, let gj + gk have an odd element. Then, by (21), βjkh = 1 if and
only if gh = ±(gj +gk) (mod 4) or gh = ±(gj −gk) (mod 4). Since −(gj +gk) =
3(gj + gk) (mod 4) and −(gj − gk) = 3(gj − gk) (mod 4), and no two vectors in
S̄ can be multiples of each other, it follows that βjkh = 1 for at most two choices
of h. �

PROOF OF THEOREM 1. (a) As in the proof of Lemma 1 but using a more
formal notation,∑

u∈�0

iu
′g = ∑

u∈�0

i−u′g = 2nα(2g),
∑
u∈�

iu
′g = ∑

u∈�

i−u′g = 22nα(g).(22)
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Let
∑(2) and

∑(3) denote double and triple sums on j, k and j, k, h over the ranges
s + 1 ≤ j, k ≤ v and s + 1 ≤ j, k, h ≤ v, respectively. By (9) and (22),∑

u∈�0

σ̄ 2
u = ∑(2) ∑

u∈�0

(
iu

′gj + i−u′gj
)(

iu
′gk + i−u′gk

)
(23)

= 2n+2
∑(2)

α(2gj + 2gk),

because 2gj − 2gk = 2gj + 2gk (mod 4). Similarly,
∑
u∈�

σ̄ 3
u = ∑(3) ∑

u∈�

(
iu

′gj + i−u′gj
)(

iu
′gk + i−u′gk

)(
iu

′gh + i−u′gh
)

(24)
= 22n+1

∑(3)
βjkh,

where βjkh is given by (21).
Observe that S̄ = {gs+1, . . . , gv} can be partitioned into t (≥ 1) mutually exclu-

sive and exhaustive nonempty subsets such that any gj + gk , s + 1 ≤ j, k ≤ v, has
all elements even if and only if gj and gk belong to the same subset. Denote the
cardinalities of these subsets by f1, . . . , ft . Then

f1 + · · · + ft = v − s,(25)

since S̄ has cardinality v − s. Clearly, S̄ is even if and only if t = 1. Now by (23),∑
u∈�0

σ̄ 2
u = 2n+2(

f 2
1 + · · · + f 2

t

)
,(26)

because α(2gj + 2gk) = 1 if and only if gj + gk has all elements even, that is, gj

and gk belong to the same subset of S̄ as described above. Similarly, by (24), (25)
and Lemma 3,

∑
u∈�

σ̄ 3
u ≤ 22n+2

t∑
l=1

t∑
r( �=l)=1

flfr = 22n+2{
(v − s)2 − (

f 2
1 + · · · + f 2

t

)}
.(27)

By (12) and (25)–(27),

F3 ≤ 22n+2{
(v − s)2 + 2

(
f 2

1 + · · · + f 2
t

)} ≤ 3
(
22n+2)

(v − s)2,(28)

which proves (a).
(b) By (25) and (28), equality holds in (a) only if f 2

1 + · · · + f 2
t = (f1 + · · · +

ft )
2, which holds only if t = 1, that is, the set S̄ is even. On the other hand, if S̄ is

even, then by (23), (24) and Lemma 3,∑
u∈�0

σ̄ 2
u = 2n+2(v − s)2,

∑
u∈�

σ̄ 3
u = 0.

Therefore, (12) yields F3 = 3(22n+2)(v − s)2, and equality holds in (a). �
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PROOF OF LEMMA 2. Only if: For an even set S̄ = {gs+1, . . . , gv}, the vectors
gs+1 + gj (mod 4), s + 1 ≤ j ≤ v, satisfy the following: (i) each of them has all
elements even, and (ii) no two of them add up to 2gs+1 (mod 4). Here (ii) is due
to the fact that no two vectors in S̄ are multiples of each other over Z4. Since there
are at most 2n−1 distinct n × 1 vectors over Z4 satisfying (i) and (ii), the only if
part follows.

If: There are 2n−1 distinct (n − 1) × 1 vectors over Z4, each of which has all
elements even. For v − s ≤ 2n−1, consider any v − s of these (n − 1) × 1 vectors,
say, g̃s+1, . . . , g̃v . Then the set S̄, consisting of the vectors (1, g̃′

j )
′, s + 1 ≤ j ≤ v,

is even and the if part follows. �

PROOF OF THEOREM 2. Let bs+2, . . . , bv denote the columns of B . For any
u = (u1, . . . , un)

′ ∈ �, writing u(2) = (u2, . . . , un)
′, from (9) and (13),

σ̄u = (
iu1 + i−u1

){
1 +

v∑
j=s+2

(−1)u(2)′bj

}
.(29)

Therefore, considering u1 = 0,1,2,3 separately, for any positive integer k,

∑
u∈�

σ̄ k
u = 2k{1 + (−1)k

} 3∑
u2=0

· · ·
3∑

un=0

{
1 +

v∑
j=s+2

(−1)u(2)′bj

}k

.(30)

Note that the quantities (−1)u(2)′bj , s +2 ≤ j ≤ v, remain unaltered if any element
uh of u(2) is replaced by uh + 2 (mod 4). Hence, (30) yields

∑
u∈�

σ̄ k
u = 2n+k−1{

1 + (−1)k
} 1∑

u2=0

· · ·
1∑

un=0

{
1 +

v∑
j=s+2

(−1)u(2)′bj

}k

(31)
= 2n+k−1{

1 + (−1)k
} ∑

x∈�

(1 + λx)
k,

where � is the collection of the 2n−1 binary column vectors of order n− 1, and for
any x ∈ �,

λx =
v∑

j=s+2

(−1)x
′bj .(32)

Also, by (29), for every u = (u1, . . . , un)
′ ∈ �0, σ̄u equals 2(v − s) or −2(v − s),

according to whether u1 = 0 or 2, respectively. For any nonnegative integer r ,
therefore,

∑
u∈� δuσ̄

r
u is a constant which does not depend on the choice of S̄.

Hence, by (11) and (31),

m̄k = constant + 2n+k
∑
x∈�

(1 + λx)
k if k is even,

= constant if k is odd,
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where the constants do not depend on S̄. Therefore, S̄ yields an MA QC design if
and only if the matrix B is so chosen as to sequentially minimize

∑
x∈�(1 +λx)

2r ,
for r = 2,3, . . . , etc.

Now from (32), observe that λx , x ∈ �, are the row (run) sums of the two-level
regular design d generated by B = [bs+2 · · ·bv]. Recall that d involves v − s − 1
two-level factors and 2n−1 runs. Write d̃ for the full foldover of d and note the
following:

(i) d̃ involves v − s two-level factors and 2n runs,
(ii) the row (run) sums of d̃ are ±(1 + λx), x ∈ �, because those of d are λx ,

x ∈ �,
(iii) in any two-level regular N -run design with rows (runs) ξ ′

1, . . . , ξ
′
N , the N

row sums occur equally often among the N2 scalar products {ξ ′
j ξk : 1 ≤ j, k ≤ N}

of the rows.

So, as in the passage from (4) to (8) in Section 2, sequential minimization of∑
x∈�(1 + λx)

2r , for r = 2,3, . . . , etc. amounts to choosing d so that its foldover
d̃ has MMA, and hence MA, among all such foldovers. Now the result follows if
we denote the WLP of d̃ by Ak(d̃), k ≥ 1, and note that A1(d̃) = A2(d̃) = 0, while
A2r−1(d̃) = 0, A2r (d̃) = A2r−1(d) + A2r (d), for r = 2,3, . . . , etc. �

We indicate only the key steps in the proofs of Theorems 3 and 4 which are
similar to but more elaborate than those of Theorems 1 and 2.

PROOF OF THEOREM 3. (a) By (5) and (16), analogously to (9),

σ̄odd,u = (
iu

′gs+1 + i3−u′gs+1
)
/(1 − i) +

v∑
j=s+2

(
iu

′gj + i−u′gj
)
, u ∈ �.(33)

Thus, using (22), along the lines of (23) and (24), but with heavier algebra,

∑
u∈�0

σ̄ 2
odd,u = 2n + 2n+2

{∑̃(1)

α(2gs+1 + 2gj ) + ∑̃(2)

α(2gj + 2gk)
}
,(34)

∑
u∈�

σ̄ 3
odd,u = 3

(
22n)∑̃(2)

βs+1jk + 22n+1
∑̃(3)

βjkh,(35)

where
∑̃(1)

denotes the sum on j over s + 2 ≤ j ≤ v, while
∑̃(2)

and
∑̃(3)

denote double and triple sums on j, k and j, k, h over s + 2 ≤ j, k ≤ v and
s + 2 ≤ j, k, h ≤ v, respectively.

Partition S̄ = {gs+1, . . . , gv} into t (≥ 1) mutually exclusive and exhaustive
nonempty subsets as specified in the proof of Theorem 1. The cardinalities
f1, . . . , ft of these subsets satisfy (25). Without loss of generality, let gs+1 belong

to the first of these subsets. Then
∑̃(1)

α(2gs+1 + 2gj ) = f ∗
1 , while, analogously
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to (26),
∑̃(2)

α(2gj + 2gk) = ∑t
l=1(f

∗
l )2, where f ∗

1 = f1 − 1 and f ∗
l = fl for

l ≥ 2. Hence, by (34),

∑
u∈�0

σ̄ 2
odd,u = 2n

{
1 + 4f ∗

1 + 4
t∑

l=1

(
f ∗

l

)2
}
.(36)

Also, by Lemma 3,
∑̃(2)

βs+1jk ≤ 2
∑t

l=2 f ∗
l , while, analogously to (27),

∑̃(3)
βjkh ≤

2{(∑t
l=1 f ∗

l )2 − ∑t
l=1(f

∗
l )2}, so that by (35),

∑
u∈�

σ̄ 3
odd,u ≤ 22n+1

{
3

t∑
l=2

f ∗
l + 2

(
t∑

l=1

f ∗
l

)2

− 2
t∑

l=1

(
f ∗

l

)2
}
.(37)

By (25), the sum of the nonnegative integers f ∗
1 , . . . , f ∗

t equals v − s − 1. There-
fore,

f ∗
1 ≤ v − s − 1,

t∑
l=1

(
f ∗

l

)2 ≤ (v − s − 1)2,

and, hence, from (18), (36) and (37), on simplification

Fodd,3 ≤ 22n

{
3 + 6(v − s − 1) + 4(v − s − 1)2 + 6f ∗

1 + 8
t∑

l=1

(
f ∗

l

)2
}

≤ 3
(
22n){

2(v − s) − 1
}2

,

which proves (a).
(b) It is easily seen that equality holds in (a) only if f ∗

1 = v − s − 1, that is,
f1 = v − s, which holds only if S̄ is even. On the other hand, if S̄ is even, then
by (34), (35) and Lemma 3,∑

u∈�0

σ̄ 2
odd,u = 2n + 2n+2{

v − s − 1 + (v − s − 1)2} = 2n{
2(v − s) − 1

}2
,

and
∑

u∈� σ̄ 3
odd,u = 0, so that by (18), equality holds in (a). �

Some notation and a lemma are needed for proving Theorem 4. With B as
in (13), the binary matrix [B B] generates a regular design, say, d0, in 2(v − s − 1)

two-level factors and 2n−1 runs. Denote the full foldover of d0 by d̃0. Let Ak(d0)

and Ak(d̃0), k ≥ 1, be the WLPs of d0 and d̃0, respectively. Clearly, A1(d0) = 0
and A2(d0) = v − s − 1, since the columns of [B B] are nonnull but identical in
pairs.

LEMMA 4. (a) Ak(d̃0) = 0, for every odd k, (b) A2(d̃0) = v − s − 1,
(c) A2r (d̃0) = E2r (d), for r = 2,3, . . . , where E2r (d) is given by (19).
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PROOF. While (a) holds for any full foldover design, (b) is obvious. To
prove (c), denote the columns of B by bs+2, . . . , bv and write [B B] = [b(1)

s+2 · · ·
b

(1)
v b

(2)
s+2 · · ·b(2)

v ], where b
(1)
j = b

(2)
j = bj , s + 2 ≤ j ≤ v. Then any set of h

columns of [B B], forming a word of length h of the design d0, has the structure
{b(l1)

j1
, . . . , b

(lk)
jk

} ∪ {b(1)
j , b

(2)
j : j ∈ J }, where k is such that h − k is a nonnegative

even integer, the columns bj1, . . . , bjk
constitute a word of length k of d , each of

l1, . . . , lk is either 1 or 2, and J is any subset, with cardinality (h − k)/2, of the
complement of {j1, . . . , jk} in {s + 2, . . . , v}. So

Ah(d0) = ∑(
v − s − 1 − k

(h − k)/2

)
2kAk(d),(38)

where the sum ranges over k = h,h − 2, . . . , etc. Now, A2r (d̃0) = A2r−1(d0) +
A2r (d0), since d̃0 is the full foldover of d0. Hence, (c) follows from (38), recalling
the definition of E2r (d) from (19). �

PROOF OF THEOREM 4. By (13) and (33), using the same notation as in (29),

σ̄odd,u = (
iu1 + i3−u1

)
/(1 − i) + (

iu1 + i−u1
) v∑
j=s+2

(−1)u(2)′bj , u ∈ �.

Hence, by (17), arguing as in the proof of Theorem 2, for any positive integer k,

m̄odd,k = constant + 2n
∑
x∈�

(1 + 2λx)
k if k is even,

= constant if k is odd,

where λx is given by (32) and the constants do not depend on S̄. Therefore, S̄

yields an MA QC design if and only if the matrix B is so chosen as to sequentially
minimize

∑
x∈�(1 + 2λx)

2r , for r = 2,3, . . . , etc. Again, as with Theorem 2, this
happens if and only if the full foldover design d̃0 in Lemma 4 has MA among all
such foldovers, because the row (run) sums of d̃0 are ±(1 + 2λx), x ∈ �, as those
of d are λx , x ∈ �. The result is now immediate from Lemma 4. �
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