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Abstract

In this paper we detail the key features, architectural design, and implemen-
tation of rCUDA, an advanced framework to enable remote and transparent
GPGPU acceleration in HPC clusters. rCUDA allows decoupling GPUs from
nodes, forming pools of shared accelerators, which brings enhanced flexibility
to cluster configurations. This opens the door to configurations with fewer ac-
celerators than nodes, as well as permits a single node to exploit the whole
set of GPUs installed in the cluster. In our proposal, CUDA applications can
seamlessly interact with any GPU in the cluster, independently of its physi-
cal location. Thus, GPUs can be either distributed among compute nodes or
concentrated in dedicated GPGPU servers, depending on the cluster adminis-
trator’s policy. This proposal leads to savings not only in space but also in
energy, acquisition, and maintenance costs. The performance evaluation in this
paper with a series of benchmarks and a production application clearly demon-
strates the viability of this proposal. Concretely, experiments with the matrix-
matrix product reveal excellent performance compared with regular executions
on the local GPU; on a much more complex application, the GPU-accelerated
LAMMPS, we attain up to 11x speedup employing 8 remote accelerators from a
single node with respect to a 12-core CPU-only execution. GPGPU service in-
teraction in compute nodes, remote acceleration in dedicated GPGPU servers,
and data transfer performance of similar GPU virtualization frameworks are
also evaluated.
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1. Introduction

Recent advances in hardware and software for graphics processing units
(GPUs) have unleashed the so-called GPGPU (general-purpose computing on
GPU) era: namely, the use of graphics accelerators for solving general-purpose
tasks, which are different from the graphical workloads these devices were ini-
tially designed for. This innovative GPU usage has been favored because of their
extreme computational power (for certain applications) and affordable price, as
well as the improvements in their programmability with the introduction of
standard interfaces such as CUDA [1] or OpenCL [2].

As a result, computing clusters are adopting these devices to accelerate
compute-intensive parts for an increasing number of applications. For instance,
two of the top ten supercomputers of the Top500 list (November 2013) [3] are
equipped with GPU accelerators.

On the other hand, energy consumption has become a hot topic in the design
of supercomputers and data centers [4, 5, 6, 7]. In this regard, the use of
GPUs exerts a great impact on both energy consumption and total cost of
ownership (TCO) of the system, since high-end GPUs may well increase energy
consumption of a high-performance computing (HPC) server over 30% and TCO
around 50%.

Strategies to reduce costs and increase flexibility without affecting perfor-
mance are highly appealing. System virtualization solutions, such as Xen [8] or
KVM [9], may yield significant energy savings, since they increase resource uti-
lization by sharing a given computer among several users, reducing the required
amount of instances of that system. Our approach pursues the virtualization of
single GPU devices instead of complete computers, in order to increase flexibility
and render energy and cost benefits. A GPU virtualization solution can enable
seamless and concurrent usage of remote GPU devices. Our proposal, rCUDA
(remote CUDA) permits a reduction in the number of GPUs of a cluster, thus
yielding considerable energy and resource savings, while efficiently sharing the
existing GPUs across all the nodes in the system. On the other hand, applica-
tions are not further limited by the number of GPUs physically attached to the
node where they are running, since rCUDA enables applications running on a
node to gain access to any amount of the GPUs available in the cluster.

To provide remote GPU acceleration, rCUDA creates virtual CUDA devices
on those machines without a local GPU (see Figure 1). These virtual devices
represent physical GPUs located on a remote host offering GPGPU services.
Thus, all the compute nodes are able to concurrently share the whole set of
CUDA accelerators present in the cluster (referred to as a globally shared GPU
pool), independently of which nodes the GPUs are physically attached to. Fur-
thermore, since the number of processes concurrently sharing a GPU is limited
by the amount of device memory (both in the traditional CUDA local solu-
tion and in rCUDA), no new scalability concerns within a GPGPU server are
imposed.

rCUDA is not intended to bring any benefit to those supercomputers tar-
geting the Top500 list, since this ranking tends to promote configurations with
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(a) Traditional GPU-equipped cluster.
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(b) Virtual GPU pool enabled by rCUDA.

Figure 1: rCUDA GPU pool compared with traditional view.

multiple GPUs per node. Similarly, the use of remote accelerators may be un-
feasible for certain applications where high-bandwidth and/or low-latency GPU
communications lie in the critical path to attain the desired performance, as
opposed to others where the GPU computational power is the dominant fac-
tor. rCUDA is particularly useful in production clusters, where applications
tend to alternate CPU- and GPU-compute periods, leading conventional con-
figurations with one or more GPUs per node to experience low GPU utilization.
Furthermore, the GPU-pool proposal adds flexibility to GPU-enabled clusters
by decoupling GPUs from nodes, hence facilitating GPU upgrades, additions,
and, in general, GPU maintenance. This is the case especially when GPGPU-
dedicated servers are deployed as “GPU boxes” connected to the network (like
disk servers). Actually, the idea of “GPU boxes” turns to be useful when these
accelerators must be added to a GPU-less cluster. In this scenario, the new
hardware components usually do not fit into the existing nodes. In these condi-
tions, rCUDA provides a useful solution because it allows a “GPU box” to be
attached instead of having to replace the existing hardware, thus lowering the
cost of introducing GPGPU capabilities into the computing facility. In sum-
mary, these use cases are beneficial in many scenarios, ranging from research
clusters to datacenters using GPUs to accelerate applications such as those deal-
ing with datamining [10, 11].

In previous work we either presented an early prototype of our rCUDA
virtualization solution or simple performance results. However, basically no
detail about the internals of rCUDA was introduced. In this paper we present
a mature version of our GPU virtualization solution, with support for CUDA
5.5, with the following major properties:

1. An enhanced and up-to-date GPGPU remote virtualization solution that
extends some of the features of CUDA without changing the original ap-
plication programming interface (API).

2. An efficient architecture for data transfers involving remote GPUs.
3. An optimized implementation of the communications of the rCUDA re-

mote GPU virtualization solution for InfiniBand (IB) interconnects.

To illustrate these features, we provide an experimental evaluation of remote
GPU acceleration including a correctness evaluation, several benchmarks, a
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production application evaluation (LAMMPS), GPGPU service interaction in
compute nodes, dedicated GPGPU server (GPU box) evaluations, and a perfor-
mance comparison with other existing GPU virtualization frameworks. To the
best of our knowledge, this paper includes the most extensive remote GPGPU
acceleration evaluation to date, demonstrating the feasibility of this proposal in
HPC clusters using current technologies.

The rest of this paper is organized as follows. In Section 2 we review the
related work. Section 3 describes the main features of rCUDA and its design
and key implementation details. Section 4 focuses on the new InfiniBand com-
munications module. In Section 5, our proposal is evaluated. Conclusions and
future work directions are presented in Section 6.

2. Related Work

GPU virtualization and sharing have been approached from both the hard-
ware and software perspectives. In the first case, a range of commercial solutions
allow multiple servers in a rack to share several GPUs, hence making it possible
to use a cluster configuration with fewer GPUs than nodes. These solutions
include, for example, the NextIO’s vCORE product series [12] by PCI Express
(PCIe) virtualization [13]. In this case, up to 8 servers can share a reduced
number of GPUs within a two-meter distance. Unfortunately, these commer-
cial solutions do not allow multiple nodes to concurrently access the same GPU,
since the accelerators need to be assigned exclusively to a specific node at a time.
Moreover, these proprietary hardware-supported solutions are often expensive
for moderate to large-scale configurations.

One key difficulty for GPU virtualization is that GPUs, unlike devices such as
storage or network controllers, lack a standard low-level interface. Furthermore,
the low-level protocols used to drive GPUs are proprietary and strictly closed by
GPU vendors. Consequently, the virtualization boundary has been commonly
placed on top of open high-level APIs, such as Microsoft’s Direct3D [14] and
OpenGL [15] for graphics acceleration or CUDA and OpenCL for GPGPU, lead-
ing to two markedly different types of virtualization solutions: those intended
for graphics and those for GPGPU.

2.1. GPU Virtualization for Graphics Processing

Although there are conceptual similarities between these works pursuing
GPU virtualization for graphics processing and our approach (i.e., GPU virtu-
alization by means of high-level API interception), even when dealing with the
virtualization of the same device we found that the intrinsics of both graphics
and GPGPU APIs differ significantly, since graphics APIs have to deal with
graphics-related issues, such as flickering, object interposition (with the op-
timization opportunities this brings), or graphics redirection. Conversely, our
research focuses mainly on general-purpose computing, discarding graphical rep-
resentation issues.

4



2.2. GPU Virtualization for GPGPU

Like rCUDA, a collection of approaches pursue the virtualization of the
CUDA Runtime API. All these solutions feature a distributed middleware com-
posed of two parts: the front-end, installed on client systems, and the back-end,
executed by the hosts offering GPGPU services and with direct access to the
physical GPUs.

2.2.1. Virtualization Frameworks for Cloud/Virtual Machines

Although the constraints that these solutions face differ from those of our
target systems—such as those derived from the virtualized environment and
the limited network performance—the principles of operation of these GPGPU
virtualization solutions are markedly similar to those of rCUDA. We next review
the related work in this field.

vCUDA [16] implements an unspecified subset of the obsolete CUDA Run-
time version 1.1. It employs XML-RPC for the application-level communica-
tions, which, as the experiments in [16] show, causes a considerable negative
impact on the overall performance of this solution as a result of the time spent
in the encoding/decoding stages of the communication protocol.

GViM [17] is specifically designed to expose GPGPU capabilities to Xen
VMs. It uses Xen-specific mechanisms for the communication between its mid-
dleware components, including shared-memory buffers, which enhance commu-
nications between user and administrative domains at the expense of targeting
a highly specific environment. This solution, also based on CUDA 1.1, does not
seem to implement the whole CUDA Runtime API.

gVirtuS [18] covers only a subset of the CUDA Runtime 3.2. For example,
it lacks over 50% of the memory management functions of this version.

DS-CUDA [19] is a similar remote virtualization tool, limited to provide mul-
tiple remote virtualized GPUs to a single computing node. It also incorporates
low-level IB-based communications, though the implementation intrinsics are
not detailed. An interesting additional feature of this software for its specific
target environment is that it implements fault-tolerance capabilities performing
redundant computations in multiple GPUs. A subset of CUDA 4.1 is reported
as being covered, but neither asynchronous operations nor memory copies larger
than 32 MB are supported.

The work in [20] introduced GPU kernel consolidation into their GPGPU
virtualization framework to optimize kernel workloads in cloud environments.

2.2.2. Other Frameworks

VGPU [21] is a commercial tool with no detailed information available. Fur-
thermore, no public version is released that can be used for testing and compar-
ison. GridCuda [22] is a similar tool aimed at providing remote access to GPUs
in a grid environment; although this work mentions interesting features, these
are neither detailed nor evaluated in their experiments. On the other hand,
VCL [23], VOCL [24], SnuCL [25], and dOpenCL [26] are virtualization tools
targeting the OpenCL API.

5



2.2.3. rCUDA

Compared with other virtualization solutions, rCUDA is the only produc-
tion ready framework targeting HPC cluster environments. The use of specific,
highly tuned, low-level IB communications unleashes all the potential of this
technology for our target environment, as will be shown later.

In previous work [27] we introduced the idea underlying rCUDA, along with
an overview of a simple proof-of-concept implementation and early results. We
explored the support for asynchronous operations along with the energy-saving
potential [28], and we derived models to estimate the performance of remote
GPU virtualization on different networks [29, 30]. We explored the use of
rCUDA to expose GPGPU capabilities to virtual machines [31]. An automatic
converter from CUDA extensions to plain C (CU2rCU) was described in [32],
and the influence of the new InfiniBand FDR technology on the performance
of GPU remoting was assessed in [33]. In [34] we explore the usage of remote
accelerators from clients featuring low-power processors.

This paper provides an extensive performance evaluation of remote GPU
acceleration in computing clusters using rCUDA, exploring novel aspects such
as GPU service interaction in compute nodes or GPGPU service from dedicated
GPU boxes. Also presented is a performance comparison with other publicly
available solutions, demonstrating our remote GPU acceleration proposal to
be feasible for production computing clusters using current technologies. In
addition, we detail the design and implementation choices leading rCUDA to
become a highly efficient solution that attains the aforementioned objectives.

2.3. NVIDIA’s GPU Virtualization Technology

The previous approaches are based on the interception of a particular API.
Nevertheless, vendors can virtualize the entire GPU, as NVIDIA intends with
the new VGX [35]. This technology, announced for the Kepler GPU architec-
ture, includes hardware and software support to efficiently virtualize a whole
GPU and share it among different virtual machines running on the same node.
Although rCUDA is also suitable for VM environments, this type of intranode
virtualization solution should not be confused with the remote virtualization
solution that rCUDA and some of the other proposals provide, which involves
dealing with distributed-memory scenarios. Furthermore, this new technology,
intended mainly for desktop virtualization, requires specific hardware features,
and thus it will be available only for specialized GPUs, limiting its applicability.

3. rCUDA: Features, Architectural Design, and Implementation

By leveraging rCUDA, applications can transparently access CUDA com-
patible accelerators installed in any node of the cluster as if those were directly
connected to a local PCIe port.

In our solution, remote GPUs are virtualized devices made available by an
interception library that replaces the CUDA Runtime (provided by NVIDIA as
a shared object). Basically, the rCUDA library forwards the CUDA API calls
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Figure 2: rCUDA components.

to a remote server equipped with a GPU, where the corresponding requests are
executed. From the user/programmer point of view, there is no difference in
the behavior of the CUDA calls, apart from a possible increase of the execution
time caused by the network transmission latency. On the other side, the rCUDA
server middleware is configured as a daemon that runs in those nodes offering
GPGPU services controlling the local GPU(s) and sending back the results
from the requests of the calling applications. Figure 2 depicts the different
components that form rCUDA.

The virtual CUDA devices presented by rCUDA feature the same capabil-
ities as the physical devices they represent. An exception is the “zero-copy,”
a mechanism to directly access host memory from GPU kernels, which is not
currently supported by rCUDA devices (this feature is expected to be incor-
porated in future versions by tracking the cudaHostAlloc calls with the flag
cudaHostAllocMapped set, and managing the corresponding data transfers be-
tween clients and servers on the different epochs). This should not pose a
strong inconvenient, however, since applications are encouraged to check device
capabilities prior to using them, and consequently these are expected to pro-
vide alternative mechanisms for the different GPU capabilities they may find.
Graphics interoperability is also not supported in this version of rCUDA and
will be incorporated in future releases of the framework. Also, in our current
implementation the output of a “printf” call made within GPU kernels is not
forwarded to rCUDA clients but dumped into the server logs instead.

3.1. Client Side

The rCUDA interception library is installed on those nodes requiring GPU-
based acceleration capabilities. This library intercepts, processes, and forwards
the CUDA Runtime calls from the CUDA-accelerated applications (clients) to
the rCUDA server.

When loaded, the client library automatically tries to establish a connection
with the server(s) demanded by the application. Hence, the asymptotic com-
plexity of the communications of the startup phase on the client side is O(S),
where S is the number of GPU servers that the application will use. The servers
will be specified by the job scheduler described in Section 3.6, although for the
experiments presented in this document these have been set manually. When
the library is unloaded, the connection is automatically closed, and the library
resources are released.
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For each CUDA call, the following tasks are performed by the rCUDA client:
(1) conduct local checks (function dependent), for example, determining whether
the requested amount of data to transfer is positive or the pointers are valid; (2)
optionally, perform some mappings, for example assigning identifiers to pointers
or to locally store additional information; (3) pack the arguments together with
a function identifier; (4) send the execution request to the server; and (5) in
synchronous functions, wait for the server’s response.

3.2. Server Side

An rCUDA server daemon, located at each node offering acceleration ser-
vices, is in charge of receiving, interpreting, and executing remote CUDA call
requests. For each client application, a new server process is created (using
prefork for performance purposes) to execute all the requests from that individ-
ual remote execution into an independent GPU context. Spawning a different
server process for each remote execution over a new GPU context facilitates
GPU multiplexing, also ensuring the survival of the other GPU contexts in the
event of a crash of one of the servers (e.g., caused by an improper CUDA call). A
multithreaded server architecture solution would not provide this safety feature.

In an HPC cluster environment where jobs are scheduled and assigned to
the different general-purpose cores of the system, rCUDA allows all the GPU
coprocessors to be safely shared by the different jobs, provided there is sufficient
GPU memory to concurrently run all the requested applications. The NVIDIA-
proprietary device driver running in the GPU servers will manage the concurrent
execution of the different active contexts using its own scheduler, in the same
way as it does in a local GPU context. Our multiple servers sharing local
GPUs could benefit from techniques designed to improve this usage mode, such
as some of those employed in [36, 37, 38]. Furthermore, the recent Kepler
GPU architecture [39] features enhanced multitask support with the Hyper-Q
technology, which directly benefits our virtualization technology without the
need of any further development or customization. These enhancements are left
to be explored in future work.

On the other hand, depending on the particular requirements of the target
applications, GPGPU servers can be either regular cluster nodes, with one or
more GPUs, or specialized nodes. In the first case, GPGPU servers can also be
employed as compute nodes, if some overhead is tolerable, since the GPGPU
service may use some CPU and memory bandwidth resources (see Section 5.4).
In the second case, a specialized system design with low-end processors, several
GPUs, and high I/O and network capabilities may be desirable when leveraging
exclusive GPGPU servers. From a logical point of view, this latter alternative is
analogous to storage servers, conceived as “boxes” of shared resources directly
connected to the network fabric.

3.3. Client-Server Communications

The application-level protocol used to communicate rCUDA clients and
servers has been designed to be simple, so that the interactions involve little
computation and can efficiently use the network resources. For details, see [27].
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The initial releases of rCUDA exclusively employed TCP sockets for commu-
nication between the different actors, and sockets API calls were directly placed
within the rCUDA code. In HPC networks, however, such as in InfiniBand
interconnects, TCP usually attains a reduced portion of the fabric throughput.
Therefore, to optimize rCUDA for different underlying communication tech-
nologies, we have redesigned the rCUDA architecture to enable modularized
communications. Specifically, we have devised a generic internal communica-
tions API and created internal communication libraries, thus decoupling rCUDA
communications from the rest of the tasks. In this way, we can develop specific
communication libraries for different technologies, enabling a higher exploita-
tion of each particular interconnect by developing specialized communication
modules. The current rCUDA version provides specific support for the Infini-
Band fabric, by means of the InfiniBand communications module (described in
Section 4). For the rest of the fabrics, a generic highly tuned TCP/IP module
is currently provided.

3.4. Overlapped GPU and Network Transfers

The straightforward way of transferring data to a remote GPU consists of
two main steps (see Figure 3a): (1) on the client side, transfer the data to
the server through the network, and (2) on the server, parse the headers to
determine the buffer size, allocate a temporary buffer in main memory, receive
the data, transfer them to GPU memory, and release the buffer.

We pipelined these steps to obtain a virtually constant data flow from the
client’s local main memory to the remote GPU memory. Figure 3 shows the
difference between the straightforward and pipelined modes when transferring
data to a remote GPU. As shown there, the pipeline reduces the amount of
time needed for the overall data transfer. Overlapping data transfers involves
concurrent transfers at every stage, since sending a data chunk to the following
stage must be performed concurrently with the reception of the next chunk
from the former stage, which may stress memory bandwidth. The size of these
chunks has to be carefully selected in order to balance the duration of the
different pipeline stages and avoid unnecessary delays. Determining this size a
priori is not an easy task, however, since the same pipeline stage may present
different transfer rates in two similar systems when employing, for example,
different revisions of the same hardware. Furthermore, those stages present
variable transfer rates for different data sizes.

On the other hand, during the initialization stage, internal buffers are allo-
cated and registered for both network transfers and CUDA use (pinned). This
enables all user-requested GPU data transfers to be internally driven using
CUDA asynchronous copies, regardless of their user-level type, which notably
increases their throughput.

Notice that data transfers to remote GPUs can be more efficient if the inter-
mediate storage on the server’s main memory is avoided, thus providing a direct
flow from the network into the GPU memory. This constraint was overcome in
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Figure 3: Transfer to remote GPU in nonpipelined and pipelined modes.

release 5.0 of CUDA with the introduction of GPUDirect RDMA2 [40], being
also supported by Mellanox with the ConnectX-3 InfiniBand network interfaces.
rCUDA also supports this feature.

3.5. Implementing CUDA Asynchronous Memory Copies

In the previous subsection we revisited how data transfers are implemented
within rCUDA, by internally leveraging a pipelined approach based on the use of
CUDA asynchronous memory copies. These efficient data transfers are involved
in servicing both the synchronous and asynchronous memory copy operations
that the CUDA API features. In the former case, the implementation based on
asynchronous pipelined transfers is relatively simple, since the execution flow
is stopped until all the data are transferred and the final synchronization is
achieved.

When servicing a CUDA asynchronous memory copy, however, further work
is required, since the CUDA asynchronous memory transfers, when driven by
rCUDA, are not local to the computer but become distributed operations, no-
ticeably increasing their implementation complexity. Providing support for
CUDA asynchronous memory copy operations posed a major design challenge
in our framework. Actually, most of the related virtualization technologies in-
troduced in Section 2 do not support this feature.

These operations may be associated with a CUDA stream.3 When an asyn-
chronous transfer function is called, the program continues its execution once
the memory transfer is programmed, that is, before the actual memory transfer
is completed or even started. This is also the case with rCUDA, which provides
the same API as does CUDA. Thus, our client middleware issues a memory
transfer request and immediately returns the execution control to the caller,
while the middleware still performs the required data transfers and synchro-
nizations in the background. In our implementation, different CUDA streams

2RDMA stands for Remote Direct Memory Access.
3A sequence of operations associated with a specific stream are executed in order, while

different streams may be executed either out of order or concurrently.
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Figure 4: rCUDA internal threads.

are served following a round-robin policy, while operations in a stream are exe-
cuted according to the first-come, first-served algorithm (see Figure 4a).

To effectively handle asynchronous operations and to enable the reception of
both synchronous and asynchronous data via the same communication channel,
the client middleware employs a dedicated POSIX thread, conveniently synchro-
nized (by means of mutual exclusion regions and condition variables) with the
main thread and the receiving thread (see Figure 4b). These auxiliary threads
are automatically created during the first CUDA call by each client thread and
are finalized on library destruction routines. In the event of an asynchronous
reception, data are concurrently stored into the memory region extracted from
their associated destination information.

3.6. Other Extended Features

In order to fully cover the CUDA functionality, the initial rCUDA develop-
ment was completely re-engineered to allow a thread-safe implementation, en-
abling multiple application threads to interact with the client library of rCUDA.
Moreover, the fact that GPUs may be spread along the cluster nodes required
moving a step beyond, enabling applications (either single- or multithreaded)
to interact with GPUs possibly placed at different GPGPU servers. The main
result from this effort is a robust, versatile, and production-ready rCUDA li-
brary.

Sharing GPU devices among cluster nodes poses an additional requirement
to those of the original CUDA. In particular, it requires the global job sched-
uler—e.g., SLURM [41]—to be aware of the rCUDA operation mode, as current
scheduling schemes for GPU-accelerated tasks [42, 43] are not suitable for pools
of resources decoupled from computing nodes. In order to integrate our new
remote GPU virtualization framework with job schedulers, a different approach
to allocate resources is needed. Since rCUDA allows a resource to be allocated
independently from its physical location, global resource counters have to be
leveraged instead. We propose two execution modes for remote GPU alloca-
tion, exclusive and shared, selected by the system administrator. The exclusive
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mode prioritizes performance, while the shared mode optimizes resource utiliza-
tion at the expense of attaining lower performance. If GPUs are configured in
exclusive mode, a counter for the available GPUs across the whole cluster must
be taken into account. On the other hand, if GPUs are configured in shared
mode, the available memory per GPU constraints GPU allocation. Notice that
both modes may co-exist in a given deployment.

4. rCUDA InfiniBand Communications Module

Although the IB software stack supports a wide range of communication
APIs, including standard TCP/IP sockets, the lowest-level API, which directly
exposes all its features, is the InfiniBand Verbs (IBV). Therefore the develop-
ment of a specific IB communications module for rCUDA on top of IBV is clearly
convenient, since TCP over InfiniBand attains only a relatively small fraction
of the transfer rate for this fabric.

In spite of the IBV-based initialization latency being over three times larger
than its TCP-based counterpart for the target IB interconnect, in our tests
this time difference is under 20 ms, which is easily overcome for sufficiently
long application executions, because of the higher throughput attained by this
communications module.

The remainder of this section discusses the design of our IBV-based commu-
nications module for rCUDA, which is the key to enabling high-throughput as
well as low-latency communications with remote GPUs.

4.1. Communication Mechanism

rCUDA uses both channel (send/receive) and memory (RDMA) IBV com-
munication semantics. The rCUDA main operation mode consists of the rCUDA
server waiting for a client request and returning the operation result. This be-
havior matches the channel semantic, since synchronized intervention from both
endpoints is required. On the other hand, CUDA asynchronous memory trans-
fers are implemented by making use of the memory semantic: once the operation
request has been sent via the regular mechanism based on the channel semantic,
an RDMA transfer can be issued to be eventually performed with no further
intervention from the software, and both rCUDA middleware actors do not ex-
pect further actions from each other. Note that the issuer side of the RDMA
request may still synchronize with the operation finalization in order to initiate
further actions, such as executing a CUDA memory copy operation to transfer
the received data to the GPU memory.

Two communication channels per rCUDA client thread are created. As we
discuss in Section 4.2, this mechanism allows preposting both receive opera-
tions for function call information and memory transfer data to the appropriate
memory buffers, thus improving performance. We make use of GPUDirect ca-
pabilities to share buffers for both IB and CUDA transfers.
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Figure 5: IBV pipeline support in IBV communications module.

4.2. Efficient Pipeline Implementation

An efficient implementation of network and GPU overlapped transfers in
the rCUDA IBV based communications module requires determining whether
the transfers are synchronous or asynchronous. The support for CUDA syn-
chronous transfers, which may involve pageable memory regions, is efficiently
implemented in a three-stage pipeline involving a pair of preallocated and pre-
registered (with CUDA and IBV) buffers per direction and endpoint; see Fig-
ure 5a. On the other hand, asynchronous transfers enable a highly efficient way
of addressing their implementation. Since this type of primitives must involve
pinned memory regions, their corresponding client and server memory buffers
can be employed to eliminate a pipeline stage on the client side, as depicted in
Figure 5b, and hence reduce both main memory stress and latency. Further-
more, as introduced in Section 4.1, to service asynchronous transfers, rCUDA
leverages IB RDMA operations, which present more favorable latency and CPU
usage, since they do not involve the CPU in the remote endpoint.

5. Experimental Evaluation

This section covers the experimental evaluation of rCUDA employing the
IB communications module. Our testbed is introduced first, followed by an
evaluation of the NVIDIA CUDA Samples. Performance results are presented
next, initially using a set of benchmarks and then the LAMMPS production
application, considering also the case for a networked GPU box attached to the
cluster. We then evaluate the interaction between GPGPU service and CPU
computation in both client and server sides, and present a basic performance
comparison with other publicly available CUDA virtualization solutions.

In order to reduce the effect of variability during the tests, the timings
presented in the following correspond to the minimum obtained from five exe-
cutions.
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5.1. Testbed System

Our target platform is a cluster of nine 1027GR-TRF Supermicro servers,
each equipped with two Intel Xeon ES-2620v2 six-core CPUs, 32 GB of DDR3
SDRAM memory at 1.60 GHz, and an NVIDIA Tesla K20 GPU. These are in-
terconnected by an InfiniBand FDR fabric through Mellanox ConnectX-3 single-
port adapters and a Mellanox SX6036 switch. The cluster nodes run CentOS
release 6.4, with Mellanox OFED 2.1-1.0.0 (IB drivers and administrative tools),
and CUDA 5.5 with NVIDIA driver 331.22. MVAPICH2 2.0b [44] is used for
LAMMPS executions, while the latest release of rCUDA (version 4.1) is em-
ployed for remote GPGPU service.

5.2. Correctness Evaluation

We used the CUDA Samples 5.5 (formerly SDK) to prove the correctness
and completeness of rCUDA, since these benchmarks use a wide range of the
CUDA API. From the 118 base samples contained in this package, 24 were not
supported by rCUDA because of the use of the Driver API, graphics interop-
erability, zero-copy capabilities, or unsupported libraries. The 94 remaining
samples were successfully executed and offered correct results. The total ex-
ecution time was 245.35 seconds, whereas their execution in a CUDA native
environment (employing a local GPU) was 49% slower. This slower execution
is due mainly to the initialization of the CUDA environment, which in our sys-
tem requires about 1.3 seconds per execution, whereas rCUDA preinitializes it
at server start-up only, thus avoiding such a penalty. Arguably, the execution
times obtained with these simple coding examples may not be considered sig-
nificant for assessing the performance of our virtualizing solution on real use
cases, since these are intended to demonstrate and test the CUDA functional-
ity, comprising unoptimized codes in most cases, and tend to comprise short
executions.

5.3. Performance Evaluation

We selected two benchmarks to assess the performance of our solution. A
synthetic microbenchmark based on CUDA memory transfers is evaluated first,
followed by a single-precision matrix-matrix product employing the CUBLAS
library shipped with the CUDA environment. We then include a performance
evaluation that relies on LAMMPS, a complex production application, in several
use cases.

5.3.1. Remote GPU Throughput

In this microbenchmark, the throughput between client’s main memory and
remote GPU’s memory is measured with the bandwidthTest program from the
CUDA Samples. This test performs 10 consecutive memory copy operations
followed by a synchronization in case of asynchronous transfers. CUDA transfers
are known to attain different peak transfer rates depending on the direction of
the transfers (host to device or vice versa). For simplicity, we tackle only the
host-to-device direction.
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Figure 6: Throughput with remote GPU for different pipeline block sizes.

To present the results in this section in their context, we measured the
basic throughput of our IB network, which attained 6,054.83 MB/s, according
to the ib_write_bw tool from OFED. However, internal shared paths—such
as main memory bandwidth—pose a limit on IB throughput in our system to
5,903.20 MB/s when concurrent GPU and network transfers are carried out. We
do not further pursue this issue, since the analysis of these hardware limitations
is out of the scope for this paper (see [45]).

On the other hand, there is a relationship between the transfer size and the
optimal pipeline block size. In general, small block sizes favor latency, since
pipeline buffers are filled faster and data are moved earlier through the pipeline
stages; on the other hand, they are inefficient for large data payloads, since
large messages are in general needed to attain close-to-peak throughput for
both the PCIe and the network. Hence, the optimal block size should be chosen
to be as small as possible while still delivering the maximum PCIe and network
throughput. Figure 6 shows the throughput for synchronous memory copies
from pageable buffers and asynchronous copies from pinned memory buffers in
our FDR network. The maximum relative standard deviation (RSD) observed
in the five repetitions is 1.58 for 1 MB of data payload in the first case and 1.73
for 9 KB in the second, although these relatively large RSDs tend to decrease
when larger data payloads are involved, and the eventual external noise becomes
negligible, reaching a maximum of 0.35 for the largest size. The plots also
include the GPU throughput with regular CUDA over a local GPU (Local) for
reference; NP stands for “nonpipelined” transfers to a remote GPU with rCUDA,
and the rest of the keys refer to the pipeline block size used for each particular
case.

Figure 6a reveals largely different behaviors when employing distinct pipeline
block sizes in synchronous operations. Differences are much smaller for asyn-
chronous memory transfers (Figure 6b) because the successive asynchronous
iterations performed in the benchmark allow the GPU transfers of a transaction
to overlap with the network transfers of the following operation, hence improv-
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Figure 7: Remote GPU throughput and matrix multiply benchmarks.

ing network utilization and reducing pipeline block-size impact. In addition,
the latter are able to benefit from direct RDMA IB transfers avoiding a pipeline
stage, as described in Section 4. This results in asynchronous transfers attaining
95% of efficiency with respect to the 5,903.20 MB/s limit imposed by our avail-
able IB throughput. Additionally, these experiments reveal an improvement
of over 200% in remote GPU throughput when employing pipelined GPU and
network transfers with respect to the straightforward nonpipelined method.

For comparison, Figure 7a shows the asynchronous benchmark results for the
IB network employing TCP communications (IPoIB), as well as the IBV-based
communications over the IB fabric, all with optimal pipeline block sizes (1 MB
for IBV and 2 MB in the IPoIB case), and the local GPU for reference. The
RSD observed is smaller than 0.01 for the larger data payloads, scaling up to
1.73 for the smallest data transfers. These results clearly show the performance
benefits that the IBV communications module yields: a throughput at most
only 5% lower than a local GPU (8% sustained), and up to over three times the
maximum transfer rate of the IP over IB (IPoIB) functionality.

For our subsequent experiments we set a pipeline block size of 512 KB, as
it offers the best combined performance for a wide range of data payloads in
the four possible combinations of transfer directions and memory user-buffer
types (pageable and pinned). The study of the actual benefits that leveraging
adaptive pipeline block sizes may provide is left for future work.

5.3.2. Benchmark: Matrix-Matrix Product

In our next benchmark we consider the single-precision matrix-matrix prod-
uct, C = A × B, using the implementation of this BLAS operation (sgemm)
in CUBLAS 5.5, on a remote GPU employing rCUDA leveraging the IB inter-
connect. Because of the large amount of data, pinned memory buffers are not
recommended for matrix storage, and regular pageable buffers are employed in-
stead. The results for different matrix sizes are depicted in Figure 7b, where we
also report the performance corresponding to the execution on the local GPU,
as well as CPU computations employing Intel MKL 11.1.0.080 making use of
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the 12 processor cores of the compute node. GPU times include GPU memory
allocation and deallocation, as well as GPU transfers. As the attained compu-
tation performance employing the remote GPU (often expressed in GFLOPS)
does not differ from that of native executions—only GPU communications are
impacted—in our experiments we consider the total execution time of our bench-
mark instead. In addition, as this is a simple benchmark and the matrix-matrix
product is expected to be performed as part of other computations in both CPU
and GPU sides, in this experiment we have removed the initialization overhead
from the native executions. Square matrices are used in all the experiments,
and the maximum RSD is below 0.18.

The experiments in Figure 7b reveal that the rCUDA executions over IB are
in fact from 10 to 85% faster than their local CUDA counterpart because of
rCUDA’s enhanced implementation of synchronous transfers involving pageable
memory, as described in Section 3.4, whereas they are up to 4.5 times faster than
CPU executions using a highly tuned library and the 12 cores of the computer.
These results demonstrate the viability of remote GPU acceleration over HPC
interconnects for suitable problems.

The results are, in some way, not surprising, since the matrix-matrix problem
is a compute-bound operation, with O(n3) floating-point operations on O(n2)
data, where n is the matrix dimension, and is highly appropriate for the GPU
architecture, hence being a perfect candidate for remote GPU acceleration. The
tests in next section show that remote GPU acceleration is also a general solution
suitable for more challenging applications.

5.3.3. Production Application: LAMMPS

The rCUDA functionality and performance have been tested with a number
of benchmarks and production applications (such as OpenFOAM [46], HOOMD-
Blue [47], WideLM [48], mCUDA-MEME [49], GPU-Blast [50], and CUD-
ASW++ [51]). For this paper we selected LAMMPS [52] because (1) it fea-
tures a complex code, which is useful for demonstrating the ability of rCUDA
to handle large applications; and (2) this application permits us to extract rep-
resentative results for remotely accelerated applications.

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is
an open source molecular dynamics simulator. The software is designed to run
on distributed-memory systems employing MPI. Like most molecular dynam-
ics simulations, LAMMPS executions are compute-bound. Two development
efforts, the USER-CUDA and GPU packages, enable CUDA acceleration, each
reporting to be more efficient than its counterpart depending on the particular
features of the simulation. LAMMPS version dated February 1, 2014 with the
USER-CUDA package [53, 54] is used in our experiments. We use two differ-
ent benchmarks provided in the standard LAMMPS distribution, the embed-
ded atom method metallic solid benchmark (eam) and the Lennard-Jones liquid
benchmark (lj), both over a time span of 100 iterations. We scale the bench-
marks to simulate 4 · 106 atoms. Loop time as reported by LAMMPS, which is
the average time spent per iteration of the simulation, is reported in our results.
For brevity, we omit the results with our TCP-based communications module.
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Figure 8: GPU-accelerated LAMMPS performance evaluation with rCUDA.

GPU Aggregation: Providing Many GPUs to an Application. The USER-CUDA
LAMMPS package performs most of the computations on the GPU. Thus, exe-
cuting more than one MPI task per GPU does not usually lead to a performance
improvement, and it may even exhibit some performance degradation caused by
communication and synchronization overheads, as shown in Figure 8a with the
keys CUDA eam and CUDA lj. This figure reports the speedup with respect to
CPU-only executions employing the 12 cores of a single computing node (an
MPI task per core), obtaining Loop times of 113.03 s for the eam benchmark
and 43.20 s in the case of lj.

rCUDA makes all cluster GPUs seamlessly available to all nodes. By leverag-
ing rCUDA, we ran up to 8 MPI tasks in one compute node employing 8 remote
GPUs, attaining speedups of up to 10.7x and 7.9x with respect to the CPU-only
execution (see Figure 8a). The highest RSD in these experiments is under 0.01.
Note that in this single experiment we compare the performance of up to eight
remote GPUs with that of the local resources, which include only one GPU. The
remainder of the experiments include comparisons involving the same number
of local and remote GPUs, enabling a fair discussion of the overhead incurred
by our remote GPU acceleration solution.

GPU Reduction: Sharing GPUs among Applications. Since LAMMPS execu-
tions are tightly synchronized, data transfers from a single node to all remote
GPUs concurrently compete for the single IB link connecting the compute node
to the rest of the cluster where the GPUs are hosted, thus limiting scalability.

18



Since a similar issue arises also when a few local GPUs share internal paths, ap-
plications caring about this potential limitation will seamlessly benefit from this
feature of rCUDA. Desynchronized communication patterns among MPI tasks
may further benefit from accessing multiple distributed GPUs from a single
node, as explored in subsequent experiments.

This is first evaluated by running noncollaborative LAMMPS tasks simulat-
ing 1.16 · 106 atoms each, sharing a different number of GPUs. The rCUDA
experiments consist of four tasks running in different nodes targeting a differ-
ent number of remote GPGPU servers, whereas native CUDA executions were
performed by 1 to 4 tasks within a single node. As shown in Figure 8b—where
averaged Loop times are normalized with respect to single-process native CUDA
executions—the overhead introduced by the remote acceleration with respect to
a native execution is up to 25% when the eam simulation employs a single pro-
cess per remote GPU. On the other hand, some rCUDA-assisted executions were
faster than native simulations (up to 5% in the case of lj with four processes
sharing a GPU). The reason is that, in addition to the faster synchronous trans-
fers rCUDA provides, CUDA and rCUDA implement different mechanisms to
determine the finalization of asynchronous operations, based on distinct polling
intervals, which can lead to considerably different performance. The maximum
RSD in these experiments is 0.03.

In production environments, where largely different applications may con-
currently employ the same GPU, the performance obtained by the distinct non-
synchronized processes is likely to be even higher than those observed in the
previous case.

Since the behavior shown in Figure 8b can be considered a favorable case for
rCUDA, in order to illustrate a worst case scenario involving collaborative tasks
that tend to be tightly synchronized and hence perform communications and
computations at the same time, we performed a second experiment running a
LAMMPS simulation of 4 · 106 atoms deploying 8 MPI tasks sharing a different
number of GPUs. In this evaluation, rCUDA-assisted executions are run from
a single node targeting a different number of remote GPUs. For reference,
the behavior is compared with different MPI tasks (running on different nodes
when needed) sharing local GPUs with regular CUDA. Times in Figure 8c are
normalized with respect to the 8-node native executions. The highest RSD is
0.01. In this case, rCUDA executions pay an inherent overhead (up to 35% in the
case of lj with 8 GPUs) introduced by the network path, while the scalability
behavior mimics that of native executions. Again, some rCUDA executions
revealed a higher performance than their native counterpart, being up to 6%
faster for lj when employing four GPUs.

GPGPU Server. To illustrate the scenario where GPUs are consolidated in
GPGPU servers, as it could be the case of deploying the “GPU boxes,” we
used a Supermicro 7047GR-TPRF server, equipped with four K20 GPUs and
a ConnectX-3 Dualport IB card. This specialized GPU server features enough
PCIe lanes to fully serve the 4 GPUs plus the IB adapter, and hence there is
no competition for PCIe resources. However, shared internal paths (as main
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memory bandwidth) and IB links become shared resources in this configuration
and introduce some impact on the performance of the solution.

In this experiment we run up to 8 processes in separate nodes, using up to
the 4 remote GPUs through the two different IB ports. Two rCUDA parent
servers own two GPUs each are accessed through different IB ports. The re-
mote processes make a balanced use of the different accelerator and network
resources. For instance, when we execute two remote processes, these employ
different IB ports and 2 separate GPUs (the other 2 remain idle), whereas in
the case of 8 remotely-accelerated processes, every 4 share an IB port in the
server, while every pair share a remote GPU. This distribution will be handled
by the enhanced global job scheduler capabilities as discussed in Section 3.6,
currently under development. In these experiments, 4 · 105 atoms per process
are simulated.

Figure 8d shows our results, where LAMMPS Loop times are normalized
with respect to single remotely accelerated executions. The maximum RSD of
these experiments is 0.06. As shown in the figure, we obtain a maximum slow-
down of 47% when the GPGPU server is servicing the 8 remote executions and
oversubscribing the available GPUs, while it falls below 6% when the GPUs
are not oversubscribed. This poses a maximum overhead with respect to dedi-
cated local accelerations of over 100%, although the maximum timings are still
up to 46% and 58% below those of local CPU-only executions for the eam and
lj benchmarks, respectively. In addition, there is still room for improvement:
beyond GPU oversubscription, this overhead is largely introduced by the IB
card, which, in spite of featuring two IB ports, is not capable of offering an ag-
gregate throughput above that of the single-port version because of saturating
the 8 PCIe lanes it features. Recent Mellanox Connect-IB cards leveraging 16
PCIe lanes are expected to overcome this limitation and provide around dou-
ble throughput. Similarly, a larger amount of separate network adapters with
dedicated PCIe lanes would benefit remote GPU service by providing higher
network throughput.

Our results reveal that remote acceleration in shared GPGPU servers is
highly beneficial compared to CPU-only executions. Although as expected it
introduces some overhead with respect to dedicated local acceleration mainly
due to the shared resources, a higher network throughput brought by recently-
emerged technologies will further improve the performance of this proposal. In
conclusion, GPU boxes combined with GPU service have the potential to bring
enhanced flexibility to cluster configurations, while providing the energy and
resource savings of the shared GPU pool proposal.

5.4. Remote GPGPU Service Impact on Concurrent CPU-Only Executions

We next analyze the impact on performance of GPGPU service in com-
pute nodes by running a highly CPU-demanding benchmark in the rCUDA
server and measuring its performance variation during GPGPU service. The
benchmark selected to be run in the rCUDA server is a BLAS single-precision
matrix-matrix product, C = A×B with operands of 4,096 rows/columns. The
highly tuned MKL BLAS implementation and the 12 cores of our compute nodes
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Figure 9: Impact of GPGPU service on CPU computing.

were used. For the applications demanding remote GPU services we evaluate
sgemm CUBLAS executions with square matrices of dimension 13,848, as well
as LAMMPS lj and eam executions sized as in the previous experiments.

Figure 9 shows the impact on CPU computations of servicing the remote
CUBLAS sgemm, as well as that of LAMMPS lj and eam executions. Times are
normalized with respect to stand-alone average. In the case of sgemm service
(Figure 9a), the CPU execution on the server is increased by up to 106% (52%
on average), while over 50% of the executions in the server remained within
25% overhead. LAMMPS GPGPU service (see Figure 9b) presented similar
results once the proper simulation started, whereas server CPU executions were
not noticeably impacted while the remote application was preparing the simu-
lation, and therefore the rCUDA daemon was not intensively servicing requests.
Hence, the first 56 CPU executions at the rCUDA server show mostly no impact,
whereas some of the last 19 executions are clearly affected.

These results reveal a potentially high impact of the GPGPU service on con-
current CPU executions on the server, due to main memory bandwidth stress,
along with CPU requirements of the rCUDA server, since some CUDA calls
show a high CPU usage. Therefore, for those cases where this performance im-
pact is unbearable, the “GPU boxes” approach may become a nice alternative
to avoid CPU computing on GPGPU servers.

We also measured the opposite effect: the impact on GPGPU service of a
server performing CPU executions concurrently. In this case, we execute CPU-
only BLAS sgemm from MKL and LAMMPS in and eam benchmarks, and assess
the impact of these executions on remotely accelerated matrix-matrix products
on the client side with respect to a dedicated GPGPU server execution. The
executions were sized as in the previous experiment. As shown in Figure 10,
where LAMMPS times refer to Loop time, the impact of external CPU workloads
on GPGPU service is small, remaining under 7% overhead.

5.5. Comparison with Other CUDA Virtualization Solutions

To place the performance of our virtualization solution into the right context,
in addition to the above-presented performance comparison with native CUDA
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Figure 10: Impact of CPU computing on remote GPGPU service.

Table 1: Comparison of Different Virtualization Solutions and Native CUDA

Framework
Latency (µs) Throughput (GB/s)

To GPU From GPU To GPU From GPU

CUDA 4.3 5.1 5.8 6.2
rCUDA 23.1 6.0 5.3 5.6
GVirtuS 200.3 182.8 0.3 0.3
DS-CUDA 45.9 26.5 1.7 1.0

and GPU-less environments, in this section we compare the performance of
rCUDA with that of other CUDA virtualization frameworks.

From the remote virtualization solutions listed in Section 2.2, apart from
rCUDA, currently the only publicly available frameworks are gVirtuS (01-beta3)
and DS-CUDA (version 1.2.7). Since the latest CUDA revisions supported by
them differ largely, offering different capabilities and forcing the usage of differ-
ent CUDA library versions in the server, we limit ourselves to report latency
and throughput for memory transfers, which are the leading factors affecting
the performance obtained by remote acceleration.

Our results are summarized in Table 1. We show the latency for short and
transfer rate for long memory copies (64 B and 30 MB, respectively) involving
remote GPUs. For reference, in the table we include numbers for the native
CUDA environment using a local GPU. In this experiment we target pinned
memory transfers, since these are representative of the way applications perform
transfers involving GPUs for performance purposes. However, we fall back to
pageable memory regions in the case of DS-CUDA because of its lack of support
for their more efficient counterpart.

As shown in the table, rCUDA is the remote virtualization solution featuring
the lowest latency and highest transfer rates, offering a performance close to
that of local GPU operations in most cases. We are investigating the reasons
behind the different latency gaps with native CUDA in both transfer directions.
These results demonstrate that the techniques described in this paper enable
rCUDA to attain a high degree of efficiency compared with other solutions as
well as with native environments, effectively enabling the feasibility of remote
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GPU computing for a wide range of applications. Readers may refer to [55] for
a performance comparison of different virtualization technologies on a virtual
machine environment, including an early version of rCUDA.

6. Conclusions and Future Work

In this paper we have detailed rCUDA, an advanced framework offering re-
mote CUDA acceleration that enables a reduction on the number of accelerators
in a cluster, providing enhanced flexibility.

We have described the key features, main architectural design, and imple-
mentation details of rCUDA, including the low-level IB communication module.
Our evaluation results, including a set of benchmarks and a production appli-
cation, demonstrate the viability of our shared-GPU pool proposal, revealing
an excellent performance for remote acceleration of the matrix-matrix product.
The GPU-accelerated version of a complex application, LAMMPS, attained over
10× speedup on a single node employing a remote GPU pool.

In summary, our results demonstrate that remote GPU acceleration leads
to considerable savings at the expense of slightly increased execution time with
respect to local GPU execution, maintaining large performance gains compared
with those of traditional CPU-only execution.

Future work directions include analyzing the performance benefits that the
recent Hyper-Q capabilities bring to our proposal with enhanced multitask sup-
port, studying potential benefits of using enhanced CUDA schedulers for re-
mote GPU acceleration, reviewing specific hardware configurations for dedicated
GPGPU servers, and assessing the actual benefits that adaptive pipeline block
sizes may bring to production applications.
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