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Abstract

We propose a context-logic style formalism, Timed Rea-
soning Logics (TRL), to describe resource-bounded reason-
ers who take time to derive consequences of their knowl-
edge. The semantics of TRL is grounded in the agent’s com-
putation, allowing an unambiguous ascription of the set of
formulas which the agent actually knows at timet. We show
that TRL can capture various rule application and conflict
resolution strategies that a rule-based agent may employ,
and analyse two examples in detail: TRL(STEP) which mod-
els anall rules at each cyclestrategy similar to that assumed
in step logic [5], and TRL(CLIPS) which models asingle
rule at each cyclestrategy similar to that employed by the
CLIPS [22] rule based system architecture. We prove a gen-
eral completeness and decidability results for TRL(STEP).

1. Introduction

The main problem we address in this paper is that of
modelling time bounded reasoners, namely agents which
are able to produce plans or derive consequences of their
beliefs but take time to deliberate. Most research in log-
ics for belief, knowledge and action (see, for example,
[15, 7, 12, 14, 19, 20, 8, 17, 23, 21]) makes the strong
assumption that whatever reasoning abilities an agent may
have, the results of applying those abilities to a given prob-
lem are available immediately. For example, if an agent is
capable of reasoning from its observations and some re-
stricted set of logical rules, it will derive all the conse-
quences which are derivable using its rules instantaneously.

In some situations this is a reasonable assumption. For
example, the agent may do a very simple kind of delib-
eration in a non time-criticalenvironment, and we may
safely ignore a small delay involved in deliberation. How-
ever, there are many cases where the time taken to do de-
liberation is of critical importance. One obvious example is
that of planning in a dynamic environment: an agent may be

able to produce a perfectly good plan to reach its goal, but
if planning takes too long the result may be irrelevant, e.g.,
if the problem that the agent is trying to solve has changed.
Similarly, if we have a theorem-proving agent whose sole
purpose is to check whether something is a tautology, as-
suming that it already knows all tautologies defeats the pur-
pose of modelling. The kind of logical results we want to
be able to prove are therefore of the formagenti is capa-
ble of reaching conclusionφ within time boundt.

In this paper we present Timed Reasoning Logics
(TRL), a context-logic style formalism for describing re-
source bounded reasoners who take time to derive the con-
sequences of their knowledge. This meta-logic is similar
to the logic described in [11], but is, in addition, decid-
able. The semantics of TRL uses syntactic notions but is
grounded in the agent’s computation [24] (e.g., the val-
ues of the agent’s internal variables or the set of facts
in the agent’s working memory), allowing an unam-
biguous ascription of the set of formulas which the
agent actually knows at timet. Our logic is parame-
terised by the agent’s rule application strategy, and we
show how to model two strategies: anall rules at each cy-
cle strategy similar to that assumed in step logic [5], and
a single rule at each cyclestrategy similar to that em-
ployed by the CLIPS [22] rule based system architec-
ture.

The remainder of this paper is organised as follows. In
the next section we survey some related work and motivate
the development of TRL. In section 3 we introduce the mod-
els and language of TRL. The rest of the paper contains for-
mal development of TRL(STEP) (completeness, decidabil-
ity and embedding in step logic) and TRL(CLIPS).

2. Motivation

In this section, we briefly review some related work and
motivate the development of TRL.

The literature contains many attempts at providing a
logic of limited or restricted reasoning. However most of
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these do not explicitly take account of time. For example,
Levesque’s [16] logic of implicit and explicit belief restricts
an agent’s explicit beliefs (the classical possible worlds no-
tion) by allowing non-classical (either incomplete or impos-
sible) worlds to enter an agent’s epistemic accessibility rela-
tion. Although agents need not then believe all tautologies,
they remain perfect reasoners. In [6] Fagin & Halpern pro-
pose an alternative approach to restricting possible worlds
semantics which involves a syntacticawarenessfilter, such
that an agent only believes a formula if it (or its subterms)
are in his awareness set. Agents are modelled as perfect rea-
soners whose beliefs are restricted to some syntactic class
compatible with the awareness filter. Konolige [12] repre-
sents beliefs as sentences belonging to an agent’s belief set,
which is closed under the agent’s deduction rules. A de-
duction model assigns a set of rules to each agent, allow-
ing representation of agents with differing reasoning capac-
ities within a single system. However the deduction model
tells us what a set of agents will believe after an indefinitely
long period of deliberation.

The only logical research we are aware of which repre-
sents reasoning as a process that explicitly requires time is
step logic[3, 5, 4]. However, until recently, step logic lacked
adequate semantics. In [18] Nirkhe, Kraus & Perlis pro-
pose a possible-worlds type semantics for step logic. How-
ever this re-introduces logical omniscience: once an agent
learns thatφ, it simultaneously knows all logically equiva-
lent statements. In more recent work [11], Grant, Kraus &
Perlis propose a semantics for step logic which does not re-
sult in logical omniscience, and prove soundness and com-
pleteness results for families of theories describing timed
reasoning. However, their logic for reasoning about time-
limited reasoners is first-orderand hence undecidable (even
if the agents described are very simple).

We therefore propose a new approach, Timed Reasoning
Logics, which avoids the problem of logical omniscience
and is at the same time decidable. Not surprisingly, in order
to avoid logical omniscience, a logic for reasoning about
beliefs has to introduce syntactic objects representing for-
mulas in its semantics. In [11], domains of models of the
meta-logic for reasoning about agents contain objects cor-
responding to formulas of the agent’s logic. We have cho-
sen a different approach, where models correspond to sets of
agent’s states together with a transition relation (similar to
[8]). States are identified withfinite sets of formulas and the
transition relation is computed using the agent rules (for a
detailed discussion, see [1]). An advantage of our approach
is that the semantics of the logic isgrounded(see [24]) in
the state of the agent (e.g., the values of the agent’s inter-
nal variables or the set of facts in the agent’s working mem-
ory), allowing an unambiguous ascription of the set of for-
mulas which the agent actually knows. Similarly, the rules
comprising the agent’s program give rise to a set of infer-

ence rules specifying how oneset of formulas can be trans-
formed into another. (For agents which don’t use a sym-
bolic representation we can ‘translate’ the agent’s state into
a set of formulas and the agent’s program into an equiva-
lent set of rules.) For the purposes of this paper, we assume
that agents are deterministic, so the transition relation is ac-
tually a function.

An often-made objection to syntactic or sentential ap-
proaches to representing beliefs is that an agent may be-
lieve, e.g.,p ∧ q but not believeq ∧ p. From our point of
view, this is not paradoxical: an agent equipped with a con-
junction commutativity rule will deriveq ∧ p from p ∧ q
at the next tick of the clock but would require some non-
trivial computational effort to establish that two formulas,
each thousands of symbols long, are permutation instances
of each other. It is exactly this correlation between the dif-
ficulty of the task and the number of steps required by a
given agent to solve it that we are interested in investigat-
ing.

In what follows, we assume that an agent repeatedly ex-
ecutes a fixedsense-think-actcycle. Information obtained
by observation (and anya priori knowledge) is stored in
the agent’s working memory. At each tick of the clock,
the agent executes its program which consists of a set of
condition-action rules. The rules are matched against the
contents of the agent’s working memory and a subset of the
rules are fired. This may update working memory and/or
trigger some external action in the agent’s environment. In
general, the conditions of a rule can be consistently matched
against the items in working memory in more than one way,
giving rise to a number of distinctrule instances. Follow-
ing standard rule based system terminology we call the set
of rule instances theconflict setand the process of deciding
which subset of rule instances are to be fired at any given
cycleconflict resolution.

Agents can adopt a wide range of rule application and
conflict resolution strategies. For example, they can order
the conflict set and fire only the first instance in the or-
dering at each cycle, or they can fire all rule instances in
the conflict set on each cycle once (as step logic does),
or they can repeatedly compute the conflict set and fire all
the rule instances it contains until no new facts can be de-
rived at the current cycle. We call these three strategiessin-
gle rule at each cycle, all rules at each cycle, andall rules
to quiescencerespectively. TRL allows us to distinguish be-
tween these different rule application and conflict resolution
strategies and reason about the implications of adopting dif-
ferent strategies, for example, the point at which a particular
fact will be derived or whether it will ever be derived at all.
In section 4 we consider the simple case in which the agent
applies all its rules once to all the premises that match (as
in step logic). In section 6, we consider a CLIPS-style agent
that fires a single rule at each cycle, and show that this re-
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quires a non-monotonic logic.

3. Timed Reasoning Logics (TRL)

We define a family of logics called TRL parametrised by
a set of agentsA and a rule system (set of inference rules
and associated rule application strategy) for each agent.

3.1. TRL Models

To be able to reason about steps in deliberation and the
time deliberation takes, we need a set of steps, or logical
time points, which we will assume to be the set of nat-
ural numbers. To be able to reason about several agents,
we also have a non-empty set of agents or reasonersA =
{1, . . . , i, . . . , }. Each state in the model is going to be in-
dexed by an element of the index setI = A × N, which is
the set of pairs(i, t), wherei is an agent andt is the step
number.

Each agenti ∈ A has a local state which we assume
can be described by a finite set of formulas in some log-
ical language (propositional, predicate, modal, etc.). Dif-
ferent agents may use different languages. To be able to
model changes in the agent’s language, such as acquiring
new names for things etc., we also index the language by
time points: at timet, agenti speaks the languageLi

t. We
identify the local state of agenti at time t, mi

t, with a fi-
nite set{φ1, . . . , φn} of formulas of the agent’s language at
timet,Li

t. At this point we don’t require anything else in ad-
dition to finiteness, in particular this set may be empty or in-
consistent.

A TRL model is a set of local states indexed by pairs
(i, t). In addition, a TRL model should satisfy constraints
which make it a valid representation of a run of a multi-
agent system. To formulate those constraints, we need addi-
tional notions of observation and inference which constrain
how the next state of an agent is going to look.

Each agent has some rules to produce a new state given
its current state and any new beliefs obtained by observa-
tion. To model observation, we equip each model with a
functionobs which takes a stept and an agenti as argu-
ments and returns a finite set of formulas in the agent’s lan-
guage at that step. This set is added to the agent’s state at the
same step (observations are instantaneous). To model the
agent’s computation of a new state, we have a set of func-
tions inf i, one for each agenti, which maps a finite set of
formulas in the languageLi

t to another finite set of formu-
las in the languageLi

t+1.

Definition 1 LetA be a set of agents and{Li
t : i ∈ A, t ∈

N} a set of agent languages. A TRL modelM is a tuple
〈obs , inf i, {mi

t : i ∈ A, t ∈ N}〉 whereobs is a func-
tion which maps a pair(i, t) to a finite set of formulas in

Li
t, inf i is a function from finite sets of formulas inLi

t to fi-
nite sets of formulas inLi

t+1, and eachmi
t is a finite set of

formulas inLi
t such thatmi

t+1 = inf i(m
i
t) ∪ obs(i, t+ 1).

3.2. TRL Syntax

Our choice of syntax is influenced by context logics as
defined for example in [10] and Gabbay’s Labelled Deduc-
tive Systems [9].

Well formed formulas in the agent’s languagesLi
t are de-

fined in the usual way. For example, ifLa
0 (the agenta’s lan-

guage at time 0) is a simple propositional logic with propo-
sitional variablesp0, p1, . . . , pn, then a well formed formula
φ of La

0 is defined as

φ = pi|¬φ|φ → φ|φ ∧ φ|φ ∨ φ

As in context logic, we use labelled formulas to distin-
guish between beliefs of different agents at different times.
If i is an agent,t is a moment of time, andφ a well-formed
formula of the languageLt

i, then(i, t) : φ is a well-formed
labelled formula of TRL.

A labelled formula(i, t) : φ is true in a model,M |=
(i, t) : φ, iff φ ∈ mi

t (the state indexed by(i, t) in M con-
tainsφ). A labelled formula(i, t) : φ is valid, |= (i, t) : φ,
iff for all modelsM , M |= (i, t) : φ. Let Γ be a set of la-
belled formulas.Γ logically entails(i, t) : φ, Γ |= (i, t) : φ,
if in all models whereΓ is true,(i, t) : φ is true.

4. TRL(STEP)

In this section we model an agent which uses a step
logic-styleall rules at each cyclerule application strategy.
At each step the agent applies all of its rules to all the formu-
las which match them. This results in a simple and natural
meta-logic which describes the agent’s reasoning in time.

The syntax of TRL(STEP) rules is as follows:

(i1, t) : φ1, . . . , (in, t) : φn

(i, t+ 1) : ψ

Here,t is a universally quantified variable over time points,
andi1, . . . , in, i are fixed labels corresponding to names of
agents.

LetR be a set of TRL(STEP) inference rules. A labelled
formula(i, t) : φ is derivablefrom a set of labelled formu-
las Γ usingR (Γ �R (i, t) : φ) if there is a sequence of
labelled formulas(i1, t1) : φ1, . . . , (in, tn) : φn such that:

1. each formula in the sequence is either a member ofΓ,
or is obtained fromΓ by one of the inference rules in
L; and

2. the last labelled formula in the sequence is(i, t) : φ,
namely(in, tn) : φn = (i, t) : φ.
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It is convenient to distinguish two kinds of TRL(STEP)
rules. The first kind of rule involves just one agent and cor-
responds to this agent’s internal inference rules (inf i func-
tion). We call these rulesinternal rules.

For example, an agenti who can use modus ponens will
have a rule MP:

(i, t) : φ (i, t) : φ→ ψ
(i, t+ 1) : ψ

This means, for any moment of timet, and formulasφ,ψ, if
i believesφ andφ → ψ at t, then att+ 1 it will believeψ.
If we want to express that the reasoneri is monotonic, we
add a rule:

(i, t) : φ
(i, t+ 1) : φ

Given a set of rulesR, we will refer to the subset corre-
sponding to internal rules asRinf .

The second kind of rule involves several agents and cor-
responds to exchange of information between agents, which
we model using theobs function. We call these rulescom-
munication rules.

In principle, interaction between agents should be mod-
elled by describing how one agent’s decisions result in
actions which cause certain changes in the environment,
which may then be noticed by other agents. In this paper, we
want to concentrate solely on modelling resource-bounded
reasoning, avoiding reasoning about actions. For simplic-
ity, we assume that parts of agents’ states are directly ob-
servable by other agents; when a formula is placed there,
it is observed at the next time point by the other agents.
This model corresponds to perfect broadcast communica-
tion with a fixed one tick delay.

Communication rules have the form:

(i, t) : φ
(j, t+ 1) : ψ

For example, if the whole of agenti’s state is observable by
agentj, we can have a rule which says that wheneveri be-
lievesφ at t, at t+ 1 j will believe thati believesφ:

(i, t) : φ
(j, t+ 1) : Biφ

Here, the language of the agentj contains a belief opera-
torBi, andBiφ the stands for ‘i believes thatφ’. Commu-
nication rules correspond to constraints on theobs function.
We will refer to them asRobs.

4.1. Completeness and Decidability of
TRL(STEP)

We say that a modelM conformsto a set of TRL(STEP)
rulesR if

1. For every rule inRinf of the form

(i, t) : φ1, . . . , (i, t) : φn

(i, t+ 1) : ψ

inf i in M satisfies the property

φ1, . . . , φn ∈ mi
t =⇒ ψ ∈ inf i(m

i
t)

in other words,inf i is computed using all, and only,
the rules inRinf .

2. for each rule inRobs of the form

(i, t) : φ
(j, t+ 1) : ψ

obs in M satisfies the property

φ ∈ mi
t =⇒ ψ ∈ obs(j, t+ 1)

We are going to prove a general completeness result, that
a TRL(STEP) system characterised by a certain set of rules
R is complete with respect to the set of models conforming
to R. Before doing this, we need one more notion, similar
to the notion of a knowledge-supported model in [11]:

Definition 2 A TRL modelM conforming to set of
TRL(STEP) rulesR is a minimal model for a set of la-
belled formulasΓ if for everyi, t andφ, φ ∈ mi

t iff one of
the following holds:

1. there is a rule inRinf of the form

(i, t) : φ1, . . . , (i, t) : φn

(i, t+ 1) : φ

andφ1, . . . , φn ∈ mi
t−1 (in other words,φ is forced by

theinf function)

2. orφ ∈ obs(i, t) in which case(i, t) : φ ∈ Γ or there is
a rule inRobs of the form

(j, t) : ψ
(i, t+ 1) : φ

andψ ∈ mj
t−1.

Lemma 1 LetM be a minimal model forΓ conforming to
R. Then for every formulaφ, φ ∈ mi

t iff Γ �R (i, t) : φ.

Proof. The proof goes by induction ont. If t = 0, then
the only wayφ ∈ mi

0 is becauseφ ∈ obs(i, 0) hence
(i, 0) : φ ∈ Γ so Γ �R (i, 0) : φ. Inductive hypothesis:
suppose that for all agentsj and all s ≤ t, φ ∈ mj

s iff
Γ �R (j, s) : φ. Let φ ∈ mi

t+1. Then eitherφ ∈ inf i(mi
t)

or φ ∈ obs(i, t+ 1). In the former case, there is a rule inR
of the form

(i, t) : φ1, . . . , (i, t) : φn

(i, t+ 1) : ψ
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such thatψ = φ andφ1, . . . , φn ∈ mi
t. By the inductive

hypothesis,Γ �R (i, t) : φi. Hence by this same rule,Γ �R

(i, t + 1) : φ. In the latter case, either(i, t + 1) : φ ∈ Γ
henceΓ �R (i, t + 1) : φ, or there is a rule inRobs of the
form

(j, t) : ψ
(i, t+ 1) : φ

andψ ∈ mj
t . In this case, by the inductive hypothesis,Γ �R

(j, t) : ψ so by the rule above,Γ �R (i, t+ 1) : φ. �

Theorem 1 Given a set of TRL(STEP) rulesR, for any fi-
nite set of labelled formulasΓ and a labelled formulaφ,
Γ �R φ iff Γ |=R φ whereR is the set of models conform-
ing toR.

Proof. Soundness (Γ |=R φ ⇒ Γ �R φ) is standard:
clearly, in a model conforming toR the rules inR preserve
validity.

Completeness: supposeΓ |=R φ. Consider a minimal
model forΓ, MΓ, conforming toR. SinceΓ |=R φ and
our particular modelMΓ conforms toR and satisfiesΓ,
MΓ |= φ. From Lemma 1,Γ �R φ. �

Theorem 2 Given a set of TRL(STEP) rulesR, for any fi-
nite set of labelled formulasΓ and a labelled formulaφ, it
is decidable whetherΓ �R φ or Γ |=R φ whereR is the set
of models conforming toR.

Proof. From the Theorem 1 above, the two questions
whetherΓ �R (i, t) : φ and whetherΓ |=R (i, t) : φ where
R is the set of models conforming toR, are equivalent.
Consider a minimal modelMΓ for Γ. If Γ |=R (i, t) : φ,
thenφ ∈ mi

t in MΓ. On the other hand, from Lemma 1,
if φ ∈ mi

t then Γ �R (i, t) : φ. Henceφ ∈ mi
t iff

Γ �R (i, t) : φ iff Γ |=R (i, t) : φ.
It is easy to see that given thatΓ is finite and rules inR

only produce a finite number of new formulas at each step,
the initial segment ofM (up to stept) can be constructed in
time bounded by a tower of exponentials in|Γ| of heightt
(but nevertheless bounded). Then we can inspectmi

t to see
if φ is there. �

5. Embedding into Step Logic

In this section we embed TRL(STEP) in the logic in-
troduced by Grant, Kraus and Perlis in [11]. Grant, Kraus
and Perlis consider a hierarchy of first order languages. The
agents reason in the languageLag, and the meta-logic is for-
mulated in the languageLme. Lme has a name�φ� for ev-
eryφ ∈ Lag, a 3-ary predicate symbolK whereK(i, t, �φ�)
means that the agenti knowsφ at time t (and other in-
tentional predicates which we omit here), and functions on
terms corresponding to names of formulas:neg, conj and
imp. It is assumed that the resulting terms are interpreted as

expected, that is[[neg(�φ�)]] = ¬φ, [[conj(�φ�, �ψ�)]] =
φ ∧ ψ and[[imp(�φ�, �ψ�)]] = φ→ ψ in all structures.

A typical axiom of the meta-logic in the language ofLme

is of the form

∀i, t, x, y, z . ψ(i, t, x, y) → K(i, t+1, z)

For instance, the fact that all agents can use modus po-
nens would be represented as the following axiom:

MP ∀i, t, x1, x2 . K(i, t, x1) ∧ K(i, t, imp(x1, x2) →
K(i, t+1, x2)

Most of the axioms given in [11] are Horn clauses (they
contain at most one positiveK atom). Note that every Horn
clause axiom of the form

∀i, t, x1, . . . , xn, x
∧

j

K(i, t, xj) → K(i, t+1, x)

corresponds to a TRL(STEP) inference rule of the form

(i, t) : φ1, . . . , (i, t) : φn

(i, t+ 1) : φ

HoweverLme is a much more expressive language than
TRL. For example, axioms which have negations ofK
atoms in the premises of the rules cannot be expressed as
TRL rules. Grant, Kraus and Perlis prove that every the-
ory T which consists of their axioms and a set of observa-
tion axioms (ground atoms corresponding to observations),
has a minimal Herbrand modelH. They also define a spe-
cial kind of model calledknowledge supported model. We
modify their definition for the case whenK is the only pred-
icate in the language ofLme:

Definition 3 A modelM of T is knowledge supported
if M |= K(i, t, �φ�) only if K(i, t, �φ�) is an observa-
tion axiom ofT , or there exists an axiom of the form
∀t̄(φ(t̄1, t̄2) → K(t̄3)) and a substitutionθ such that
K(t̄3)θ = K(i, t, �φ�) andM |= φ(t̄1, t̄2)θ.

They prove that the minimal Herbrand model ofT is knowl-
edge supported, and prove soundness and completeness of
their meta-logic using this fact.

The notion of a knowledge supported model is very sim-
ilar to the minimal model for a set of TRL formulasΓ in-
troduced in the previous section. We can make this pre-
cise as follows. Fix a set of Horn clause axiomsA in the
language ofLme. Let RA be the set of labelled inference
rules in the language of TRL which corresponds toA. Let
Γme be a set of ground atoms of the formK(i, t, �φ�), and
ΓTRL = {(i, t) : φ : K(i, t, �φ�) ∈ Γme}.

Theorem 3 LetMme be a knowledge supported model of
A∪Γme andMTRL be a minimal model ofΓTRL conform-
ing toRA. For any formulaφ ofLag,

Mme |= K(i, t, �φ�) iff MTRL |= (i, t) : φ
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Proof. Similar to the proof of Lemma 1.�

This essentially defines an embedding of TRL into a meta-
logic of Grant, Kraus and Perlis. As is to be expected, this
shows that TRL is a less expressive logic and explains why
it is decidable while the logic defined in [11] is not. How-
ever, we believe that TRL has additional advantages over
the approach of Grant et al. In TRL, we essentially rea-
son about state transition systems, and while the states are
somewhat unorthodox (being collections of formulas) the
‘temporal’ part of the logic is perfectly standard and com-
putationally feasible1. On the other hand, the first order ap-
proach (where names of formulas, agents, and moments of
time are all objects of the individual domain and the meta-
logic includes operations of arithmetic to reason about time
points) leads to a complex system even for simple agents.
We also believe that a (non-monotonic) logic for an agent
using CLIPS-style rule application strategy (as described in
the next section), is much easier to handle within TRL than
within an axiomatic system.

6. TRL(CLIPS)

Grant, Kraus & Perlis consider agents who are either
guaranteed to apply a rule withinn steps, or are guaran-
teed to apply it ‘eventually’. However this is not the only or
even the most natural rule application strategy which a rule-
based agent may use. It is also interesting to investigate rule
application strategies motivated by existing rule based sys-
tem architectures, e.g., CLIPS [22] and SOAR [13].

As an example, we show how to model one of the conflict
resolution strategies of the CLIPS rule based system [22].
In CLIPS each rule has asalience, (reflecting its impor-
tance in problem solving) and each fact in working mem-
ory has atime stampwhich records the cycle at which the
fact was added to working memory. CLIPS uses asingle
rule at each cyclerule application strategy. At each cycle,
all rules are matched against the facts in working memory
and any new rule instances are added to the conflict set. Rule
matching is refractory, i.e., rules don’t match against the
same set of premises more than once. New rule instances
are placed above all rule instances of lower salience and be-
low all rules of higher salience. If rule instances have equal
salience, ties are broken by the conflict resolution strategy.
The default strategy, calleddepth, gives preference to rule
instances which matched against more recent facts. Once
the conflict set has been computed, CLIPS fires the first rule
instance in the conflict set at each cycle.

As an example, consider an agent with the following set
of rules:

1 TRL(STEP) can be embedded in a linear time temporal logic with
‘next’ operator and a non-standard epistemic modality, similar to the
one developed in [2].

R1: dalmatian(x) -> dog(x)
R2: dog(x) -> dangerous(x)

R1 has greater salience than R2. The agent’s working mem-
ory contains the following fact:

0: dalmatian(snoopy)

which is tagged with the time (0) at which it was asserted
into working memory. Then at the next cycle an agent with
a CLIPS depth-style conflict resolution strategy would de-
rive

1: dog(snoopy)

Assume that at this cycle the agent makes a new observation
and a corresponding fact is asserted into working memory:

1: dalmatian(spot)

Instances of R1 have greater salience than instances of R2,
so on the following cycle the agent will derive

2: dog(spot)

Both “dog(snoopy)” and “dog(spot)” match R2, but
“dog(spot)” will be preferred since it has a higher (more
recent) time stamp than “dog(snoopy)”. On the follow-
ing cycle the agent will derive

3: dangerous(spot)

Finally the agent derives:

4: dangerous(snoopy)

This is trivial example. However, in general, the time at
which a fact is derived can be significant. For example, in
developing an agent we may wish to ensure that it responds
to dangers as soon as they are perceived rather than after
classifying objects in the environment. In our short exam-
ple, the delay in identifying danger is just one step, but it
is easy to modify the example to make the delay arbitrar-
ily long (by introducingn new dalmatians instead of one at
cycle 1).

In section 4 TRL(STEP) logic was formulated to model
agents which used theall rules at each cyclerule applica-
tion strategy. It is easy to see that in the case of thesingle
rule at each cyclestrategy, the corresponding TRL logic be-
comes non-monotonic. For instance, in the example above
the agent would have derived “dangerous(snoopy)”
at step 2 if the fact “dalmatian(spot)” had not been
asserted. Defining a logic corresponding to thesin-
gle rule at each cyclestrategy is an interesting chal-
lenge, to which we devote the rest of this section. We
call the logic TRL(CLIPS) and for simplicity we formu-
late it here for a single agent, since the only difference from
TRL(STEP) is in the internal rules of the agent.

To reflect salience of rules, we assume that there is a par-
tial order≤r on the set of rulesR1, . . . , Rn, and introduce
a meta-logical abbreviationtop(Ri,∆) to mean that for a

6



given a set of labelled formulas∆,Ri is maximal in the or-
der≤r among the rules which match any premises from∆.
When there are several rule instances for rulesRi satisfy-
ing top(Ri,∆), we need to order them, this time by a to-
tal order, and choose the maximal element in the order as
the rule instance to apply. This total order corresponds to
the agent’s conflict resolution strategy. We have chosen to
model the depth strategy, but other strategies can be treated
in a similar way.

To reflect the depth rule application strategy, we need
to incorporate time stamps explicitly in the language. They
seem to correspond quite closely to the step labels, but in
fact the information they carry is different:(i, t) : φ means
thatφ is in the agenti’s state at timet, and the time stamp
corresponds to the time when the informationφwas first ac-
quired. Let us assume that the agent’s language is first or-
der and all predicates are augmented with an extra argument
for a time stamp, for exampleDalmatian(snoopy, 0). De-
fine the order<d (depth order on sets of premises) as fol-
lows:φ1, . . . , φn <d ψ1, . . . , ψn if

1. t1, . . . , tn are time stamps ofφ1, . . . , φn (ordered in
decreasing order of timestamps),s1, . . . , sn are time
stamps ofψ1, . . . , ψn (also ordered), andt1, . . . , tn <
s1, . . . , sn (pointwise), or

2. t1, . . . , tn = s1, . . . , sn but φ1, . . . , φn <a

ψ1, . . . , ψn in some arbitrary (for example lexi-
cographic) total order<a.

We introduce another meta-logical abbreviation
topd(φ1, . . . , φm,∆) to indicate that the set of premises
φ1, . . . , φm match a ruleRi which has the property
top(Ri,∆) and are, furthermore, maximal in the<d or-
der among such sets of premises.

The rules of asingle rule at each cycleagenti using the
depth strategy then become (forφ1, . . . , φn imply ψ):

(i, t) : ∆, (i, t) : φ1, . . . , (i, t) : φn

and topd((i, t) : φ1, . . . , (i, t) : φn, (i, t) : ∆)
(i, t+ 1) : ∆, (i, t+ 1) : ψ

Here,(i, t) : ∆ is a set of formulas labelled(i, t) which
contains all formulas available at step(i, t) in the deriva-
tion. Note thatφ1, . . . , φn ∈ ∆, so(i, t + 1) : ∆ includes
(i, t+1) : φ1, . . . , (i, t+1) : φn (we do not throw premises
away).

For example, the agent from the example above has rules
R1:

(i, t) : ∆, (i, t) : Dalmatian(x, s)
and topd((i, t) : Dalmatian(x, s), (i, t) : ∆)

(i, t+ 1) : ∆, (i, t+ 1) : Dog(x, t+ 1)

and R2:

(i, t) : ∆, (i, t) : Dog(x, s)
and topd((i, t) : Dog(x, s), (i, t) : ∆)

(i, t+ 1) : ∆, (i, t+ 1) : Dangerous(x, t+ 1)

The notion of the derivation is similar to the one intro-
duced in section 4, although applicability of the rules of
agenti at stepn depends on(i, n) : ∆. To account for
refractoriness we stipulate that repeated application of the
same rule to the same (modulo step labels) premises is not
allowed. An example derivation is given in the appendix.

Analogously to TRL(STEP), we can prove that it is
decidable whether a labelled formula(i, t) : φ follows
from a set of labelled formulasΓ with respect to a set of
TRL(CLIPS) rulesR (and orderings on rules and formu-
las).

7. Conclusions

We introduce a family of logics, TRL, to reason about
time-bounded reasoners. The semantics uses syntactic no-
tions but is grounded in the agent’s computation. We
prove a general completeness and decidability result for
TRL(STEP) logic which models anall rules at each cy-
cle rule application strategy. We show that TRL(STEP)
can be embedded in the logic introduced in [11] and al-
though TRL is less expressive it has an advantage of being
decidable. To illustrate the flexibility of the TRL frame-
work, we also show how to model agents which fire only
one rule at each cycle. The resulting logic TRL(CLIPS) is
parametrised by the ordering on the set of matching rule in-
stances (we consider the ordering corresponding to depth
strategy of CLIPS in detail) and is non-monotonic. Our fu-
ture work will involve a more systematic investigation of
logics corresponding to various rule application and con-
flict resolution strategies.
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A. Example Derivation

Here we give a derivation in the logic describing an agent
usingsingle rule at each cyclerule application strategy with
depth conflict resolution of the example from Section 6.

First, assume thatDalmatian(snoopy, 0) is the only in-
formation available at step 0.

1. (i, 0) : Dalmatian(snoopy, 0). (i, 0) : ∆ = {(i, 0) :
Dalmatian(snoopy, 0)}. The only rule that matches
is R1 and the only matching rule instance is(i, 0) :
Dalmatian(snoopy, 0).

2. (i, 1) : Dog(snoopy, 1) from 1 by R1. Now
(i, 1) : ∆ = {(i, 1) : Dalmatian(snoopy, 0), (i, 1) :
Dog(snoopy, 1)}. Dalmatian(snoopy, 0) was used
with R1 before so(i, 1) : Dalmatian(snoopy, 0)
is not a matching rule instance. The only rule that
matches is R2 and the only match for R2 is(i, 1) :
Dog(snoopy, 1).

3. (i, 2) : Dangerous(snoopy, 2) from 2 by R2.

Now assume that we haveDalmatian(snoopy, 0),
Dog(snoopy, 1) andDalmatian(spot, 1) at step 1:

1. (i, 1) : Dalmatian(snoopy, 0)

2. (i, 1) : Dog(snoopy, 1)

3. (i, 1) : Dalmatian(spot, 1). Now
(i, 1) : ∆ = {(i, 1) : Dalmatian(snoopy, 0), (i, 1) :
Dog(snoopy, 1), (i, 1) : Dalmatian(spot, 1)}. Both
R1 and R2 match buttop(R1,∆) and only one premise
matches R1 sotopd(Dalmatian(spot, 1), (i, 1) : ∆).

4. (i, 2) : Dog(spot, 2) from 3 by R1. Now
(i, 2) : ∆ = {(i, 2) : Dalmatian(snoopy, 0), (i, 2) :
Dog(snoopy, 1), (i, 2) : Dalmatian(spot, 1), (i, 2) :
Dog(spot, 2)}, top(R2,∆) and there are two
matches for R2: (i, 2) : Dog(snoopy, 1) and
(i, 2) : Dog(spot, 2). Since(i, 2) : Dog(spot, 2) is
more recent,topd((i, 2) : Dog(spot, 2), (i, 2) : ∆).

5. (i, 3) : Dangerous(spot, 3) from 4 by R2.

6. (i, 4) : Dangerous(snoopy, 4) from 2 by R2 (this is
the only rule instance we have left).
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