
Submitted to the Intl. J. of Computational Geometry and Applications
June 2004

A complete algorithm for visibility-based pursuit-evasion with
limited field of view∗

Brian P. Gerkey Sebastian Thrun Geoff Gordon
gerkey@stanford.edu thrun@stanford.edu ggordon+@cs.cmu.edu

Artificial Intelligence Lab
Stanford University

Stanford, CA 94305, USA

Abstract

We study a form of the pursuit-evasion problem, in which one or more searchers must move through a given
environment so as to guarantee detection of any and all evaders, which can move arbitrarily fast. Our goal is to
develop techniques for coordinating teams of robots to execute this task in application domains such as clearing a
building, for reasons of security or safety. To this end, we introduce a new class of searcher, the φ-searcher, which can
be readily instantiated as a physical mobile robot. We present a detailed analysis of the pursuit-evasion problem using
φ-searchers. We show that computing the minimum number of φ-searchers required to search a given environment is
NP-hard, and present the first complete search algorithm for a single φ-searcher. We show how this algorithm can be
extended to handle multiple searchers, and give examples of computed trajectories.

1 Introduction

We address a form of the problem known as pursuit-evasion. The goal of this problem is to direct the actions of one or
more searchers through a given environment in such a way as to guarantee that any evaders present in the environment
will be found. As an example, consider the problem of closing a museum for the night. In order to be sure that no
thieves or other malcontents remain inside after closing, the guards must perform a thorough search of the building.
They must keep in mind that any intruders may try to avoid the guards. For example, if a guard is checking each room
along a hall, an intruder might sneak behind the guard while he is checking one room and hide in a room that was
already checked. In this case, one solution might be to use two guards, with one always keeping watch on the hall.

Our goal is to derive strategies for robots that allow them to play the role of guard. In particular, we are interested
in scalable techniques for coordinating the actions of teams of robots to clear entire buildings. In this paper, we
establish an analytical foundation for studying this problem by introducing the concept of a φ-searcher, which is a
robot equipped with a φ-radian field of view (FOV) sensor for detecting evaders. Our motivation for focusing on
sensors with limited FOV is that we wish to derive strategies for robots, and most robots are equipped with such
sensors. For example, the popular Pioneer mobile robot is often equipped with a 180◦ array of sonars (Figure 1(a)).
Many robots carry more sophisticated sensors, such as laser range-finders (Figure 1(b)) or cameras (Figure 1(c)), but
these too tend to have limited FOV.

So the φ-searcher reflects the realities of physical robots and thus the techniques we develop can be applied to
robots. Furthermore, the φ-searcher is a qualitatively different kind of searcher from those previously studied in
pursuit-evasion scenarios, and so warrants the fresh analysis that we present here.

After formally describing the pursuit-evasion problem, we analyze the capabilities of the φ-searcher and prove that
computing the minimum number of φ-searchers required to search an environment is NP-hard. We then present the

∗This paper is an extension of work originally reported in: Gerkey, B. P., Thrun, S. & Gordon, G. (2004), Visibility-based pursuit-evasion with
limited field of view, in ‘Proc. of the Natl. Conf. on Artificial Intelligence (AAAI)’, San Jose, California. To appear.

1



(a) (b) (c)

Figure 1: Some robots equipped with common sensors with limited field of view: (a) sonar array, (b) laser range-finder, and (c)
camera.

first complete search algorithm for the case of one φ-searcher in a known environment. We show how this algorithm
can be extended to handle multiple robots (albeit at a loss of completeness). We have implemented and tested this
algorithm in a variety of environments and present example solution trajectories.

2 Background and related work

The first rigorous formulation of the pursuit-evasion problem is due to Parsons (1976), who restricted his study to the
case in which the environment is a discrete graph. Nothing is known about the location or motion of the evader, who is
assumed to be able to move arbitrarily fast through the graph. His motivation was the problem of coordinating a search
team to locate a spelunker who has become lost in a network of caves (which can be represented by a graph), but these
worst-case assumptions about the evader could equally well describe a more adversarial situation. The spelunker,
or evader, can occupy any edge in the graph; to find the evader, a searcher must walk along the edge occupied by
the evader and “touch” the evader. The entire graph is initially contaminated, which means that the evader could be
anywhere. As the search progresses, an edge is cleared when it is no longer possible for the evader to occupy that
edge. Should it later happen that the evader could have moved back to a previously clear edge, that edge is said to be
recontaminated. Using this terminology, the goal of the problem can be restated as follows: find a trajectory for each
searcher such that the entire graph is cleared.

A visibility-based version of the pursuit-evasion problem was introduced by Suzuki & Yamashita (1992), who
changed the domain from discrete graphs to continuous polygonal free spaces and coined the term k-searcher. In this
formulation, in order to find an evader, a k-searcher need not touch the evader, but can instead “see” the evader from
a distance. The k-searcher is equipped with k infinitely thin “flashlights” with which it can search the environment.
These flashlights have unlimited range (but cannot see through walls) and can be freely rotated about the searcher at
bounded speed and independently of the searcher’s motion. Commonly studied are the cases when k = 1, k = 2, and
k = ∞ (LaValle, Lin, Guibas, Latombe & Motwani 1997, Guibas, Latombe, LaValle, Lin & Motwani 1999, Lee, Park
& Chwa 2002). The ∞-searcher can see in all directions at once. A recent interesting result is that any polygonal free
space that is searchable by a single ∞-searcher is also searchable by a single 2-searcher (Park, Lee & Chwa 2001),
implying some parity of capabilities between the two. Randomized pursuit algorithms have also been studied, in
both discrete graphs (Adler, Räcke, Sivadasan, Sohler & Vöcking 2003) and polygonal free spaces (Isler, Kannan &
Khanna 2003).

There has also been some work on forms of pursuit-evasion with physical robots. Roy & Gordon (2002) model the
single-robot action-selection problem as a POMDP, which is made tractable by compression of the sparse belief space.
A similar probabilistic framework is employed by Vidal, Shakernia, Kim, Shim & Sastry (2002), who use heuristic
search to find strategies for coordinating teams of air and ground vehicles to search an unknown outdoor environment.
More distantly related is the large body of work on cooperative tracking of moving targets with fixed sensors and/or
mobile robots (Parker 1999, Werger & Matarić 2001, Jung & Sukhatme 2002, Stroupe 2003, Spletzer & Taylor 2003).

As the velocity of the evader approaches zero, the pursuit-evasion problem can be seen as a problem of multi-

2



(a) (b)

Figure 2: Introduction to the φ-searcher Shown in (a) is an example of a π-searcher positioned at a point p with orientation θ in
a polygonal free space F . The shaded region is the searcher’s visibility polygon, Vπ(F, p, θ). Shown as dashed lines in (b) are the
induced gap edges for the π-searcher, which partition the free space into 4 regions.

robot exploration, which has been extensively investigated (Koenig & Simmons 1993, Yamauchi 1998, Burgard, Fox,
Moors, Simmons & Thrun 2000). Similarly, as the number of available robots grows large with respect to the size and
complexity of the environment, pursuit-evasion can be solved by finding static sensor placements that cover the entire
environment. This is known as the Art Gallery problem, and has been studied in great depth (O’Rourke 1987, Shermer
1992).

3 The φ-searcher

The existing body of analytical work on visibility-based pursuit-evasion is concerned with some form of the k-searcher,
and is not readily applicable to physical robots, few of which are equipped with movable flashlights or omnidirectional
sensing. Since our target domain is teams of physical robots, we introduce a new class of searcher, which to our knowl-
edge has not yet been studied, and which we call the φ-searcher. The φ-searcher is a holonomic (i.e., omnidirectional
drive) mobile robot with a limited FOV sensor having angular aperture φ ∈ (0, 2π]. The sensor has unlimited range,
but cannot penetrate obstacles. This robot can move (i.e., rotate and/or translate) at bounded speed. When φ = 2π,
we have an ∞-searcher. For φ < 2π, however, we have a different kind of searcher, with significantly diminished ca-
pabilities. Since the sensor’s FOV can be freely rotated about the searcher at bounded speed and independently of the
searcher’s motion (this follows from the holomonicity of the robot), the capabilities of the φ-searcher lie somewhere
between those of a 1-searcher and those of a 2-searcher. Shown in Figure 2 is an example of a φ-searcher, for φ = π.

Given a connected polygonal free space F , the pursuit-evasion problem is to find a trajectory through F (called
a search schedule) for φ-searchers that guarantees detection of an arbitrarily fast evader, whose trajectory and initial
location are unknown.1 Analogously to the graph search problem, any part of F where the evader can be hiding is
called contaminated and any part of F where the evader cannot be hiding is called clear. Whenever there exists a path
between contaminated space and clear space, that clear space is said to be recontaminated. The space F is initially
contaminated and the goal is to clear it.

3.1 Capabilities of the φ-searcher

We can circumscribe the capabilities of a single φ-searcher with the following necessary (though not sufficient) con-
dition:

Lemma 1. A polygonal free space F is searchable by a single φ-searcher only if F is simply-connected.

1It may be the case with physical robots that the available map, having been acquired from sensor data, is grid-based, rather than polygonal. If
so, then the first step is to generate an approximate polygonal representation of the grid-based map, either automatically (e.g., via smoothing and
line-fitting) or manually (e.g., with the aid of an architectural floorplan).

3



C

A

B

θ

D

(a) (b) (c) (d) (e)

Figure 3: Shown in (a) is the “jagged E,” which demonstrates how φ-searcher capability varies continuously with the searcher’s
field of view. To search this environment, a φ-searcher must be able to simultaneously cover the point B and prevent an uncovered
path between A and C. The minimum value of φ required for this coverage is equal to the angle θ. By varying θ, we can create
environments that require a π

4
-searcher (b), a π

3
-searcher (c), a π

2
-searcher (d), a 3π

4
-searcher (e), or any other φ-searcher, for

0 < φ < π.

Proof. If F is not simply-connected, then it contains one or more holes, and around each hole, there is a loop. A
single φ-searcher, regardless of the value of φ, is incapable of clearing even one such loop, because the evader can, for
example, always hide on the opposite side of the hole from the searcher.

So a single φ-searcher is limited to searching simply-connected environments, though it cannot search all such
environments. Given two angles φ1 and φ2, with φ1 > φ2, it is clear that any environment that can be searched by
a φ2-searcher can also be searched by a φ1-searcher (e.g., the φ1-searcher can execute the same trajectory as did the
φ2-searcher). Less obvious is whether there exists an environment that can be searched by φ1-searcher, but not by a
φ2-searcher. That is, does searching capability actually increase with a greater FOV?

We can show that the answer is yes by use the construction pictured in Figure 3(a), which we call the “jagged
E” (inspired by a similar environment due to Suzuki & Yamashita (1992)). Consider the points A, B, and C: any
φ-searcher pose that provides coverage of A or of C leaves open an uncovered path between the other two points. This
is true, regardless of the value of φ, even for φ = 2π. As a result, it is only possible to search the jagged E in one
of two orders: A → B → C, or C → B → A. And while clearing B, the searcher must not allow an uncovered
path between A and C. All other orders (that do not end in one of the given two sequences) would allow earlier work
to be undone. For example, if the searcher were to use the order B → A → C, the point B would necessarily be
recontaminated by C while the searcher is clearing A.

Assume without loss of generality that a φ-searcher has cleared A and will now clear B. In order to avoid recon-
tamination of A, the searcher must not allow any uncovered path from C and A. In other words, the searcher must
simultaneously cover B and the vertical corridor on the left of the jagged E. Such coverage is not possible for all
values of φ. In fact, the minimum required FOV is equal to the angle labeled θ in Figure 3(a): a θ-searcher positioned
at D can simultaneously cover B and the vertical corridor.2 For example, Figure 3(b) shows how a π

4 -searcher can
accomplish this coverage, when θ = π

4 .
Now that we know the limiting feature of the jagged E to be the angle θ, we can create environments that are

searchable by particular φ-searchers by simply varying θ. For example, Figures 3(c), 3(d), & 3(e) show the cases
when θ = π

3 , θ = π
2 , and θ = 3π

4 , respectively. As θ approaches π, so does the required FOV, although when θ = π,
B becomes visible from the vertical corridor, and so the required FOV is much smaller. In summary, the jagged E
shows that, at least for 0 < φ < π, there is in fact a spectrum of φ-searcher capability that varies continuously with the
value of φ. Put another way, the searcher’s FOV determines a class of environments that it can search. We conjecture,
without proof, that the same is true for π ≤ φ ≤ 2π.

3.2 Complexity of the general problem

It is known that for the discrete graph search problem, establishing the minimum number of searchers required to
search a given graph, known as the search number of the graph, is NP-hard (Megiddo, Hakimi, Garey, Johnson &

2Actually, the minimum required FOV is slightly smaller than θ, but can be made arbitrarily close to θ by narrowing and extending the middle
horizontal corridor that leads to the point B.

4



Figure 4: Mapping a planar graph of vertices and edges onto an equivalent polygonal free space of rooms and hallways. The
visibility properties of the original graph are preserved by introducing an occluding kink in each hallway.

Papadimitriou 1988). For the visibility-based version, establishing the minimum number of ∞-searchers required to
search a given polygonal free space is also NP-hard (Guibas et al. 1999). We have a similar result for φ-searchers:

Theorem 1. Computing the minimum number of φ-searchers required to search a given polygonal free space F is
NP-hard.

Proof. We use the same reduction as Guibas et al. (1999): any planar graph G can be mapped onto an equivalent
polygonal free space F by making vertices into convex rooms and edges into “kinked” hallways. (Figure 4). Each
hallway has a kink, or bend, in the middle, such that the searcher cannot see from one end of the hall to the other.
As a result, to clear a hall, the searcher must walk its entire length, just as with an edge in G. The kink removes all
advantages of visibility, and thus has the same effect on the φ-searcher as it does on the ∞-searcher. Since any planar
graph can be mapped onto an equivalent polygonal free space, and since computing the search number of a planar
graph with maximum vertex degree 3 is NP-hard (Monien & Sudborough 1988), computing the minimum number of
φ-searchers required to search a polygonal free space is also NP-hard.

4 A complete algorithm for a single φ-searcher

Since, by Theorem 1, we cannot easily determine the minimum number of φ-searchers required to search a given
environment, we focus initially on the case of controlling a single φ-searcher. In this section, we present a complete
search algorithm for the case of a single φ-searcher. That is, we are interested in finding a trajectory for a single
φ-searcher that will search a given polygonal free space F , under the assumption that such a trajectory exists. We
address the extension to multiple searchers later.

We take inspiration in the design of our algorithm from the work of Guibas et al. (1999), who have previously
given a complete algorithm for the case of a single ∞-searcher. Their algorithm does not suffice for a φ-searcher with
φ < 2π, nor can it be easily extended to handle this case, for two reasons. First, the orientation of the searcher must be
taken into account, which presents a different action space. Second, and more importantly, the searcher’s FOV induces
new and different visibility constraints that are not captured by Guibas et al.’s (1999) decomposition. However, we
borrow from their work in several ways.

The basic steps of our algorithm are: (i) by a series of partitions, retract the given free space into a network of
curves that represent the visibility constraints induced by the environment and the searcher’s FOV; (ii) construct an
information graph that encodes the possible information states of the problem as the searcher moves, using the network
of intersecting curves as a roadmap; then (iii) search this graph for a goal state, and read the desired trajectory out
from the resulting path. The key to this algorithm is identifying the critical points in the environment; it is only by
moving through these points that the searcher will change the information state of the problem.

4.1 Identifying critical changes in information state

The area visible to a φ-searcher when it is positioned at a point p with orientation θ in F is called its visibility polygon,
Vφ(F, p, θ), abbreviated to Vφ when F , p, and θ are clear from the context. When a point q lies within Vφ, we say that
q is in view (Figure 6). The visibility polygon is defined by a set of line segments, some of which lie on the boundary

5



(a) (b) (c) (d)

(e) (f)

Figure 5: A computed clearing trajectory for a π-searcher. In this case the searcher clears the environment by moving backward
out of the upper room, down the hall, and into the left room.

of F and some of which do not. The latter segments, which cross through the interior of F , are called gap edges
(Figure 2(b)). These edges, combined with the edges of F , form a planar map that partitions the free space of F into
a set of faces, which we call regions. We can attach to each region a binary label that indicates whether it is clear
(“0”) or contaminated (“1”). Some who have previously studied pursuit-evasion used the same labeling scheme (Lee
et al. 2002), while others labeled the gap edges, rather than the regions (Guibas et al. 1999).

We model the information state of the problem as (p, θ,B(p, θ)), where (p, θ) is the searcher’s pose and B(p, θ)
is the list of binary labels on the regions induced by its gap edges. Consider Figure 5, which depicts a computed
search trajectory for a single π-searcher in an office-like environment. At each step, the environment is partitioned
into finitely many regions by the searcher’s visibility polygon. There is at most one region that is currently within the
searcher’s view, which must be clear, and some other regions that are out of view, each of which may be either clear
or contaminated. In the figure, the in-view region is colored light gray (or yellow), and the out-of-view regions are
colored either white (if clear) or dark gray (if contaminated). For example, in Figure 5(c), there are three clear regions
(including the one currently in view), and three contaminated regions. So the associated information state might be:
((5, 2), 2π

3 , {1, 0, 1, 1, 0, 0}), assuming that the searcher is positioned at (5, 2) with orientation 2π
3 , and that the regions

are ordered appropriately.
To monitor progress, we need only take notice when the information state changes combinatorially; that is, when

the set of regions or region labels changes. A combinatorial, or critical, change in information state corresponds to a
move of the searcher that changes the topology of contaminated space. During such a move, one or more gap edges
will: disappear, split, or merge (it can also happen that a new gap edge appears during a move, but new gap edges
always border clear space, and so such a move does not change the topology of the contaminated space).

Other moves can deform the contaminated space of F , but do not change its topology. We can characterize critical
changes in information state with the following necessary (though not sufficient) condition:

Lemma 2. Given a single φ-searcher in a polygonal free space F , there can be a change in the topology of the
contaminated space in F only if there is a change in the set of vertices of F that lie in Vφ.

Proof. We treat the three cases separately:

1. Edge disappearance. For a gap edge e to disappear, one of two events must occur. Either the concave vertex
of F that induced e moves out of Vφ, or e becomes coincident with the boundary of F and terminates at a

6



φ−visible

−visibleφnon−

−visibleφ
(and in view)

mutually visible

(but not in view)

Figure 6: Examples of vertices that are in view, visible, and/or φ-visible, for φ = π

3
.

previously non-visible convex vertex of F . In the first case, e disappears because it falls out of view (and thus is
no longer part of Vφ); in the second case, e disappears because it becomes part of the boundary of F (and thus
is no longer a gap edge).

2. Edge splitting. A gap edge e can be split only if a previously non-visible concave vertex of F , say v, moves
into Vφ such that v lies on e. The gap edge e will then split into two new edges, with the first terminating at v

and the second originating at v.

3. Edge merging. Merging is simply the reverse of splitting. Two gap edges e1 and e2 can merge only if e1
terminates at the same concave vertex of F , say v, from which e2 originates, and v moves out of Vφ. The result
is a single new edge, having the same origin as e1.

In each case, at least one vertex of F moves into or out of Vφ.

This lemma tells us that any critical change in information state will be accompanied by (actually, caused by) a
change in the set of vertices of F that lie within Vφ. So we need to identify the points at which there can be a change
in the set of vertices that are in view.

Before continuing, we define two notions of visibility from a point p ∈ F (Figure 6). We say that two points p

and q are mutually visible if the line segment between p and q does not cross the boundary of F (this is the traditional
geometric notion of visibility). Equivalently, we may say that p is visible from q or that q is visible from p. We say
that a pair of points (p, q) is φ-visible from a point s if there exists an orientation, say θ, for a φ-searcher located at s

such that both p and q lie within Vφ, with p and q ordered counterclockwise about s. That is, if we rotate a sweep line
counterclockwise about s through the FOV of a searcher positioned at s with orientation θ, we encounter both p and q,
with p coming before q (angular ties are broken by distance from s). Clearly, if (p, q) is φ1-visible from s, then (p, q)
is also φ2-visible from s for any φ2 ≥ φ1. Thus, if the pair (p, q) is φ-visible from s, then p and q are also both visible
from s (traditional visibility is just 2π-visibility).

4.2 Partitioning the environment

We now partition F into a set of regions R. Our goal is that the following condition hold for each region r ∈ R: given
a φ-searcher located anywhere in r, the set of φ-visible vertex pairs does not change. First, we ensure that there is
no change in the set of visible vertices. For each pair of mutually visible vertices v1 and v2 of F (including when v1

and v2 are endpoints of the same segment of F ), we construct the segment v1v2, then extend this segment in either
direction as far as possible without crossing the boundary of F . The intersections of the resulting segments form a
partition of F into a set of convex regions. The intuition behind this technique is that we identify all places where
the set of visible vertices can change due to occlusion (Figure 4.2). The resulting partition, Pπ(F ), has the following
property:

7



Figure 7: The partition Pπ(F ) for a space F consisting of a square containing a triangular hole. The dashed lines are the
segments used in the construction of the partition (the boundaries of the square and triangle are also included). Vertex visibility is
constant within each resulting region.

v2v1 C(v1,v2)

(a)

v1 v2 C(v1,v2)

(b)

Figure 8: The visibility curve Cφ(v1, v2) for two points v1 and v2. Shown in (a) is the case when φ = π

3
; these arcs are the closest

that a π

3
-searcher can come to the midpoint of v1v2, while maintaining visibility of both points. Shown in (b) is the case when

φ = 5π

3
; these arcs are the farthest that a 5π

3
-searcher can move after crossing v1v2 while maintaining visibility of both points.

Three example poses along each curve are shown, with the relevant portions of the visibility polygons shaded.

Lemma 3. Given any region r from the partition Pπ(F ) of a polygonal free space F , the set of visible vertices of F

is the same for all points in the interior of r.

Proof. Assume by contradiction that some vertex v1 of F is visible from a point p and not visible from another point
q, with both p and q in the interior of r. Consider any continuous path γ from p to q such that γ is contained in the
interior of r. Then there is some point along γ, say s (possibly equal to q), where v1 disappears from view. For this to
occur, there must be another vertex of F , say v2, that occludes v1. The three points v1, v2 and s will be collinear; v1

and v2 will be mutually visible; and v2 and s will be mutually visible. Then in the construction of Pπ, the extension
of the segment v1v2 would pass through s, which means that s does not lie in the interior of r. Thus there is no path
between p and q that remains in the interior of r, which contradicts the assumption that both p and q lie in the interior
of r.

So we know that the set of visible vertices cannot change within a region r ∈ Pπ(F ). However, for φ < 2π, it is
still possible for the set of φ-visible vertex pairs to change within a region. We want to refine the partition Pπ(F ) so
that there is no change in φ-visibility of vertices as a φ-searcher moves within a single region. For this purpose, we
introduce visibility curves:

Definition (Visibility curve). Given 0 < φ ≤ π and two distinct points v1 and v2, the visibility curve, denoted
Cφ(v1, v2), is the locus of φ-searcher positions closest to the midpoint of the segment v1v2 such that an appropriate
orientation of the searcher will place both v1 and v2 in Vφ. For π < φ < 2π, Cφ = C(2π−φ). The curve Cφ is
undefined for φ = 2π.

As can be seen in Figure 8(a), the visibility curve for 0 < φ < π is composed of two arcs. Each arc is part of a
circle defined by the locus of points from which the segment v1v2 subtends the angle φ (the segment v1v2 is always
a chord in each circle; when φ = π

2 the two circles are the same and the segment v1v2 is a diameter). To maintain

8



v1
v2

C(v1,v2)

v2

C(v1,v2)

v1

Figure 9: An example of how φ-visibility changes when crossing a visibility curve, for φ = π

2
. As the searcher crosses C π

2
(v1, v2),

it must lose sight of at least one of v1 and v2.

Figure 10: The partition Pφ(F ) for a square free space F , with φ = 2π

3
. The dashed lines are the segments and curves used in the

construction of the partition (the boundaries of the square are also included). Vertex φ-visibility is constant within each resulting
region.

visibility of both vertices from a point along this curve, the searcher must be oriented toward the midpoint of v1v2.
As φ approaches π, these arcs flatten, until they meet to form a single line when φ = π. In this case, a π-searcher
positioned on the line must be oriented orthogonal to the line in order to maintain visibility of v1 and v2. As shown in
Figure 8(b), for π < φ < 2π, the visibility curve is composed of the same two arcs as for 2π − φ, but the orientation
of the searcher is rotated by π.

The importance of the visibility curve is that it makes concrete the constraints induced by the requirement to
maintain visibility of a given pair of vertices with a φ-searcher. For 0 < φ ≤ π, the visibility curve is the closest that
a φ-searcher can approach two vertices while keeping them both in view (Figure 9). If the searcher moves forward
from a point on this curve, it will necessarily lose visibility of at least one vertex. For π ≤ φ < 2π, the interpretation
is slightly different: if two vertices are currently in view and a φ-searcher passes between them, the visibility curve
is the farthest that the searcher can travel while keeping both vertices in view. When the searcher reaches a point on
the visibility curve, its blind spot becomes wedged between the two vertices; any further forward motion will cause at
least one vertex to fall out of view.

We now refine our partition of F with a set of visibility curves. For every pair of vertices v1 and v2 of F (including
when v1 and v2 are endpoints of the same segment of F ) for which there exists some point on the curve Cφ(v1, v2)
that lies in the free space of F and from which (v1, v2) and/or (v2, v1) is φ-visible , we add Cφ(v1, v2) to F . The
intuition behind this step is that we need only include those curves that represent visibility changes that can actually
occur for a searcher moving through F . For example, if the searcher can never simultaneously see two vertices, then
the visibility curve between them is not a meaningful constraint on the searcher’s motion. For the same reason, we
discard from each curve any portion that lies outside F . It is possible to further prune the visibility curves by removing
from Cφ(v1, v2) any portion from which one or both of v1 and v2 is not visible. This further pruning would speed up
trajectory planning, but has no effect on the completeness of our algorithm.

Note that when φ = π, the addition of visibility curves is redundant: the existence of a third point on Cπ(v1, v2)
from which v1 and v2 are φ-visible is equivalent to v1 and v2 being mutual visible, and Cπ(v1, v2) is just the line
through v1 and v2, which was included in the coarser partition (hence the name Pπ(F )).

The intersections of the resulting arrangement of curves and lines form a partition of F into a set of (not necessarily

9



convex) regions (Figure 10). This partition, Pφ(F ), has the following two properties:

Lemma 4. Given any region r from the partition Pφ(F ) of a polygonal free space F , the set of φ-visible vertices is
the same for all points in the interior of r.

Proof. Since Pφ(F ) is a refinement of Pπ(F ), r must be contained within a single region, say rπ , of Pπ(F ). As the
set of visible vertices cannot change within rπ (Lemma 3), the set of visible vertices likewise cannot change within r.

So we are left to show that, among the (constant) set of visible vertices, the set of φ-visible vertices does not
change. Assume by contradiction that this condition does not hold. In particular, assume that the vertex pair (v1, v2)
is φ-visible from some point p and not φ-visible from some other point q, with both p and q in the interior of r. Since
(v1, v2) is φ-visible from p, both v1 and v2 must also be visible from p. And since the set of visible vertices is the
same for both p and q (because they are both in r), v1 and v2 must also be visible from q. Then, by the definition of a
visibility curve, p and q must lie on opposite sides of Cφ(v1, v2), which contradicts the assumption that p and q lie in
the same region r.

Lemma 5. Given any region r from the partition Pφ(F ) of a polygonal free space F , any vertex pair that is φ-visible
from the interior of r is also φ-visible from the boundary of r.

Proof. Assume by contradiction that the vertex pair (v1, v2) is φ-visible from some point p in the interior of r (by
Lemma 4, the particular choice of p makes no difference), and not φ-visible from some point q on the boundary of r. It
is clear that, since v1 and v2 are visible from p, they must also be visible from q. Then, by the definition of a visibility
curve, p and q must lie on opposite sides of Cφ(v1, v2), which contradicts the assumption that q is on the boundary of
the region containing p.

These lemmas tell us that a φ-searcher that is positioned within a region r can move onto the boundary of r without
losing visibility of any vertices (it may gain visibility of some vertices). At this point, to avoid possible ambiguity, it
will be necessary to order to the set of vertices that are in view.3 For a φ-searcher positioned at p with orientation θ,
we denote by Sφ(F, p, θ) the ordered set of vertices of F that are in view (i.e., in Vφ(F, p, θ)), sorted counterclockwise
about the searcher (angular ties are broken by distance from the searcher). For brevity we may abbreviate this set as
Sφ. We now show that a searcher positioned in the interior of a region can move to the region’s boundary without
removing or reordering any vertices that are initially in view:

Lemma 6. Given any region r from the partition Pφ(F ) of a polygonal free space F , and a φ-searcher with pose
(p, θ) such that p lies in the interior of r, the searcher can move to any point q on the boundary of r without removing
or reordering any vertices in Sφ.

Proof. Consider any continuous path γ from p to q such that γ \ q is contained in the interior of r and q is visited
exactly once (i.e., the path γ intersects the boundary of r only at q, where it terminates). Each vertex pair that is in
Sφ(F, p, θ) must be φ-visible from p and so, by Lemmas 4 & 5, also be φ-visible from all other points on γ (since γ

is confined to r). So it is possible for the searcher to move continuously along γ without losing sight of any vertices.
Furthermore, because φ-visibility guarantees an ordering on each vertex pair, it is possible for the searcher to move
continuously along γ such that no vertex pair in Sφ is reordered. As a result, the searcher can move from p to q without
removing or reordering any vertices in Sφ.

This lemma tells us that we can move a searcher from the interior of a region to its boundary, with the only change
in Sφ being the addition of vertices of F . To put it another way, a searcher that is positioned in the interior of a region
may as well move to the region’s boundary, for at the worst its vertex coverage will remain the same. As a result,
without loss of generality we can restrict our attention to the boundaries of the regions of Pφ(F ), and ignore their
interiors. Furthermore, no vertices Sφ will be removed or reordered as the searcher moves along a single component
(i.e., segment or arc) of the boundary of a region; such a change can only occur at the intersection of two components.
By moving to an intersection, the searcher is in fact moving from the interior to the boundary of a larger region that

3When φ > π, it may be possible to change the information state without changing the set of vertices that are view, by wedging the searcher’s
blind spot between different vertex pairs. In this case, only the order of the in-view vertices will change, and so we must keep track of this order to
be able to distinguish among these information states.

10



would exist if the boundary component along which it is traveling were excluded from the partition. So we can further
focus our attention on the intersections of region boundaries.

Of course, the searcher may have to rotate as it moves; φ-visibility only guarantees that it is possible for the
searcher to simultaneously see a given pair of vertices. In general, for a point p that is an intersection of one or more
region boundaries, there will be an interval of orientation for which the set of vertices in Vφ will remain unchanged.
Equivalently, there is an interval of orientation for which each φ-visible vertex pair is in Vφ. By intersecting all such
intervals, we can partition the space of possible searcher orientations, [0, 2π). The intervals produced by this partition,
Θφ(F, p), have the following property: the set of vertices in Vφ is the same for any two orientations in the same
interval.

So all orientations in a given interval, say i, of Θφ(F, p) are equivalent, in the sense that there can be no critical
change in information as a φ-searcher, positioned at p, rotates within i. We can identify each orientation interval by
a pair of vertices (vfirst, vlast), which are, respectively, the first and last vertices in view, according to the order in
which each vertex is encountered by rotating a sweep line counterclockwise through the searcher’s FOV. Without loss
of generality, we can assume that a φ-searcher that is oriented within an interval (vfirst, vlast) is always oriented such
that either its minimum FOV boundary intersects vfirst or its maximum FOV boundary intersects vlast.

4.3 Building the information graph

We now have the roadmap along which the searcher will travel as it moves through F , and we can build a directed
information graph, GI , that encodes all possible critical changes in the information state. For each point p that is the
intersection of two or more components of region boundaries in Pφ(F ), compute the orientation intervals Θφ(F, p).
We add to GI a node for each possible region labeling that can result from placing the searcher at p and rotating it
through each orientation interval in Θφ(F, p).

We complete the construction of GI by adding edges that correspond to the feasible changes in information state.
First we must define the actions that are allowed for the searcher. Assume the searcher is positioned at a point p that is
the intersection of two or more region boundary components, and oriented within an interval defined by (vfirst, vlast).
This searcher can:

1. Rotate into any adjacent orientation interval.

2. Translate along the length of any boundary component c incident to p such that the orientation interval (vfirst, vlast)
is valid at the opposite end of c. During the move the searcher servos its rotation so as to maintain visibility of
both vfirst and vlast (and thus all vertices in between).

For each node n in GI , we determine the information states that would result from taking each allowable action
at the configuration that n represents, and add edges from n to the nodes that encode these new states. Given an
initial information state and a chosen action, the new information state can be computed as follows: the gap edges
are determined by rotational sweep line and the induced planar map is constructed using a traditional sweep line. In
the new map, a region r is clear (labeled “0”) if either: r is currently in view (because the regions are defined by
the searcher’s visibility polygon, r will be either entirely in view or entirely out of view), or r does not intersect any
contaminated region in the old map, from the previous information state. Otherwise, r is contaminated (labeled “1”).

Given an information state from which to start, we can then search GI for a goal state, which represents all of F

being clear. In a start state, all in-view regions are clear and all others are contaminated. In a goal state, all regions are
clear. Given a feasible path through GI from start to goal, we can read from it the required searcher trajectory, as a
series of in-place rotations and constrained translations. We now establish the completeness of this approach:

Theorem 2. An algorithm that will find any path to a goal vertex from a start vertex in GI is complete for the
visibility-based pursuit-evasion problem with a single φ-searcher.

Proof. Given a polygonal free space F and a single φ-searcher, take any solution trajectory, say τ . Our goal is to map
τ onto an equivalent path in GI . That is, we wish to show that τ can be transformed into an equivalent trajectory along
the curves that make up the roadmap used in constructing GI .

Denote by (p, θ) the searcher’s pose at the start of τ . If p lies in the interior of a region r in Pφ(F ) then, by
Lemma 6, we can move the searcher to any point on the boundary of r, without losing or reordering any in-view

11



vertices of F . In particular, we can move the searcher to any intersection along the boundary of r. If p already lies on
a region boundary, then we can slide the searcher along that boundary to the nearest intersection, again without losing
or reordering any in-view vertices.

As τ progresses, we can replicate its moves within our roadmap in the following way. While τ remains in the
interior of a region r, we keep the searcher at an intersection, say q, on the boundary of r, and achieve any necessary
changes in vertex visibility by simply rotating the searcher through its orientation intervals. If τ crosses into an
adjacent region r′ such that q is also on the boundary of r′, we can continue to rotate the searcher in place. If, on the
other hand, q is not on the boundary of r′, we move the searcher along any boundary component that is incident to
both q and some other intersection, say s, that does lie on the boundary of r′. During this translation, the searcher’s
rotation is controlled so as to remain within its current orientation interval and not lose or reorder any in-view vertices
(Lemma 6 guarantees that this is possible).

In this way, we create a new trajectory τ ′ that moves along the roadmap and is at as least as good as τ . That is, Sφ

at each point on τ ′ is a superset of Sφ at the corresponding point on τ . Compared to τ , a searcher moving along τ ′

may see additional vertices, but it will never miss any, nor will it see them in a different order. As we can construct a
solution τ ′ given any solution τ , the algorithm is complete.

5 Implementation and computed examples

We have implemented and tested the algorithm described above, using the CGAL computational geometry library
(Burnikel, Fleischer, Mehlhorn & Schirra 1999). For reasons of efficiency and convenience, our implementation thus
far computes trajectories only for the special case of φ = π. In this case, the roadmap in Pφ(F ) consists only of linear
objects, and so the underlying geometric computation can be done with rational numbers. For φ 6= π, circular arcs
are introduced, and the exact computation of their intersections requires the use of arbitrary precision real numbers,
which are far slower to work with than rationals. Efficiency concerns aside, the case of φ = π is of particular interest
and value to roboticists, because a sensor that is commonly found on robots today is a scanning laser range-finder
with a 180◦ FOV (e.g., the SICK LMS). So trajectories computed by our implementation can be executed directly on
holonomic robots that are equipped with such sensors.

Contrary to the description given above, we do not actually construct all of GI prior to the search, but rather
construct it on the fly, adding nodes and edges as necessary. This technique provides a significant speedup, for the full
graph contains many irrelevant information states, as well as some unreachable ones.

We now present some computed examples.4 In all the figures, light gray (or yellow) areas are currently in view
(and thus clear), white areas are clear (but not in view), and dark gray areas are contaminated. For reasons of space,
not all steps in each trajectory are shown. For clarity of presentation, the searcher’s approximate trajectory is shown in
the last frame. Shown in Figures 5 & 11 are office-like environments composed of hallways connecting rooms. Shown
in Figure 14 is a more complex environment, for which the computed trajectory had 42 steps.

6 Extensions and further examples

Since we may want to search environments that cannot be searched by a single φ-searcher, it is important to consider
how we can extend this algorithm to handle multiple searchers. One way is to include in the construction of GI the
joint information and action spaces of all searchers. Unfortunately, this approach is not complete. The reason is that
the visibility polygons of multiple searchers can interact and overlap in such a way that the information state can
change without any searcher crossing a region boundary in Pφ. It is easy to construct environments in which two
searchers will clear a portion of the environment without realizing it (see Guibas et al. (1999) for an example). On the
other hand, we have not yet encountered an environment for which this incompleteness actually causes the algorithm
to fail to find a solution when one exists, and we conjecture that such pathological environments are extremely rare.

A more serious drawback to extending our algorithm to multiple searchers in this way is that the joint information
and actions space grow exponentially in the number of searchers. Even in simple environments and with only two
searchers, the information graph GI requires a prohibitively large amount of memory to store and a correspondingly

4Animations of these and other computed examples can be found at: http://ai.stanford.edu/∼gerkey/research/pe.

12



Figure 11: A computed clearing trajectory for a π-searcher in an office-like environment.

long time to search. Nevertheless, we have implemented this extension; shown in Figure 12 is a simple environment
that requires two searchers to clear (a single φ-searcher is incapable of clearing any loops, even when φ = 2π).
We used the multi-searcher extension to compute this solution, in which two searchers work together to clear the
environment. It is possible to restore completeness by constructing a new information graph that accurately reflects the
possible changes in information induced by multiple searchers, but this change would further exponentially increase
the problem difficulty.

There are other avenues for extension that concern the capabilities of robots. For example, there is no physical
sensor that can provide target detection over an unlimited range. If the searcher’s sensor range is short enough to make
a difference in a given environment (e.g., a laser range-finder in a building with very long corridors), then we must
account for the range, or risk generating non-solution trajectories. We can incorporate into the algorithm a limited
range sensor (or indeed, any sensor model) by modifying the step in which the contamination map is updated during
the construction of the information graph. The limited-range φ-searcher will have a different visibility polygon, which
will induce different map. Again, this extension comes at the expense of completeness, for there are now distance-
specific visibility constraints that are not captured in our roadmap.

Another extension is to allow for non-holonomic constraints on the searcher. Consider for example, a two-wheel
differentially-driven robot, which can translate forward and backward and rotate in place, but cannot translate side-
ways. The simplest way to account for this constraint is to disallow any infeasible moves when building the information
graph. Then any computed trajectory will be a feasible solution. In other words, we prune the action space to those
moves that the robot is actually capable of executing. We could go further with this idea by restricting the robot to

13



Figure 12: This example, with one loop, is the simplest environment that requires two π-searchers to clear. In this case, the
searcher in the upper left corner remains stationary, watching the upper and left corridors, while the other searcher moves to clear
the right and lower corridors.

Figure 13: A computed clearing trajectory for two π-searchers in a sensor-based map of a corridor with two adjoining rooms.
The trajectory was computed from a manually-generated floorplan-style approximation of this sensor-based map. In this case, one
searcher moves to the left end of the hall, and turns around to cover the hall while the other searcher sequentially clears the two
rooms. This trajectory was executed by two Pioneer mobile robots.

move only within the FOV of its evader sensor. If the the robot uses the same sensor for obstacle avoidance as for
evader detection (this is often the case), such a restriction would make for more robust solutions by never requiring
the robot to drive blindly, relying on the accuracy of the map to avoid collisions.

Figure 13 demonstrates the application of this modified algorithm to a team of two laser-equipped Pioneer mobile
robots (Figure 1(a)) searching a hallway with two adjoining rooms. In this case, we manually generated a floorplan-
style approximation of the learned sensor-based map shown in the figure (the robots used the original map for local-
ization during the trajectory execution). We then planned for two searchers in the resulting, simplified map, using
the pruned action space described above. The resulting cooperative strategy was executed on the robots: one robot
covered the hallway while the other searched the two rooms in succession.

Not surprisingly, these extensions also sacrifice completeness. A complete algorithm for a non-holonomic searcher
would have to answer the following non-trivial motion planning question: Given a robot with non-holonomic con-
straints and a fixed sensor orientation, does there exist a feasible trajectory from pose A to pose B such that a set S of
points remain in view en route?

7 Summary

We have presented a novel form of the visibility-based pursuit-evasion problem by introducing a new class of searcher,
the φ-searcher, which we chose because it can readily be instantiated as a physical mobile robot. Because the φ-

14



searcher is qualitatively different from the previously studied k-searcher, existing motion-planning techniques do not
suffice. As part of a detailed analysis of this new kind of searcher, we showed that computing the minimum number
of φ-searchers required to search a given environment is NP-hard and derived the first complete search algorithm
for a single φ-searcher. We showed how this algorithm can be extended to find strategies for multiple searchers by
planning in their joint action space, and gave examples of computed trajectories for single searchers and for teams of
two searchers.

Planning in the joint action space of all searchers is clearly not the best approach, as it is centralized and scales
badly as the number of searchers increases. We are currently designing more parsimonious techniques for coordinat-
ing multiple searchers, such as distributed negotiation. For example, if a searcher encounters a hallway with many
contaminated rooms, it may ask of another searcher, “Watch my back from the end of the hall while I clear these
rooms.” It is interesting to note that this kind of cooperative mini-strategy arises naturally in the joint action space
plans. We are investigating the possibility of learning from these plans such higher-level primitives as “watch my
back” and “guard this intersection.”

References
Adler, M., Räcke, H., Sivadasan, N., Sohler, C. & Vöcking, B. (2003), ‘Randomized Pursuit-Evasion in Graphs’, Combinatorics,

Probability and Computing 12(3), 225–244.

Burgard, W., Fox, D., Moors, M., Simmons, R. & Thrun, S. (2000), Collaborative multi-robot exploration, in ‘Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA)’, San Francisco, California, pp. 476–481.

Burnikel, C., Fleischer, R., Mehlhorn, K. & Schirra, S. (1999), Efficient exact geometric computation made easy, in ‘Proc. of the
ACM Symp. on Computational Geometry’, Miami Beach, Florida, pp. 341–350.

Guibas, L. J., Latombe, J.-C., LaValle, S. M., Lin, D. & Motwani, R. (1999), ‘A Visibility-Based Pursuit-Evasion Problem’, Intl. J.
of Computational Geometry & Applications 9(4 & 5), 471–493.

Isler, V., Kannan, S. & Khanna, S. (2003), Locating and capturing an evader in a polygonal environment, Technical Report MS-
CIS-03-33, Dept. of Computer Science, Univ. of Pennsylvania.

Jung, B. & Sukhatme, G. S. (2002), ‘Tracking Targets using Multiple Robots: The Effect of Environment Occlusion’, Autonomous
Robots 13(3), 191–205.

Koenig, S. & Simmons, R. G. (1993), Exploration with and without a map, in ‘Proceedings of the AAAI Workshop on Learning
Action Models at the Eleventh National Conference on Artificial Intelligence (AAAI)’, pp. 28–32. (also available as AAAI
Technical Report WS-93-06).

LaValle, S. M., Lin, D., Guibas, L. J., Latombe, J.-C. & Motwani, R. (1997), Finding an Unpredictable Target in a Workspace with
Obstacles, in ‘Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA)’, Albuquerque, New Mexico, pp. 737–742.

Lee, J.-H., Park, S.-M. & Chwa, K.-Y. (2002), ‘Simple algorithms for searching a polygon with flashlights’, Information Processing
Letters 81, 265–270.

Megiddo, N., Hakimi, S., Garey, M., Johnson, D. & Papadimitriou, C. (1988), ‘The Complexity of Searching a Graph’, J. of the
ACM 35(1), 18–44.

Monien, B. & Sudborough, I. (1988), ‘Min cut is NP-complete for edge weighted trees’, Theoretical Computer Science 58, 209–
229.

O’Rourke, J. (1987), Art Gallery Theorems and Algorithms, Oxford University Press, New York.

Park, S.-M., Lee, J.-H. & Chwa, K.-Y. (2001), Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher, in F. Orejas
and P.G. Spirakis and J. van Leeuwen, ed., ‘Automata, languages and programming’, Lecture Notes in Computer Science
2076, Springer-Verlag, Berlin, pp. 456–468.

Parker, L. E. (1999), ‘Cooperative Robotics for Multi-Target Observation’, Intelligent Automation and Soft Computing 5(1), 5–19.

Parsons, T. (1976), Pursuit-evasion in a graph, in Y. Alavi & D. Lick, eds, ‘Theory and Applications of Graphs’, Lecture Notes in
Mathematics 642, Springer-Verlag, Berlin, pp. 426–441.

Roy, N. & Gordon, G. (2002), Exponential Family PCA for Belief Compression in POMDPs, in ‘Proc. of Advances in Neural
Information Processing Systems (NIPS)’, Vancouver, Canada.

Shermer, T. C. (1992), ‘Recent results in art galleries’, Proceedings of the IEEE 80(9), 1384–1399.

15



Spletzer, J. R. & Taylor, C. J. (2003), ‘Dynamic sensor planning and control for optimally tracking targets’, The Intl. J. of Robotics
Research 22(1), 7–20.

Stroupe, A. (2003), Collaborative Execution of Exploration and Tracking Using Move Value Estimation for Robot Teams
(MVERT), PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Suzuki, I. & Yamashita, M. (1992), ‘Searching for a mobile intruder in a polygonal region’, SIAM J. on Computing 21(5), 863–888.

Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H. & Sastry, S. (2002), ‘Probabalistic Pursuit-Evasion Games: Theory, Implementa-
tion, and Experimental Evaluation’, IEEE Transactions on Robotics and Automation 18(5), 662–669.

Werger, B. B. & Matarić, M. J. (2001), Broadcast of Local Eligibility for Multi-Target Observation, in L. E. Parker, G. Bekey &
J. Barhen, eds, ‘Distributed Autonomous Robotic Systems 4’, Springer-Verlag, New York, pp. 347–356.

Yamauchi, B. (1998), Frontier-Based Exploration Using Multiple Robots, in ‘Proc. of Autonomous Agents’, Minneapolis, Min-
nesota, pp. 47–53.

16



Figure 14: In this more complicated example, the π-searcher first clears the left hand side from top to bottom, then moves through
the horizontal hallway to clear the right hand side, from top to bottom.

17


