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1 Département d’Informatique, Université Libre de Bruxelles
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Abstract. We present an abstract interpretation based approach to
solve the coverability problem of well-structured transition systems. Our
approach distinguishes from other attempts in that (1) we solve this
problem for the whole class of well-structured transition systems using
a forward algorithm. So, our algorithm has to deal with possibly infinite
downward closed sets. (2) Whereas other approaches have a non generic
representation for downward closed sets of states, which turns out to be
hard to devise in practice, we introduce a generic representation requiring
no additional effort of implementation.

1 Introduction

Model-checking is nowadays widely accepted as a powerful technique for the
automatic verification of reactive systems that have natural finite state abstrac-
tions. However, many reactive systems are only naturally modeled as infinite-
state systems. This is why a large research effort was done in the recent years
to allow the direct application of model-checking techniques to infinite-state
models. This research line has shown successes for several interesting classes
of infinite-state systems, for example: timed automata [1], hybrid automata [2],
fifo channel systems [3, 4], extended Petri nets [5, 6], broadcast protocols [7], etc.

General decidability results hold for a large class of infinite-state systems
called the well-structured transition systems, WSTS for short. WSTS are tran-
sition systems whose sets of states are well-quasi ordered and whose transition
relations enjoy a monotonicity property with respect to the well-quasi order.
Examples of WSTS are Petri nets [8], monotonic extensions of Petri nets (Petri
nets with transfer arcs [9], Petri nets with reset arcs [10], and Petri nets with
non-blocking arcs [11]), broadcast protocols [12], lossy channel systems [3]. For
all those classes of infinite-state systems, we know that an interesting and large
class of safety properties are decidable by reduction to the coverability problem.
The coverability problem is defined as follows: “given a WSTS for the well-quasi
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order �, and two states c1 and c2, does there exist a state c3 which is reachable
from c1 and such that c3 � c2 ?” (in that context, we say that c3 covers c2).

Broadly speaking, there are two ways to solve the coverability problem for
WSTS. The first way to solve the coverability problem is to explore backwardly
the transition system by iterating the pre operator1 starting from the set of
states that are greater or equal to c2. This simple procedure is effective when
very mild assumptions are met. In fact, for any well-quasi ordered set (X, �),
the following nice property holds: every �-upward closed2 set can be finitely
represented using its finite set of minimal elements3. This generic representation
of �-upward closed set is adequate as union and inclusion are effective. The
only further property that is needed for the procedure to be effective is that
given a finite set of minimal elements M defining an �-upward closed set U , it
must be possible to compute the finite set of minimal elements M ′ representing
pre(U). Higman’s lemma [13] on well-quasi orders ensure the termination of this
procedure.

The second way is to explore forwardly the transition system from the initial
state c1. Here, the situation is more complicated. A saturation method that iter-
ates the post operator4 from c0 can not lead to an algorithm as the reachability
problem is undecidable for WSTS. Recently, we have shown that the coverabil-
ity problem can be decided in a forward way by constructing two sequences of
abstractions of the reachable states of the system, one from below and one from
above [14]. The sequence of abstractions from below allows us to detect posi-
tive instances of the coverability problem and it is simply the bounded iteration
of post from the initial state. The abstraction from above is the iteration of an
overapproximation of post over downward closed set of states that becomes more
and more precise. This sequence allows us to decide negative instances of the
problem. This schema of algorithm is general but to be applicable to a given
class of WSTS, the user has to provide a, so called, adequate domain of limits.
This set is in fact a (usually infinite) set of abstract values that allows to repre-
sent any downward closed set. The situation is less satisfactory than for upward
closed set where there exists, as we have seen above, a simple and generic way
to represent upward closed set by sets of minimal elements. Such a generic way
of representing downward closed sets was missing and this problem is solved
here.

The contributions of this paper are as follows. First, we show that for any well-
quasi ordered set, there exists a generic and effective representation of downward
closed sets. To the best of our knowledge, this is the first time that such a generic
representation is proposed. An attempt in that direction was taken in [15] but the
result is a theory for designing symbolic representation of downward closed sets

1 A function that returns all the states that have a one-step successor in a given set
of states.

2 A set S is upward (resp. downward) closed if for any c such that c � s (resp. c � s)
for some s ∈ S we have c ∈ S.

3 Or a finite set of its minimal elements if � is not a partial order.
4 A function that returns all the one-step successors states of a given set of states.
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and not a generic symbolic representation of such sets. As a consequence, their
theory has to be instantiated for the particular class of WSTS that is targeted
and this is not a trivial task. Second, as downward closed sets are abstractions
for sets of reachable states in the forward algorithm, we formalize our generic
representation of downward closed set as a generic abstract domain. This allow
us to rephrase in a simpler way the forward algorithm, first proposed in [14],
in the context of abstract interpretation. Third, we show how to automatically
refine the abstract domain in order to obtain, in an efficient way, overapproxi-
mations that are guaranteed to be sufficiently precise to decide the coverability
problem.

Our paper is organized as follows. Section 2 presents some preliminaries.
Section 3 introduces the generic representation of downward closed sets. In Sec-
tion 4 we will be concerned with the abstract interpretation of WSTS. Section 5
is devoted to the refinement of the abstract domain. Section 6 shows on an ex-
ample how these techniques work. A version of the paper containing all proofs
is available at [16].

2 Preliminaries

2.1 Well-Quasi Ordered Sets

A preorder � is a binary relation over a set X which is reflexive, and transitive.
The preorder � is a well-quasi order (wqo for short) if there is no infinite se-
quence x0, x1, . . . , such that xi � xj for all i > j ≥ 0. A set M ⊆ X is said to
be canonical if for any distinct x, y ∈ M we have x � y. We say that M ⊆ S is
a minor set of S ⊆ X , if for all x ∈ S there exists y ∈ M such that x � y, and
M is canonical.

Lemma 1 (From [17]). Let (X, �) be a well-quasi ordered set (wqo-set for
short). For any set S ⊆ X, S has at least one finite minor set M .

We use min to denote a function which, given a set S ⊆ X , returns a minor set
of S. Let (X, �) be a wqo-set, we call x↓= {x′ ∈ X | x � x′} and x↑= {x′ ∈ X |
x′ � x} the �-downward closure and �-upward closure of x ∈ X , respectively.
This definition is naturally extended to sets in X . We define a set S ⊆ X to be
a �-downward closed set (�-dc-set for short), respectively �-upward closed set
(�-uc-set for short), iff S↓= S, respectively S↑= S. Examples of such sets are
given in Fig. 1. For any wqo-set (X, �), we define DCS(X) (UCS (X)) to be the
set of all �-dc-sets (�-uc-sets) in X . For any x ∈ X we define the �-equivalence
class of x, denoted [x], to be the set x↑ ∩x↓, i.e. the set of elements that are
�-equivalent to x. For A and B subsets of X , we say that A ≡ B if A↑= B↑.
Observe that A ≡ B iff for all a ∈ A there is a b ∈ B such that a � b, and vice
versa. We now recall a well-known lemma on �-uc-sets and �-dc-sets.

Lemma 2 (From [17]). Let (X, �) a wqo-set and an infinite sequence of �-
uc-set U0U1 . . . such that ∀i ≥ 0: Ui ⊆ Ui+1. There exists j ≥ 0: ∀j′ ≥ j : Uj =
Uj′ . Symmetrically, given an infinite sequence of �-dc-sets D0D1 . . . such that
∀i ≥ 0: Di ⊇ Di+1, there exists j ≥ 0: ∀j′ ≥ j : Dj = Dj′ .
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The wqo � is defined as follows
(a1, a2) � (b1, b2) if and only if
a1 ≥ b1 and a2 ≥ b2. The �-dc-
sets A and B are infinite �-dc-set
: A = {(x, y) ∈ N2 | y ≤ 1},
B = {(x, y) ∈ N2 | x ≤ 1}. On
the contrary, the �-dc-set C =
{(x, y) ∈ N2 | x ≤ 2 ∧ y ≤ 2} is
finite. The �-uc-set D is given by
{(x, y) ∈ N2 | x ≥ 3 ∧ y ≥ 2}. Note
that D has exactly one minor set
since � is a partial order.

Fig. 1. �-dc-sets and �-uc-sets in N2

We now introduce a lemma stating several facts about sets and their closure.
These facts are merely of technical interest and will be used subsequently.

Lemma 3.

1. For any S, S′ ⊆ X, S↓ ∩S′↑�= ∅ ⇔ S↓ ∩S′ �= ∅ ⇔ S ∩ S′↑�= ∅.
2. For any S, S′ ⊆ X, S↑⊆ S′↑⇔ ∀s ∈ S ∃s′ ∈ S′ : s � s′.
3. ∀s ∈ X, S ∈ UCS (X) : s ∈ S ⇔ ∃s′ ∈ min(S) : s � s′.

Lemma 3.2 and 3.3 suggest an effective representation of �-uc-sets: every �-
uc-set U can be finitely represented by min(U). For decidable well-quasi order
�, this readily gives us an effective procedure to check inclusion between two
�-uc-sets, to check membership and to compute union [18].

Notations. Sometimes we write s instead of the set {s}. Unless otherwise stated
the transitive and reflexive closure f∗ of a function f such that its domain and co-
domain coincide is given by

⋃
i≥0 f i where f0 is the identity and f i+1 = f i ◦ f .

Finally, let us recall the following property on sets that we will use without
mention in our proofs: A ⊆ B iff A ∩ (X \ B) = ∅.

2.2 Well-Structured Transitions Systems

In this paper we follow [19] in the definition of well-structured transition systems.

Definition 1. A well-structured transition system (WSTS) S is a tuple (X, δ, �)
where X is a (possibly) infinite set of states, δ ⊆ X × X is a transition relation
between states — we use the notation x → x′ if (x, x′) ∈ δ —, and �⊆ X × X
is a preorder between states such that the two following conditions hold: (i) � is
a wqo; and (ii) ∀x1, x2, x3 ∃x4 : (x3 � x1 ∧ x1 → x2) ⇒ (x3 →∗ x4 ∧ x4 � x2),
where →∗ is the reflexive and transitive closure of the transition relation (upward
compatibility)5. Moreover, we define an initialized WSTS (IWSTS) to be a pair
(S, x0) where S = (X, δ, �) is a WSTS and x0 ∈ X is the initial state. We
adhere to the convention that if S0 is an IWSTS then S is its WSTS.
5 Upward compatibility is more general than the compatibility used in [17].



A Complete Abstract Interpretation Framework 53

Let S = (X, δ, �) be a WSTS and T ⊆ X , post [S](T ) def= {x′ | ∃x ∈ T : x →
x′}. Analogously, we define pre[S](T ) as {x | ∃x′ ∈ T : x → x′}. We define
minpre[S](T ) def= min((pre [S](T↑))↑). To shorten notation, we write pre,minpre
and post if the WSTS is clear from the context. The following definition
follows [17].

Definition 2. An effective WSTS is a WSTS S = (X, δ, �) where both � and
→ are decidable and for all x ∈ X : minpre[S](x) is computable.

2.3 The Coverability Problem

The verification of safety properties on IWSTS reduces to the so called cover-
ability problem.

Problem 1. The coverability problem for IWSTS is defined as follows: “Given an
IWSTS ((X, δ, �), x0) and bad ∈ UCS (X), post∗(x0) ∩ bad = ∅? ”

In general, bad is an upward closed set of states where errors occur.
Two solutions to the coverability problem can be found in the literature.

The first one (see [17, 19]) is a backward approach based on the following two
lemmas:

Lemma 4 (From [19]). Given a WSTS S = (X, δ, �) and U ∈ UCS(X), (a)
pre∗(U) ∈ UCS (X), and (b) minpre∗(min(U))↑= pre∗(U).

Lemma 4, together with Lemma 1 and 2, show how to (symbolically) compute the
(possibly) infinite set pre∗(U) using the minor sets of �-uc-sets. Once pre∗(U)
is computed, or rather a finite representation using one of its minor set, one can
decide the coverability problem by testing if the initial state is in pre∗(U) by
using Lemma 3.3.

The second approach is a forward approach based on the notion of covering
set [20, 12]. The covering set Cover (S0) of an IWSTS S0 = (S, x0) is given by
Cover (S0)

def= post∗(x0)↓. The following lemma shows the usefulness of covering
sets to solve the coverability problem:

Lemma 5. Given an IWSTS S0 =((X, δ, �), x0) and bad ∈ UCS (X), Cover (S0)
∩ bad = ∅ if and only if post∗(x0) ∩ bad = ∅.

As already mentioned in the introduction, there are two difficulties to overcome
when trying to design a forward algorithm for the coverability problem:

1. Currently, there are no generic way to effectively represent and manipulate
�-dc-sets (as the one shown above for �-uc-sets). So, for every wqo-set
(X, �) one has to design a symbolic representation for the sets in DCS (X).

2. The set Cover (S0) is in general not effectively constructible, see [10] for de-
tails. As a consequence, all the algorithms based on its construction (except
the well-known Karp-Miller algorithm on Petri nets) may fail to terminate.
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To overcome those two difficulties:

1. In [15], the authors propose a methodology to design a symbolic representa-
tion of dc-sets. However the design of such a symbolic data-structure is far
from being trivial.

2. The authors of this paper proposed, in [14], an algorithmic schema called
expand, enlarge and check which can be instantiated for any class of WSTS
as long as a symbolic representation of dc-sets is provided (called there an
adequate set of limits).

In this paper, we provide, in our opinion, a much more satisfactory answer to
those two difficulties by providing, in the form of a generic abstract domain and a
generic abstract analysis, a completely generic algorithm to solve the coverability
problem for WSTS.

3 A Generic Abstract Domain

In this section, we present a parametrized abstract domain that allows us to
represent any �-dc-set in a wqo-set (X, �). The parameter D is a finite sub-
set of X and it defines the precision of the abstract domain. We also show
that this parametrized abstract domain enjoys the following properties: (i) our
parametrized abstract domain defines a complete lattice, (ii) we define an ab-
straction and a concretisation function that is shown to be a Galois insertion,
(iii) any �-dc-set can be exactly represented by our parametrized abstract do-
main provided an adequate value for the parameter D is used, and (iv) each
�-dc-set has a finite representation.

Recall that the powerset lattice PL(A) associated to a set A is the complete
lattice having the powerset of A as carrier, and union and intersection as least
upper bound and greatest lower bound, respectively. In our setting the concrete
lattice is the powerset lattice PL(X) of the set of states X .

Fix a finite set D ⊆ X which is called the finite domain, the abstract lattice
DPL(D) has DCS (D) as a carrier, �D as the least upper bound operator, �D

as the greatest lower bound operator, and D and ∅ are the �D-maximal and
�D-minimal element, respectively. We define the relation �D over DCS (D) ×
DCS (D) such that for all P1, P2 ∈ DCS (D) : P1 �D P2 if and only if P1 ⊆ P2,
P1 �D P2

def= P1 ∪ P2, P1 �D P2
def= P1 ∩ P2. Notice that DPL(D) is complete

because the union and the intersection operations are closed in DPL(D). Given
an abstract lattice DPL(D), the abstraction and concretisation mappings are
given as follows:

∀E ∈ PL(X) : α[D](E) def= E↓ ∩D

∀P ∈ DPL(D) : γ[D](P ) def= {x ∈ X | x↓ ∩D ⊆ P} .

The set between brackets defines the parameter of the function and the set
between parentheses is its argument. For simplicity of notation, we also write
γ(P ), α(E), �, � and � if the parameter is clear from the context.
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We next show through an example that the finite domain D actually
parametrizes the precision of the abstract domain with respect to the concrete
domain.

Example 1. Let us consider the �-dc-sets of Fig. 1 and consider the following
finite domain D = {(0, 0), (3, 0), (0, 2), (0, 3)} depicted by the grey dots. Ap-
plying α on the �-dc-sets A, B and C give, respectively, the (abstract) sets
α(A) = {(0, 0), (3, 0)}, α(B) = {(0, 0), (0, 2), (0, 3)}, α(C) = {(0, 0), (0, 2)}. A
and C are exactly represented, i.e. γ(α(A)) = A and γ(α(C)) = C, but B is not:
γ(α(B)) = {(x, y) ∈ N2 | x ≤ 2}. But, if we add (2, 0) to D then B becomes
representable.

This generic abstract domain is a generalization of the ideas exposed in [21] for
finite states systems.

Fix a finite domain D, the concrete PL(X) and abstract DPL(D) domains and
the abstraction α : PL(X) �→ DPL(D) and concretisation γ : DPL(D) �→ PL(X)
maps form a Galois insertion, denoted by PL(X)

α�
γ

DPL(D).

Proposition 1. For every finite domain D, PL(X)
α�
γ

DPL(D).

Proof. Fix a finite domain D. It follows immediately from the definitions that
α is monotonic (i.e., C ⊆ C′ implies α(C) � α(C′)) and γ as well. Indeed,
γ(P1) ⊆ γ(P2) ⇔ {c | c↓ ∩D ⊆ P1} ⊆ {c | c↓ ∩D ⊆ P2} ⇔ P1 ⊆ P2 ⇔ P1 � P2.
So, it suffices to prove (a) and (b) below:

(a) C ⊆ (γ ◦ α)(C) for every C ∈ PL(X).

(γ ◦ α)(C) = {c ∈ X | c↓ ∩D ⊆ C↓ ∩D}
⊇ {c ∈ C | c↓ ∩D ⊆ C↓ ∩D}
= C

(b) (α ◦ γ)(P ) = P for every P ∈ DPL(D).

(α ◦ γ)(P ) = {c | c↓ ∩D ⊆ P}↓ ∩D

= {c | c↓ ∩D ⊆ P} ∩ D γ(P )↓= γ(P )
= {c ∈ D | c↓ ∩D ⊆ P}
= P P ⊆ D and P ∈ DCS (D) ��

We now prove some properties on the precision of our abstract domain. The next
lemma states that any �-dc-set of X can be represented exactly using a finite
domain D and a set P ∈ DCS (D).

Lemma 6 (Completeness of the abstract domain). For each E ∈ DCS (X)
there exists a finite domain D such that (γ ◦ α)(E) = E.

Proof. Given E, we define the finite domain D to be D = min(X \E). We prove
(γ ◦ α)(E) = E.

Let us show that (γ ◦ α)(E) ⊆ E. For that, suppose by contradiction that
there exists p ∈ (γ ◦ α)(E) ∧ p /∈ E.
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p /∈ E

⇔ p↓� E E ∈ DCS(X)
⇔ p↓ ∩(X \ E) �= ∅
⇔ p↓ ∩min(X \ E) �= ∅ Lem. 3.1
⇔ ∃p′ : p′ ∈ p↓ ∧p′ ∈ min(X \ E)
⇒ ∃p′ : p′ ∈ p↓ ∧p′ ∈ min(X \ E) ∧ ∃p′′ ∈ [p′] : p′′ ∈ D def. of D

⇔ ∃p′′ : p′′ ∈ p↓ ∧p′′ ∈ D ∧ p′′ /∈ E p, p′ � p′′; p′↓ ∩E = ∅
(1)

p ∈ (γ ◦ α)(E)
⇔ p↓ ∩D ⊆ α(E) def. of γ

⇔ p↓ ∩D ⊆ E↓ ∩D def. of α

⇔ p↓ ∩D ⊆ E ∩ D E ∈ DCS(X)
⇔ p↓ ∩D ⊆ E

⇔ ∀p′ : p′ ∈ p↓ ∧p′ ∈ D ⇒ p′ ∈ E

⇔ ¬¬ (∀p′ : p′ ∈ p↓ ∧p′ ∈ D ⇒ p′ ∈ E)
⇔ ¬ (∃p′ : p′ ∈ p↓ ∧p′ ∈ D ∧ p′ /∈ E) (2)

From (1) and (2) follows a contradiction.
E ⊆ (γ ◦ α)(E) is immediate by property of Galois insertion. So, we have

proved that (γ ◦ α)(E) = E. ��
Remark 1. While previous lemma states that any �-dc-set can be represented
using an adequate finite domain D, there is usually no finite domain D which
is able to represent all the �-dc-sets. It should be pointed out that �-dc-sets
can be easily represented through their (�-uc-set) complement, i.e. by using a
finite set of minimal elements of their complement. However with this approach
the manipulation of �-dc-sets is not obvious. In particular, there is no generic
way to compute the post operation applied on a �-dc-set by manipulating its
complement. Also, as Cover (S0) is not constructible, it is, in some sense, useless
to try to represent exactly the �-dc-sets encountered during the forward explo-
ration. On the other hand, we will see in Section 4 that our abstract domain
allow us to define an effective and generic abstract post operator.

Hereunder, Proposition 3 shows that the more elements you put into the finite do-
mainD, themore�-dc-sets the abstract domain is able to represent exactly.Propo-
sition 2,which is used inmanyproofs, provides an equivalent definition forγ[D](P ).

Proposition 2. Fix a finite domain D, for every P ∈ DPL(D) we have γ(P ) =
X \ (D \ P )↑.
Proposition 3. Fix two finite domains D and D′ such that D ⊂ D′. For every
P ∈ DPL(D), there exists a P ′ ∈ DPL(D′) such that γ[D](P ) = γ[D′](P ′).

Effectiveness. It is worth pointing that since we impose finiteness of D then �D,
�D are effective and �D is decidable. So, given a finite domain D, the complete
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lattice DPL(D) represents an effective way to manipulate (infinite) �-dc-sets.
Even if D is finite, it can be very large and so the abstract domain may be
computationally expensive to manipulate. Compact data structures like Binary
Decision Diagrams [22] and Sharing Trees [23, 18] may be necessary to use in
practice.

In Sect. 5 we need to decide the intersection emptiness between an �-uc-set
and a �-dc-set. In input of this problem we are given an effective representation
of these two sets. Then we solve the problem using the result of Lemma 3.1
together with the following proposition.

Proposition 4. Fix a finite domain D, for all P ∈ DPL(D) there exists an
effective procedure to answer the membership test, i.e. “given c ∈ X, does c
belong to γ(P ) ?”.

4 Abstract Interpretation

In this section, we define the forward abstract interpretation of a WSTS using
an abstract domain parametrized by D as defined in the previous section.

Let S be a WSTS and D be a finite domain, post#[S, D] : DPL(D) �→ DPL(D)
is the function defined as follows: post#[S, D] def= λP.(α[D] ◦ post [S] ◦ γ[D])(P ).
The function post#[S, D]∗ : DPL(D) �→ DPL(D) is defined as follows:
post#[S, D]∗ def= λP.�i≥0 post#[S, D]i(P ). We shorten post#[S, D] to post# and
post#[S, D]∗ to (post#)∗ if the WSTS and the finite domain are clear from the
context.

The following lemma establishes the soundness of our abstract interpretation
of WSTS which follows by property of Galois connection:

Lemma 7. Given a WSTS (X, δ, �) with I ⊆ X and a finite domain D, (i)
post(I) ⊆ (γ ◦ post# ◦ α)(I) and (ii) post∗(I) ⊆ (γ ◦ (post#)∗ ◦ α)(I).

The next proposition shows that we can improve the precision of the analysis by
improving the precision of the abstract domain.

Proposition 5 (post# Monotonicity). Given a WSTS S= (X, δ, �), two fi-
nite domains D, D′ with D ⊆ D′, and two sets C, C′ ⊆ X with C ⊆ C′, we have,
(1) (γ[D′] ◦ post#[S, D′] ◦ α[D′])(C) ⊆ (γ[D] ◦ post#[S, D] ◦ α[D])(C′); and (2)
(γ[D′] ◦ post#[S, D′]∗ ◦ α[D′])(C) ⊆ (γ[D] ◦ post#[S, D]∗ ◦ α[D])(C′).

Let us now show that if we fix a finite domain D, then post# is computable for
any effective WSTS but first we need the following lemma:

Lemma 8. Given a WSTS S=(X, δ, �), ∀x, x′∈X : x∈pre(x′↑) ⇔ x′∈post(x)↓.
Proof. x ∈ pre(x′↑) ⇔ ∃x′′ : x′′ � x′ ∧ x → x′′ ⇔ x′ ∈ post(x)↓. ��
We have the following characterization of post#.

Proposition 6. Fix a finite domain D, and an effective WSTS S = (X, δ, �).
For every x ∈ D and P ∈ DPL(D):

x ∈ post#(P ) ⇔ (x ∈ D ∧ ¬(pre(x↑) ⊆ (D \ P )↑)) .
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The sets pre(x↑)↑ and (D \ P )↑ are �-uc-sets which have as finite minor set
minpre(x) and (D\P ) respectively. Lemma 3.2 shows that if both minpre(x) and
(D \ P ) are finite sets and � is decidable then we have an effective procedure
to decide if pre(x↑)↑⊆ (D \ P )↑ which is equivalent to pre(x↑) ⊆ (D \ P )↑.
Furthermore, since the complete lattice DPL(D) is finite, it follows that:

Corollary 1. For any effective IWSTS S0 = (S, x0), and any finite domain D,
((post#[S, D])∗ ◦ α)(x0) can be effectively computed.

5 Domain Refinements

In this section, we show that the abstract interpretation that we have defined
previously can be made sufficiently precise to decide the coverability problem
of (effective) IWSTS. We present two ways of achieving completeness of the
abstract interpretation. Both are based on abstract domain refinement. The
first (and näıve) way is through enumeration of finite domains. The enumerating
algorithm shows that completeness is achievable by systematically enlarging the
finite domain D. The second algorithm, which is more sophisticated, enlarges
the finite domain D using abstract counter-examples.

5.1 Enumerate Finite Domains

In Sect. 3, we showed that any �-dc-set can be represented using a well chosen
domain (Lemma 6). In particular, the covering set can be represented using a
finite domain D.

Hereunder, Theorem 1 asserts that the abstract interpretation of an IWSTS
S0 using a finite domain D that allows to represent exactly the covering set of
S0 leads to the construction of that set.

Theorem 1. Given Cover (S0), the covering set of an IWSTS S0, and some
finite domain D such that there is Θ ∈ DPL(D) : γ(Θ) = Cover (S0). For any
P ∈ DPL(D) such that P � Θ we have (γ ◦ (post#)∗)(P ) ⊆ Cover (S0).

Proof.

γ(Θ) = Cover (S0) by hypothesis
⇒ (post ◦ γ)(Θ) = post(Cover (S0)) monotonicity of post
⇒ (post ◦ γ)(Θ) ⊆ Cover (S0) post(Cover (S0)) ⊆ Cover (S0)
⇒ (α ◦ post ◦ γ)(Θ) � α(Cover (S0)) by monotonicity of α

⇔ post#(Θ) � α(Cover (S0)) def. of post#

⇔ post#(Θ) � Θ γ(Θ) = Cover (S0),Θ = (α ◦ γ)(Θ) (3)

Since post# is a monotone function on a complete lattice, (3) shows that for any
P � Θ we have

((post#)∗)(P ) � Θ

⇒ (γ ◦ (post#)∗)(P ) ⊆ γ(Θ) monotonicity of γ

⇔ (γ ◦ (post#)∗)(P ) ⊆ Cover (S0) by hypothesis ��
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Thanks to this proposition and the results of [14] Algorithm 1 decides the cover-
ability problem for an effective IWSTS S0 = (S, x0) and a �-uc-set bad. The main
idea underlying the algorithm is to iteratively analyze an underapproximation of
the reachable states (line 1) followed by an overapproximation (line 2). Positive
instances of the coverability problem are decided by underapproximations and
negative instances are decided by overapproximations. By enumeration of finite
domains Di and Theorem 1, it is ensured that our abstract interpretation will
eventually become precise enough for the negative instances. For this algorithm

Algorithm 1. Enumeration
Input: An IWSTS S0 = ((X, δ, �), x0) and a set bad ∈ UCS(X)
for Di = D0, D1, . . . an enumeration of the finite subsets of X do

if ∃x0, . . . , xk ∈ Di : x0 → . . . → xk ∧ xk ∈ bad then1

return reachable

else if (γ[Di] ◦ (post#[S ,Di])∗ ◦ α[Di])(x0) ∩ bad = ∅ then2

return unreachable

end

to be effective, we only need the (mild) additional assumption that elements of
X are enumerable.

In the next subsection, we show that this assumption can be dropped and
propose a more sophisticated way to obtain a finite domain D which is precise
enough to solve the coverability problem. Our refinement technique is based on
the analysis of the states leading to bad.

5.2 Eliminate Overapproximations Leading to bad

Let us first consider the following lemma that is a first step towards completeness.

Lemma 9. Given a WSTS (X, δ, �) and a set bad ∈ UCS (X) fix a finite do-
main D and a set P ′ ∈ DPL(D) such that post#(P ′) � P ′ and min(pre∗(bad))∩
γ(P ′) ⊆ D. For every P ∈ DPL(D) such that P � P ′ we obtain γ(P ) ∩
pre∗(bad) = ∅ ⇒ γ(post#(P )) ∩ pre∗(bad) = ∅.

Proof.

γ(P ) ∩ pre∗(bad) = ∅
⇔ (↓ ◦post ◦ γ)(P ) ∩ pre∗(bad) = ∅ Lem. 8 and pre(pre∗(bad)) = pre∗(bad)
⇒ (α ◦ post ◦ γ)(P ) ∩ pre∗(bad) = ∅ (α ◦ post ◦ γ)(P ) ⊆ (↓ ◦post ◦ γ)(P )

⇔ post#(P ) ∩ pre∗(bad) = ∅ def. of post#

⇔ pre∗(bad) ⊆ (X \ post#(P ))

So we have established

γ(P ) ∩ pre∗(bad) = ∅ ⇒ pre∗(bad) ⊆ (X \ post#(P )) . (4)
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Moreover, we conclude from P � P ′ that post#(P ) � post#(P ′) (by mono-
tonicity of post#), hence that post#(P ) � P ′ (post#(P ′) � P ′) and finally that
γ(post#(P )) ⊆ γ(P ′) (by monotonicity of γ).

Now, let us consider γ(post#(P )):

γ(post#(P ))

={c | c↓∩D ⊆ post#(P )} definition of γ

={c∈γ(P ′) | c↓ ∩D ⊆ post#(P )} γ(post#(P ))⊆γ(P ′)

⊆ {c∈γ(P ′) | c↓ ∩min(pre∗(bad)) ∩ γ(P ′) ⊆ post#(P )} def. of D

={c∈γ(P ′) | c↓ ∩min(pre∗(bad))⊆post#(P )} c ∈ γ(P ′) implies c↓⊆ γ(P ′)

={c∈γ(P ′) | c↓ ∩min(pre∗(bad)) ∩ (X \ post#(P )) = ∅}
⊆ {c ∈ γ(P ′) | c↓ ∩min(pre∗(bad)) ∩ pre∗(bad) = ∅} By (4)

={c∈γ(P ′) | c↓ ∩min(pre∗(bad)) = ∅} min(A)⊆A if A∈UCS(X)

={c∈γ(P ′) | {c} ∩ pre∗(bad) = ∅} Lem. 3.1

={c∈γ(P ′) | c /∈ pre∗(bad)}

Hence, γ(post#(P )) ∩ pre∗(bad) = ∅. ��

Using the previous lemma and induction we can establish the following theorem.

Theorem 2. Given a WSTS (X, δ, �) and a set bad ∈ UCS(X) fix a finite do-
main D and a set P ′ ∈ DPL(D) such that post#(P ′) � P ′ and min(pre∗(bad))∩
γ(P ′) ⊆ D. For every I ⊆ X such that α(I) � P ′, we have I ∩ pre∗(bad) = ∅ ⇔
(γ ◦ (post#)∗ ◦ α)(I) ∩ bad = ∅.

We are nearly in position to define our refinement-based algorithm. We first
define the following operator parametrized by O ⊆ X which is applied to a finite
subset of states T ⊆ X : minpre[S, O](T ) def= minpre[S](T ) ∩ O.We also write
minpre[O](T ) instead of minpre[S, O](T ) if the WSTS is clear from the context.

In the remainder of this section we adopt the following convention: a set A
acting as the argument of minpre should be read as min(A). A direct consequence
of the definition of minpre is the following, for any O ⊆ O′ ⊆ X and A ⊆ X we
have:

minpre[O]∗(A) ⊆ minpre[O′]∗(A) . (5)

The main ideas underlying our refinement-based algorithm (Algorithm 2) are as
follows. In a first approximation, we consider a finite domain D0 that contains
a minor set of bad. With this set, we compute a first overapproximation of the
reachable states of S0, noted O0. If this overapproximation is fine enough to
prove that we are in presence of a negative instance of the problem then we
conclude at line 2. If it is not the case, we compute R′

0 that represents all the
states within O0 that can reach bad in one step. If this set contains x0 then
we conclude that bad is reachable. Otherwise, we refine the finite domain D0
into D1 to ensure at the next iteration that our overapproximation will be more
precise (Prop. 5.2) and that (γ[D1]◦post#[S, D1]◦α[D1])(x0)) will not intersect
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with bad. So, we have excluded all spurious counter-examples of length one. We
then proceed with this enlarged finite domain.

Since min(pre∗(bad)) is computable, Theorem 2 intuitively shows that our
algorithm terminates. We formally establish the correctness of our technique as
stated in the next lemmas which prove soundness, completeness, and termination
of Algorithm 2.

Algorithm 2. Refinement loop
Input: An IWSTS S0 and a set bad ∈ UCS(X)
Let D0 ⊇ (min(bad))
for i = 0, 1, 2, . . . do

Compute Ri defined to be ((post#[S ,Di])∗ ◦ α[Di])(x0)1

Let Oi denote γ[Di](Ri)
if Oi ∩ bad = ∅ then return unreachable2

else
Compute R′

i defined to be min
��i+1

k=0 minpre[S ,Oi]k(bad)
�

3

if {x0} ∩ R′
i↑= ∅ then4

choose Di+1 ⊇ Di ∪ R′
i5

else return reachable

end
end

Lemma 10 (Soundness). If Algorithm 2 says “reachable” then we have
post∗(x0) ∩ bad �= ∅.

Proof. Let c be the value of variable i when the algorithm says “reachable”.
minpre[Oc]∗(bad)↑⊆ minpre[X ]∗(bad)↑= pre∗(bad), the inclusion follows from
Oc ⊆ X , (5) and ↑ is monotonic, and the equality follows from Lemma 4.b. Since
{x0}∩pre∗(bad) �= ∅ iff post∗(x0)∩bad �= ∅, minpre[Oc]c(bad)↑⊆ pre∗(bad) shows
that post∗(x0) ∩ bad �= ∅, by {x0} ∩ minpre[Oc]c(bad)↑�= ∅ (line 4). ��

Lemma 11 (Completeness). If Algorithm 2 says “unreachable” then we
have post∗(x0) ∩ bad = ∅.

Proof. Fix a finite domain D, by Lemma 7 we have that post∗(x0) ⊆ (γ ◦
(post#)∗ ◦ α)(x0). Let c be the value of variable i when the algorithm says
“unreachable” at line 2. We conclude from (γ[Dc] ◦ (post#[S, Dc])∗ ◦ α[Dc])
(x0) ∩ bad = ∅ that post∗(x0) ∩ bad = ∅ which is the desired conclusion. ��

Lemma 12 (Termination). Given an effective IWSTS S0 and bad ∈ UCS(X),
Algorithm 2 always terminates.

Proof. It is routine to check that each domain Di is finite. Hence, since �Di is
computable because the Di’s are finite and post#[S, Di] is computable following
Proposition 6 (notice that α[Di](x0) is computable since � is assumed to be de-
cidable), the fixpoint computation of line 1 finishes after a finite amount of time.

Suppose, contrary to our claim, that the algorithm does not terminate. Since
each line is evaluated in a finite amount of time, it follows that the algorithm
executes the main loop infinitely many times. From line 5, we conclude that the
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algorithm considers an infinite sequence of finite domains D0 ⊆ D1 ⊆ · · · From
Proposition 5.2, we know that O0 ⊇ O1 ⊇ · · · From Lemma 2, we conclude that
there exists i ≥ 0 such that Oi = Oi+1 = · · ·

Let us consider the iteration i of the algorithm such that Oi = Oi+1 = · · ·
We have the infinite sequence R′

i↑⊆ R′
i+1↑⊆ · · · . From Lemma 2, we conclude

that there exists j ≥ i such that R′
j↑= R′

j+1↑= · · · . Hence, following line 5 of the
algorithm, D contains min(minpre[Oi]∗(bad)) (or rather D contains equivalent
states to those of min(minpre[Oi]∗(bad))) after the jth iteration.

Let us now prove that (a) min(minpre[Oj+1]∗(bad))≡min(minpre[X ]∗(bad))∩
Oj+1. Indeed, if it is not the case there exist l ≥ 0, c, c′ ∈ X such that c ∈
minpre[X ]l(bad), c′ ∈ minpre[X ](c), c �∈ Oj+1 and c′ ∈ Oj+1. Hence, post(c′) �⊆
Oj+1 since post(c′) ∩ c↑�= ∅ and Oj+1 is a �-dc-set. But, ∀c ∈ Oj+1 : post(c) ⊆
Oj+1. From this follows a contradiction.

Moreover, (b) min((minpre[X ]∗(bad))↑)≡min(pre∗(bad)) holds by Lemma 4.b
and by definition of ≡. We conclude, following line 5 of the algorithm, that Dj+1
contains equivalent states to those of min(pre∗(bad)) ∩ Oj+1.

By applying Theorem 2, we have {x0} ∩ pre∗(bad) = ∅ iff Oj+1 ∩ bad = ∅.
We consider two cases: (i) {x0} ∩ pre∗(bad) = ∅, then we have Oj+1 ∩ bad = ∅
and the algorithm terminates since the test of line 2 is evaluated to true; (ii)
{x0}∩pre∗(bad) �= ∅, then Oj+1 ∩bad �= ∅. Following (a) and (b) at line 3 of the
algorithm R′

j+1 ≡ min(pre∗(bad))∩Oj+1. Since {x0}∩pre∗(bad) �= ∅, there exists,
on account of Lemma 3.3, x ∈ min(pre∗(bad)) : x0 � x. x0 ∈ Oj+1 and Oj+1 ∈
DCS (X) shows that x ∈ Oj+1. We conclude from R′

j+1 ≡ min(pre∗(bad))∩Oj+1
that [x]∩R′

j+1 �= ∅, hence that {x0}∩R′
j+1↑�= ∅, and finally that the test of line

4 is evaluated to false which yields the algorithm to terminate. ��

Remark 2. Let us notice that the practical efficiency of Algorithm 2 depends on
(i) the preciseness of the overapproximations Oi and (ii) the time (and space)
needed to build those overapproximations. Point (i) is crucial since rough ap-
proximations will lead to the computation of min(pre∗(bad)), which is time and
space consuming in practice [23]. Point (ii) is important because an inefficient
computation of overapproximations leads to an inefficient algorithm. Hence, a
trade-off between (i) and (ii) must be chosen. This problem exceeds the scope
of this paper and will be addressed in future works.

To ensure termination we require, at line 5, that the finite domain is enlarged
by, at least, the states of R′

i. The algorithm remains correct if we add more states.

6 Illustrations

We have produced a prototype that implements Algorithm 2. We describe in
this section the execution of that prototype when applied on a toy example. The
example of IWSTS S0 is represented through a Petri net (see [8] for details),
depicted in Fig. 2, which models a very simple mutual exclusion protocol. We
want to check for safety of the protocol, that is check that there is never more
than one process in the critical sections. The markings that violates the property,
denoted bad, are given by {〈0, 0, 0, 1, 1〉, 〈0, 0, 0, 0, 2〉, 〈0, 0, 0, 2, 0〉}↑. It is worth
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p1

t2

t3

t1

p2

t4 (cs2)
p5

p3

p4
(cs1)

(wait)

t0
The processes (the tokens in place p1) can
access some critical section (place p4 or p5)
provided they acquired some lock (the to-
kens in places p2 and p3). The initial mark-
ing is given by 〈0, 1, 1, 0, 0〉. Transition t0
spawns processes.

Fig. 2. A simple mutual exclusion protocol

pointing that we want to establish the safety for any number of processes taking
part in the protocol (recall that t0 spawns processes).

Execution of the prototype. We describe the execution of the prototype iteration
by iteration. On account of remark 2, we do not take min(bad) as initial finite
domain but its downward closure instead and we do not add the set R′

i to Di

at the ith iteration but its downward closure instead. Taking the �-downward
closure of the sets allows us to efficiently prove the safeness of the protocol.

Initialisation. As mentioned before, the initial value of the finite domain, which
is referred as D0, is given by {〈0, 0, 0, 1, 1〉, 〈0, 0, 0, 0, 2〉, 〈0, 0, 0, 2, 0〉}↓.

Iteration 1 (i=0). After the fixpoint computation of line 1, we have R0 = D0,
and so O0 = X . Hence the test of line 2 fails and we compute R′

0 = min(bad) ∪
{〈1, 1, 1, 0, 1〉, 〈1, 1, 1, 1, 0〉} which corresponds to min(bad ∪ pre(bad)). Because
the test of line 4 fails, we execute line 5 and we set D1 to R′

0↓.

Iteration 2 (i=1). The fixpoint computation of line 1 ends up with R1 =
D1, hence O1 = X . Again we perform a refinement step by (i) computing
R′

1 = min(bad)∪{〈0, 1, 1, 0, 1〉, 〈0, 1, 1, 1, 0〉, 〈2, 2, 1, 0, 0〉, 〈2, 1, 2, 0, 0〉} (which cor-
responds to min(bad ∪ pre(bad) ∪ pre2(bad))) and (ii) adding tuples of R′

1↓ with
the ones of D1 to obtain D2.

Iteration 3 (i=2). The fixpoint computation of line 1 finishes with a set R2
such that the test of line 2 (O2 ∩ bad = ∅) succeeds and the system is proved to
be safe.

Indeed O2 = {(p1, p2, p3, p4, p5) ∈ N5 | (
∧5

i=2 pi ≤ 1)∧ p4 + p5 ≤ 1∧ p3 + p4 ≤
1 ∧ p2 + p5 ≤ 1} which is equal to Cover (S0). Since Cover (S0) is, in general,
not computable ([10]), the equality does always not hold. Notice that pre∗(bad)
is computed in five iterations with the classical algorithm of [17]. Hence, the
forward analysis allows to drastically cut the backward search. We hope this
gain will appear also on many practical examples.
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tems. PhD thesis, Université Libre de Bruxelles (2003)


