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Abstract able to produce a perfectly good plan to reach its goal, but
if planning takes too long the result may be irrelevant, e.g.,
We propose a context-logic style formalism, Timed Rea-if the problem that the agent is trying to solve has changed.
soning Logics (TRL), to describe resource-bounded reason-Similarly, if we have a theorem-proving agent whose sole
ers who take time to derive consequences of their knowl-purpose is to check whether something is a tautology, as-
edge. The semantics of TRL is grounded in the agent’'s comsuming that it already knowslahutologies defeats the pur-
putation, allowing an unambiguous ascription of the set of pose of modelling. The kind of logical results we want to
formulas which the agent actually knows at timgVe show  be able to prove are therefore of the foagent: is capa-
that TRL can capture various rule application and conflict ble of reaching conclusiog within time bound.
resolution strategies that a rule-based agent may employ, In this paper we present Timed Reasoning Logics
and analyse two examples in detail: TRL(STEP) which mod-(TRL), a context-logic style formalism for describing re-
els anall rules at each cyclstrategy similar to thatassumed source bounded reasoners who take time to derive the con-
in step logic [5], and TRL(CLIPS) which modelssangle sequences of their knowledge. This meta-logic is similar
rule at each cycletrategy similar to that employed by the to the logic described in [11], but is, in addition, decid-
CLIPS [22] rule based system architecture. We prove a gen-able. The semantics of TRL uses syntactic notions but is
eral completeness and decidability results for TRL(STEP). grounded in the agent's computation [24] (e.g., the val-
ues of the agent’s internal variables or the set of facts
in the agent's working memory), allowing an unam-
. biguous ascription of the set of formulas which the
1. Introduction agent actually knows at time. Our logic is parame-

, . . ) terised by the agent’s rule application strategy, and we
The main problem we address in this paper is that of

] : " show how to model two strategies: aft rules at each cy-
modelling time bounded reasoners, namely agents whichgje sirateqy similar to that assumed in step logic [5], and

are able to produce plans or derive consequences of theit, single rule at each cyclastrategy similar to that em-

beliefs but take time to deliberate. Most research in log- ployed by the CLIPS [22] rule based system architec-
ics for belief, knowledge and action (see, for example, {1

[15, 7, 12, 14, 19, 20, 8, 17, 23, 21]) makes the Srong ¢ yemainder of this paper is organised as follows. In
assumption that Whateve.r reasoning .a_b,'“t'es an .agent Ma%he next section we survey some related work and motivate
have, the re_sults O.f apply_lng those abilities to agiven prob- the development of TRL. In section 3 we introduce the mod-
lem are available ||_T|med|ate_ly. For exa“?p'e' if an agentis o5 opg language of TRL. The rest of the paper contains for-
capable of reasoning from its observations and some re-mal development of TRL(STEP) (completeness, decidabil-

stricted set _of logical _rules, it _vvilllderive qll the conse- ity and embedding in step logic) and TRL(CLIPS).
guences which are derivable using its rules instantaneously.

In some situations this is a reasonable assumption. For
example, the agent may do a very simple kind of delib- 2. Motivation
eration in a non time-criticabnvironment, and we may
safely ignore a small delay involved in deliberation. How- In this section, we briefly review some related work and
ever, there are many cases where the time taken to do demotivate the development of TRL.
liberation is of critical importance. One obvious exampleis  The literature contains many attempts at providing a
that of planning in a dynamic environment: an agent may belogic of limited or restricted reasoning. However most of



these do not explicitly take account of time. For example, ence rules specifying how orset of formulas can be trans-
Levesque’s [16] logic of implicit and explicit belief restricts formed into another. (For agents which don’t use a sym-
an agent’s explicit beliefs (the classical possible worlds no- bolic representation we can ‘translate’ the agent’s state into
tion) by allowing non-classical (either incomplete orimpos- a set of formulas and the agent’'s program into an equiva-
sible) worlds to enter an agent’s epistemic accessibility rela-lent set of rules.) For the purposes of this paper, we assume
tion. Although agents need not then believe all tautologies, that agents are deterministic, so the transition relation is ac-
they remain perfect reasoners. In [6] Fagin & Halpern pro- tually a function.

pose an alternative approach to restricting possible worlds  An often-made objection to syntactic or sentential ap-
semantics which involves a syntactiwarenesdilter, such proaches to representinglieds is that an agent may be-
that an agent only believes a formula if it (or its subterms) |ieve, e.g.p A ¢ but not believey A p. From our point of

are in his awareness set. Agents are modelled as pel’feCt re@iewl this is not paradoxica': an agent equipped with a con-
soners whose beliefs are restricted to some syntactic C|aS§iJnction commutativity rule will derive; A p from p A ¢
compatible with the awareness filter. Konolige [12] repre- at the next tick of the clock but would require some non-
sents beliefs as sentences belonging to an agent’s belief sefsjyial computational effort to establish that two formulas,
which is closed under the agent's deduction rules. A de- gach thousands of symbols long, are permutation instances
duction model assigns a set of rules to each agent, allow-of each other. It is exactly this correlation between the dif-
ing representation of agents with differing reasoning capac-ficulty of the task and the number of steps required by a

ities within a single system. However the deduction model given agent to solve it that we are interested in investigat-
tells us what a set of agents will believe after an indefinitely jng.

long period of deliberation. In what follows, we assume &han agent repeatedly ex-

The only logical research we are aware of which repre- ecutes a fixedense-think-actycle. Information obtained
sents reasoning as a process that explicitly requires time ispy observation (and ang priori knowledge) is stored in
step logid3, 5, 4]. However, until recently, step logic lacked the agent’s working memory. At each tick of the clock,
adequate semantics. In [18] Nirkhe, Kraus & Perlis pro- the agent executes its program which consists of a set of
pose a possible-worlds type semantics for step logic. How-condition-action rules. The rules are matched against the
ever this re-introduces logical omniscience: once an agentcontents of the agent’s working memory and a subset of the
learns that, it simultaneously knows all logically equiva-  rules are fired. This may update working memory and/or
lent statements. In more recent work [11], Grant, Kraus & trigger some external action in the agent’s environment. In
Perlis propose a semantics for step logic which does not regeneral, the conditions of a rule can be consistently matched
sultin logical omniscience, and prove soundness and com-against the items in working memory in more than one way,
pleteness results for families of theories describing timed giving rise to a number of distingtle instancesFollow-
reasoning. However, their logic for reasoning about time- ing standard rule based system terminology we call the set
limited reasoners is first-ordand hence undecidable (even of rule instances theonflict setand the process of deciding
if the agents described are very simple). which subset of rule instances are to be fired at any given

We therefore propose a new approach, Timed Reasoningycleconflict resolution
Logics, which avoids the problem of logical omniscience  Agents can adopt a wide range of rule application and
and is at the same time decidable. Not surprisingly, in order conflict resolution strategies. For example, they can order
to avoid logical omniscience, a logic for reasoning about the conflict set and fire only the first instance in the or-
beliefs has to introduce syntactic objects representing for-dering at each cycle, or they can fire all rule instances in
mulas in its semantics. In [11], domains of models of the the conflict set on each cycle once (as step logic does),
meta-logic for reasoning about agents contain objects cor-or they can repeatedly compute the conflict set and fire all
responding to formulas of the agent’s logic. We have cho- the rule instances it contains until no new facts can be de-
sen a differentapproach, where models correspond to sets ofived at the current cycle. We call these three strategjies
agent’s states together with a transition relation (similar to gle rule at each cycleall rules at each cycleandall rules
[8]). States are identified witlinite sets of formulas and the  to quiescenceespectively. TRL allows us to distinguish be-
transition relation is computed using the agent rules (for a tween these different rule application and conflict resolution
detailed discussion, see [1]). An advantage of our approactstrategies and reason about the implications of adopting dif-
is that the semantics of the logic ggounded(see [24]) in ferent strategies, for example, the point at which a particular
the state of the agent (e.g., the values of the agent’s interfact will be derived or whether it will ever be derived at all.
nal variables or the set of facts in the agent’s working mem- In section 4 we consider the simple case in which the agent
ory), allowing an unambiguous ascription of the set of for- applies all its rules once to all the premises that match (as
mulas which the agent actually knows. Similarly, the rules in step logic). In section 6, we consider a CLIPS-style agent
comprising the agent’s program give rise to a set of infer- that fires a single rule at each cycle, and show that this re-



quires a non-monotonic logic. Li, inf; is a function from finite sets of formulas &} to fi-
nite sets of formulas i}, ;, and eachn;] is a finite set of

We define a family of logics called TRL parametrised by 3.2. TRL Syntax
a set of agentsl and a rule system (set of inference rules

and associated rule appltan strategy) for each agent. Our choice of syntax is influenced by context logics as
defined for example in [10] and Gabbay’s Labelled Deduc-

tive Systems [9].
Well formed formulas in the agent’s languag&sare de-

. . . fined in the usual way. For example 4§ (the agent’s lan-
To be able to reason about steps in deliberation and the Y pled ( g

. : . .~ “guage at time 0) is a simple propositional logic with propo-
t!me del_lberatlon takes, we need a set of steps, or Ioglcalsitional variable®g, p1, . . ., pn, then awell formed formula
time points, which we will assume to be the set of nat- w -

¢ of L is defined as
ural numbers. To be able to reason about several agents,

3.1. TRL Moddls

we also have a non-empty set of agents or reasafers ¢ = pi|~dlo — dlp A lopV ¢

{1,...,4,...,}. Each state in the model is going to be in-

dexed by an element of the index de= A x N, which is As in context logic, we use labelled formulas to distin-
the set of pairg:,t), wherei is an agent and is the step  guish between beliefs of different agents at different times.
number. If 4 is an agent; is a moment of time, and a well-formed

Each agent € A has a local state which we assume formula of the languagg!, then(i, ) : ¢ is a well-formed
can be described by a finite set of formulas in some log- labelled formula of TRL.
ical language (propositional, @dicate, modal, etc.). Dif- A labelled formula(i, t) : ¢ is true in a modelM =
ferent agents may use different languages. To be able ta(i,t) : ¢, iff ¢ € m! (the state indexed bgi, t) in M con-
model changes in the agentaniguage, such as acquiring tains¢). A labelled formula(i, t) : ¢ is valid, = (i,¢) : ¢,
new names for things etc., we also index the language byiff for all models M, M = (i,t) : ¢. LetT be a set of la-
time points: at time, agenti speaks the languag®. We belled formulasT logically entails(i, t) : ¢, T = (4,¢) : ¢,
identify the local state of ageritat timet, m¢, with a fi- if in all models wherd is true, (i, t) : ¢ is true.
nite set{¢4, ..., ¢, } of formulas of the agent’s language at
timet, £i. Atthis point we don’t require anything else in ad- 4. TRL(STEP)
dition to finiteness, in particular this set may be empty or in-

consistent. In this section we model an agent which uses a step
A TRL model is a set of local states indexed by pairs |ogic-styleall rules at each cycleule application strategy.

(i,1). In addition, a TRL model should satisfy constraints At each step the agent applies all of its rules to all the formu-

which make it a valid representation of a run of a multi- |35 which match them. This results in a simple and natural

agent system. To formulate those constraints, we need addimeta-logic which describes the agent's reasoning in time.
tional notions of observation and inference which constrain  The syntax of TRL(STEP) rules is as follows:

how the next state of an agent is going to look.

Each agent has some rules to produce a new state given (i1,8) : D1y oy (inyt) D
its current state and any new beliefs obtained by observa- (i,t+1):9
tion. To model observation, we equip each model with a ) ) = ) ) .
function obs which takes a step and an agent as argu-  Hereitisa unlversallly quantified variable over time points,
ments and returns a finite set of formulas in the agent's lan-8ndi1, . .., in, i are fixed labels corresponding to names of
guage at that step. This set is added to the agent’s state at tHaIENS. .
same step (observations are instantaneous). To model the L€t/ be asetof TRL(STEP) inference rules. A labelled
agent's computation of a new state, we have a set of func_formula_(z‘, t):¢is derivablefrom a set of labelled formu-
tions inf;, one for each agerit which maps a finite set of  lasT' usingk (I' Fr (i,t) : ¢) if there is a sequence of

formulas in the languagé: to another finite set of formu-  labelled formulagi, 1) = é1, ..., (in, tn) : én Such that:

las in the language; , ;. 1. each formula in the sequence is either a memb&y, of

Definition 1 Let A be a set of agents an : i € A, ¢ ¢ or is obtained fronT" by one of the inference rules in
t ’ .

N} a set of agent languages. A TRL modélis a tuple L;and

(obs,inf;,{m : i € At € N}) whereobs is a func- 2. the last labelled formula in the sequencgiig) : ¢,

tion which maps a paifi, ¢) to a finite set of formulas in namely(i,, t,) : én = (i,t) : .



It is convenient to distinguish two kinds of TRL(STEP)
rules. The first kind of rule involves just one agent and cor-
responds to this agent’s internal inference ruleg (func-
tion). We call these rulesiternal rules

For example, an agentvho can use modus ponens will
have a rule MP:

(i,t): ¢ (i,t): 9 —
(6, t4+1) 9

This means, for any moment of timgand formulas, v, if
1 believesp and¢ — ) att, then att + 1 it will believe .
If we want to express that the reasomnés monotonic, we
add arule:

(i,0) : ¢

(i,t+1):0

Given a set of rule?, we will refer to the subset corre-
sponding to internal rules &s;,, ;.
The second kind of rule involves several agents and cor-

1. For every rule inRk;,, ; of the form

(6,t) : 1y .oy (4,8)
REE

inf, in M satisfies the property
P15 -

in other words,inf, is computed using all, and only,
the rules inR;;, .

. for each rule inR,;, of the form

(1,8) : ¢
Gt+1):9

obs in M satisfies the property

¢ € m} =1 € obs(j,t + 1)

We are going to prove a general completeness result, that

responds to exchange of information between agents, whichy TR| (STEP) system characterised by a certain set of rules

we model using thebs function. We call these rulesom-
munication rules

R is complete with respect to the set of models conforming

to R. Before doing this, we need one more notion, similar

elled by describing how one agent’s decisions result in

actions which cause certain changes in the environmentDP€finition2 A TRL model M conforming to set of
which may then be noticed by other agents. In this paper, we TRL(STEP) rulesi? is a minimal model for a set of la-
want to concentrate solely on modelling resource-boundedPelled formulad if for everyi, ¢ and¢, ¢ € m; iff one of
reasoning, avoiding reasoning about actions. For simplic-the following holds:

ity, we assume that parts of agents’ states are directly ob- 1. thereis a rule inR;,, s of the form

servable by other agents; when a formula is placed there,

it is observed at the next time point by the other agents.

This model corresponds to perfect broadcast communica-

tion with a fixed one tick delay.
Communication rules have the form:

(1,0) : ¢
(J,t+1):9
For example, if the whole of agefi$ state is observable by

agentj, we can have a rule which says that whene\se-
lieveso att, att + 1 5 will believe that: believesp:

(i,t) : &

Here, the language of the agentontains a belief opera-
tor B;, and B; ¢ the stands fori‘ believes thaty’. Commu-
nication rules correspond to constraints ondéhefunction.
We will refer to them asR .

of

4.1, Completeness and

TRL(STEP)

Decidability

We say that a modél/ conformgo a set of TRL(STEP)
rulesR if

(6,t) s 1y .oy (4,8)
G.i+r1):0

and¢y, ..., ¢, € mi_, (in other wordsg is forced by
theinf function)

2. or¢ € obs(i, t) in which cas€i, t) : ¢ € T or there is
arule in R, of the form

(1) : ¥
(t,t+1): 9

andy € m]_,.

Lemmal Let M be a minimal model foF conforming to
R. Then for every formula, ¢ € m¢iff I' Fg (i,t) : ¢.

Proof. The proof goes by induction ot If t = 0, then
the only way¢ € mj is becausep € obs(i,0) hence
(1,0) : ¢ € T'sol kg (i,0) : ¢. Inductive hypothesis:
suppose that for all agengsand alls < ¢, ¢ € mJ iff
I'br (4,8): ¢. Letg € mi, . Then eithew € inf;(m})
or ¢ € obs(i,t + 1). In the former case, there is a rulefih
of the form

(Z,t) : ¢1,...,(i,ﬁ)l¢n
(G, t+1): ¢




such thaty = ¢ and¢1,...,¢, € mi. By the inductive
hypothesisT” - (i, t) : ¢;. Hence by this same rul&,tr
(i,t + 1) : ¢. In the latter case, eithéi,t + 1) : ¢ € T
hencel' ki (i,t + 1) : ¢, or there is a rule iR, of the

form
(J,t) =9
(i,t+1):¢

andy € m{. In this case, by the inductive hypothedis;
(4,t) : ¢ so by the rule abové& b (i,t+ 1) : . -

Theorem 1 Given a set of TRL(STEP) ruldg for any fi-
nite set of labelled formulak and a labelled formulap,
IPkgroiff T =xr ¢ whereR is the set of models conform-
ing to R.

Proof. SoundnessI{ Er ¢ = T kg ¢) is standard:
clearly, in a model conforming t& the rules inR preserve
validity.

Completeness: suppo$e = ¢. Consider a minimal
model forT", Mp, conforming toR. Sincel’ =z ¢ and
our particular modelMr conforms toR and satisfied",
Mr = ¢. FromLemma 1T’ br ¢. -

Theorem 2 Given a set of TRL(STEP) ruldg for any fi-
nite set of labelled formulak and a labelled formulap, it

is decidable whethdr - ¢ or T = ¢ whereR is the set
of models conforming t&.

expected, that ifineg("¢7)]] = —¢, [[conj("¢7, "¢ T)]] =
o AN and[[imp(T¢","¥7)]] = ¢ — @ in all structures.

A typical axiom of the meta-logic in the languagelof,.
is of the form

Vivtaxayaz . ¢(27t,$,y) - K(Z,ﬁ—f—l,Z)

For instance, the fact that all agents can use modus po-
nens would be represented as the following axiom:

MP Vi,t,l’l,ZQ.

K(i,t+1,22)

Most of the axioms given in [11] are Horn clauses (they
contain at most one positiv€ atom). Note that every Horn
clause axiom of the form

K(i, t,z1) ANK(i, t, imp(xy, 22) —

Vi,t,zl,...,xn,x/\K(i,t,zj) — K(i,t+1,x)
J

corresponds to a TRL(STEP) inference rule of the form

(i,t) : b1y, (4,8) = D
G t+1):0

However L,,,. is a much more expressive language than
TRL. For example, axioms which have negationskKof
atoms in the premises of the rules cannot be expressed as
TRL rules. Grant, Kraus and Perlis prove that every the-
ory 7 which consists of their axioms and a set of observa-
tion axioms (ground atoms corresponding to observations),

Proof. From the Theorem 1 above, the two QUestions ¢ 5 minimal Herbrand mod@l. They also define a spe-

whetheT - (i,t) : ¢ and whethel" =% (i,t) : ¢ where
R is the set of models conforming tB, are equivalent.
Consider a minimal model/r- for . If ' =x (i,t) : ¢,
theng € mi in Mr. On the other hand, from Lemma 1,
if ¢ € mé thenT kg (i,t) : ¢. Hencep € mi iff
FI—R (i,t) : ¢Iﬁ r ):’R (i,ﬁ) : ¢

It is easy to see that given thatis finite and rules ink

cial kind of model callecknowledge supported modé&l/e
modify their definition for the case whéis the only pred-
icate in the language df,,,.:

Definition 3 A model M of 7 is knowledge supported
if M = K(i,t,"¢") only if K(i,t,"¢") is an observa-
tion axiom of 7, or there exists an axiom of the form

only produce a finite number of new formulas at each step, V{(#(t1,£2) — K(t3)) and a substitutions such that

the initial segment of/ (up to stept) can be constructed in
time bounded by a tower of exponentials|Ifj of heightt
(but nevertheless bounded). Then we can inspédb see
if ¢ isthere. H

5. Embedding into Step Logic

K(£3)0 = K(i, t,"¢7) and M = 6(f1, £)0.

They prove that the minimal Herbrand modef/ofs knowl-
edge supported, and prove soundness and completeness of
their meta-logic using this fact.

The notion of a knowledge supported model is very sim-
ilar to the minimal model for a set of TRL formuldsin-
troduced in the previous section. We can make this pre-

In this section we embed TRL(STEP) in the logic in- Cise as follows. Fix a set of Horn clause axiomsn the
troduced by Grant, Kraus and Perlis in [11]. Grant, Kraus language ofL,,... Let R4 be the set of labelled inference
and Perlis consider a hierarchy of first order languages. The'Ules in the language of TRL which corresponds4oL et

agents reason in the languag,, and the meta-logic is for-
mulated in the languagk, ... L, has a namé&¢™ for ev-
ery¢ € L,q, a 3-ary predicate symb&lwhereK(i, ¢, ¢™)
means that the agemtknows ¢ at time¢ (and other in-

tentional predicates which we omit here), and functions on ing to R 4. For any formulag of L

terms corresponding to names of formulasy, conj and

imp. It is assumed that the resulting terms are interpreted as

I be a set of ground atoms of the foli, ¢,"¢™), and
FTRL - {(th) . ¢ : K(iatvr(bj) S F'rne}-

Theorem 3 Let M,,,. be a knowledge supported model of
AUT,,. and My, be a minimal model df -z, conform-

agr

Mrne ': K(’L',t,'_(bj) iff MTRL ): (i,t) . ¢



Proof. Similar to the proof of Lemma 1. - R1: dal matian(x) -> dog(x)

. . . . ) R2: dog(x) -> dangerous(Xx)
This essentially defines an embedding of TRL into a meta-

logic of Grant, Kraus and Perlis. As is to be expected, this R1 has greater salience than R2. The agent's working mem-
shows that TRL is a less expressive logic and explains whyOry contains the following fact:
it is decidable while the logic defined in [11] is not. How- 0: dal mati an( snoopy)

ever, we believe that TRL has additional advantages over = | ) ) o
the approach of Grant et al. In TRL, we essentially rea- which is tagged with the time (0) at which it was asserted

son about state transition systems, and while the states ar©0 Working memory. Then at the next cycle an agent with
somewhat unorthodox (being collections of formulas) the & CLIPS depth-style conflict resolution strategy would de-

‘temporal’ part of the logic is perfectly standard and com- Ve
putationally feasiblé. On the other hand, the first order ap- 1: dog(snoopy)

proach (where names of formulas, agents, and moments 01‘0\ me that at thi le th nt mak new observation
time are all objects of the individual domain and the meta- ssume thatat this cycle Ine age akes anewobservatio

logic includes operations of arithmetic to reason about time and a corresponding fact is asserted into working memory:
points) leads to a complex system even for simple agents. 1: dal mati an(spot)

W‘? alsc?ub:gevtelthatla (nolr]—nlpnottt)m;:) logic fgr an _gggr_ﬂ Instances of R1 have greater salience than instances of R2,
using -Style rule application Strategy ("’FS descrived Ny, on the following cycle the agent will derive
the next section), is much easier to handle within TRL than

within an axiomatic system. 2: dog(spot)
Both “dog(snoopy)” and “dog(spot)” match R2, but
6. TRL(CLIPS) “dog( spot ) ” will be preferred since it has a higher (more

recent) time stamp thardtg(snoopy) ”. On the follow-

Grant, Kraus & Perlis conder agents who are either ing cycle the agent will derive
guaranteed to apply a rule withim steps, or are guaran-
teed to apply it ‘eventually’. However this is not the only or
even the most natural rule application strategy which a rule- Finally the agent derives:
base_d agent may use. It is_also interes_tin_g to investigate rule 4. danger ous( snoopy)
application strategies motivated by existing rule based sys-
tem architectures, e.g., CLIPS [22] and SOAR [13]. This is trivial example. However, in general, the time at

As an example, we show how to model one of the conflict which a fact is derived can be significant. For example, in
resolution strategies of the CLIPS rule based system [22].developing an agent we may wish to ensure that it responds
In CLIPS each rule has salience (reflecting its impor- 0 dangers as soon as they are perceived rather than after
tance in problem solving) and each fact in working mem- classifying objects in the environment. In our short exam-
ory has aime stampwhich records the cycle at which the Ple, the delay in identifying danger is just one step, but it
fact was added to working memory. CLIPS usesiragle is easy to modify the example to make the delay arbitrar-
rule at each cycleule application strategy. At each cycle, ily long (by introducingn new dalmatians instead of one at
all rules are matched agatrtie facts in working memory ~ cycle 1).
and any new rule instances are added to the conflict set. Rule !N section 4 TRL(STEP) logiwas formulated to model
matching is refractory, i.e., rules don’t match against the a@gents which used thal rules at each cycleule applica-
same set of premises more than once. New rule instancedon strategy. It is easy to see that in the case ofsihgle
are placed above all rule instances of lower salience and belule at each cyclstrategy, the corresponding TRL logic be-
low all rules of higher salience. If rule instances have equal COMes non-monotonic. For instance, in the example above
salience, ties are broken by the conflict resolution strategy.the agent would have derivedd&nger ous(snoopy)”
The default strategy, calledepth gives preference to rule @t step 2 if the fact dal mati an(spot)” had not been
instances which matched a@igst more recent facts. Once asserted. Defining a logic corresponding to thi-
the conflict set has been computed, CLIPS fires the first ruledle rule at each cyclestrategy is an interesting chal-

3: dangerous(spot)

instance in the conflict set at each cycle. lenge, to which we devote the rest of this section. We
of rules: late it here for a single agent, since the only difference from

TRL(STEP) is in the internal rules of the agent.

1 TRL(STEP) can be embedded in a linear time temporal logic with 10 reflect salience of rules, we assume that there is a par-
‘next’ operator and a non-standard epistemic modality, similar to the tial order<,. on the set of rule®,, ..., R,, and introduce
one developed in [2). a meta-logical abbreviatiotvp(R;, A) to mean that for a




given a set of labelled formulas, R; is maximal in the or- The notion of the derivation is similar to the one intro-
der<, among the rules which match any premises fthm  duced in section 4, although applicability of the rules of
When there are several rule instances for rutgsatisfy- agenti at stepn depends or(i,n) : A. To account for

ing top(R;, A), we need to order them, this time by a to- refractoriness we stipulate theepeated application of the

tal order, and choose the maximal element in the order assame rule to the same (modulo step labels) premises is not
the rule instance to apply. This total order corresponds toallowed. An example derivation is given in the appendix.

the agent’s conflict resolution strategy. We have chosen to  Analogously to TRL(STEP), we can prove that it is
model the depth strategy, but other strategies can be treatedecidable whether a labelled formulat) : ¢ follows

in a similar way. from a set of labelled formulaB with respect to a set of

To reflect the depth rule application strategy, we need
to incorporate time stampsglicitly in the language. They
seem to correspond quite closely to the step labels, but in
fact the information they carry is differen(, t) : ¢ means
that¢ is in the agent’s state at time, and the time stamp
corresponds to the time when the informatipwas first ac-

TRL(CLIPS) rulesR (and orderings on rules and formu-
las).

7. Conclusions

We introduce a family of logics, TRL, to reason about

quired. Let us assume that the agent's language is first Oy ounded reasoners. The semantics uses syntactic no-
der and all predicates are augmented with an extra argument e but is grounded in the agent's computation. We

for a time stamp, for examplBalmatian(snoopy,0). De-
fine the order<, (depth order on sets of premises) as fol-
lows: 1, ..., ¢ <a ¥1,..., 95 if

1. t4,...,t, are time stamps oy, ..., ¢, (ordered in
decreasing order of timestamps), ..., s, are time
stamps ofy, ..., ¥, (also ordered), and, ..., t, <
81, ..., 8 (pointwise), or

S TR 7%y S1,.- but ¢1,...;¢n <a
U1,...,%, In some arbitrary (for example lexi-
cographic) total ordet,,.

<y Sn

We introduce another meta-logical abbreviation
topa(é1, - .., om,A) to indicate that the set of premises
¢1,-..,0, mMatch a rule R; which has the property
top(R;, A) and are, furthermore, maximal in the, or-
der among such sets of premises.

The rules of asingle rule at each cyclagent; using the
depth strategy then become (or, . . . , ¢, imply v):

(6,t) : A, (i,t) = 1, ooy (3,1) 2 D,
and tOpd((i,t> : ¢17 ) (iat) : ¢n7 (i7t> : A)
(t+1):A, (i, t+1):0

Here,(i,t) : A is a set of formulas labelle¢t, t) which
contains all formulas available at stépt) in the deriva-
tion. Note thatpy,..., ¢, € A, so(i,t 4+ 1) : A includes
(i, t+1) : ¢1,...,(i,t+1) : ¢, (We do not throw premises
away).

R1:
(i,t) : A, (i,t) : Dalmatian(z, s)
and topq((i,t) : Dalmatian(x, s), (i,t) : A)
(i, t+1): A, (i,t+1): Dog(x,t + 1)
and R2:

):
t A
(27t) : A7 (27t) : Dog(x,s)
and topq((i,t) : Dog(z, s), (i,t): A)
(i,t+1): A, (i,t+ 1) : Dangerous(z,t + 1)

For example, the agent from the example above has rules [

prove a general completeness and decidability result for
TRL(STEP) logic which models aall rules at each cy-

cle rule application strategy. We show that TRL(STEP)
can be embedded in the logic introduced in [11] and al-
though TRL is less expressive it has an advantage of being
decidable. To illustrate the flexibility of the TRL frame-
work, we also show how to model agents which fire only
one rule at each cycle. The resulting logic TRL(CLIPS) is
parametrised by the ordering on the set of matching rule in-
stances (we consider the ordering corresponding to depth
strategy of CLIPS in detail) and is non-monotonic. Our fu-
ture work will involve a more systematic investigation of
logics corresponding to various rule application and con-
flict resolution strategies.
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A. Example Derivation

Here we give a derivation in the logic describing an agent
usingsingle rule at each cycleaile application strategy with
depth conflict resolution of the example from Section 6.
First, assume thdDalmatian(snoopy, 0) is the only in-
formation available at step 0.
1. (¢,0) : Dalmatian(snoopy,0). (i,0) : A = {(,0) :
Dalmatian(snoopy,0)}. The only rule that matches
is R1 and the only matching rule instance(is0) :
Dalmatian(snoopy,0).

. (4,1) : Dog(snoopy, 1) from 1 by R1. Now
(1,1) : A ={(4,1) : Dalmatian(snoopy,0), (i,1) :
Dog(snoopy,1)}. Dalmatian(snoopy,0) was used
with R1 before so(i,1) : Dalmatian(snoopy,0)
is not a matching rule instance. The only rule that
matches is R2 and the only match for R2(isl) :
Dog(snoopy, 1).

3. (4,2) : Dangerous(snoopy, 2) from 2 by R2.

Now assume that we haveDalmatian(snoopy,0),
Dog(snoopy, 1) and Dalmatian(spot, 1) at step 1:

1.
2.
3.

i,1) : Dalmatian(snoopy, 0)
i1

):

i,1) : Dalmatian(spot,1). Now
(4,1) : A ={(4,1) : Dalmatian(snoopy,0), (i,1) :
Dog(snoopy, 1), (i,1) : Dalmatian(spot,1)}. Both
R1 and R2 match bubp(R1, A) and only one premise
matches R1 stwpq(Dalmatian(spot, 1), (i,1) : A).

. (¢,2) : Dog(spot, 2) from 3 by R1. Now
(4,2) : A = {(4,2) : Dalmatian(snoopy,0), (i,2) :
Dog(snoopy, 1), (i,2) : Dalmatian(spot, 1), (i,2) :
Dog(spot,2)}, top(R2,A) and there are two
matches for R2:(i,2) Dog(snoopy, 1) and
(7,2) : Dog(spot,2). Since(i,2) : Dog(spot,2) is
more recenttopq((4,2) : Dog(spot,2), (i,2) : A).

. (4,3) : Dangerous(spot, 3) from 4 by R2.

6. (i,4) : Dangerous(snoopy,4) from 2 by R2 (this is
the only rule instance we have left).

Dog(snoopy, 1)

(
(
(



