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A Complete Axiomatisation of the ZX-Calculus for

Clifford+T Quantum Mechanics

Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart
emmanuel.jeandel@loria.fr simon.perdrix@loria.fr renaud.vilmart@loria.fr

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Abstract. We introduce the first complete and approximatively universal diagrammatic
language for quantum mechanics. We make the ZX-Calculus, a diagrammatic language intro-
duced by Coecke and Duncan, complete for the so-called Clifford+T quantum mechanics by
adding two new axioms to the language. The completeness of the ZX-Calculus for Clifford+T
quantum mechanics was one of the main open questions in categorical quantum mechanics.
We prove the completeness of the π

4
-fragment of the ZX-Calculus using the recently studied

ZW-Calculus, a calculus dealing with integer matrices. We also prove that the π

4
-fragment of

the ZX-Calculus represents exactly all the matrices over some finite dimensional extension
of the ring of dyadic rationals.

1 Introduction

The ZX-Calculus is a powerful graphical language for quantum reasoning and quantum computing
introduced by Bob Coecke and Ross Duncan [9]. The language comes with a way of interpreting
any ZX-diagram as a matrix – called the standard interpretation. Two diagrams represent the
same quantum evolution when they have the same standard interpretation. The language is also
equipped with a set of axioms – transformation rules – which are sound, i.e. they preserve the
standard interpretation. Their purpose is to explain how a diagram can be transformed into an
equivalent one.

The ZX-calculus has several applications in quantum information processing [11] (e.g. measure-
ment-based quantum computing [16,21,12], quantum codes [14,15,8,7], foundations [4,13]), and can
be used through the interactive theorem prover Quantomatic [24,25]. However, the main obstacle
to wider use of the ZX-calculus was the absence of a completeness result for a universal fragment
of quantum mechanics, in order to guarantee that any true property is provable using the ZX-
calculus. More precisely, the language would be complete if, given any two diagrams representing
the same matrix, one could transform one diagram into the other using the axioms of the language.
Completeness is crucial, it means in particular that all the fundamental properties of quantum
mechanics are captured by the graphical rules.

ZX-Calculus has been proved to be incomplete in general [30], and despite the necessary ax-
ioms that have since been identified [28,23], the language remained incomplete. However, several
fragments of the language have been proved to be complete (π2 -fragment [2]; π-fragment [17];
single-qubit π

4 -fragment [3]), but none of them are universal for quantum mechanics, even ap-
proximatively. In particular all quantum algorithms expressible in these fragments are efficiently
simulable on a classical computer.

As a consequence, most of the attention has been paid to find a complete axiomatisation of the
π
4 -fragment of the ZX-Calculus for the Clifford+T quantum mechanics, the simplest approxima-
tively universal fragment of quantum mechanics, which is widely used in quantum computing.

Our Approach. In the following, we introduce the first complete axiomatisation of the ZX-
calculus for Clifford+T quantum mechanics, thanks to the help of the ZW-Calculus, another graph-
ical language – based on the interactions of the so-called GHZ and W states [10]. The ZW-Calculus
has been proved to be complete [19] but its diagrams only represent matrices over Z, and hence
is not approximatively universal. We introduce the ZW1/2-calculus, a simple extension of the
ZW-Calculus which remains complete and in which any matrix over the dyadic rational numbers
can be represented. We then introduce two interpretations from the ZX-Calculus to the ZW1/2-
calculus and back. Thanks to these interpretations, we derive the completeness of the π

4 -fragment
of the ZX-Calculus from the completeness of the ZW1/2-calculus. Notice that the interpretation



of ZX-diagrams (which represent complex matrices) into ZW1/2-diagrams (which represent dyadic
rationals) requires a non trivial encoding. Notice also that this approach provides a completion
procedure. Roughly speaking each axiom of the ZW1/2-calculus generates an equation in the ZX-
calculus: if this equation is not already provable using the existing axioms of the ZX-calculus one
can treat this equality as an new axiom. A great part of the work has been to reduce all these
equalities to only two additional axioms for the language.

Related works. The first version of the present paper has been uploaded on Arxiv in May 2017.
In the following weeks, Hadzihasanovic [20] independently introduced in his PhD thesis the ZWC-
calculus, an extension of the ZW-Calculus, which is universal and complete for complex matrices.
Notice that the ZWC-calculus does not capture the peculiar properties of Clifford+T quantum
mechanics, and hence the use of the ZW1/2 remains crucial in the proof of the completeness of the
ZX-calculus for this fragment. Based upon our work and Hadzihasanovic’s, Ng and Wang [26] have
then introduced a complete axiomatisation of the ZX-calculus for the full quantummechanics. Their
approach consists in deriving the completeness of the ZX-calculus from the completeness of the
ZWC-calculus, using a completion procedure based on the back and forth interpretations. In [22],
we improved this result, showing that a single additional axiom is sufficient to make the ZX-calculus
complete in general, whereas 22 new axioms together with two additional generators are used in
[26]. Ng and Wang uploaded afterwards a note [27] on Arxiv providing an alternative complete
axiomatisation of the ZX-calculus for Clifford+T quantum mechanics. Their axiomatisation is
using two additional generators and significantly more axioms than the axiomatisation given in
the present paper.

The paper is structured as follows: A ZX-Calculus augmented with two new axioms is presented
in Section 2. Section 3 gives a general overview of the completeness proof. In Section 4, we introduce
an extension of the ZW-Calculus that deals with matrices over dyadic rational numbers D = Z[1/2]
and show its completeness. Sections 5 and 6 are presenting a back and forth translation between
the ZX- and ZW-calculi, from which we deduce the completeness of the ZX-Calculus for Clifford+T
quantum mechanics in section 7. In Section 8, we characterise the exact expressive power of the
π
4 -fragment of the ZX-Calculus: the diagrams of this fragment represent exactly the matrices over
D[ei

π

4 ]. In section 9, we briefly discuss the interpretation of the two new axioms of the language.

2 ZX-Calculus

2.1 Diagrams and standard interpretation

A ZX-diagram D : k → l with k inputs and l outputs is generated by:

R
(n,m)
Z (α) : n→ m α

· · ·

· · ·

n

m

R
(n,m)
X (α) : n→ m α

· · ·

· · ·

n

m

H : 1→ 1 e : 0→ 0

I : 1→ 1 σ : 2→ 2

ǫ : 2→ 0 η : 0→ 2

where n,m ∈ N, α ∈ R, and the generator e is the empty diagram.

and the two compositions:

– Spacial Composition: for any D1 : a → b and D2 : c → d, D1 ⊗D2 : a+ c → b+ d consists in
placing D1 and D2 side by side, D2 on the right of D1.

– Sequential Composition: for any D1 : a→ b and D2 : b→ c, D2 ◦D1 : a→ c consists in placing
D1 on the top of D2, connecting the outputs of D1 to the inputs of D2.
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The standard interpretation of the ZX-diagrams associates to any diagram D : n→ m a linear
map JDK : C2n → C2m inductively defined as follows:

J.K

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K
r z

:= (1)
r z

:=
(
1 0
0 1

)

t |
:=

1√
2

(
1 1
1 −1

) r z
:=





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




q y

:=





1
0
0
1



 J K := (1 0 0 1)

Jα K :=
(
1 + eiα

)

u
wwv α

· · ·

· · ·

n

m

}
��~ := 2m







2n
︷ ︸︸ ︷







1 0 · · · 0 0
0 0 · · · 0 0
...
...

. . .
...

...
0 0 · · · 0 0
0 0 · · · 0 eiα








(n+m > 0)

For any n,m ≥ 0 and α ∈ R:u
wwwv

α

· · ·

· · ·

n

m

}
���~ =

t |⊗m

◦

u
wwv α

· · ·

· · ·

n

m

}
��~ ◦

t |⊗n

(
where M⊗0 = (1) and M⊗k =M ⊗M⊗k−1 for any k ∈ N∗

)
.

To simplify, the red and green nodes will be represented empty when holding a 0 angle:

· · ·

· · ·
0

· · ·

· · ·
:= and

· · ·

· · ·
0

· · ·

· · ·
:=

Also in order to make the diagrams a little less heavy, when n copies of the same sub-diagram
occur, we will use the notation (.)⊗n.

ZX-Diagrams are universal:

∀A ∈ C2n × C2m , ∃D : n→ m, JDK = A

This implies dealing with an uncountable set of angles, so it is generally preferred to work with
approximate universality – the ability to approximate any linear map with arbitrary accuracy – in
which only a finite set of angles is involved. The π

4 -fragment – ZX-diagrams where all angles are
multiples of π

4 – is one such approximately universal fragment, whereas the π
2 -fragment is not [1].

2.2 Calculus

The diagrammatic representation of a matrix is not unique in the ZX-Calculus. As a consequence
the language comes with a set of axioms. Additionally to the axioms of the language described in
Figure 1, one can:

– bend any wire of a ZX-diagram at will, without changing its semantics. This paradigm – the
so-called Only Topology Matters – can be derived from the following axioms:

= = = ==

= ==
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– apply the axioms to sub-diagrams. If ZX ⊢ D1 = D2 then, for any diagram D with the
appropriate number of inputs and outputs:

• ZX ⊢ D1 ◦D = D2 ◦D
• ZX ⊢ D ◦D1 = D ◦D2

• ZX ⊢ D1 ⊗D = D2 ⊗D
• ZX ⊢ D ⊗D1 = D ⊗D2

where ZX ⊢ D1 = D2 means that D1 can be transformed into D2 using the axioms of the
ZX-Calculus.

·
·
· = α+β

β
· · ·

· · ·· · ·

· · ·

α
· · ·

· · ·

(S1) = (S2)

=
(S3)

−π

4

π

4

= (E)

= (B1) = (B2)

=
π

α

-α

πα

π
(K)

α α+π

=

2α+π

(SUP)

π

2

π

2
−π

2

= (EU) α

· · ·

= α

· · ·

· · ·

· · ·

(H)

βα π

βγ

-γ

α
=

α

απ

β -γ

γ

β
(C)

π

4

π

4
π

4

−π

2

π

4

π

4
π

4

=
π

4π

π

2

π

4

π

4

π

π

4

(BW)

Fig. 1. Set of rules for the ZX-Calculus with scalars. All of these rules also hold when flipped upside-down,
or with the colours red and green swapped. The right-hand side of (E) is an empty diagram. (...) denote

zero or more wires, while (
·
·
· ) denote one or more wires.
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Equalities between ZX-diagrams have the two following interesting properties:

– “Colour-swapping” (exchanging red and green dots) preserves the equality.
– Multiplying all the angles by −1 preserves the equality (see Lemma 13).

In the following, ZXπ/4 will denote the entire π
4 -fragment of the ZX-Calculus with the set of

rules in figure 1.

2.3 What’s new?

We introduce in this paper a new axiomatisation of the ZX-Calculus. We briefly review here the
differences with the previous version of the ZX-Calculus. Since we are only interested in the π

4 -
fragment of the ZX-Calculus in this paper, all the axioms which are not expressible with angles
multiple of π/4, like the cyclotomic supplementarity [23], are ignored. However, the rule (E), also
introduced in [23], is specific to the π

4 -fragment, and hence appears in the set of rules. The two
axioms ((C), (BW)) given in Figure 1 are new axioms, for which we do not know any derivation
using the previous axiomatisations of the language.

The two rules are of a different kind. On the one hand, (BW) is specific to the π
4 -fragment, and

is hardly understandable as is. On the other hand, (C) is parametrised by 3 different angles, and
the rule holds whatever these angles are.

2.4 Soundness and Completeness

It’s routine to prove the soundness of the axioms of the ZX-Calculus given in Figure 1. The main
result of the paper is the completeness of this axiomatisation for Clifford+T quantum mechanics:

Theorem 1. The π
4 -fragment of the ZX-Calculus as presented in Figure 1 is complete: for any

two diagrams D1, D2 in the π
4 -fragment of the ZX-Calculus, JD1K = JD2K iff ZXπ/4 ⊢ D1 = D2.

The five following sections of the paper are devoted to the proof of the theorem. A general
overview of the proof is given in the next section.

3 A Bird’s Eye View of the Proof of Theorem 1

The proof uses the completeness result of the ZW-Calculus, a calculus dealing with matrices with
integer coefficients. The syntax and semantics of the ZW-Calculus are presented in section 4.

We start by slightly changing the ZW-Calculus to obtain a new language, the ZW1/2-calculus,
that is able to express matrices with dyadic rational coefficients, i.e. rational numbers of the form
p/2q. This is done merely by adding a symbolic inverse to the scalar 2. We then prove that this
new language is complete:

Part 1 (Proposition 1) The ZW1/2-calculus is complete: for two diagrams D1, D2 of the ZW1/2-
calculus, we have JD1K = JD2K iff ZW1/2 ⊢ D1 = D2.

This is done in subsection 4.3.

We now introduce two interpretations, from ZXπ/4 to ZW1/2 and back.
First, we provide an interpretation J·KXW from ZXπ/4 to ZW1/2 that transforms ZXπ/4-dia-

grams of type k → l to ZW1/2-diagrams of type k + 2→ l+ 2. This interpretation is sound in the
following sense:

Part 2 (Proposition 5) Let D1, D2 be two diagrams of the ZXπ/4-calculus.
Then JD1K = JD2K iff JJD1KXW K = JJD2KXW K.

The encoding is nontrivial as the ZXπ/4-Calculus expresses matrices with complex coefficients, and
the ZW1/2-calculus is only able to express matrices with dyadic rational coefficients. It turns out
that coefficients involved in matrices of the ZXπ/4-Calculus are actually in a vector space (more
accurately a module) of dimension 4 over the set of dyadic rational numbers, so that every complex
coefficient will be represented by a 4× 4 matrix with dyadic rational coefficients. This encoding is
done in section 5.

5



We then provide an interpretation J·KWX from ZW1/2 to ZXπ/4. This interpretation preserves
both semantics and provability:

Part 3 (Proposition 6 and 7) Let D1, D2 be two diagrams of the ZW1/2-calculus.
Then JJDiKWXK = JDiK.
Furthermore, if ZW1/2 ⊢ D1 = D2 then ZXπ/4 ⊢ JD1KWX = JD2KWX

This is done in section 6.
The composition of the two interpretations does not give back the initial diagram (we obtain

after all a diagram with two more inputs and outputs), but we can (provably) recover it. In fact

Part 4 (Corollary 1) Let D1, D2 be a diagram of the ZX-Calculus. If ZXπ/4 ⊢ JJD1KXW KWX =
JJD2KXW K

WX
then ZXπ/4 ⊢ D1 = D2.

Our main theorem is now obvious:

Proof (Proof of Theorem 1). Let D1, D2 be two diagrams of the ZXπ/4-Calculus s.t. JD1K = JD2K.
By Part 2, JJD1KXW K = JJD2KXW K.
By Part 1, the ZW1/2-calculus is complete and therefore ZW1/2 ⊢ JD1KXW = JD2KXW .
By Part 3, ZXπ/4 ⊢ JJD1KXW K

WX
= JJD2KXW K

WX
.

By Part 4 this implies ZXπ/4 ⊢ D1 = D2. ⊓⊔

This approach gives a completion procedure. It gives a set of equalities between ZXπ/4-diagrams
whose derivability proves the completeness of the language. Hence, the new rules of the ZXπ/4-
Calculus we introduced have obviously been chosen for Parts 4 and 3 to hold. However they have
been greatly simplified from what one can obtain using the approach naively.

4 ZW-Calculus

4.1 Diagrams and Standard Interpretation

The ZW-Calculus has been introduced by Amar Hadzihasanovic in 2015 [19] and is based on the
GHZ/W-Calculus [10]. We will present here the expanded version of this calculus. To stay coherent
with the previous definition of the ZX-Calculus, we will assume that the time flows from top to
bottom – which is the opposite of the original definition in the ZW-Calculus. It has the following
finite set of generators:

Te =

{

, , , , , , , , ,

}

and diagrams are created thanks to the same two – spacial and sequential – compositions.
As for the ZX-Calculus, we define a standard interpretation, that associates to any diagram

of the ZW-Calculus D with n inputs and m outputs, a linear map JDK : Z2n → Z2m , inductively
defined as:

J.K

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K
r z

:= (1)
r z

:=
(
1 0
0 1

)

r z
:=





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





r z
:=





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1




q y

:=





1
0
0
1




q y

:= (1 0 0 1)

t |
:=
(
0 1
1 0

)
t |

:=





0 1
1 0
1 0
0 0





t |
:=
(
1 0
0 −1

)
t |

:=
(
1 0 0 0
0 0 0 −1

)

This map is obviously different from the one of the ZX-Calculus– the domain is different – but we
will use the same notation.
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= = =

== =

0a 0b 0b′

0d′0c 0d

= =

= =

1a 1b

1c 1d

= =
2a 2b = =

3a 3b

=
4

= =

=
=

5a 5b

5c
5d

= = =
6b6a 6c

=
X

= =
7b7a

=
R3R2

=

Fig. 2. Set of rules for the ZW-Calculus.

Remark 1. The symbols used for the generators have be altered from the original ZW-Calculus in
order to make it more compatible with the ZX-Calculus.

Lemma 1 ([19]). ZW-Diagrams are universal for matrices of Z2n × Z2m :

∀A ∈ Z2n × Z2m , ∃D : n→ m, JDK = A

4.2 Calculus

The ZW-Calculus comes with a complete set of rules ZW that is given in figure 2. Here again, the

paradigm Only Topology Matters applies except for where the order of inputs and outputs

is important. It gives sense to nodes that are not directly given in Te, e.g.:

:=

All these rules are sound. We use the same notation ⊢ as defined in section 2, and we can still
apply the rewrite rules to subdiagrams. In the following we may use the shortcuts:

:= and :=

7



4.3 Extension to Dyadic Matrices

We define an extension of the ZW-Calculus by adding a new node that represents 1
2 and binding

it to the calculus with an additional rule.

Definition 1. We define the ZW1/2-Calculus as the extension of the ZW-Calculus such as:







T1/2 = Te ∪ { }
ZW1/2 = ZW ∪

{

=
iv

}

The standard interpretation of a diagram D : n → m is now a matrix JDK : D2n → D2m over the
ring D = Z[1/2] of dyadic rationals and is given by the standard interpretation of the ZW-Calculus
extended with J K :=

(
1
2

)
.

Proposition 1. The ZW1/2 is sound and complete: For two diagrams D1, D2 of the ZW1/2-
calculus, JD1K = JD2K iff ZW1/2 ⊢ D1 = D2.

Proof. Soundness is obvious.
Now let D1 and D2 be two diagrams of the ZW1/2-Calculus such that JD1K = JD2K. We can

rewrite D1 and D2 as Di = di ⊗ ( )⊗ni for some integers ni and diagrams di of the ZW-Calculus
that do not use the symbol.

From the new introduced rule, we get that ZW1/2 ⊢ di = Di ⊗
( )⊗ni

. W.l.o.g. assume

n1 ≤ n2. Then

s
d1 ⊗

( )⊗n2−n1
{

= 2n2−n1 Jd1K = 2n2 JD1K = Jd2K. Since d1 and d2 are

ZW-diagrams and have the same interpretation, thanks to the completeness of the ZW-Calculus,

ZW1/2 ⊢ d1 ⊗
( )⊗n2−n1

= d2, which means ZW1/2 ⊢ D1 = D2 by applying n2 times the new

rule on both sides of the equality. ⊓⊔

5 From ZXπ/4 to ZW1/2-Diagrams

In this section we explain how to encode diagrams of the ZXπ/4-Calculus into diagrams of the
ZW1/2-Calculus. The main difficulty is of course that the former represents matrices with complex
coefficients and the latter matrices with dyadic rational coefficients. We use for this classical results
of algebra that we summarize in the next subsection.

5.1 From Q[ei
π

4 ] to Q

All results used in the next two sections are standard in field theory, see e.g. [29]. Let R ⊆ C be a
(commutative) ring and α ∈ C. By R[α] we denote the smallest subring of C that contains both R
and α.

Of primary importance will be the ring Q[ei
π

4 ], as all terms of the π/4 fragment of the ZX-Cal-
culus have interpretations as matrices in this ring. This is clear for all terms except possibly for√
2, but

√
2 = ei

π

4 − (ei
π

4 )3.
If α is algebraic, it is well known that Q[α] is a field. When F ⊆ F ′ are two fields, F ′ can be

seen as a vector space (actually an algebra) over F . Its dimension is denoted [F ′ : F ] and we say
that F ′ is an extension of F of degree [F ′ : F ]. In the specific case of Q[α], its dimension over Q

is exactly the degree of the minimal polynomial over Q of α. Notice that the minimal polynomial
of a n−th primitive root of the unity is φ(n) where φ is Euler’s totient function.

In our case, ei
π

4 is a eighth primitive root of the unity, so that Q[ei
π

4 ] is a vector space of
dimension 4, one basis being given by 1, ei

π

4 , (ei
π

4 )2, (ei
π

4 )3. In particular:

Proposition 2. Every element of Q[ei
π

4 ] can be written in a unique way a+bei
π

4 +c(ei
π

4 )2+d(ei
π

4 )3

for some rationals numbers a, b, c, d.

8



For x ∈ Q[ei
π

4 ], let ψ(x) be the function defined by ψ(x) = y 7→ xy. For each x, ψ(x) is a
linear map and therefore can be given by a 4× 4 matrix in the basis (ei

π

4 )3, (ei
π

4 )2, ei
π

4 , 1. ψ(1) is
of course the identity matrix and

ψ(ei
π

4 ) =M =





0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0





Notice that M t is the companion matrix of the polynomial X4 + 1 which characterises ei
π

4 as an
algebraic number.

Proposition 3. The map:

ψ : a+ bei
π

4 + c(ei
π

4 )2 + d(ei
π

4 )3 7→ aI4 + bM + cM2 + dM3

is a homomorphism of Q-algebras from Q[ei
π

4 ] to M4(Q)

This homomorphism has a left-inverse. Indeed, let

θ =






1
ei

π

4

(ei
π

4 )2

(ei
π

4 )3






Then ψ(x)θ = xθ.

With this morphism, we can see elements of Q[ei
π

4 ] as matrices over Q.

Of course we can do the same with matrices over Q[ei
π

4 ].

Definition 2. Define:

ψ : A+Bei
π

4 + C(ei
π

4 )2 +D(ei
π

4 )3 7→ A⊗ I4 +B ⊗M + C ⊗M2 +D ⊗M3

ψ is injective and maps a matrix over Q[ei
π

4 ] of dimension n×m to a matrix over Q of dimension
4n× 4m.

We use the same notation ψ as before, as the definitions are equivalent for one-by-one matrices
(i.e. scalars).

It is easy to see that Proposition 3 holds for the extended ψ in the sense that ψ(qA) = qψ(A)
for q rational, ψ(A+B) = ψ(A) + ψ(B), ψ(AB) = ψ(A)ψ(B) whenever this makes sense.

Notice however that ψ(A⊗B) is not ψ(A)⊗ ψ(B).

As before, ψ has a left inverse, as evidenced by:

Proposition 4. For all matrices X of dimension n×m, ψ(X)(Im ⊗ θ) = X ⊗ θ

While it is true that all coefficients of the standard interpretation of the π/4 fragment are in
Q[ei

π

4 ], we can be more precise.

Let D = Z[1/2] be the set of all dyadic rational numbers, i.e. rational numbers of the form
p/2n.

It is easy to see that any element of D[ei
π

4 ] can be written in a unique way a+ bei
π

4 + c(ei
π

4 )2+
d(ei

π

4 )3 for some dyadic rational numbers a, b, c, d. (It is NOT a consequence of the similar state-
ment for Q. We have to use here the additional property that ei

π

4 is not only an algebraic number,
but also an algebraic integer).

Then it is clear that actually all coefficients of the π/4 fragment of the ZX-Calculus are in
D[ei

π

4 ]. As D ⊂ Q all we said before still holds, and we actually obtain with ψ a map from matrices
over D[ei

π

4 ] to matrices over D.

9



5.2 Interpretation

Based on the previous discussion, we define an interpretation J.KXW from ZXπ/4-diagrams to
ZW1/2-diagrams as follows:

J.KXW

7→

7→

7→

7→

7→
π

4 7→

∀D1 : n→ n′, ∀D2 : m→ m′ :

D1 ◦D2 7→ JD1KXW ◦ JD2KXW (if m′ = n)

D1 ⊗D2 7→
(

I⊗n′ ⊗ JD2KXW

)

◦





· · ·

· · · · · ·

· · ·

m n′


 ◦
(
I⊗m ⊗ JD1KXW

)
◦





· · ·

· · · · · ·

· · ·

n m 



k π

4

· · ·

· · ·

n

m

7→
(

· · ·m

)

◦
(t

π

4

|

XW

)k

◦
(
· · ·n

)

k π

4

· · ·

· · ·

n

m

7→

u
v
( )⊗m

}
~

XW

◦

u
wwv k π

4

· · ·

· · ·

n

m

}
��~

XW

◦

u
v
( )⊗n

}
~

XW

The interpretation of the spacial composition ⊗ might seem a tad cryptical. It is in fact a way
of putting “side-by-side” the interpretations of D1 and D2, while at the same time making them
share the two control wires. We can see it as:

D1 ⊗D2 7→
JD1KXW

JD2KXW

· · ·

· · ·

· · ·

· · ·

· · ·· · ·
JD2KXW

JD1KXW

· · ·

=

· · ·

It order for this to make sense, D1 and D2 should be able to commute on the control wires. This
property is provided by the completeness of the ZW-Calculus, since it is semantically true.

One can check that

tt |

XW

|
= ψ

(t |)
= 1

2

(
1 1
1 −1

)

⊗ (M −M3) and

tt
π

4

|

XW

|
=

ψ

(t
π

4

|)
=
(
I4 0
0 M

)

. More generally:

Proposition 5. Let D be a diagram of the ZXπ/4-Calculus. Then

JJDKXW K = ψ(JDK)

In particular, if JD1K = JD2K then JJD1KXW K = JJD2KXW K

10



The proof is a straightforward induction using the fact that ψ is an homomorphism. Slight care
has to be taken to treat the case of D1 ⊗D2:

Suppose JD1K =
3∑

k=0

Ake
i kπ

4 and JD2K =
3∑

k=0

Bke
i kπ

4 are their unique decomposition, and that

JJDiKXW K = ψ(JDiK). Then:

JJD1 ⊗D2KXW K = (I ⊗ ψ(JD1K)) ◦
s

· · ·

· · · · · ·

· · ·

{
◦
(

I ⊗
3∑

k=0

Ak ⊗Mk

)

◦
s

· · ·

· · · · · ·

· · ·

{

=

(
3∑

l=0

I ⊗Bl ⊗M l

)

◦
(

3∑

k=0

Ak ⊗ I ⊗Mk

)

=
∑

k,l

Ak ⊗Bl ⊗Mk+l

= ψ




∑

k,l

(Ak ⊗Bl)e
i
(k+l)π

4



 = ψ(JD1 ⊗D2K)

6 From ZW1/2 to ZXπ/4-Diagrams

We define here an interpretation J.KWX that transforms any diagram of the ZW1/2-Calculus into

a ZXπ/4-diagram, which is easy to do since D ⊂ D[ei
π

4 ]:
J.KWX

7→

7→

7→

7→

7→

7→

7→

π7→

π7→

π7→

7→

π

π

2

π

4

π

4
−π

4

−π

4

D1 ◦D2 7→ JD1KWX ◦ JD2KWX D1 ⊗D2 7→ JD1KWX ⊗ JD2KWX

Proposition 6. Let D be a diagram of the ZW1/2 calculus. Then JJDKWXK = JDK

The proof is by induction on D.

This interpretation J.KWX from the ZW-Calculus to the ZX-Calculus is pretty straightforward,
except for the three-legged black node. This is where some syntactic sugar can come in handy.

Definition 3. We define the “triangle node” as:

:=
π

4

π

4

π

2

−π

4

−π

4

11



One can check that

t |
=
(
1 1
0 1

)

. Then the interpretation of the three-legged black dot is

simplified:

7→

π

as is the rule (BW) (see Lemma 31):

π =
π

(BW’)

This shortcut will be very useful in the technical proof of the completeness of the language for
Clifford+T with the set of rules in Figure 1.

Proposition 7. The interpretation J.KWX preserves all the rules of the ZW1/2-Calculus:

ZW1/2 ⊢ D1 = D2 =⇒ ZXπ/4 ⊢ JD1KWX = JD2KWX

The proof is in appendix at Section A.3.

7 Completeness of the π
4
-fragment of the ZX-Calculus

To finish the proof it remains to compose the two interpretations:

Proposition 8. We can retrieve any ZXπ/4-diagram from its image under the composition of the
two interpretations:

∀D ∈ ZXπ/4, ZXπ/4 ⊢ D =





· · ·




 ◦ JJDKXW KWX ◦

(
π

2
π

4· · ·
)

The proof is in appendix at Section viii).

Corollary 1. If ZXπ/4 ⊢ JJD1KXW K
WX

= JJD2KXW K
WX

then ZXπ/4 ⊢ D1 = D2.

8 Expressive power of the ZXπ/4-diagrams

The ZW-Calculus is complete, and additionally any integer matrix can be represented in the ZW-
Calculus [19]. A similar result follows immediately for the ZW1/2-calculus.

Proposition 9. ZW1/2-Diagrams are universal for matrices of D2n × D2m :

∀A ∈ D2n × D2m , ∃D ∈ ZW1/2, JDK = A

Regarding the expressive power of ZXπ/4-diagrams, since the unitary matrices over D[ei
π

4 ] are
representable with Clifford+T circuits [18], so are they with ZXπ/4-diagrams. We actually show

that any matrix over D[ei
π

4 ] can be represented by a ZXπ/4-diagram:

Proposition 10. The π
4 -fragment of the ZX-Calculus represents exactly matrices over D[ei

π

4 ]:

∀A ∈ D[ei
π

4 ]2
n
×2m , ∃D ∈ ZXπ/4, JDK = A

12



Proof. Let A ∈ D[ei
π

4 ]2
n
×2m . We define A′ = ψ(A) ∈ D2n+2

×2m+2

. Since ZW1/2-diagrams are
universal for matrices over dyadic rationals: ∃D ∈ ZW1/2, JDK = A′. Since J.KWX preserves the
semantics, we can define a ZX-diagram of the π

4 -fragment D′ = JDKWX such that JD′K = A′.

Now, notice that θ =






1
ei

π

4

(ei
π

4 )2

(ei
π

4 )3




 =

r
π

2
π

4

z
,

and e1 = (1 0 0 0) =
r z

, so if we apply the second diagram at the two bottom right

wires, and the first state on the two top right wires of D′, we end up with D′′ such that JD′′K = A.
Indeed:
JD′′K = (I⊗e1)◦JD′K◦(I ⊗ θ) = (I⊗e1)◦ψ(A)◦(I ⊗ θ) = (I⊗e1)◦(A⊗θ) = A⊗(e1 ◦ θ) = A ⊓⊔

9 Discussion on the New Rules

We can try and give an explanation of the rule (C), in terms of commutation of controlled opera-
tions. Consider the following diagram:

π α

α

α
π

-α

It is a controlled operation. Indeed, if is plugged on the left wire, we obtain the identity on the
right one:

α
-α

α

α

π
π

=
(K)
(B1)
7

(S1)

-α

α =
(S2)
(S1)

and if
π

is plugged:

π

α
-α

α

α

π
π

=
(K)
(S1)
4

-α α

α

π

=
(B1)
7

(S1)

α

απ =
(S2)
(S1)

π 2α

Hence, the diagram is actually the controlled Z-rotation ΛRZ(2α). Similarly, one can show that
the following diagram represents the controlled X-rotation ΛRX(2α):

π

2

−π

2

α
-α

α

α

π
π

π

2

−π

2

A controlled operation ΛU can be turned into an “anti-controlled” operation ΛU (where the

role of and
π

are exchanged) by adding two red π-nodes on the first wire, one on the input

and one on the output. For instance, ΛRZ(2β) is expressed as:

π

β

β
π

-β
π

β

π

13



Controlled and anti-controlled operations obviously commute: for any operations U and V of
the same size, ΛU ◦ ΛV = ΛV ◦ ΛU . To derive this result in the ZX-calculus for ΛRX(2α) and
ΛRZ(2β) the use of rule (C) seems to be required:

β

β βπ

π

π

π

-β

−π

2

−π

2

αα
π

π

2

π

2α

π
-α

=
(K)
4

(S1)
(B1)

β-α

α

-β
β

π

π

β

π

2

−π

2

π

−π

2
π

π

2α

=
(C) α

−π

2

π

-β

π

π

2

α

π
β

β-α

π

2

−π

2

β

π

=
(K)
4

(S1)
(B1)

β

α

-β
βπ

π
π

2

β

π

−π

2

π

−π

2

-α

π

α

π

2α

π

The rule (C) itself actually goes a step further and directly expresses the equality ΛU(α, γ) ◦
Λ(RZ(2β)⊗ I) = Λ(RZ(2β)⊗ I) ◦ ΛU(α, γ) for

U(α, γ) =

γ

2α

-γ

ΛU(α, γ) is a control of a 2-qubits operation, such as the Toffoli gate, which controls CNOT.
Because the operation it controls (CNOT) is also a controlled operation, it can also be seen as an
operation on one wire, controlled by two others.

Since the Toffoli gate is represented by a matrix over Z, it is possible to express it in the

π
4 -fragment of the ZX-Calculus. Indeed, using the -notation:

Toffoli :=
π

One can check that this diagram actually represents the Toffoli gate, for instance by deriving, for
any k, ℓ ∈ {0, 1}:

Toffoli

kπ ℓπ

= kπ ℓπ kℓπ

More surprisingly, by plugging particular states, operation and projectors on the Toffoli gate, one
can recover the triangle node:

= Toffoli

π

This shows a connection between the diagram denoted and the Toffoli gate. As pointed out in

section 6, the rule (BW) can be greatly simplified when using the -notation. Hence, (BW) might

help to find rules for a potential axiomatisation of the quantum circuits, or in fact any graphical
language that contains the Toffoli gate.

We leave open the question of minimality of the axiomatisation in Figure 1. Many of the previous
axioms were proven to be necessary (not derivable from the others) [6,28], but some proofs may
not hold with the addition of the two new axioms, and there is currently no known proof of the
necessity of (C) and (BW).
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A Appendix

In this appendix (A.3, viii)) are the proofs of Propositions 7 and 8. To simplify the following work,
we use the new node introduced as a notation in Section 6, and give a few lemmas in Section A.1,
and prove them in Section A.2. Keep in mind that for any provable equation, its upside down
version, its colour-swapped version, and (after Lemma 13) its version with opposed angles are all
provable.

A.1 Lemmas

Lemma 2.

=

Lemma 3.

=

Lemma 4.

=
π π

π

· · · · · ·
Lemma 5.

=

Lemma 6.

α

π

β

π

α+β

π
=

Lemma 7.

α
=

Lemma 8.

=

Lemma 9.

π =

Lemma 10.

π

2
π

2
= π

π

2

Lemma 11.

=

Lemma 12.

=
π

π
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Lemma 13. Let J.K
−1 be the interpretation that multiplies all the angles by −1. Then:

ZX ⊢ D1 = D2 ⇐⇒ ZX ⊢ JD1K−1 = JD2K−1

Lemma 14.

π

2 =
π

4

π

Lemma 15.

π

4

ππ

2
=

−π

2

Lemma 16.

=

π

2

π

2

π

2
−π

4

π

Lemma 17.

βα

π

βα

=

β

β

π

α

α

Lemma 18.

βα

π

βα

= π

β

βα

α

Lemma 19.

−π

4
−π

4
−π

4
−π

4

π = −π

2

π

Lemma 20.

=
π

−π

2

π

4
π

π

4

π

4

π

4

Lemma 21.

=
π

π

Lemma 22.

=

Lemma 23.

=

π

Lemma 24.

=

Lemma 25.

=

π
π

Lemma 26.

=

π

Lemma 27.

=

π

π

π

Lemma 28.

π

=

Lemma 29.

=

Lemma 30.

=

Lemma 31.

π =
π

Lemma 32.

π

π

= =
π

π

Lemma 33.

=
π

Lemma 34.

-γ

π

β

β

γ

α

α
=

-γ

π

β

γ

α

β α

Lemma 35.

=

Lemma 36.

=

Lemma 37.

π

=
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and

=

Lemma 38.

=

π

π

A.2 Proof of Lemmas

Proof (Lemmas 2 to 12).
Lemmas 6 and 7 are proven in [5,23]. The other lemmas are in the π

2 -fragment and hence are
derivable by completeness of this fragment. ⊓⊔
Proof (Lemma 13). The result is quite obvious for all rules except maybe for (E), (EU) and (BW).

– (E):

−π

4

π

4

=
(H)

−π

4

π

4

=
(H) π

4

−π

4

=
(E)

– (EU):

−π

2
π

2

−π

2

=
(S1)

π

2

π

2

π

π

π

−π

2

=
4

π

2

π

2
−π

2

=
(EU)

– (BW):

−π

4

π

2

−π

4

−π

4

−π

4
−π

4

−π

4

=
5

(K)
(S1)
6

π

4

π

4

π

4

−π

2

π

4

π

4

π

4

π

π

=
(BW)

π

4

π

4

ππ

4

π

π

2

π

4

π

π

=
(K)
(S1)
6
5

π

−π

2

π

−π

4

−π

4

−π

4

−π

4

Moreover, it is to be noticed that

t |

−1

= . ⊓⊔

Proof (Lemma 14).

π

4

π
=
(E)

π

π

4
π

4

−π

4

=
(H)

π

−π

4

π

4

π

4

=
(EU)

3π
4

π

4

π

4

π
−π

2 =
(K)
6

π

3π
4

π
π

2

−π

2

−π

4

=
(SUP)

3

π

π

2

π

2

π

−π

2

=
6
5

π

2

⊓⊔
Proof (Lemma 15).

π

2

=
(H)

π

2

=
(EU) −π

2

π

2
=

(B1)

π

2

−π

2

=
14
6

π

4

π
−π

2

⊓⊔
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Proof (Lemma 16).

=
(EU)

π

2

π

2

−π

2
=
(H)
5
6

π

4

π

π

2

π

2

−π

2

−π

4

π

=
15

π

2 π

π

2

−π

4

π

2 =
(H)
(S1)

π

2

π

2

π

2

π

−π

4

⊓⊔

Proof (Lemma 17).

βα

π

βα

=
16
(S1)

β

π

α

βα
π

π

2

−π

2

−π

2 π

2

=
(B1)

−π

2

β

α β

π

π

−π

2

α

π

2

π

2

=
(C)

π

2

α

π

−π

2
β

π

π

2

β

α

−π

2

=
(B1)

αβ

π

2

β

π

π

2

−π

2

α

−π

2 =
(S1)
16 β

β

π

α

α

⊓⊔

Proof (Lemma 18). By completeness of the π
2 -fragment:

=

Then:

βα

π

βα

=

βα

βα

π

=
17

π

α

αβ

β =
8

βα

π

α β

=
3

α

π

α β

β

⊓⊔

Proof (Lemma 19).

−π

4

−π

4
−π

4

−π

4

π =
5

(K)
6

π

4

−π

4

π

−π

4

π

4

π

−π

2

=
18
5

π

4

π

π

4

−π

2
−π

2

π

4
π

4

−π

2

π =
15
6

π

2

π

π

π

π

4
π

4

π

2

π

4
π

4 =
16
(S1)
(S2)
6

π

4

π

−3π
4

π

π

4

−π

2
π

4
π

4

=
(S1)
(S2)
5
3

π

π

4

π

4

π

−3π
4 =

(K)
(S1)
6

−π

2

π

=
2
5

−π

2

π

⊓⊔
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Proof (Lemma 20).

=
3

(K)
6

π

4

π

4

π

4

π

4

π

2

π

−π

2

=
3

(S1)

π

4

π

4

π

4

π

2

−π

2

π

−π

4

π

2

=
8
17

π

4

π

4

π

π

4

π

2

−π

2

−π

4

π

2

=
(H)
16
6

π

4
π

4

−3π
4

π

2

π

π

2

π

4
π

4

π

2

π

2

=
10
3

π

4

π

2

π

π

4

π

2

π

4
π

4

−3π
4

π

2

π =
16
6 π

π

4

π

4

π

−π

2

π

4

π

4 =
(H)

π

−π

2

π

4

π

π

4

π

4

π

4

⊓⊔

Proof (Lemma 21).

π
=
20

π

−π

2

π

4
π

π

4

π

4

π

4

π

=
11
(S1) π

4 π

π

4

−π

2

π

4
π

4
π

π

=
(S1)

π

4

π

4

π

4

π

4

π π

π

−π

2
=
20 π

⊓⊔

Proof (Lemma 22).

=
3 π

4

π

4

π

2

−π

4

−π

4
=
5

(B1)
(S1)

π

2

π

2

−π

2

=
14

π

2

π

2

π

−π

4

=
15
6

π

2

−π

2

=
(S1)

⊓⊔

Proof (Lemma 23).

π

=
3 π

4

π

4

π

2

π −π

4

−π

4
=
4

(B1)

ππ

4

π

2

π

4

π

−π

4

−π

4
=
(K)
6 π

2

−π

4

π

4

=
(S1)
(B1)
7

=
2
5

⊓⊔

Proof (Lemmas 24 and 25). The result comes naturally from 21, 23 and 22. ⊓⊔

20



Proof (Lemma 26).

π

=
3

π

π

2

π

4

−π

4

−π

4

π

4

=
(S1)
4

(B1) −π

4

−π

4

5π
4

π

4

π

π

2

=
(SUP)

5
3

−π

4

−π

4

π

2

π −π

2

=
(B1)
(S1)

π

2

−π

2
π

−π

2 =
14

π

2

π

−π

4

π

−π

4

π

=
6
5

⊓⊔

Proof (Lemma 27).

π

π
=
(S1)
21

π

π

π

π
=
(S1)
4

(B1)

π

π

π
π

π
=
5
26

π

π

π

π

=
(S1)
4

(B1)
6

π

⊓⊔

Proof (Lemma 28).

π

π

4

π

2

π

4

=
(H)

π

4

π

2π

π

4

=
16
(S1)
(S2)
5

π

π

2

π

4

π

4

−π

4 =
(B2)

π

4

π

2 π

π

4

−π

4

=
(S1)
(K)
6

π

4

π

π

4

−π

2

−π

4 =
16
(S1)
(S2) π

2

π

4

π

4

Then:

π

=
3

(S1)

π

4

π

2

π

4

π

−π

4

−π

4

=

π

4

π

2

π

4

−π

4

−π

4

=
3

⊓⊔

Proof (Lemma 29).

=
3

π

2

π

4

π

4

−π

4

−π

4
=

(B2)

π

4

π

2

π

4

−π

4

−π

4

=
(S1)

π

2

π

4

π

4

−π

4

−π

4
=
3

⊓⊔
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Proof (Lemma 30).

=
(B2)

=
(S1)
29

⊓⊔

Proof (Lemma 31).

π =
3

−π

4

−π

4

π

2

π

4

π

4

π

−π

4

π

4

−π

4

π

4

π

2

=
5

(K)
(S1)

−π

4

−π

4
π

4

−π

2

π

4

−π

4

−π

4

π

2

π

4

-3π
4

π

π

2

=
(S1)
(S2)
(K)
6

π

4

π

4

−π

2
π

π

4

π

4

π

4

π

4

−π

2

=
(BW)

π

π

4

π

4

π

π

4 π

−π

2

π

2

π

4

=
4

(K)
6
5 π

2

π

4

−π

4

−π

4
π

4

π

=
3

π

⊓⊔

Proof (Lemma 32).

π

π

=
(S2)
(S1)
21

π

π

π

π

=
3
4

(S1)

−π

4

π

π

4

−π

4

π

2

π

4

−π

4

−π

4

π

ππ

4

π

4

−π

2

π

=
19
4
5

(K)
6

π

4 +π

π

4
π

4

−π

2

π

π

4

−π

2

=
(SUP)

5
3

π

4

π

4

−π

2

−π

2

π

−π

2
=
14
(K)
(S1)

−π

2

π

4

π

−π

4

π

2

−π

4

π

π

4 =
(S1)
(S2)
6
5

⊓⊔
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Proof (Lemma 33). First:

=
16

−π

2

−π

2

−π

2

π

π

4
=
6
14
(S1)
(S2)

(SUP)

π
-3π
2π

2

−π

2

−π

2

π

4

π

4
-3π
2

=
(S2)
(K)
6
4

π
π

4

π

2

π

π

4

π

π

π

2

π

4

π

4

−π

2
=
6
19

π

4

π

π

2

π

π

4

π

2

π

4

π

π

4

−π

4

π −π

4

−π

4

−π

4

−π

4

−π

4

π

−π

4

−π

4

π

π

2

=
3

(K)
6

π

−π

4

π

4

π

4

−π

4

π

π

π =
3

π

π

π

π

=
21

π

π

π

Then:

=
32 π

π

=
π

=
(H) π

=
21

π

⊓⊔

Proof (Lemma 34). First:

α

α

=
(H)

α

α

=
33

α

α

π =
3

(B2)
4

α α

π

π

2

π

4

π

4

π

−π

4

−π

4

=
(H)

π

4

π

4

α
α

π

π

2
π

−π

4

−π

4
=
17

π

4

α

π

2

π

α

π

4

π

−π

4

−π

4

=
(H)
3

(S1)
α

π

2

α

π

4 π

π

4

π

−π

4

−π

4

=
15 α

α π

−π

4

−π

4

π

2

π

−π

4

−π

4

=
19
(S2)

α

α

=
(S1)
5
3

(S2)

α α
=
(H)

α α
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then:

π

-γ

βγ

α

β

α =
(S1)
5

α

α
-γ

γ

π

β

β

=
(S1)
5
3

(S2)
3

β

α

π

γ

α

-γ

π

2

β

π

4

π

4

−π

4

−π

4

=
(B2)
5 α

π

4

π

4 β

β

α

π

γ

-γ π

2

−π

4

−π

4

=
(C)

π

4
-γ

π

2

β π

4

α

γ

α

β

π

−π

4

−π

4

=
-γ

α

α

β

β

π

γ

⊓⊔
Proof (Lemma 35).

=
(S2)
(S1)
21

π

π
=
3
4

(S1)

π

2

π
−π

4

π

4

π

4

−π

4

−π

4

−π

4

ππ

4

π

4

−π

2

=
19
(K)
6

π

2

π

4

−π

4

π

4

π

4

π

2

π

−π

4

=
(B2)
16

π

2

π

4
π

4

-3π
4

π

4

−π

2

=
(H)
(S1)

π

4

-3π
4

3π
4

π

4

π

2

−π

2

−π

2

=
34
(H)

π

4

-3π
4

3π
4

−π

2

π

4

π

2

−π

2

=
16

π

4

π

4

−π

2

π

2

π

−π

4

π

2
−π

4

3π
4 =

(S1)
12

π

4

−π

4
−π

4

π

2

π

2

−π

4

π

2

π

π

4

=
16

−π

4

−π

4

π

2

π

4

−π

2

π

4

=
(H)
(K)
6

π π

4

π

4

−π

2

π

4

−π

4

−π

2

−π

4

π

=
16
6

π

4

π −π

2

π

−π

2
π

4

π

4

π

4

π

2

=
19
3
21

⊓⊔
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Proof (Lemma 36). First:

π

4

π

4

π

2

π

4

π

2

π

4

=
10

π

4

π

4

π

π

4

π

4

π

2

=
(S1)
(H)

π

π

4

π

2

π

4

−π

4

π

4

π

2

=
17
8

π

2π

π

4
−π

4

π

4
π

4

π

2

=
(EU)
(S1)
15
5

π

π

4

π

4
π

2

π

4

π

4

−π

4

π

2
−π

2

=
5

(B2)

π

4

π

4

π

4

−π

4

π

2

π

π

4

=
5

(B1)
(S1)
(K)
6

−π

4

π

2

π

4

π

4

π

−π

4

π

2

π

Then:

=
3

π

4

π

2

π

4

π

2

π

4
π

4

−π

4
−π

4

−π

4
−π

4

=
π

4

π

2

π

4

π

2

π

−π

4

−π

4

−π

4

−π

4

−π

4

−π

4
π

=
3
19

π

2

π π

−π

2
=
6

⊓⊔
Proof (Lemma 37). First:

=
3

(S1)

π

4

−π

4

−π

4

−π

4

−π

4

π

4

π

2

π

4
π

4

π

2

=
(S1)
5
16

π

4

π

4

π

π

4
π

4
−π

4

−π

2
π

2

−π

4
−π

4

−π

4
−π

4

=
18
(S1) π

−π

4
−π

4

π

4
π

2

π

4
π

4

−π

4

π

4
−π

4

−π

4

−π

2

=
(H)
(S1)

π

4
π

4

π

−π

4

−π

4

−π

4

π

4

−π

4

π

4

−π

2
π

2

−π

4

=
3
16

π

2

−π

4

−π

4

π

4

−π

4

π

4
π

4

−π

4

π

2

π

4
=
5
3

Then:

π

=
(S1)
21
4

π

π

=
(S1)
21
4

π

π π

=

π

ππ

=
(S1)
21
4

25



⊓⊔

Proof (Lemma 38). First:

=
(S2)
(S1)
31

π

π

=
(H)

π

π
=
33

π

π

=
4
21

=
(S2)
(B1)
5

=
35

Moreover, from 33, we can easily derive:

π
=
(S2)
(S1)
33

π

π

=
(H)
4
21

and:

=
(S2)
(S1)
21

π

π

=
33

π

=
(H)

π

Finally:

π

π

=
(H)

π

π

= π

π

=
4
35
30
(S1)

π

=

=
(B2)
5

=

⊓⊔

A.3 Proof of Propositions 7 and 8

We first derive an easy but useful lemma for the following:
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Lemma 39. As shown in Section 6:

7→

π

Then:

7→
π

=
5
3

π

=
5

(B1)
(S1)

π

=
22

π

=
5

π

Proof of Proposition 7 We prove here that all the rules of the ZW-Calculus are preserved by
J.KWX .
• X:

7→ =
(S1)
(B2)

=
(H)

=
28
9

← [

• 0a, 0c, 0d and 0d′ come directly from the paradigm Only Topology Matters.
• 0b:

7→
π

=
4
21
(S1)

π

=
30

π

=
4
21
(S1)

π

←[

• 0b′: Using the result for rule 0b,

7→
π

=
30

π

=

π

=
30

π

← [

• 1a:

7→ =
(B2)
(S1)

=
(S1)
35

=
(B2)

←[
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• 1b:

7→
39

=
30

=
5

(B1)
(S1)

=
24
(S2)
5

=
(S1)
(S2)

← [

• 1c, 1d, 2a and 2b come directly from the spider rules (S1) and (S2).
• 3a is the expression of the colour-swapped version of Lemma 4.
• 3b:

7→

π π

=
4

(S1)

π

← [

• 4 comes from the spider rule (S1).
• 5a: We will need a few steps to prove this equality.
i)

π

=
(S1)
(B2) π

=
(H)
(S1) π

=
28

π π

=
(S1)
4

π

ii)

=
30
(S1)

=
(B2)

=
(S1)
37

π
=
4

π

π

=
30
4
21

iii)

π

π

π =
31

π

π

π

=
(S1)
35

π

π

π

=
4

(S1)

π

π

iv)

π

π

π
=
4

(S1)

π

π π

π

π

π

=
iii)

π

ππ

π

π
=
4

(S1)
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v)

π
=
30
(S1)

π

=
(B2)

π

=
4

(S1)

π

π

π

π

=
37

π

π

π

=
4 π

vi)

π

π

π
=
(S1)
4

π

π

π

π

=
v)

π

ππ

π

=
4

(S1)

π

π

π

vii)

=
i)
30

π

π

=
38

π

π

=
iii)
4
3

π

ππ

π

=
vi)

π

π π

π

=
iv)

=
ii)

viii)

π

π

=
(S1)
4
21

=
(B2)

=
(S1)

=
(B2)
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=
29
30

=
37

π

=
(B2)

π
=
29
30

Finally,

7→ = =
12

π

π

=
viii)
3

π

π

=
vii)

π

π

=
(S1)
(B2)

π

π

=
(S1)
viii)

π

π

←[ =

• 5b:

7→
39

=
5

(B1)
(S1)

=
22

=
5

(B1)

←[
39

• 5c:

7→
39

=
(S1)
2

=
5

←[

• 5d:

7→ π =
3

π =
(S2)
(S1)

π =
37 π

π

=
5
3

π

π
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=
23
5

π

=
5
26

=
5

(B1)

← [
39

• 6a: Thanks to the rule X we can get rid of induced by the crossing. Then,

7→
X

=
(B2)

=
(S1)

=
36

←[

• 6b is exactly the copy rule (B1).
• 6c:

7→ =
(S1)
5
3

=
5

(B1)
(S2)

=
22

← [
39

• 7a:

7→ =
(S1)
(H)

=
(B2)

=
(H)

← [

• 7b: using 4, (H) and (S1):

7→
π

=
4

(H)
(S1)

π

π

←[

• R2:

7→ =
(S1)

=
3

← [

• R3:

7→ =
(S1)

=
(S1)

← [
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• iv: using (S3), (S1), 2 and 5,

7→ =
(S3)

=
(S1)

=
2
5

← [

⊓⊔

Proof of Proposition 8 Let us write J.K♮ = JJ.KXW K
WX

. We can show inductively that:

ZXπ/4 ⊢ JDK♮ ◦
(

π

2
π

4· · ·
)

= D ⊗
(

π

2
π

4

)

which is the expression of Proposition 4.

• The result is obvious for the generators , , , , and .

• :

u
wwwv

}
���~

WX

= π

π

π

π

π

π

π

π

π

π

π

( )⊗4

=
(S1)
5

π

π

π

=
(H)
4

π

π

and, using (S1), (EU), 5, (H), 3 and 15:

π

π

π

2
π

4

=
(K)
(S2)
(S1)
(EU)

π

2

π

π

2

π

4

π

−π

4

=
(H)
(S1)

π

4

π

4

π

−π

2

=
5
3

π

4

π

4

π

−π

2

=
15

π

4
π

2

Hence ZX ⊢
t |♮

◦
(

π

2
π

4

)

= π

2
π

4

•
t

· · ·m

|

WX

◦
(

π

2
π

4

)

=

· · ·
m

π

4
π

2

•
t
· · ·n

|

WX

◦
(

π

2
π

4· · ·
)

=

· · ·n
π

4
π

2
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• π

4 :

u
wwwwwwwwv

}
��������~

WX

=

π

π ππ

π

π

ππ

π

π

π

π

π

π

π

π

π
)⊗6(

=
5

(S1)
(H)
4

(B1)

π

But:

π

2

π
=
3

π

2

π

4

π

4

π −π

4

ππ

4

−π

4

π

2

−π

4

π

4

−π

4

π

2

=
19
16

π

4

π

4
π

4

π

4

π

−π

4

π

=
(H)
(S1)

π

4

π

π

4

π

4
π

4

−π

4

π

=
17 π

−π

4

π

4
π

4

π

4

π

π

4

=
(H)
(B1)
(S1)
(S2)
(K)

π

4

π

4

−π

4

So that:
π

2

π

π

4

=
(S1)
(EU)

π

π

4

π

2

π

2

=
3
21

π

2

π

π

2

π

4

=

π

4

π

4

π

2

π

4

−π

4

=
(S1)
(B2)

−π

4
π

4

π

4

π

2

π

4 =
(S1)

π

4
π

4

π

2

=
(B1)
(S1)

π

2

π

4
π

4

which means ZXπ/4 ⊢
t

π

4

|♮

◦
(

π

2
π

4

)

= π

4
π

2
π

4

• D1 ◦D2:
It is to be noticed that JD1 ◦D2KWX = JD1KWX ◦ JD2KWX and JD1 ⊗D2KWX = JD1KWX ⊗
JD2KWX .

Let us write θ =
π

2
π

4
. Then:

ZXπ/4 ⊢ JD1 ◦D2K♮ ◦ (I⊗ θ) = JD1K♮ ◦ JD2K♮ ◦ (I⊗ θ) = JD1K♮ ◦ (D2 ⊗ θ)
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= JD1K♮ ◦ (I⊗ θ) ◦D2 = (D1 ⊗ θ) ◦D2

= (D1 ◦D2)⊗ θ

• D1 ⊗D2:

ZXπ/4 ⊢ JD1 ⊗D2K♮ ◦ (I⊗ θ)

=
(r

I⊗n′

z
WX
⊗ JD2K♮

)

◦

u
v
· · ·

· · · · · ·

· · ·

m n′
}
~

WX

◦
(r

I⊗m
z
WX
⊗ JD1K♮

)

◦

u
v
· · ·

· · · · · ·

· · ·

n m }
~

WX

◦ (I⊗ θ)

=
(

I⊗n′ ⊗ JD2K♮
)

◦





· · ·

· · · · · ·

· · ·

m n′


 ◦
(

I⊗m ⊗ JD1K♮
)

◦





· · ·

· · · · · ·

· · ·

n m 

 ◦ (I⊗ θ)

=
(

I⊗n′ ⊗ JD2K♮
)

◦





· · ·

· · · · · ·

· · ·

m n′


 ◦
(

I⊗m ⊗ (JD1K♮ ◦ (I⊗ θ))
)

◦





· · ·

· · · · · ·

· · ·

n m 



=
(

I⊗n′ ⊗ JD2K♮
)

◦





· · ·

· · · · · ·

· · ·

m n′


 ◦
(
I⊗m ⊗D1 ⊗ θ

)
◦





· · ·

· · · · · ·

· · ·

n m 



=
(

I⊗n′ ⊗ JD2K♮
)

◦





· · ·

· · · · · ·

· · ·

m n′


 ◦ (I⊗ θ) ◦
(
I⊗m ⊗D1

)
◦





· · ·

· · · · · ·

· · ·

n m 



=
(

I⊗n′ ⊗D2 ⊗ θ
)

◦





· · ·

· · · · · ·

· · ·

m n′


 ◦
(
I⊗m ⊗D1

)
◦





· · ·

· · · · · ·

· · ·

n m 



=





(

I⊗n′ ⊗D2

)

◦





· · ·

· · · · · ·

· · ·

m n′


 ◦
(
I⊗m ⊗D1

)
◦





· · ·

· · · · · ·

· · ·

n m 





⊗ θ

= D1 ⊗D2 ⊗ θ

By compositions, for any diagram D, ZXπ/4 ⊢ JDK♮ ◦ (I⊗ θ) = D ⊗ θ. Then, using Lemmas 7 and
5:

∀D ∈ ZXπ/4, ZXπ/4 ⊢





· · ·




 ◦ JJDKXW K

WX
◦
(

π

2
π

4· · ·
)

= D

⊓⊔
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