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The Mueller—Stokes formalism that governs conventional polarization optics is formulated for plane waves,
and thus the only qualification one could require of a 4 X4 real matrix M in order that it qualify to be the
Mueller matrix of some physical system would be that M map Q®°), the positive solid light cone of Stokes
vectors, into itself. In view of growing current interest in the characterization of partially coherent partially
polarized electromagnetic beams, there is a need to extend this formalism to such beams wherein the polar-
ization and spatial dependence are generically inseparably intertwined. This inseparability brings in addi-
tional constraints that a pre-Mueller matrix M mapping Q®°) into itself needs to meet in order to be an ac-

ceptable physical Mueller matrix. These additional constraints are motivated and fully characterized.
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1. INTRODUCTION

A paraxial beam propagating along the positive z axis is
completely determined in terms of the transverse compo-
nents of the electric field, specified throughout a trans-
verse plane z=constant as functions of the transverse co-
ordinates (x,y)=p. If these components are independent
of the transverse coordinates, then the situation corre-
sponds to a plane wave propagating along the z axis. The
traditional Mueller—Stokes formalism in terms of Stokes
vector S and Mueller matrix M, describing, respectively,
the beam and the optical system, presumes essentially
this kind of situation wherein the spatial degree of free-
dom can be safely left out of consideration, the focus being
on the polarization degree of freedom [1-3].

Recent years have witnessed an enormous interest in
partially polarized partially coherent electromagnetic
beams [4-20], and hence there is a need to extend the
Mueller—Stokes formalism to such beams. Given a 4 X4
real matrix M, it should necessarily map Q®°), the posi-
tive cone of Stokes vectors, into itself in order that it could
be the Mueller matrix of some physical system. Within
the conventional formalism, this seems to be the only
qualification that can be required of M. In a partially co-
herent partially polarized beam, polarization and spatial
dependence happen to be inseparably intertwined. This
inseparability brings in additional constraints that a 4
X 4 real matrix M mapping Q®° into itself needs to meet
in order for it to be a physically acceptable Mueller ma-
trix. The class of 4 X4 real matrices that one would have
hitherto believed to be Mueller matrices now must pass
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additional tests before they can qualify to be physical
Mueller matrices; and this will seem to suggest that these
matrices should more properly be called pre-Mueller ma-
trices, so that those pre-Mueller matrices that pass this
additional physical requirement to be developed here can
be called Mueller matrices.

We notice that the inseparability of polarization and
spatial dependence can be seen as a classical analog of
quantum entanglement, which is traditionally studied al-
most exclusively in the context of quantum systems. How-
ever, this notion is basically kinematic in nature, being a
direct consequence of the superposition principle, and so
it is bound to present itself whenever and wherever the
state space of interest is the tensor product of two (or
more) linear vector spaces. The vectors of the individual
spaces, and hence (tensor) products of such vectors, will
be expected to possess identifiable physical meaning. Po-
larization optics of paraxial electromagnetic beams hap-
pens to have precisely this kind of a setting, with a two-
dimensional vector space describing the polarization
degree of freedom and an infinite-dimensional vector
space of square integrable functions describing the spatial
degree of freedom. We could then refer to the inseparabil-
ity of polarization and spatial dependence as a manifesta-
tion of non-quantum entanglement.

We hasten, however, to add a note by way of clarifica-
tion. In quantum theory, entanglement conspires with the
(truly nonclassical) measurement postulate, and the
associated collapse of states, to produce dramatic and
even seemingly paradoxical consequences, the Einstein—
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Podolsky—Rosen paradox [21,22] being an early example.
But classical linear optics does not suffer from the luxury
or burden of this kind of measurement postulate, and
hence only those consequences of entanglement that do
not depend on the measurement postulate in an essential
manner should be expected to present themselves in this
context. This is exactly the case for the phenomena of our
interest. However, since use of the phrase “non-quantum
entanglement” could sound odd to some readers, we shall
in short refer to the mingling of polarization and spatial
variation (or modulation) as the “inseparability.”

The principal purpose of the present work is to moti-
vate the constraints arising from inseparability and char-
acterize them fully. The next two sections of the paper act
as preparation toward this end. We begin in Section 2 by
recounting the conventional Mueller—Stokes formalism as
it applies to plane waves. This is then extended in Section
3 to paraxial electromagnetic beams, and the role of in-
separability (of polarization and spatial variation) is ren-
dered transparent. These two sections equip us with all
the tools needed to formulate in Section 4 the additional
physical constraints on a pre-Mueller matrix M arising as
consequence of inseparability. Our final result is formu-
lated in the form of a necessary and sufficient condition,
and a simple illustrative example is treated in some detail
to clarify the nature of these further constraints. We con-
clude in Section 5 with some further remarks.

2. POLARIZATION OPTICS OF PLANE
WAVES

For a plane wave whose propagation direction is along the
(positive) z axis perpendicular to the (x,y) plane, the x
and y components E;, E4 of the electric field are indepen-
dent of the transverse-plane coordinates p and can be ar-
ranged into a (numerical) column vector:

E
1} 2. (2.1)

We have suppressed, for convenience, a space—time-
dependent scalar factor of the form e’*2~¢Y While E'E
=|E;|>+|Ey|? is (a measure of) the intensity, the ratio y
=E{/E4 of the (complex) components, which ratio can be
viewed as a point on the Riemann or Poincaré sphere S2,
specifies the polarization state. In particular, the signa-
ture of the imaginary part of y describes the handedness
of the (generally elliptic) polarization.

In the presence of fluctuations, E acquires some ran-
domness, and in this case the state of polarization is ef-
fectively described by the 2 X2 coherency or polarization
matrix,

(E\E%) <E1E;>]
, (2.2)

- N

=@y [<E2E’;> (BB
where (--©) denotes ensemble average. The coherency
matrix is Hermitian, ®'=®, and positive semidefinite,
VIOV=tr(®VVH =0, YV e(C2 This positivity property
may be denoted simply as ®=0. Hermiticity and pos-
itivity are the defining properties of ®: every 2X2
matrix obeying these two conditions is a valid coherency
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matrix and represents some polarization state. Since ® is
a 2 X2 matrix, the positivity condition takes the simple
scalar form

tr & >0,

det® = 0. (2.3)

It is clear that the intensity corresponds to tr ®. Fully po-
larized light (pure states) corresponds to det ®=0 and
partially polarized or mixed states to det ®>0.

Typical systems of interest in polarization optics are
transversely homogeneous, in the sense that their action
is independent of the coordinates (x,y) spanning the
transverse plane in which the system lies. If such a sys-
tem is deterministic and acts linearly at the field ampli-
tude level, it is described by a complex 2 X2 numerical
matrix J called the Jones matrix of the system:

) [Jn 1z
J21 JZZ

E ,
}: EHEl T]”E%Emwpa
E,

=(E'E Ty =JbJ . (2.4)

It is clear that Jones systems map pure states (det ®=0)
into pure states.

Since ® is Hermitian, it can be conveniently described
as real linear combination of the four orthogonal Hermit-
ian matrices T0= 12><2, T1=03, T9=01, T3=09!:

3
= 52 8,7, &8, =tr(r,®); tr7,m,=208,. (2.5)
a=0
The reason for choosing the 7 matrices, a permuted ver-
sion of the Pauli matrices rather than the Pauli o matri-
ces themselves, is to be consistent with the optical con-
vention that the circularly polarized states, the
eigenstates of o9= 173, be along the “third” axis (polar axis)
of the Poincaré sphere. The intensity equals Sy=tr ®. The
expansion coefficients S, are the components of the
Stokes vector S € R*. Note that 7;=-73, whereas 7’ =1, if
a#3.
While Hermiticity of ® is equivalent to reality of S
e R*, the positivity conditions tr ®>0, det ®=0 read, re-
spectively,

S,>0,

S2-82-82-S2=0. (2.6)

Thus, permissible polarization states correspond to the
positive light cone and its interior (solid cone). Pure states
live on the surface of this cone. As suggested by this light
cone structure, the proper orthochronous Lorentz group
SO(3,1) plays quite an important role in polarization op-
tics [23,24].

Under the action of a deterministic or Jones system </
described in Eq. (2.4), the elements of the output coher-
ency matrix ' are obviously linear in those of ®. This, in
view of the linear relation (2.5) between ® and S, implies
that under passage through such a system the output
Stokes vector S’ and the input S will be linearly related
by a 4 X4 real matrix M(J) determined by </:
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J:S—=8"=MJJ)S. (2.7)

We may call M(J) the Mueller matrix of the Jones system
J. It is known also as a Mueller—Jones matrix to empha-
size the fact that it is constructed out of a Jones matrix.
While ®=(EE") is a 2X2 matrix, the tensor product ®
=(E®E*) is a four-dimensional column vector associated
with ®:

&)o <E1E;> (I)H
éI')l <E1Eé> (1)12
- | = N . (2.8)
q)2 <E2E1> CI)21
B, (E,E3) Dy

e
Il

This idea of going from a pair of indices, each running
over 1 and 2, to a single index running over 0 to 3 and vice
versa can often be used to advantage to associate with

any 2 X 2 matrix K a corresponding column vector K with
RO=K11, I?1=K12, I?2=K21, and I?3=K22. The tensor pI‘Od-
uct J ®J* is a 4 X 4 matrix:
Jped* Jgd*
Jo* Jood*

JllJ; J11J°;2 J12J§1 JlZJiz

Jllle JIIJZZ J12J;1 JlZJZQ (2 9)
Iy, Jadsy Jedy; Jaxdi, | '

JZlJZl J21J;2 J22J;1 J22J;2

J®J“={

The transformation ® —®'=J®J" is thus equivalent to

®—d'=J®J*P. Since ® is related to the Stokes vector
through

S,] [10 0 17 %o
Si| [10 0 -1|[®;
Se|jo1 1 0|, (2.10)
Ss 0: -7 O (53
it follows that
M) =A(J ® JHA™, (2.11)

A being the numerical 4 X 4 matrix exhibited in Eq. (2.10);
this matrix is essentially unitary: A‘1=%AT.

If detJ is of unit magnitude, then M(J) computed by
this prescription is an element of SO(3,1), the proper or-
thochronous group of Lorentz transformations; this was
to be expected in view of the two-to-one homomorphism
between SL(2,C) and SO(3,1) [24]. It follows that for any
nonsingular J the associated Mueller—Jones matrix M(<J)
is |detJ| times an element of SO(3,1). The prescription
(2.11), though, applies to singular Jones matrices as well.

A. Mueller Matrices Arising as Convex Sums of Jones
Systems

A nondeterministic (i.e., non-Jones) system is described
directly by a Mueller matrix M:S —S’'=MS, and, by defi-
nition, such a Mueller matrix cannot equal M(J) for any
2X2 (Jones) matrix J. Given a Mueller matrix M, how
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does one test whether it is a Mueller—Jones matrix for
some J or, equivalently, how does one test whether the
system described by M is a deterministic (i.e., Jones) sys-
tem? This question, which had received much attention
[23,25-27], turned out to have a simple and elegant solu-
tion [28]. We go over in some detail the construction un-
derlying this solution, for it plays a key role in our analy-
sis to follow. Of central importance is the construction of a
Hermitian matrix associated with each real matrix M;
this construction has played a nontrivial role in subse-
quent developments of polarization optics. This Hermit-
ian matrix was originally denoted N [28], but now we pre-
fer to denote it H™ to emphasize Hermiticity, its most
important property.

The general real linear transformation M:S—S'=MS
on the Stokes vectors S implies, in view of the linear re-
lationship (2.5) or (2.10) between S and ®, an associated

linear transformation on ®. Indeed, use of S=A®, Eq.
(2.10), in this transformation law immediately gives the
4 X 4 matrix B™ transforming ® linearly:

BM .o @', & =B,

2

: r_ (M) .
ie, @)= B Dy
he=1

BM=A"TMA, M=AB™MA, (2.12)
Now define from B™ a new matrix H™ by permuting the
indices of B™):

HY), =BY),. (2.13)
The transformation (2.12) now gets transcribed to

HM:» @', &)= H\ Dy (2.14)
k€

Note that H is obtained from B™ by simply inter-
changing BY with B, BY with B, BY with BY,
and ng) with B(Snll). Further, while ®' =B™® can be use-
fully viewed as a (column) vector equation, the corre-
sponding transformation (2.14) involving H™ cannot be
so viewed. The fact that the output ®’ is Hermitian for all
Hermitian input ® shows that the map, or super-operator
HM) viewed as a 4 X 4 matrix with i% (going over 0 to 3)
labeling the rows and j¢ labeling the columns, is Hermit-
ian. This correspondence between real matrices M and
Hermitian matrices H™ is clearly one-to-one. Elements
of HM in terms of those of M have been presented as Eq.
(8) of [28].

The sixteen 4X4 Hermitian matrices U,,=37,® 7,
with a,b independently running over the index set {0, 1,
2, 3}, form an orthonormal set or basis in the (vector)
space of 4 X4 matrices; these matrices are unitary and
self-inverses:

1
. + 1
Uab=57a®TZ=Uab= ab>
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tr(UabUcd) = 5a55bd’ a,b,c,d € {1727374}

(2.15)

[For the purpose on hand, complex conjugation of the sec-
ond factor of the tensor product 7, ® 7, is not optional, and
this will become clear in a moment.] Thus every (Hermit-
ian) 4 X 4 matrix can be written uniquely as a (real) linear
combination of {7, ® TZ}. As an important consequence of
this fact we have

Proposition 1: There exists a natural one-to-one cor-
respondence between the set of all 4 X 4 real matrices and
the set of all 4 X4 Hermitian matrices.

To appreciate the sense in which this correspondence is
natural, let us write the hermitian matrix H™ as a linear
combination of the 7,® 7.’s and provisionally denote the

b
expansion coefficients by K;:

1 3
H™ = 2 > Ku7, 7. (2.16)

a,b=0

Equation (2.14) then reads

Moo+ My + My + My

HOO _ 1| Mg+ Mg — i(Mog + My3)
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D= > Koy > (72)if(70), P (2.17)
ab ke

Recalling that 24(7), Ppe=tr(n,®)=S;, the above equa-
tion reduces after multiplication by (Tc);, summing over
i,J, and using Eq. (2.5), to S’ =KS, showing that what we
provisionally denoted K indeed equals M. We have thus
proved that

3

1
HM=—> Mu7,®7,.
a,b=0

(2.18)

Using the orthogonality relations in Eq. (2.15), this equa-
tion can be readily inverted, and we find that a Hermitian
matrix H and the associated real matrix M) are related
through

1
(M), = §tr(H7-a ®n), @b=0,123. (2.19)

We write these in more detail for later use:

Moy + Mg +i(Mog+Myg) Moo+ Moy —i(Mgo+Msy) Moo+ Mz +i(Mas — M3,)
Moo= My - Mo+ My,
2| My + Moy +i(Mgo+ Mgz1) Moo — Mg+ i(Mas + M3s)

Moo+ Msg—i(Mgg— Msg) Moy~ Moy +i(Mzg—Msy) Mog— Mo~ i(Mog—M3)

Mg~ M3s—i(Mag + Mgzo) Moo~ Mgy —i(Mgy— Ms;)
Moo~ My + Mo —~Myy Moo~ Mg +i(Moz—Mi3) |
Moo+ My — Mo - My

(2.20)

This matrix in identical form was first presented in [28]. Of the sixteen 4 X4 matrices U, only Uy, Usq, Usg, and Usy
have nonzero entries at the ;5 location, and this explains the entry Mog—Msy;—i(Mgy—Mg;) for (HM),5. Written in detail,

relation (2.19) has the form

Hyo+Hyy+ Hgg + Hsg

M(H>=1 Hyy+Hyy— Hyy— Hsg
2| Hog+Hy+H3+Hg;

The entry —i(Hy—Hyg)+i(Hys—Hgs) for (M®)5 is ex-
plained by the fact that the nonzero entries of U;3 are at
the o1, 10, 23, and 39 locations.

If the system described by M is a Jones system with
Jones matrix o/, it is clear from the transformation law
O—-D'=JPJ given in Eq. (2.4) that BM=J®J* and,
consequently, HM =JJ', where J is the column vector as-
sociated with the 2 X 2 matrix J. The fact that the hermit-
ian matrix associated with a Jones system is a one-
dimensional projection HM=JJ" immediately leads, in
view of the one-to-one correspondence between M and
H™ to the fundamental result [28].

Proposition 2: Given a 4 X4 real matrix M, it is a
Mueller—Jones matrix iff the associated Hermitian matrix
H®™ is a one-dimensional projection. That is, iff H™
=JJ" for some (complex) four-dimensional column vector

Hyo—Hyy+Hgp— Hy
Hy—Hy1—Hop+ Hsg
Hyy+Hyy—-Hy3—-Hy
i(Hog— Hyg) +i(Hy3— Hg) i(Hog— Hyo) —i(Hyg— Hgy) i(Hoz— Hgg) +i(Hyp— Hyy)

Hy +Hyg+Hys+Hgy = i(Hyy—Hyg) —i(Hgg — Hsp)
Hy +Hyg-Hog—Hsy  —i(Hyy —Hyg) +i(Hyg — Hsy)
Hyg+Hgy+ Hyg+ Hyy —i(Hog—H3p) +i(Hyg—Hyy) |

Hy3+Hgy— Hyg— Hyy
(2.21)

J. If HM=JJ', then the 2 X 2 matrix J associated with J
is the Jones matrix of the deterministic Jones system rep-
resented by M.

Consider now a transformation that is a convex sum of
Jones systems:

n

D — D' = p J PO,
k=1

(2.22)

pr>0, > pr=1.
k=1

This transformation may be realized by a set of n deter-
ministic or Jones systems J®,J®@ ... J® arranged in
parallel, with a fraction p; of the light going through the
kth Jones system J® and all the transformed beams com-
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bined (incoherently) at the output. It can also be viewed
as a fluctuating system that assumes the Jones form J®
with probability p,. In either case, it is clear that the
Mueller matrix M of this nondeterministic system and its
associated Hermitian matrix are corresponding convex
sums:

M= pMJ%,  HM = p,JOJHT  (2.23)
k=1 k=1

It is useful to denote by {p;,J*} the convex sum or en-
semble realization represented by Eq. (2.22) or, equiva-
lently, by Eq. (2.23). Obviously, such an ensemble or con-
vex sum realization always leads to a positive
semidefinite H™. Further, it is an elementary fact that
positive semidefinite H alone can be realized as a convex
sum of projections. Thus as an immediate, and math-
ematically trivial, consequence of Proposition 2 we have
[29]

Corollary: An optical system described by M is realiz-
able as a convex sum or ensemble {p;,J*} of Jones sys-
tems iff the associated HM = 0. If HM =0, the number of
Jones systems, n, needed for such a realization satisfies
n=r, where r is the rank of H®)._ There is no upper limit
onn if r=2.

This corollary is physically important and has at-
tracted considerable attention [29-36].

B. Pre-Mueller Matrices and Their Classification
Given a 4 X4 real matrix M, Proposition 2 gives the nec-
essary and sufficient condition for M to arise as the Muel-
ler matrix of some Jones system /. That still leaves open
this more general question: how does one ascertain
whether a given matrix M is a Mueller matrix? This ques-
tion has an interesting history that is surprisingly recent.
In traditional polarization optics, which is formulated
for plane waves and not for spatially varying beams, the
state space QP is the collection of all Stokes vectors:

QD = (S ¢ RYS, >0, STGS = 0},
G =diag(1,-1,-1,- 1),

STGS =82-S%-8%-52. (2.24)
Now G is the “Lorentz metric,” and thus the state space
QP js the positive (solid) light cone in R*. Since a physi-
cal Mueller matrix should necessarily map states into
states, our question reduces to one of effectively charac-
terizing real linear transformations in R* that map the
positive  (solid) light cone into itself. While
SO(3,1)UGSO0(3,1), where SO(3,1) is the proper ortho-
chronous Lorentz group, is the obvious answer in the case
of onto maps, the more general into case was raised in
[37] as a serious issue in polarization optics. This issue
was formulated as two simple conditions that M has to
meet [Eqgs. (2.29) and (2.31) of [37]], corresponding to the
demand that the intensity and degree of polarization of
the output be physical for every input pure state. Further,
the measured Mueller matrices of Howell [38] were tested
for these conditions, and violation was found in excess of
10%, a magnitude considerably larger than the tolerance
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suggested by the reported measurements. It was thus
concluded in [37] that the Howell system fails to map the
positive light cone QP into itself, and this is possibly the
first time that a verdict of this kind was made on some
published Mueller matrices.

Subsequent progress in respect of this issue was quite
rapid. In a significant step forward Givens and Kostinski
[39] derived, based on an impressive analysis of the spec-
trum of GMTGM, what appeared to be a necessary and
sufficient condition for M to map QP into itself. They
analyzed the Howell system based on their own condition,
and concluded that their results were “in coincidence with
the negative verdict on the Howell matrix delivered in
[37],” p. 480. Soon after, Van der Mee [33] derived a more
complete set of necessary and sufficient conditions for M
to map Q® into itself; the analysis of Van der Mee, too,
was based on the spectrum of GMTGM.

Decomposition of a Mueller matrix M in various prod-
uct forms, to gain insight into the physical effects M could
have on the input polarization state, has been an activity
of considerable interest [40-43]. The importance of ob-
taining the canonical or normal forms of Mueller matrices
under the double-coset transformation M —L/ML,,
L,,L,eS0(3,1) was motivated in [24], and it was shown
that the theorem of Givens and Kostinski [39] implied
that the canonical form of every nonsingular (real) matrix
M that maps Q®° into itself is diagonal; ie., M
=L MWVL,, where MY =diag(dy,d;,ds,ds), do=d;=ds
=|ds| and L,,L, € SO(3,1). It turned out that while the
result of Van der Mee is essentially complete [44], that of
Givens and Kostinski is incomplete. This means that the
diagonal form M® of [24] noted above is not the only ca-
nonical form for a nonsingular M mapping Q®% into it-
self; there exists another non-diagonal canonical form
M®, and this is essentially the case that was missed by
the “theorem” of Givens and Kostinski quoted above. In a
remarkably impressive and detailed study, Rao et al.
[44,45] have further explored and completed the analysis
of Van der Mee, leading to a complete solution to the ques-
tion of canonical form for Mueller matrices under double-
coseting by SO(3,1) elements, raised in [24].

Since these canonical forms play a key role in our
analysis below, we list them here in a concise form. Ma-
trices M that map the state space QP into itself divide
into two major and two minor families:

Typel: M=LMVL, L,L,eS0(3,1),
MY = diag(do,d;,ds,ds3), do=dy=dy
= |dg;
TypeII. M=LM®L,, L,L,eS0(3,1),

dy do—d; 0 0
e | d, 0 0
“lo 0o 4, 0f

0 0 0 ds

>0, \dod,=dsy=|dgl;
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Polarizer: M=LM® L, L,L,eS0(3,1),

dy dy 0 0
dy dy 0 0
0 000/
0 000

M = dy>0;

Pin Map: M=LM®™L _ L,L,eS0(3,1),

dy 0 0 0
dy 0 0 0
0000/
0 000

M) = dy>0. (2.25)

Since elements of SO(3,1) have unit determinant, it fol-
lows that d3 in the Type-I and Type-II cases is positive,
negative, or zero according as det M is positive, negative,
or zero. The M matrices in the third and fourth families
are manifestly singular. The third family is a Jones sys-
tem, the associated H matrix being a projection; indeed,
M® corresponds to a Jones matrix J whose only nonva-
nishing element is J;;= V’Tdo. Finally, the PinMap family
is so named because M®™ produces a fixed output polar-
ization state independent of the input, the intensity of the
output being independent of the state of polarization of
the input. This may be contrasted with M®°): while the
output in the case of M® has an input-independent
state of polarization, the intensity does depend on the
state of polarization of the input.

The matrix M®™ js not a Jones system, but it is a con-
vex sum of such systems. To see this, note that a perfect
depolarizer represented by the Mueller matrix

1000
27depol)_ 0000
0000

0000

(2.26)

is a convex sum of Jones systems; it can be realized, for
instance, as an equal mixture of systems with Jones ma-
trices 7,,a=0,1,2,3. That M®™ is a convex sum of Jones
systems follows from M P = Jf(pebp(depol) Alternatively, it
is readily seen that Hjpin) is an equal sum of two projec-
tions, and hence M®" is an equal mixture of the Jones

systems:
10 01
00 00|

While M) is realized as convex sum of two Jones sys-
tems, M@eP°) cannot be so realized with less than four
Jones matrices. This follows from the fact that Hpdepo) is
of full rank whereas Hpin is of rank two.

The classification of canonical forms for M matrices as
given in Eq. (2.25) is complete in the following sense:

Proposition 3: Every M matrix that maps the state
space QP into itself falls uniquely in one of the four
families described in Eq. (2.25).

(2.27)
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That brings us to the main thesis of the present paper.
A 4X4 real matrix M will have to map the state space
QP into itself for it to qualify to be the Mueller matrix of
some physical system. This is certainly a necessary con-
dition. And, within the conventional Mueller—Stokes for-
malism, no conceivable further requirement can be im-
posed on M. But the action of the transversely
homogeneous system represented by the numerical ma-
trix M can be extended from plane waves to paraxial
beams; naturally, M will then affect only the polarization
degree of freedom and act as identity on the (transverse)
spatial degrees of freedom. If M indeed represented a
physical system, even this extended action should map
physical states into physical states. It turns out that this
trivial-looking extension is not all that trivial: there are
M matrices that appear physical at the level of the (re-
stricted) state space Q®°V but fail to be physical on the ex-
tended state space. Our task in the rest of the paper is to
identify precisely those M matrices whose action is physi-
cal even on the extended state space. Since only those M
matrices that pass this further hurdle can be called physi-
cal Mueller matrices, and pending determination of the
precise demand this hurdle places on M, the M matrices
that map Q®° into itself will be called pre-Mueller ma-
trices. We may thus conclude this section by saying that
Eq. (2.25) gives a complete classification of pre-Mueller
matrices and their orbit structure under double-coseting
by elements of SO(3,1); the physical/nonphysical divide
of pre-Mueller matrices remains to be accomplished. This
divide will be presented in Section 4 after some further
preparation in Section 3.

3. FROM PLANE WAVES TO BEAMS: THE
BEAM CORRELATION MATRIX

We will now go beyond plane waves and consider paraxial
electromagnetic beams. The simplest (quasi-) monochro-
matic beam field has, in a transverse plane z=constant
described by coordinates (x,y)=p, the form E(p)=(Ex
+Eo%)i(p), where E;, E, are complex constants, and the
scalar-valued function (p) may be assumed to be square
integrable over the transverse plane: (p) e L2(R?). It is
clear that the polarization part (E;x+E,y) and the spa-
tial dependence or modulation part (p) of such a beam
are well separated, allowing one to focus attention on one
aspect at a time. When one is interested in only the modu-
lation aspect, the part (E;X+E5y) may be suppressed,
thus leading to “scalar optics:” this is the domain of tra-
ditional Fourier optics [46]. [Fourier optics for electro-
magnetic beams requires a more delicate formalism [47].]
On the other hand, if the spatial part (p) is suppressed,
we are led to the traditional polarization optics (of plane
waves) described in Section 2.

Beams whose polarization and spatial modulation
separate in the above manner will be called elementary
beams. It is clear that elementary beams remain elemen-
tary under the action of transversely homogeneous aniso-
tropic systems such as waveplates and polarizers. That
they remain elementary under the action of isotropic or
polarization-insensitive modulating systems such as free
propagation, phase screens, and lenses is also clear.
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Now suppose that we superpose or add two such el-
ementary beam fields (aXx+b¥)¢(p) and (cx+d¥)x(p). The
result is not of the elementary form (ex+f¥)®(p), for any
e, [, ¢(p) unless either (a,b) is proportional to (c,d) so
that one gets committed to a common polarization, or A p)
and x(p) are proportional so that one gets committed to a
fixed spatial mode. In other words, the set of elementary
fields is not closed under superposition.

Since one cannot possibly give up the superposition
principle in optics, one needs to go beyond the set of el-
ementary fields and pay attention to the consequences of
inseparability of polarization and spatial variation
(modulation). We are thus led to consider (in a transverse
plane) beam fields of the more general form E(p)
=E(pX+E5(p)y.

This form is obviously closed under superposition. We
may write E(p) as a generalized Jones vector:

El(P)]

E(p) =E(p)X + Ey(p)y < E(p) = {E2(p)

E\(p), Es(p) € LAR?). (3.1)

The intensity at location p corresponds to |E;(p)[?
+|E5(p)|?. This field is of the elementary or separable form
iff E1(p) and E4(p) are linearly dependent (proportional to
one another). Otherwise, polarization and spatial modu-
lation are inseparable.

The point is that the set of possible beam fields in a
transverse plane constitutes the tensor product space C2
® L2%(R?), whereas the set of all elementary fields consti-
tutes just the set product C2 X L2R2) of C? and L%(R?). Re-
call that the tensor product of two vector spaces is the clo-
sure, under superposition, of their set product. Thus the
set product C2 X L2(R?) forms a measure zero subset of the
tensor product C2® L2(R?). In other words, in a beam field
represented by a generic element of C?® L%(R?), polariza-
tion and spatial modulation should be expected to be in-
separable: Thus inseparability is not an exception; it is
the rule in C2® L2(R?), the space of pure states appropri-
ate for electromagnetic beams.

If a beam described by generalized Jones vector E(p)
with x,y components E;(p), Eo(p) is passed through an x
polarizer, it is not only that the output will be x polarized,
it is certain to be in the spatial mode E(p) as well. A simi-
lar conclusion holds if the beam is passed through a y po-
larizer. Thus a (transversely homogeneous) polarizer,
whose action is p independent, not only chooses a polar-
ization state but acts as a spatial mode selector as well.
This is true even if E{(p) and Eo(p) are not spatially or-
thogonal modes. In a similar manner, a spatial mode se-
lector insensitive to polarization will end up acting also as
a polarization discriminator. This is a consequence of in-
separability between polarization and spatial modulation
and can be seen as one classical analog of quantum en-
tanglement.

Now, to handle fluctuating beams, we pass on to the
beam correlation (BC) matrix ®(p;p’)=(E(p)E(p’)"), de-
fined as the ensemble average of an outer product of (gen-
eralized) Jones vectors [4-7]. Such a matrix describes
both the coherence and the polarization properties of the
beam under consideration. It is a generalization of the nu-
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merical coherency matrix of plane waves considered in
the previous section, Eq. (2.2), now to the case of beam
fields. It can equally well be viewed as a generalization of
the mutual coherence function of scalar statistical optics
to include polarization. For our present purpose, there is
no need to make any finer distinction between the space—
time and space—frequency descriptions. The two-point
functions appearing in the BC matrix may be viewed ei-
ther as equal-time coherence functions (in which case one
speaks of the beam coherence-polarization matrix [5,6]) or
correlation functions at a particular frequency (cross-
spectral-density matrix [4,7]). We are free to view the BC
matrix either as the 2 X 2 matrix of two-point functions,

(E1(p)E1(p")") (E1(p)Es(p'))

D(p;p') =
0:P) = By B0 (ErpEslp)) |

(3.2)

or as the associated column vector ®(p;p’) of two-point
functions: Cf)(p;p’):(E(p)@E(p’)*).

It is clear from the very definition (3.2) of the BC ma-
trix that this matrix kernel, viewed as an operator from
CCoL%(R?) —C2®L?%R?), is Hermitian and positive
semidefinite:

Du(p;p’) = Ppi(p";p),  Jk=1,2;

J d’pd*p'E(p)'®(p;p")E(p’) =0,

ie, > | d%pd?p'Ej(p) ®;(p;p)Ei(p') =0,
Jk

VE(p) € C?2® L%(R?). (3.3)

The positivity requirement thus demands that the ex-
pectation value of ®(p;p’) be nonnegative for every Jones
vector E(p). Hermiticity and positivity are the defining
properties of the BC matrix: every 2 X2 matrix of two-
point functions ®;,(p;p’) meeting just these two condi-
tions is a valid BC matrix of some beam of light.

We can use the BC matrix to define the generalized
Stokes vector S(p;p’) [14,15]:

3

1
O(p;p’) = 52 S.(p;p") 7, = Sy(p;p) = tr(P(p;p')7,).
a=0

(3.4)

That this is an invertible relation shows that ®(p;p’) and
S(p;p’) carry identical information: action of an optical
system on one defines a unique equivalent action on the
other. The Hermiticity and positivity requirement on the
BC matrix can be easily transcribed into corresponding
requirements on S(p;p’). Hermiticity reads

S.(p;p")=8S.(p";p)*, @=0,1,2,3, (3.5)

whereas positivity reads
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3
Egafd%dzp’sa(t);p’)ga(p’;p)>0, (3.6)
a=0

for every Stokes vector S (p;p’) arising from Jones vectors
of the form E(p) e C?®L2(R?). The signatures g, corre-
spond to the Lorentz metric: gg=1, g,=-1 for a #0.

4. FROM PRE-MUELLER MATRICES TO
MUELLER MATRICES: THE ROLE
OF INSEPARABILITY

We now have at our disposal all the tools necessary to de-
termine whether or not a given pre-Mueller matrix is a
physical Mueller matrix. Let us consider the transforma-
tion of the generalized Stokes vector S(p;p’) and the as-
sociated BC matrix ®(p;p’) under the action of a trans-
versely homogeneous optical system described by
numerical pre-Mueller matrix M. We begin our analysis
with pre-Mueller matrices of Type 1.

A. Type-I pre-Mueller Matrices

We will first study pre-Mueller matrices presented in the
canonical form MY =diag(dy,d;,ds,ds). Extension of the
conclusions to pre-Mueller matrices not in the canonical
form will turn out to be quite straightforward. In view of
the system’s homogeneity, the action of MV is necessarily
independent of p,p’, and we have

So(p;p’) So(p;p")
S1(p;p’) Si(p;p")
MY = diag(d ,dq,dy,d3): —

gldodudadsl) g o) Sy(p;p’)

Ss(p;p’) Si(p;p’)
doSo(p;p")
d1S1(p;p’)

_ 1P P, . 4.1)

daSs(p;p”)
d3Ss(p;p’)

The elements of the output BC matrix ®'(p;p’) associated
with the output Stokes vector S’(p;p’) resulting from the
action of MM on S(p;p’), are easily computed using Eq.
(3.4):

®11(p;p") =[(do + d)P11(p;p") + (do — d1)Pas(p;p") )2,
Do(p;p') =[(do+d1)Poe(p;p’) + (do — d)P11(p;p") /2,
Dio(p;p') =[(do+d3)D1a(p;p') + (doy — d3)Do1(p;p") /2,

Dy1(p;p') =[(da+d3)Pa1(p;p') + (doy — d3)D1o(p;p") /2.
(4.2)

Clearly, a necessary condition for the pre-Mueller ma-
trix MV =diag(dy,d;,ds,ds) to be a physical Mueller ma-
trix is that the output ®'(p;p’) in Eq. (4.2) be a valid BC
matrix, for every valid input BC matrix ®(p;p’). Hermi-
ticity of ®'(p;p’) is manifest in view of that of ®(p;p’) and
reality of the parameters d,. Thus what remains to be
checked is the positivity of ®'(p;p’). While testing the
positivity of a generic matrix kernel could be a formidable
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task in general, it turns out that this test can be carried
out fairly easily in the present case.

Let us take as the input a special pure-state BC matrix
®O(p;p")=E(p)E(p’)", corresponding to the generalized
Jones vector E(p) that is an equal superposition of an
x-polarized mode and a y-polarized mode, the two modes
being spatially orthogonal:

®%(p;p") =E(p)E(p'),

n(p)
U(p)

[1(p) and ¢»(p) could, for instance, be two distinct
Hermite—-Gaussian modes.] This means that the entries of
the input BC matrix ®©(p;p’) have the deterministic
form CDJ(-,S)(p; p')=4;(p)yrn(p’)*. A consequence of this simple
(product) form is that the four entries of the BC matrix
®(p;p’) form an orthonormal set of (two-point) func-
tions:

E(p)={ ] ftﬂj(p)¢k(p)*d29= Op.  (4.3)

f dpd’p' DY) (p;p") D} (p;p') = 5y (4.4)

This fact will prove to be of much value in our analysis
below.

To test positivity of the output BC matrix ®'(p;p’),
given in Eq. (4.2) and resulting from input ®©(p;p’)
=E(p)E(p’)", let us define four (generalized) Jones vec-

tors:
(p) o (p)
@) = @) ()
B |:i$2(0)}’ F=e) L%(p)]' (45)

[The input Jones vector E(p) happens to coincide with
E®)(p).] Expectation values of ®'(p;p’) for the four Jones
vectors E®(p), F®)(p) are easily computed using Egs.
(4.2)—(4.5) in Eq. (3.3). These expectation values are (d,
+dp)x(do+ds) for E®(p) and (dg—dq)+(de—ds) for F&
X(p).

Now positivity of ®'(p;p’) requires, as a necessary con-
dition, that these four expectation values be nonnegative,
and this requirement places on the parameters d, the
constraints

-d;-dy-dsg=d,,
—d1+d2+d3§d0;
di+dy-dz=<d,,

dl—d2+d3sd0. (46)

Violation of any one of these four conditions will render
the output ®’(p;p’) nonphysical as BC matrix. Since the
input BC matrix ®©(p;p’) is obviously physical, this will
in turn render MY nonphysical as Mueller matrix: Eq.
(4.6) is thus a set of necessary conditions for the pre-
Mueller matrix M to be a Mueller matrix.

Suppose these four inequalities are met. Can we then
conclude that the pre-Mueller matrix M is a physically
acceptable Mueller matrix? To answer this question in the
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affirmative, we write in detail the associated Hermitian
matrix Hy=33,d,7,® 7 =3,dUqa:

d0+d1 0 0 d2+d3

oo Y| 0 do-dido-dy 0 i
2| 0 dy-dy dy-dy O - (47

dy+ds 0 0 do+d;

Validity of the four inequalities in Eq. (4.6) implies, fortu-
nately, that this matrix is positive semidefinite. This in
turn implies that the given diagonal system MY is a con-
vex sum of Jones systems and therefore takes every BC
matrix into a BC matrix, showing that Eq. (4.6) is a suf-
ficient condition for M to be a Mueller matrix. We have
thus proved

Proposition 4: The pre-Mueller matrix M®
=diag(dy,d,ds,d3) is a Mueller matrix iff the associated
Hermitian matrix Hy;1) =0, that is, iff MY can be realized
as a convex sum of Jones systems, or, equivalently, iff the
entries of M) respect the inequalities in Eq. (4.6).

Having settled the diagonal case, we now go beyond
and consider the more general Type-I pre-Mueller matri-
ces. As noted in Eq. (2.25), these are necessarily of the
general form M=LM"YL, where L,,L,eS0(3,1) and

So(p;p")
Si(p;p")
S5(p;p")
Si(p;p’)

M? : S(p;p') — S (p;p') =

The elements of the output BC matrix ®'(p;p’) associated
with S’(p;p’) and computed from Eq. (3.4) are

D11(p;p’) =doP11(p;p'),
Doo(p;p') =d1Paa(p;p’) + (do - d)Pr11(p;p’),
Diy(p;p') =[(dg + d3)P1a(p;p') + (do — d35) Doy (p;p') )2,

D51(p;p") =[(dy + d3)Poi(p;p) + (dy — d3)P1o(p;p") V2.
(4.9)

As in the case of MV, the canonical form pre-Mueller
matrix M@ does not couple the pair ®11(p;p’), Pos(p;p’)
with @15(p;p’), Pai(p;p’).

Again, a necessary condition for the pre-Mueller matrix
M® to be a physically acceptable Mueller matrix is that
the output ®'(p;p’) in Eq. (4.9) be a valid BC matrix for
every valid input BC matrix ®(p;p’). As in the case of
M, let us take as input the pure-state BC matrix ®©
X(p;p")=E(p)E(p’)", with E(p) as described in Eq. (4.3).
To test positivity of the output BC matrix ®’(p;p’), given
in Eq. (4.9 and resulting from input ®©(p;p’)
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M® is diagonal. We have already noted that L,,L, are
physical Mueller matrices: indeed, they correspond to de-
terministic systems with respective dJones matrices
Je,J,eSL(2,C). Thus if MY is a Mueller matrix, then it
has a convex sum realization {pj,,J*}. This implies that
M=L MWL, has the convex sum realization {pj,,JJ*J,}
and hence is a valid Mueller matrix. The converse follows
by virtue of the invertibility of J,,c/,, and we have

Proposition 5: A Type-I pre-Mueller matrix, which is
necessarily of the form M=LMVL, with L,L,
€S0(3,1) and MY diagonal, is a physical Mueller matrix
iff M is.

B. Type-II pre-Mueller Matrices
Having fully classified Type-I pre-Mueller matrices into
Mueller and non-Mueller matrices, we now turn our at-
tention to Type-II pre-Mueller matrices. The analysis
turns out to be quite parallel to the one in Subsection 4.A
Recall from Section 2 that a Type-II pre-Mueller matrix
in its canonical form M@ has only one nonvanishing off-
diagonal element whose value is fixed by the diagonals,
namely, My;=dy-dq, where d;,d,,ds,ds are the diago-
nals. The action of M® on S(p;p’) and ®(p;p’) can be
computed as before. The (generalized) Stokes vector has
this simple transformation law:

doSo(p;p") + (do—d1)S1(p;p’)
: diS1(p;p’) 4.8)
N daSo(p;p’) ' '

d3Ss(p;p’)

[
=E(p)E(p")?, we use in place of E®)(p) and F®)(p) slightly
modified (generalized) Jones vectors E(¥(p) and F9(p):

cos 0¢1(p)}, FO(p) [c?s 0%(;»)]

(6) _
%) = [sin Os(p)

(4.10)

Expectation values of the output BC matrix ®'(p;p’) for
these two families of Jones vectors can be computed as be-
fore. These expectation values are dcos? 6+d;sin? 6
+(dg+ds)cos Osin @ for Efp) and (dy-dq)sin? 6+(ds
—ds)cos O sin 6 for F¥(p).

Now positivity of ®'(p;p’) requires, as a necessary con-
dition, that these expectation values be nonnegative for
all 0< #<, and this requirement is seen to be equivalent
to the pair of conditions dod;=(do+d3)?/4, dy—d5=0;
these arise, respectively, from the E® and F(* families.
We may rewrite these as

ds=d,, (dy)? <dyd;. (4.11)
This is a pair of necessary conditions for the pre-Mueller
matrix M® to be a Mueller matrix. The condition (ds)?
<dd; is already part of the definition of M®, and thus
d3=dg is the new requirement arising from consideration
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of the action of M® on BC matrices, i.e., from consider-
ation of inseparability.

Our next task is to show that these conditions are suf-
ficient as well. To this end we proceed as in the case of
M® and compute the hermitian matrix Hj e associated
with M®):

1
dO 0 0 §(d2+d3)
1
0 0 (dy-dy) 0
Hypo) = 1

0 §(d2—d3) do-d; 0
1
E(dz +d3) 0 0 d,

(4.12)

The inequalities in Eq. (4.11) are precisely the conditions
under which Hj@) is positive semidefinite. This in turn
implies that M® satisfying Eq. (4.11) is a convex sum of
Jones systems and hence is a physical Mueller matrix. We
have thus proved

Proposition 6: The pre-Mueller matrix M® is a Muel-
ler matrix iff the associated Hermitian matrix Hpy @ =0,
that is, iff M® can be realized as a convex sum of Jones
systems or, equivalently, iff the entries of M® respect the
inequalities in Eq. (4.11).

We can now proceed to consider Type-II pre-Mueller
matrices that are not of the canonical form M®. We know
from Section 2 that any such matrix has the form M
=LM®?L,, where L;L,eS0(3,1). By considerations
similar to the ones leading to Proposition 6 in the Type-I
case, we arrive at

Proposition 7: A type-II pre-Mueller matrix, which is
necessarily of the form M=LM®@L, with L,L,
€S0(3,1), is a Mueller matrix iff M® is.

Having completed classification of the pre-Mueller ma-
trices in the Type-I and Type-II families into physical and
nonphysical ones, we are now left with two minor families
to handle. As noted following Eq. (2.25), M is a Jones
system. Let J be the Jones matrix representing this sys-
tem (polarizer). In view of the two-to-one homomorphism
between SL(2,C) and SO(3,1) alluded to earlier, L,,L,
e S0O(3,1) define respective Jones matrices /;,c/, of unit
determinant; these Jones matrices are unique except for
multiplicative factor =1, and, as is well known, this sig-
nature ambiguity is of nontrivial origin. Thus M
=L M®PDL, is a Jones system with Jones matrix =JJJ,
and hence is physical. A similar argument will show that
the last family, namely the PinMap family, also has no
nonphysical M matrix. For completeness, we state the
situation in with respect to these two minor families as
the following.

Proposition 8: Pre-Mueller matrices belonging to the
polarizer and pin map families are, respectively, Jones
systems and convex sums of Jones systems. Their associ-
ated H matrices are positive semidefinite, and all pre-
Mueller matrices in these two families are physical Muel-
ler matrices.
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C. Complete Characterization of Mueller Matrices

In the last two subsections we carried out a complete clas-
sification of pre-Mueller matrices into physical and non-
physical ones. Double-coseting under the SO(3,1) group
has played such an important role in this process that we
capture this role as a separate result.

Proposition 9: Given two 4 X4 real matrices M and
M’ that are in the same double-coset orbit under SO(3,1),
i.e.,, M'=L /ML, for some L,,L,eS0O(3,1), M’ is a convex
sum of Jones systems iff M is. And Hy;, =0 iff Hy;=0. In
other words, M’ is a Mueller matrix iff M is.

Proof: Suppose M has the convex sum realization
or,J®}, ie., M=Z,p,M(J®). Then, clearly, M' has the
convex sum realization {pj,JJ*.J,}. Conversely, if M’
has the convex sum realization {pj,J’'}, then M has the
convex sum realization {p},,(J,)"1J'#)(J,)"1}.

Now suppose HM=0. This means H®M
=30 JWT®T p,>0. This immediately implies Hy,
=] gJTk)J,) (J, (JTk)Jr)T, which proves its positivity.
Here (JJ%J,), as usual, denotes the column vector asso-
ciated with the 2 X 2 matrix J,J®)J,. The converse follows
from the invertibility of </;,e/,, completing proof of the
proposition.

With this result, proof of the principal conclusion of this
paper is complete. Our main theorem may thus be stated
as follows.

Main Theorem: A 4 X 4 real matrix M is a Mueller ma-
trix iff the associated Hermitian matrix HM =0. Every
physically acceptable Mueller matrix is a convex sum of
Mueller—Jones matrices.

D. The Role of Inseparability: An Illustrative Example
We present a simple example to illustrate the kind of re-
strictions on M matrices brought in by consideration of in-
separability. Let us restrict attention to M matrices of the
special simple three-parameter form

100 0
0d, 0 0

M=l00 a4 ol (4.13)
00 0 dy

We are obviously in the Type-I situation, but we are not
considering here the SO(3,1) orbit under double-coseting.

It is clear that M will map Stokes vectors into Stokes
vectors if and only if M satisfies the following three con-
ditions:

M:QPD ) o _1<d,<1, %k=1,23.

(4.14)

In the absence of considerations of inseparability these
would have been the only conditions M will need to sat-
isfy. Thus the allowed region in the Euclidean space R?
spanned by the parameters (d;,dy,ds) would have been a
cube with vertices at (x1,%1,+1). Now each one of the
four conditions in Eq. (4.6) with dy=1, arising out of con-
sideration of inseparability, forbids the (open) half-space
on one side of a plane. Thus the allowed region is the in-
tersection of the four allowed half-spaces. This region is
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Fig. 1. The tetrahedron that corresponds to Mueller matrices.

clearly the tetrahedron with vertices at P;=(1,1,1), Py
=(1,-1,-1), P3=(-1,1,-1) and P,=(-1,-1,1).

Thus, it is not the entire cubic region (4.14) permitted
by conventional wisdom, but only the solid tetrahedron,
with one-third volume of the cube, that withstands the
closer scrutiny presented by consideration of inseparabil-
ity. This is illustrated in Fig. 1. The region outside the tet-
rahedron is nonphysical and does not correspond to Muel-
ler matrices: points in the cube but exterior to the
tetrahedron correspond to pre-Mueller matrices that are
not physical Mueller matrices; those outside the cube cor-
respond to M matrices that are not even pre-Mueller ma-
trices.

5. CONCLUDING REMARKS

We conclude with some further observations. First, in the
mathematics literature and in the literature of quantum
information theory, what we have called pre-Mueller ma-
trices go by the name “positive maps,” and the subset of
pre-Mueller matrices that prove to be physically accept-
able in the sense of our main theorem corresponds to
what are called “completely positive maps.” But we have
endeavored here to arrive at a physical characterization
of Mueller matrices entirely within the framework of BC
matrices familiar to the classical optics community, with-
out resorting to the mathematical theory of these maps.

Second, a pre-Mueller matrix that fails our main theo-
rem will not produce any nonphysical effect acting on the
coherency matrix of plane waves or on the BC matrix of
elementary (or polarization-modulation separable)
beams. It follows that BC matrices that are convex sums
of elementary beams will not be able to witness the fail-
ure of a pre-Mueller matrix M whose associated H™) is
not positive semidefinite. Only BC matrices that are not
convex sums of elementary beams can expose the non-
physical nature of a pre-Mueller matrix that violates our
main theorem. In other words, pre-Mueller matrices can-
not be further divided into physical and nonphysical sub-
sets without consideration of inseparability.

Further, ever since it was proved that every Jones sys-
tem corresponds to a Mueller matrix whose associated H
matrix is a projection [28], it has been clear that en-
sembles of Jones systems necessarily correspond to posi-
tive semidefinite H matrices, and conversely. It has thus
been occasionally suggested by various authors, begin-
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ning with [29], that considerations of Mueller matrices
might be restricted only to such ensembles. But it has re-
mained only a suggestion, and one without any physical
basis, and hence could not set aside as nonphysical an ex-
perimentally measured Mueller matrix whose associated
H matrix has a negative eigenvalue, particularly when
the reported Mueller system was not realized by the ex-
perimenter specifically as an ensemble of Jones systems.
For instance, the symmetric Mueller matrix of Van Zyl
[48] was analyzed in [24] and was found to be a matrix of
Type III, with canonical-form parameters d,=0.9735, d;
=0.9112, d3=0.4640, d3=-0.3838. This clearly violates
[the second constraint in] Eq. (4.6) to a substantial extent.
Equivalently, the eigenvalues of H™ are 1.0906, 0.8393,
0.4526, —0.3825.

That H™ in this case is not positive, and hence the Van
Zyl system is not a convex sum of Jones systems, was al-
ways known. However, one did not hitherto have a physi-
cal basis on which this M could be judged as nonphysical.
Inseparability has now given us such a physical basis.

Finally, the issue that has been settled in the present
work can be viewed as one of lifting the linear input—
output relation S’ =MS at the level of Stokes vectors to an
input—output relation at the level of field amplitudes. We
have seen that a linear relation among Stokes vectors ef-
fected by a Mueller—Jones matrix can be lifted to the lin-
ear relation

Ei = aE'1 + bEZ,

E}=cE; +dEs, (5.1)

at the field amplitude level. Here a, b, ¢,d are determin-
istic scalars. Indeed, these are precisely the entries of the
Jones matrix of the system. It is also known [29] that for
Mueller matrices whose associated Hermitian matrix
HM =0, the relation S'=MS can be lifted to a relation of
the form (5.1), a, b, c¢,d being appropriately correlated
random variables this time. Now there exist M matrices
that map valid Stokes vectors into valid Stokes vectors
but whose associated Hermitian matrix H™ is indefinite,
and in this last case understanding the relation S’'=MS
at the field amplitude level remained a puzzle. The
present work resolves this puzzle by simply showing that
there are no Mueller matrices of this last type: Every
physical Mueller matrix can be understood at the field
amplitude level, either as a deterministic or as a stochas-
tic linear input—output relation.
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