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The Mueller–Stokes formalism that governs conventional polarization optics is formulated for plane waves,
and thus the only qualification one could require of a 4�4 real matrix M in order that it qualify to be the
Mueller matrix of some physical system would be that M map ��pol�, the positive solid light cone of Stokes
vectors, into itself. In view of growing current interest in the characterization of partially coherent partially
polarized electromagnetic beams, there is a need to extend this formalism to such beams wherein the polar-
ization and spatial dependence are generically inseparably intertwined. This inseparability brings in addi-
tional constraints that a pre-Mueller matrix M mapping ��pol� into itself needs to meet in order to be an ac-
ceptable physical Mueller matrix. These additional constraints are motivated and fully characterized.
© 2010 Optical Society of America

OCIS codes: 260.5430, 270.5585, 260.2110, 120.5410, 230.5440.
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. INTRODUCTION
paraxial beam propagating along the positive z axis is

ompletely determined in terms of the transverse compo-
ents of the electric field, specified throughout a trans-
erse plane z=constant as functions of the transverse co-
rdinates �x ,y�=�. If these components are independent
f the transverse coordinates, then the situation corre-
ponds to a plane wave propagating along the z axis. The
raditional Mueller–Stokes formalism in terms of Stokes
ector S and Mueller matrix M, describing, respectively,
he beam and the optical system, presumes essentially
his kind of situation wherein the spatial degree of free-
om can be safely left out of consideration, the focus being
n the polarization degree of freedom [1–3].

Recent years have witnessed an enormous interest in
artially polarized partially coherent electromagnetic
eams [4–20], and hence there is a need to extend the
ueller–Stokes formalism to such beams. Given a 4�4

eal matrix M, it should necessarily map ��pol�, the posi-
ive cone of Stokes vectors, into itself in order that it could
e the Mueller matrix of some physical system. Within
he conventional formalism, this seems to be the only
ualification that can be required of M. In a partially co-
erent partially polarized beam, polarization and spatial
ependence happen to be inseparably intertwined. This
nseparability brings in additional constraints that a 4

4 real matrix M mapping ��pol� into itself needs to meet
n order for it to be a physically acceptable Mueller ma-
rix. The class of 4�4 real matrices that one would have
itherto believed to be Mueller matrices now must pass
1084-7529/10/020188-12/$15.00 © 2
dditional tests before they can qualify to be physical
ueller matrices; and this will seem to suggest that these
atrices should more properly be called pre-Mueller ma-

rices, so that those pre-Mueller matrices that pass this
dditional physical requirement to be developed here can
e called Mueller matrices.
We notice that the inseparability of polarization and

patial dependence can be seen as a classical analog of
uantum entanglement, which is traditionally studied al-
ost exclusively in the context of quantum systems. How-

ver, this notion is basically kinematic in nature, being a
irect consequence of the superposition principle, and so
t is bound to present itself whenever and wherever the
tate space of interest is the tensor product of two (or
ore) linear vector spaces. The vectors of the individual

paces, and hence (tensor) products of such vectors, will
e expected to possess identifiable physical meaning. Po-
arization optics of paraxial electromagnetic beams hap-
ens to have precisely this kind of a setting, with a two-
imensional vector space describing the polarization
egree of freedom and an infinite-dimensional vector
pace of square integrable functions describing the spatial
egree of freedom. We could then refer to the inseparabil-
ty of polarization and spatial dependence as a manifesta-
ion of non-quantum entanglement.

We hasten, however, to add a note by way of clarifica-
ion. In quantum theory, entanglement conspires with the
truly nonclassical) measurement postulate, and the
ssociated collapse of states, to produce dramatic and
ven seemingly paradoxical consequences, the Einstein–
010 Optical Society of America
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odolsky–Rosen paradox [21,22] being an early example.
ut classical linear optics does not suffer from the luxury
r burden of this kind of measurement postulate, and
ence only those consequences of entanglement that do
ot depend on the measurement postulate in an essential
anner should be expected to present themselves in this

ontext. This is exactly the case for the phenomena of our
nterest. However, since use of the phrase “non-quantum
ntanglement” could sound odd to some readers, we shall
n short refer to the mingling of polarization and spatial
ariation (or modulation) as the “inseparability.”

The principal purpose of the present work is to moti-
ate the constraints arising from inseparability and char-
cterize them fully. The next two sections of the paper act
s preparation toward this end. We begin in Section 2 by
ecounting the conventional Mueller–Stokes formalism as
t applies to plane waves. This is then extended in Section

to paraxial electromagnetic beams, and the role of in-
eparability (of polarization and spatial variation) is ren-
ered transparent. These two sections equip us with all
he tools needed to formulate in Section 4 the additional
hysical constraints on a pre-Mueller matrix M arising as
onsequence of inseparability. Our final result is formu-
ated in the form of a necessary and sufficient condition,
nd a simple illustrative example is treated in some detail
o clarify the nature of these further constraints. We con-
lude in Section 5 with some further remarks.

. POLARIZATION OPTICS OF PLANE
AVES

or a plane wave whose propagation direction is along the
positive) z axis perpendicular to the �x ,y� plane, the x
nd y components E1, E2 of the electric field are indepen-
ent of the transverse-plane coordinates � and can be ar-
anged into a (numerical) column vector:

E � �E1

E2
� � C2. �2.1�

e have suppressed, for convenience, a space–time-
ependent scalar factor of the form ei�kz−�t�. While E†E
�E1�2+ �E2�2 is (a measure of) the intensity, the ratio �
E1 /E2 of the (complex) components, which ratio can be
iewed as a point on the Riemann or Poincaré sphere S2,
pecifies the polarization state. In particular, the signa-
ure of the imaginary part of � describes the handedness
f the (generally elliptic) polarization.

In the presence of fluctuations, E acquires some ran-
omness, and in this case the state of polarization is ef-
ectively described by the 2�2 coherency or polarization
atrix,

� � �EE†� = ��E1E1
*� �E1E2

*�

�E2E1
*� �E2E2

*�� , �2.2�

here �¯� denotes ensemble average. The coherency
atrix is Hermitian, �†=�, and positive semidefinite,
†�V=tr��VV†��0, ∀V�C2. This positivity property
ay be denoted simply as ��0. Hermiticity and pos-

tivity are the defining properties of �: every 2�2
atrix obeying these two conditions is a valid coherency
atrix and represents some polarization state. Since � is
2�2 matrix, the positivity condition takes the simple

calar form

tr � � 0,

det � � 0. �2.3�

t is clear that the intensity corresponds to tr �. Fully po-
arized light (pure states) corresponds to det �=0 and
artially polarized or mixed states to det ��0.
Typical systems of interest in polarization optics are

ransversely homogeneous, in the sense that their action
s independent of the coordinates �x ,y� spanning the
ransverse plane in which the system lies. If such a sys-
em is deterministic and acts linearly at the field ampli-
ude level, it is described by a complex 2�2 numerical
atrix J called the Jones matrix of the system:

J = �J11 J12

J21 J22
�: E → E� = �E1�

E2�
� = JE ⇔ � � �EE†� → ��

= �E�E�†� = J�J†. �2.4�

t is clear that Jones systems map pure states �det �=0�
nto pure states.

Since � is Hermitian, it can be conveniently described
s real linear combination of the four orthogonal Hermit-
an matrices �0=12�2, �1=	3, �2=	1, �3=	2:

� =
1

2	
a=0

3

Sa�a ⇔ Sa = tr��a��; tr �a�b = 2
ab. �2.5�

The reason for choosing the � matrices, a permuted ver-
ion of the Pauli matrices rather than the Pauli 	 matri-
es themselves, is to be consistent with the optical con-
ention that the circularly polarized states, the
igenstates of 	2=�3, be along the “third” axis (polar axis)
f the Poincaré sphere. The intensity equals S0=tr �. The
xpansion coefficients Sa are the components of the
tokes vector S�R4. Note that �3

* =−�3, whereas �a
* =�a if

�3.
While Hermiticity of � is equivalent to reality of S
R4, the positivity conditions tr ��0, det ��0 read, re-

pectively,

S0 � 0,

S0
2 − S1

2 − S2
2 − S3

2 � 0. �2.6�

hus, permissible polarization states correspond to the
ositive light cone and its interior (solid cone). Pure states
ive on the surface of this cone. As suggested by this light
one structure, the proper orthochronous Lorentz group
O�3,1� plays quite an important role in polarization op-

ics [23,24].
Under the action of a deterministic or Jones system J

escribed in Eq. (2.4), the elements of the output coher-
ncy matrix �� are obviously linear in those of �. This, in
iew of the linear relation (2.5) between � and S, implies
hat under passage through such a system the output
tokes vector S� and the input S will be linearly related
y a 4�4 real matrix M�J� determined by J:
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J : S → S� = M�J�S. �2.7�

e may call M�J� the Mueller matrix of the Jones system
. It is known also as a Mueller–Jones matrix to empha-
ize the fact that it is constructed out of a Jones matrix.
hile �= �EE†� is a 2�2 matrix, the tensor product �̃
�E � E*� is a four-dimensional column vector associated
ith �:

�̃ = 

�̃0

�̃1

�̃2

�̃3

� � 

�E1E1

*�

�E1E2
*�

�E2E1
*�

�E2E2
*�
� = 


�11

�12

�21

�22

� . �2.8�

This idea of going from a pair of indices, each running
ver 1 and 2, to a single index running over 0 to 3 and vice
ersa can often be used to advantage to associate with
ny 2�2 matrix K a corresponding column vector K̃ with

˜
0=K11, K̃1=K12, K̃2=K21, and K̃3=K22. The tensor prod-
ct J � J* is a 4�4 matrix:

J � J* � �J11J* J12J*

J21J* J22J*�
= 


J11J11
* J11J12

* J12J11
* J12J12

*

J11J21
* J11J22

* J12J21
* J12J22

*

J21J11
* J21J12

* J22J11
* J22J12

*

J21J21
* J21J22

* J22J21
* J22J22

*
� . �2.9�

he transformation �→��=J�J† is thus equivalent to
˜ →�̃�=J � J*�̃. Since �̃ is related to the Stokes vector
hrough



S0

S1

S2

S3

� = 

1 0 0 1

1 0 0 − 1

0 1 1 0

0 i − i 0
�


�̃0

�̃1

�̃2

�̃3

� , �2.10�

t follows that

M�J� = A�J � J*�A−1, �2.11�

being the numerical 4�4 matrix exhibited in Eq. (2.10);
his matrix is essentially unitary: A−1= 1

2A†.
If det J is of unit magnitude, then M�J� computed by

his prescription is an element of SO�3,1�, the proper or-
hochronous group of Lorentz transformations; this was
o be expected in view of the two-to-one homomorphism
etween SL�2,C� and SO�3,1� [24]. It follows that for any
onsingular J the associated Mueller–Jones matrix M�J�

s �det J� times an element of SO�3,1�. The prescription
2.11), though, applies to singular Jones matrices as well.

. Mueller Matrices Arising as Convex Sums of Jones
ystems
nondeterministic (i.e., non-Jones) system is described

irectly by a Mueller matrix M :S→S�=MS, and, by defi-
ition, such a Mueller matrix cannot equal M�J� for any
�2 (Jones) matrix J. Given a Mueller matrix M, how
oes one test whether it is a Mueller–Jones matrix for
ome J or, equivalently, how does one test whether the
ystem described by M is a deterministic (i.e., Jones) sys-
em? This question, which had received much attention
23,25–27], turned out to have a simple and elegant solu-
ion [28]. We go over in some detail the construction un-
erlying this solution, for it plays a key role in our analy-
is to follow. Of central importance is the construction of a
ermitian matrix associated with each real matrix M;

his construction has played a nontrivial role in subse-
uent developments of polarization optics. This Hermit-
an matrix was originally denoted N [28], but now we pre-
er to denote it H�M� to emphasize Hermiticity, its most
mportant property.

The general real linear transformation M :S→S�=MS
n the Stokes vectors S implies, in view of the linear re-
ationship (2.5) or (2.10) between S and �, an associated
inear transformation on �. Indeed, use of S=A�̃, Eq.
2.10), in this transformation law immediately gives the
�4 matrix B�M� transforming � linearly:

B�M� : � → ��, �̃� = B�M��̃,

i.e., �ij� = 	
k�=1

2

Bij,k�
�M� �k�;

B�M� � A−1MA, M = AB�M�A−1. �2.12�

ow define from B�M� a new matrix H�M� by permuting the
ndices of B�M�:

Hik,j�
�M� = Bij,k�

�M� . �2.13�

he transformation (2.12) now gets transcribed to

H�M� : � → ��, �ij� = 	
k�

Hik,j�
�M� �k�. �2.14�

ote that H�M� is obtained from B�M� by simply inter-
hanging B02

�M� with B10
�M�, B03

�M� with B11
�M�, B22

�M� with B30
�M�,

nd B23
�M� with B31

�M�. Further, while �̃�=B�M��̃ can be use-
ully viewed as a (column) vector equation, the corre-
ponding transformation (2.14) involving H�M� cannot be
o viewed. The fact that the output �� is Hermitian for all
ermitian input � shows that the map, or super-operator
�M�, viewed as a 4�4 matrix with ik (going over 0 to 3)

abeling the rows and j� labeling the columns, is Hermit-
an. This correspondence between real matrices M and
ermitian matrices H�M� is clearly one-to-one. Elements

f H�M� in terms of those of M have been presented as Eq.
8) of [28].

The sixteen 4�4 Hermitian matrices Uab= 1
2�a � �b

*,
ith a ,b independently running over the index set {0, 1,
, 3}, form an orthonormal set or basis in the (vector)
pace of 4�4 matrices; these matrices are unitary and
elf-inverses:

Uab =
1

2
�a � �b

* = Uab
† = Uab

−1,
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tr�UabUcd� = 
ac
bd, a,b,c,d � �1,2,3,4
.

�2.15�

For the purpose on hand, complex conjugation of the sec-
nd factor of the tensor product �a � �b

* is not optional, and
his will become clear in a moment.] Thus every (Hermit-
an) 4�4 matrix can be written uniquely as a (real) linear
ombination of ��a � �b

*
. As an important consequence of
his fact we have

Proposition 1: There exists a natural one-to-one cor-
espondence between the set of all 4�4 real matrices and
he set of all 4�4 Hermitian matrices.

To appreciate the sense in which this correspondence is
atural, let us write the hermitian matrix H�M� as a linear
ombination of the �a � �b

*’s and provisionally denote the
xpansion coefficients by Kab:

H�M� =
1

2 	
a,b=0

3

Kab�a � �b
* . �2.16�

quation (2.14) then reads
J̃
i
r

J

T
m
p
k

�ij� = 	
ab

Kab	
k�

��a�ij��b�k�
* �k�. �2.17�

ecalling that 	k���b�k�
* �k�=tr��b��=Sb, the above equa-

ion reduces after multiplication by ��c�ij
* , summing over

, j, and using Eq. (2.5), to S�=KS, showing that what we
rovisionally denoted K indeed equals M. We have thus
roved that

H�M� =
1

2 	
a,b=0

3

Mab�a � �b
* . �2.18�

sing the orthogonality relations in Eq. (2.15), this equa-
ion can be readily inverted, and we find that a Hermitian
atrix H and the associated real matrix M�H� are related

hrough

�M�H��ab =
1

2
tr�H�a � �b

*�, a,b = 0,1,2,3. �2.19�

e write these in more detail for later use:
H�M� =
1

2

M00 + M11 + M01 + M10 M02 + M12 + i�M03 + M13� M20 + M21 − i�M30 + M31� M22 + M33 + i�M23 − M32�

M02 + M12 − i�M03 + M13� M00 − M11 − M01 + M10 M22 − M33 − i�M23 + M32� M20 − M21 − i�M30 − M31�

M20 + M21 + i�M30 + M31� M22 − M33 + i�M23 + M32� M00 − M11 + M01 − M10 M02 − M12 + i�M03 − M13�

M22 + M33 − i�M23 − M32� M20 − M21 + i�M30 − M31� M02 − M12 − i�M03 − M13� M00 + M11 − M01 − M10

� .

�2.20�

his matrix in identical form was first presented in [28]. Of the sixteen 4�4 matrices Uab, only U20, U21, U30, and U31
ave nonzero entries at the 13 location, and this explains the entry M20−M21− i�M30−M31� for �H�M��13. Written in detail,
elation (2.19) has the form

M�H� =
1

2

H00 + H11 + H22 + H33 H00 − H11 + H22 − H33 H01 + H10 + H23 + H32 − i�H01 − H10� − i�H23 − H32�

H00 + H11 − H22 − H33 H00 − H11 − H22 + H33 H01 + H10 − H23 − H32 − i�H01 − H10� + i�H23 − H32�

H02 + H20 + H13 + H31 H02 + H20 − H13 − H31 H03 + H30 + H12 + H21 − i�H03 − H30� + i�H12 − H21�

i�H02 − H20� + i�H13 − H31� i�H02 − H20� − i�H13 − H31� i�H03 − H30� + i�H12 − H21� H03 + H30 − H12 − H21

� .

�2.21�
he entry −i�H01−H10�+ i�H23−H32� for �M�H��13 is ex-
lained by the fact that the nonzero entries of U13 are at
he 01, 10, 23, and 32 locations.

If the system described by M is a Jones system with
ones matrix J, it is clear from the transformation law
→��=J�J† given in Eq. (2.4) that B�M�=J � J* and,

onsequently, H�M�= J̃J̃†, where J̃ is the column vector as-
ociated with the 2�2 matrix J. The fact that the hermit-
an matrix associated with a Jones system is a one-
imensional projection H�M�= J̃J̃† immediately leads, in
iew of the one-to-one correspondence between M and
�M�, to the fundamental result [28].
Proposition 2: Given a 4�4 real matrix M, it is a
ueller–Jones matrix iff the associated Hermitian matrix
�M� is a one-dimensional projection. That is, iff H�M�

J̃J̃† for some (complex) four-dimensional column vector
. If H�M�= J̃J̃†, then the 2�2 matrix J associated with J̃
s the Jones matrix of the deterministic Jones system rep-
esented by M.

Consider now a transformation that is a convex sum of
ones systems:

� → �� = 	
k=1

n

pkJ�k��J�k�†, �2.22�

pk � 0, 	
k=1

n

pk = 1.

his transformation may be realized by a set of n deter-
inistic or Jones systems J�1� ,J�2� , ¯ ,J�n� arranged in

arallel, with a fraction pk of the light going through the
th Jones system J�k� and all the transformed beams com-
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ined (incoherently) at the output. It can also be viewed
s a fluctuating system that assumes the Jones form J�k�

ith probability pk. In either case, it is clear that the
ueller matrix M of this nondeterministic system and its

ssociated Hermitian matrix are corresponding convex
ums:

M = 	
k=1

n

pkM�Jk�, H�M� = 	
k=1

n

pkJ̃�k�J̃�k�†. �2.23�

t is useful to denote by �pk ,J�k�
 the convex sum or en-
emble realization represented by Eq. (2.22) or, equiva-
ently, by Eq. (2.23). Obviously, such an ensemble or con-
ex sum realization always leads to a positive
emidefinite H�M�. Further, it is an elementary fact that
ositive semidefinite H alone can be realized as a convex
um of projections. Thus as an immediate, and math-
matically trivial, consequence of Proposition 2 we have
29]

Corollary: An optical system described by M is realiz-
ble as a convex sum or ensemble �pk ,J�k�
 of Jones sys-
ems iff the associated H�M��0. If H�M��0, the number of
ones systems, n, needed for such a realization satisfies
�r, where r is the rank of H�M�. There is no upper limit
n n if r�2.

This corollary is physically important and has at-
racted considerable attention [29–36].

. Pre-Mueller Matrices and Their Classification
iven a 4�4 real matrix M, Proposition 2 gives the nec-
ssary and sufficient condition for M to arise as the Muel-
er matrix of some Jones system J. That still leaves open
his more general question: how does one ascertain
hether a given matrix M is a Mueller matrix? This ques-

ion has an interesting history that is surprisingly recent.
In traditional polarization optics, which is formulated

or plane waves and not for spatially varying beams, the
tate space ��pol� is the collection of all Stokes vectors:

��pol� = �S � R4�S0 � 0, STGS � 0
,

G = diag�1,− 1,− 1,− 1�,

STGS = S0
2 − S1

2 − S2
2 − S3

2. �2.24�

ow G is the “Lorentz metric,” and thus the state space
�pol� is the positive (solid) light cone in R4. Since a physi-

al Mueller matrix should necessarily map states into
tates, our question reduces to one of effectively charac-
erizing real linear transformations in R4 that map the
ositive (solid) light cone into itself. While
O�3,1��GSO�3,1�, where SO�3,1� is the proper ortho-
hronous Lorentz group, is the obvious answer in the case
f onto maps, the more general into case was raised in
37] as a serious issue in polarization optics. This issue
as formulated as two simple conditions that M has to
eet [Eqs. (2.29) and (2.31) of [37]], corresponding to the

emand that the intensity and degree of polarization of
he output be physical for every input pure state. Further,
he measured Mueller matrices of Howell [38] were tested
or these conditions, and violation was found in excess of
0%, a magnitude considerably larger than the tolerance
uggested by the reported measurements. It was thus
oncluded in [37] that the Howell system fails to map the
ositive light cone ��pol� into itself, and this is possibly the
rst time that a verdict of this kind was made on some
ublished Mueller matrices.
Subsequent progress in respect of this issue was quite

apid. In a significant step forward Givens and Kostinski
39] derived, based on an impressive analysis of the spec-
rum of GMTGM, what appeared to be a necessary and
ufficient condition for M to map ��pol� into itself. They
nalyzed the Howell system based on their own condition,
nd concluded that their results were “in coincidence with
he negative verdict on the Howell matrix delivered in
37],” p. 480. Soon after, Van der Mee [33] derived a more
omplete set of necessary and sufficient conditions for M
o map ��pol� into itself; the analysis of Van der Mee, too,
as based on the spectrum of GMTGM.
Decomposition of a Mueller matrix M in various prod-

ct forms, to gain insight into the physical effects M could
ave on the input polarization state, has been an activity
f considerable interest [40–43]. The importance of ob-
aining the canonical or normal forms of Mueller matrices
nder the double-coset transformation M→L�MLr,
� ,Lr�SO�3,1� was motivated in [24], and it was shown

hat the theorem of Givens and Kostinski [39] implied
hat the canonical form of every nonsingular (real) matrix

that maps ��pol� into itself is diagonal; i.e., M
L�M�1�Lr, where M�1�=diag�d0 ,d1 ,d2 ,d3�, d0�d1�d2
�d3� and L� ,Lr�SO�3,1�. It turned out that while the

esult of Van der Mee is essentially complete [44], that of
ivens and Kostinski is incomplete. This means that the
iagonal form M�1� of [24] noted above is not the only ca-
onical form for a nonsingular M mapping ��pol� into it-
elf; there exists another non-diagonal canonical form

�2�, and this is essentially the case that was missed by
he “theorem” of Givens and Kostinski quoted above. In a
emarkably impressive and detailed study, Rao et al.
44,45] have further explored and completed the analysis
f Van der Mee, leading to a complete solution to the ques-
ion of canonical form for Mueller matrices under double-
oseting by SO�3,1� elements, raised in [24].

Since these canonical forms play a key role in our
nalysis below, we list them here in a concise form. Ma-
rices M that map the state space ��pol� into itself divide
nto two major and two minor families:

Type I: M = L�M
�1�Lr, L�,Lr � SO�3,1�,

M�1� = diag�d0,d1,d2,d3�, d0 � d1 � d2

� �d3�;

Type II: M = L�M
�2�Lr, L�,Lr � SO�3,1�,

M�2� = 

d0 d0 − d1 0 0

0 d1 0 0

0 0 d2 0

0 0 0 d3

�, d0 � d1

�
� 0, d0d1 � d2 � �d3�;
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Polarizer: M = L�M
�pol�Lr, L�,Lr � SO�3,1�,

M�pol� = 

d0 d0 0 0

d0 d0 0 0

0 0 0 0

0 0 0 0
�, d0 � 0;

Pin Map: M = L�M
�pin�Lr, L�,Lr � SO�3,1�,

M�pin� = 

d0 0 0 0

d0 0 0 0

0 0 0 0

0 0 0 0
�, d0 � 0. �2.25�

ince elements of SO�3,1� have unit determinant, it fol-
ows that d3 in the Type-I and Type-II cases is positive,
egative, or zero according as det M is positive, negative,
r zero. The M matrices in the third and fourth families
re manifestly singular. The third family is a Jones sys-
em, the associated H matrix being a projection; indeed,

�pol� corresponds to a Jones matrix J whose only nonva-
ishing element is J11=�2d0. Finally, the PinMap family

s so named because M�pin� produces a fixed output polar-
zation state independent of the input, the intensity of the
utput being independent of the state of polarization of
he input. This may be contrasted with M�pol�: while the
utput in the case of M�pol� has an input-independent
tate of polarization, the intensity does depend on the
tate of polarization of the input.

The matrix M�pin� is not a Jones system, but it is a con-
ex sum of such systems. To see this, note that a perfect
epolarizer represented by the Mueller matrix

M�depol� = 

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
� �2.26�

s a convex sum of Jones systems; it can be realized, for
nstance, as an equal mixture of systems with Jones ma-
rices �a ,a=0,1,2,3. That M�pin� is a convex sum of Jones
ystems follows from M�pin�=M�pol�M�depol�. Alternatively, it
s readily seen that HM�pin� is an equal sum of two projec-
ions, and hence M�pin� is an equal mixture of the Jones
ystems:

�1 0

0 0�, �0 1

0 0� . �2.27�

While M�pin� is realized as convex sum of two Jones sys-
ems, M�depol� cannot be so realized with less than four
ones matrices. This follows from the fact that HM�depol� is
f full rank whereas HM�pin� is of rank two.

The classification of canonical forms for M matrices as
iven in Eq. (2.25) is complete in the following sense:

Proposition 3: Every M matrix that maps the state
pace ��pol� into itself falls uniquely in one of the four
amilies described in Eq. (2.25).
That brings us to the main thesis of the present paper.
4�4 real matrix M will have to map the state space

�pol� into itself for it to qualify to be the Mueller matrix of
ome physical system. This is certainly a necessary con-
ition. And, within the conventional Mueller–Stokes for-
alism, no conceivable further requirement can be im-

osed on M. But the action of the transversely
omogeneous system represented by the numerical ma-
rix M can be extended from plane waves to paraxial
eams; naturally, M will then affect only the polarization
egree of freedom and act as identity on the (transverse)
patial degrees of freedom. If M indeed represented a
hysical system, even this extended action should map
hysical states into physical states. It turns out that this
rivial-looking extension is not all that trivial: there are

matrices that appear physical at the level of the (re-
tricted) state space ��pol� but fail to be physical on the ex-
ended state space. Our task in the rest of the paper is to
dentify precisely those M matrices whose action is physi-
al even on the extended state space. Since only those M
atrices that pass this further hurdle can be called physi-

al Mueller matrices, and pending determination of the
recise demand this hurdle places on M, the M matrices
hat map ��pol� into itself will be called pre-Mueller ma-
rices. We may thus conclude this section by saying that
q. (2.25) gives a complete classification of pre-Mueller
atrices and their orbit structure under double-coseting

y elements of SO�3,1�; the physical/nonphysical divide
f pre-Mueller matrices remains to be accomplished. This
ivide will be presented in Section 4 after some further
reparation in Section 3.

. FROM PLANE WAVES TO BEAMS: THE
EAM CORRELATION MATRIX
e will now go beyond plane waves and consider paraxial

lectromagnetic beams. The simplest (quasi-) monochro-
atic beam field has, in a transverse plane z=constant

escribed by coordinates �x ,y���, the form E���= �E1x̂
E2ŷ�����, where E1, E2 are complex constants, and the
calar-valued function ���� may be assumed to be square
ntegrable over the transverse plane: �����L2�R2�. It is
lear that the polarization part �E1x̂+E2ŷ� and the spa-
ial dependence or modulation part ���� of such a beam
re well separated, allowing one to focus attention on one
spect at a time. When one is interested in only the modu-
ation aspect, the part �E1x̂+E2ŷ� may be suppressed,
hus leading to “scalar optics:” this is the domain of tra-
itional Fourier optics [46]. [Fourier optics for electro-
agnetic beams requires a more delicate formalism [47].]
n the other hand, if the spatial part ���� is suppressed,
e are led to the traditional polarization optics (of plane
aves) described in Section 2.
Beams whose polarization and spatial modulation

eparate in the above manner will be called elementary
eams. It is clear that elementary beams remain elemen-
ary under the action of transversely homogeneous aniso-
ropic systems such as waveplates and polarizers. That
hey remain elementary under the action of isotropic or
olarization-insensitive modulating systems such as free
ropagation, phase screens, and lenses is also clear.
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Now suppose that we superpose or add two such el-
mentary beam fields �ax̂+bŷ����� and �cx̂+dŷ�����. The
esult is not of the elementary form �ex̂+ fŷ�
���, for any
, f, 
��� unless either �a ,b� is proportional to �c ,d� so
hat one gets committed to a common polarization, or ����
nd ���� are proportional so that one gets committed to a
xed spatial mode. In other words, the set of elementary
elds is not closed under superposition.
Since one cannot possibly give up the superposition

rinciple in optics, one needs to go beyond the set of el-
mentary fields and pay attention to the consequences of
nseparability of polarization and spatial variation
modulation). We are thus led to consider (in a transverse
lane) beam fields of the more general form E���
E1���x̂+E2���ŷ.
This form is obviously closed under superposition. We
ay write E��� as a generalized Jones vector:

E��� = E1���x̂ + E2���ŷ ⇔ E��� = �E1���

E2���� ,

E1���, E2��� � L2�R2�. �3.1�

The intensity at location � corresponds to �E1����2
�E2����2. This field is of the elementary or separable form

ff E1��� and E2��� are linearly dependent (proportional to
ne another). Otherwise, polarization and spatial modu-
ation are inseparable.

The point is that the set of possible beam fields in a
ransverse plane constitutes the tensor product space C2

� L2�R2�, whereas the set of all elementary fields consti-
utes just the set product C2�L2�R2� of C2 and L2�R2�. Re-
all that the tensor product of two vector spaces is the clo-
ure, under superposition, of their set product. Thus the
et product C2�L2�R2� forms a measure zero subset of the
ensor product C2 � L2�R2�. In other words, in a beam field
epresented by a generic element of C2 � L2�R2�, polariza-
ion and spatial modulation should be expected to be in-
eparable: Thus inseparability is not an exception; it is
he rule in C2 � L2�R2�, the space of pure states appropri-
te for electromagnetic beams.
If a beam described by generalized Jones vector E���

ith x ,y components E1���, E2��� is passed through an x
olarizer, it is not only that the output will be x polarized,
t is certain to be in the spatial mode E1��� as well. A simi-
ar conclusion holds if the beam is passed through a y po-
arizer. Thus a (transversely homogeneous) polarizer,
hose action is � independent, not only chooses a polar-

zation state but acts as a spatial mode selector as well.
his is true even if E1��� and E2��� are not spatially or-

hogonal modes. In a similar manner, a spatial mode se-
ector insensitive to polarization will end up acting also as

polarization discriminator. This is a consequence of in-
eparability between polarization and spatial modulation
nd can be seen as one classical analog of quantum en-
anglement.

Now, to handle fluctuating beams, we pass on to the
eam correlation (BC) matrix ��� ;�����E���E����†�, de-
ned as the ensemble average of an outer product of (gen-
ralized) Jones vectors [4–7]. Such a matrix describes
oth the coherence and the polarization properties of the
eam under consideration. It is a generalization of the nu-
erical coherency matrix of plane waves considered in
he previous section, Eq. (2.2), now to the case of beam
elds. It can equally well be viewed as a generalization of
he mutual coherence function of scalar statistical optics
o include polarization. For our present purpose, there is
o need to make any finer distinction between the space–
ime and space–frequency descriptions. The two-point
unctions appearing in the BC matrix may be viewed ei-
her as equal-time coherence functions (in which case one
peaks of the beam coherence-polarization matrix [5,6]) or
orrelation functions at a particular frequency (cross-
pectral-density matrix [4,7]). We are free to view the BC
atrix either as the 2�2 matrix of two-point functions,

���;��� = ��E1���E1����*� �E1���E2����*�

�E2���E1����*� �E2���E2����*�� , �3.2�

r as the associated column vector �̃�� ;��� of two-point
unctions: �̃�� ;���= �E��� � E����*�.

It is clear from the very definition (3.2) of the BC ma-
rix that this matrix kernel, viewed as an operator from
2 � L2�R2�→C2 � L2�R2�, is Hermitian and positive
emidefinite:

�jk��;��� = �kj���;��*, j,k = 1,2;

� d2�d2��E���†���;���E���� � 0,

i.e., 	
jk
� d2�d2��Ej���*�jk��;���Ek���� � 0,

∀E��� � C2
� L2�R2�. �3.3�

The positivity requirement thus demands that the ex-
ectation value of ��� ;��� be nonnegative for every Jones
ector E���. Hermiticity and positivity are the defining
roperties of the BC matrix: every 2�2 matrix of two-
oint functions �jk�� ;��� meeting just these two condi-
ions is a valid BC matrix of some beam of light.

We can use the BC matrix to define the generalized
tokes vector S�� ;��� [14,15]:

���;��� =
1

2	
a=0

3

Sa��;����a ⇔ Sa��;��� = tr����;����a�.

�3.4�

hat this is an invertible relation shows that ��� ;��� and
�� ;��� carry identical information: action of an optical
ystem on one defines a unique equivalent action on the
ther. The Hermiticity and positivity requirement on the
C matrix can be easily transcribed into corresponding
equirements on S�� ;���. Hermiticity reads

Sa��;��� = Sa���;��*, a = 0,1,2,3, �3.5�

hereas positivity reads



f
o
s

4
M
O
W
t
p
t
s
v
n
w

A
W
c
c
f
t
i

T
w
a
(

t
t
m
t
r
c
p

t
o

�
J
x
b

[
H
t
f
(
�
t

T
b

g
=
t

[
E
v
(
+
�

d
a
c

V
t
i
i
(
M

c
a

Simon et al. Vol. 27, No. 2 /February 2010 /J. Opt. Soc. Am. A 195
	
a=0

3

ga� d2�d2��Sa��;���Ŝa���;�� � 0, �3.6�

or every Stokes vector Ŝ�� ;��� arising from Jones vectors
f the form E����C2 � L2�R2�. The signatures ga corre-
pond to the Lorentz metric: g0=1, ga=−1 for a�0.

. FROM PRE-MUELLER MATRICES TO
UELLER MATRICES: THE ROLE
F INSEPARABILITY
e now have at our disposal all the tools necessary to de-

ermine whether or not a given pre-Mueller matrix is a
hysical Mueller matrix. Let us consider the transforma-
ion of the generalized Stokes vector S�� ;��� and the as-
ociated BC matrix ��� ;��� under the action of a trans-
ersely homogeneous optical system described by
umerical pre-Mueller matrix M. We begin our analysis
ith pre-Mueller matrices of Type I.

. Type-I pre-Mueller Matrices
e will first study pre-Mueller matrices presented in the

anonical form M�1�=diag�d0 ,d1 ,d2 ,d3�. Extension of the
onclusions to pre-Mueller matrices not in the canonical
orm will turn out to be quite straightforward. In view of
he system’s homogeneity, the action of M�1� is necessarily
ndependent of � ,��, and we have

M�1� = diag�d0,d1,d2,d3�:

S0��;���

S1��;���

S2��;���

S3��;���
� → 


S0���;���

S1���;���

S2���;���

S3���;���
�

= 

d0S0��;���

d1S1��;���

d2S2��;���

d3S3��;���
� . �4.1�

he elements of the output BC matrix ���� ;��� associated
ith the output Stokes vector S��� ;��� resulting from the
ction of M�1� on S�� ;���, are easily computed using Eq.
3.4):

�11� ��;��� = ��d0 + d1��11��;��� + �d0 − d1��22��;����/2,

�22� ��;��� = ��d0 + d1��22��;��� + �d0 − d1��11��;����/2,

�12� ��;��� = ��d2 + d3��12��;��� + �d2 − d3��21��;����/2,

�21� ��;��� = ��d2 + d3��21��;��� + �d2 − d3��12��;����/2.

�4.2�

Clearly, a necessary condition for the pre-Mueller ma-
rix M�1�=diag�d0 ,d1 ,d2 ,d3� to be a physical Mueller ma-
rix is that the output ���� ;��� in Eq. (4.2) be a valid BC
atrix, for every valid input BC matrix ��� ;���. Hermi-

icity of ���� ;��� is manifest in view of that of ��� ;��� and
eality of the parameters da. Thus what remains to be
hecked is the positivity of ���� ;���. While testing the
ositivity of a generic matrix kernel could be a formidable
ask in general, it turns out that this test can be carried
ut fairly easily in the present case.

Let us take as the input a special pure-state BC matrix
�0��� ;���=E���E����†, corresponding to the generalized
ones vector E��� that is an equal superposition of an
-polarized mode and a y-polarized mode, the two modes
eing spatially orthogonal:

��0���;��� = E���E����†,

E��� = ��1���

�2����, � �j����k���*d2� = 
jk. �4.3�

�1��� and �2��� could, for instance, be two distinct
ermite–Gaussian modes.] This means that the entries of

he input BC matrix ��0��� ;��� have the deterministic
orm �jk

�0��� ;���=�j����k����*. A consequence of this simple
product) form is that the four entries of the BC matrix

�0��� ;��� form an orthonormal set of (two-point) func-
ions:

� d2�d2���ij
�0���;����kl

�0���;���* = 
ik
jl. �4.4�

his fact will prove to be of much value in our analysis
elow.
To test positivity of the output BC matrix ���� ;���,

iven in Eq. (4.2) and resulting from input ��0��� ;���
E���E����†, let us define four (generalized) Jones vec-

ors:

E�±���� = � �1���

±�2����, F�±���� = � �2���

±�1���� . �4.5�

The input Jones vector E��� happens to coincide with
�+����.] Expectation values of ���� ;��� for the four Jones
ectors E�±���� ,F�±���� are easily computed using Eqs.
4.2)–(4.5) in Eq. (3.3). These expectation values are �d0
d1�± �d2+d3� for E�±���� and �d0−d1�± �d2−d3� for F�±�

���.
Now positivity of ���� ;��� requires, as a necessary con-

ition, that these four expectation values be nonnegative,
nd this requirement places on the parameters da the
onstraints

− d1 − d2 − d3 � d0,

− d1 + d2 + d3 � d0;

d1 + d2 − d3 � d0,

d1 − d2 + d3 � d0. �4.6�

iolation of any one of these four conditions will render
he output ���� ;��� nonphysical as BC matrix. Since the
nput BC matrix ��0��� ;��� is obviously physical, this will
n turn render M�1� nonphysical as Mueller matrix: Eq.
4.6) is thus a set of necessary conditions for the pre-

ueller matrix M�1� to be a Mueller matrix.
Suppose these four inequalities are met. Can we then

onclude that the pre-Mueller matrix M�1� is a physically
cceptable Mueller matrix? To answer this question in the
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ffirmative, we write in detail the associated Hermitian
atrix HM�1�= 1

2	ada�a � �a
* =	adaUaa:

H�M� =
1

2

d0 + d1 0 0 d2 + d3

0 d0 − d1 d2 − d3 0

0 d2 − d3 d0 − d1 0

d2 + d3 0 0 d0 + d1

� . �4.7�

alidity of the four inequalities in Eq. (4.6) implies, fortu-
ately, that this matrix is positive semidefinite. This in
urn implies that the given diagonal system M�1� is a con-
ex sum of Jones systems and therefore takes every BC
atrix into a BC matrix, showing that Eq. (4.6) is a suf-
cient condition for M�1� to be a Mueller matrix. We have
hus proved

Proposition 4: The pre-Mueller matrix M�1�

diag�d0 ,d1 ,d2 ,d3� is a Mueller matrix iff the associated
ermitian matrix HM�1� �0, that is, iff M�1� can be realized
s a convex sum of Jones systems, or, equivalently, iff the
ntries of M�1� respect the inequalities in Eq. (4.6).

Having settled the diagonal case, we now go beyond
nd consider the more general Type-I pre-Mueller matri-
es. As noted in Eq. (2.25), these are necessarily of the

�1�
eneral form M=L�M Lr, where L� ,Lr�SO�3,1� and t

�

=
m

E
t
f
+
−

d
a
t
t
W

T
m
�
d

�1� is diagonal. We have already noted that L� ,Lr are
hysical Mueller matrices: indeed, they correspond to de-
erministic systems with respective Jones matrices
� ,Jr�SL�2,C�. Thus if M�1� is a Mueller matrix, then it
as a convex sum realization �pk ,J�k�
. This implies that
=L�M�1�Lr has the convex sum realization �pk ,J�J�k�Jr


nd hence is a valid Mueller matrix. The converse follows
y virtue of the invertibility of J� ,Jr, and we have
Proposition 5: A Type-I pre-Mueller matrix, which is

ecessarily of the form M=L�M�1�Lr with L� ,Lr
SO�3,1� and M�1� diagonal, is a physical Mueller matrix

ff M�1� is.

. Type-II pre-Mueller Matrices
aving fully classified Type-I pre-Mueller matrices into
ueller and non-Mueller matrices, we now turn our at-

ention to Type-II pre-Mueller matrices. The analysis
urns out to be quite parallel to the one in Subsection 4.A

Recall from Section 2 that a Type-II pre-Mueller matrix
n its canonical form M�2� has only one nonvanishing off-
iagonal element whose value is fixed by the diagonals,
amely, M01=d0−d1, where d0 ,d1 ,d2 ,d3 are the diago-
als. The action of M�2� on S�� ;��� and ��� ;��� can be
omputed as before. The (generalized) Stokes vector has

his simple transformation law:
M�2� : S��;��� → S���;��� = 

S0���;���

S1���;���

S2���;���

S3���;���
� = 


d0S0��;��� + �d0 − d1�S1��;���

d1S1��;���

d2S2��;���

d3S3��;���
� . �4.8�
he elements of the output BC matrix ���� ;��� associated
ith S��� ;��� and computed from Eq. (3.4) are

�11� ��;��� = d0�11��;���,

�22� ��;��� = d1�22��;��� + �d0 − d1��11��;���,

�12� ��;��� = ��d2 + d3��12��;��� + �d2 − d3��21��;����/2,

�21� ��;��� = ��d2 + d3��21��;��� + �d2 − d3��12��;����/2.

�4.9�

As in the case of M�1�, the canonical form pre-Mueller
atrix M�2� does not couple the pair �11�� ;���, �22�� ;���
ith �12�� ;���, �21�� ;���.
Again, a necessary condition for the pre-Mueller matrix
�2� to be a physically acceptable Mueller matrix is that

he output ���� ;��� in Eq. (4.9) be a valid BC matrix for
very valid input BC matrix ��� ;���. As in the case of

�1�, let us take as input the pure-state BC matrix ��0�

�� ;���=E���E����†, with E��� as described in Eq. (4.3).
o test positivity of the output BC matrix ���� ;���, given
n Eq. (4.9) and resulting from input ��0��� ;� �
E���E����†, we use in place of E�±���� and F�±���� slightly
odified (generalized) Jones vectors E������ and F������:

E������ = �cos ��1���

sin ��2����, F������ = �cos ��2���

sin ��1���� .

�4.10�

xpectation values of the output BC matrix ���� ;��� for
hese two families of Jones vectors can be computed as be-
ore. These expectation values are d0 cos2 �+d1 sin2 �
�d2+d3�cos � sin � for E���� and �d0−d1�sin2 �+ �d2
d3�cos � sin � for F����.
Now positivity of ���� ;��� requires, as a necessary con-

ition, that these expectation values be nonnegative for
ll 0����, and this requirement is seen to be equivalent
o the pair of conditions d0d1� �d2+d3�2 /4, d2−d3=0;
hese arise, respectively, from the E��� and F��� families.
e may rewrite these as

d3 = d2, �d2�2 � d0d1. �4.11�

his is a pair of necessary conditions for the pre-Mueller
atrix M�2� to be a Mueller matrix. The condition �d2�2

d0d1 is already part of the definition of M�2�, and thus
=d is the new requirement arising from consideration
3 2
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f the action of M�2� on BC matrices, i.e., from consider-
tion of inseparability.
Our next task is to show that these conditions are suf-

cient as well. To this end we proceed as in the case of
�1� and compute the hermitian matrix HM�2� associated
ith M�2�:

HM�2� = 

d0 0 0

1

2
�d2 + d3�

0 0
1

2
�d2 − d3� 0

0
1

2
�d2 − d3� d0 − d1 0

1

2
�d2 + d3� 0 0 d1

� .

�4.12�

he inequalities in Eq. (4.11) are precisely the conditions
nder which HM�2� is positive semidefinite. This in turn

mplies that M�2� satisfying Eq. (4.11) is a convex sum of
ones systems and hence is a physical Mueller matrix. We
ave thus proved
Proposition 6: The pre-Mueller matrix M�2� is a Muel-

er matrix iff the associated Hermitian matrix HM�2� �0,
hat is, iff M�2� can be realized as a convex sum of Jones
ystems or, equivalently, iff the entries of M�2� respect the
nequalities in Eq. (4.11).

We can now proceed to consider Type-II pre-Mueller
atrices that are not of the canonical form M�2�. We know

rom Section 2 that any such matrix has the form M
L�M�2�Lr, where L� ,Lr�SO�3,1�. By considerations
imilar to the ones leading to Proposition 6 in the Type-I
ase, we arrive at

Proposition 7: A type-II pre-Mueller matrix, which is
ecessarily of the form M=L�M�2�Lr with L� ,Lr
SO�3,1�, is a Mueller matrix iff M�2� is.
Having completed classification of the pre-Mueller ma-

rices in the Type-I and Type-II families into physical and
onphysical ones, we are now left with two minor families
o handle. As noted following Eq. (2.25), M�pol� is a Jones
ystem. Let J be the Jones matrix representing this sys-
em (polarizer). In view of the two-to-one homomorphism
etween SL�2,C� and SO�3,1� alluded to earlier, L� ,Lr
SO�3,1� define respective Jones matrices J� ,Jr of unit

eterminant; these Jones matrices are unique except for
ultiplicative factor ±1, and, as is well known, this sig-

ature ambiguity is of nontrivial origin. Thus M
L�M�pol�Lr is a Jones system with Jones matrix ±J�JJr
nd hence is physical. A similar argument will show that
he last family, namely the PinMap family, also has no
onphysical M matrix. For completeness, we state the
ituation in with respect to these two minor families as
he following.

Proposition 8: Pre-Mueller matrices belonging to the
olarizer and pin map families are, respectively, Jones
ystems and convex sums of Jones systems. Their associ-
ted H matrices are positive semidefinite, and all pre-
ueller matrices in these two families are physical Muel-

er matrices.
. Complete Characterization of Mueller Matrices
n the last two subsections we carried out a complete clas-
ification of pre-Mueller matrices into physical and non-
hysical ones. Double-coseting under the SO�3,1� group
as played such an important role in this process that we
apture this role as a separate result.

Proposition 9: Given two 4�4 real matrices M and
� that are in the same double-coset orbit under SO�3,1�,

.e., M�=L�MLr for some L� ,Lr�SO�3,1�, M� is a convex
um of Jones systems iff M is. And HM��0 iff HM�0. In
ther words, M� is a Mueller matrix iff M is.

Proof: Suppose M has the convex sum realization
pk ,J�k�
, i.e., M=	kpkM�J�k��. Then, clearly, M� has the
onvex sum realization �pk ,J�J�k�Jr
. Conversely, if M�
as the convex sum realization �pk� ,J�
, then M has the
onvex sum realization �pk� , �J��−1J��k��Jr�−1
.

Now suppose H�M��0. This means H�M�

	kpkJ̃�k�J̃�k�† ,pk�0. This immediately implies HM�
	kpk�J�J�k�˜ Jr��J�J�k�˜ Jr�†, which proves its positivity.
ere �J�J�k�˜ Jr�, as usual, denotes the column vector asso-

iated with the 2�2 matrix J�J�k�Jr. The converse follows
rom the invertibility of J� ,Jr, completing proof of the
roposition.
With this result, proof of the principal conclusion of this

aper is complete. Our main theorem may thus be stated
s follows.
Main Theorem: A 4�4 real matrix M is a Mueller ma-

rix iff the associated Hermitian matrix H�M��0. Every
hysically acceptable Mueller matrix is a convex sum of
ueller–Jones matrices.

. The Role of Inseparability: An Illustrative Example
e present a simple example to illustrate the kind of re-

trictions on M matrices brought in by consideration of in-
eparability. Let us restrict attention to M matrices of the
pecial simple three-parameter form

M = 

1 0 0 0

0 d1 0 0

0 0 d3 0

0 0 0 d3

� . �4.13�

e are obviously in the Type-I situation, but we are not
onsidering here the SO�3,1� orbit under double-coseting.

It is clear that M will map Stokes vectors into Stokes
ectors if and only if M satisfies the following three con-
itions:

M:��pol� → ��pol� ⇔ − 1 � dk � 1, k = 1,2,3.

�4.14�

In the absence of considerations of inseparability these
ould have been the only conditions M will need to sat-

sfy. Thus the allowed region in the Euclidean space R3

panned by the parameters �d1 ,d2 ,d3� would have been a
ube with vertices at �±1, ±1, ±1�. Now each one of the
our conditions in Eq. (4.6) with d0=1, arising out of con-
ideration of inseparability, forbids the (open) half-space
n one side of a plane. Thus the allowed region is the in-
ersection of the four allowed half-spaces. This region is
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learly the tetrahedron with vertices at P1= �1,1,1�, P2
�1,−1,−1�, P3= �−1,1,−1� and P4= �−1,−1,1�.
Thus, it is not the entire cubic region (4.14) permitted

y conventional wisdom, but only the solid tetrahedron,
ith one-third volume of the cube, that withstands the

loser scrutiny presented by consideration of inseparabil-
ty. This is illustrated in Fig. 1. The region outside the tet-
ahedron is nonphysical and does not correspond to Muel-
er matrices: points in the cube but exterior to the
etrahedron correspond to pre-Mueller matrices that are
ot physical Mueller matrices; those outside the cube cor-
espond to M matrices that are not even pre-Mueller ma-
rices.

. CONCLUDING REMARKS
e conclude with some further observations. First, in the
athematics literature and in the literature of quantum

nformation theory, what we have called pre-Mueller ma-
rices go by the name “positive maps,” and the subset of
re-Mueller matrices that prove to be physically accept-
ble in the sense of our main theorem corresponds to
hat are called “completely positive maps.” But we have
ndeavored here to arrive at a physical characterization
f Mueller matrices entirely within the framework of BC
atrices familiar to the classical optics community, with-

ut resorting to the mathematical theory of these maps.
Second, a pre-Mueller matrix that fails our main theo-

em will not produce any nonphysical effect acting on the
oherency matrix of plane waves or on the BC matrix of
lementary (or polarization-modulation separable)
eams. It follows that BC matrices that are convex sums
f elementary beams will not be able to witness the fail-
re of a pre-Mueller matrix M whose associated H�M� is
ot positive semidefinite. Only BC matrices that are not
onvex sums of elementary beams can expose the non-
hysical nature of a pre-Mueller matrix that violates our
ain theorem. In other words, pre-Mueller matrices can-

ot be further divided into physical and nonphysical sub-
ets without consideration of inseparability.

Further, ever since it was proved that every Jones sys-
em corresponds to a Mueller matrix whose associated H
atrix is a projection [28], it has been clear that en-

embles of Jones systems necessarily correspond to posi-
ive semidefinite H matrices, and conversely. It has thus
een occasionally suggested by various authors, begin-

d1

d3

d2

P4

P1

P3

P2

Fig. 1. The tetrahedron that corresponds to Mueller matrices.
ing with [29], that considerations of Mueller matrices
ight be restricted only to such ensembles. But it has re-
ained only a suggestion, and one without any physical

asis, and hence could not set aside as nonphysical an ex-
erimentally measured Mueller matrix whose associated

matrix has a negative eigenvalue, particularly when
he reported Mueller system was not realized by the ex-
erimenter specifically as an ensemble of Jones systems.
or instance, the symmetric Mueller matrix of Van Zyl

48] was analyzed in [24] and was found to be a matrix of
ype III, with canonical-form parameters d0=0.9735, d1
0.9112, d2=0.4640, d3=−0.3838. This clearly violates

the second constraint in] Eq. (4.6) to a substantial extent.
quivalently, the eigenvalues of H�M� are 1.0906, 0.8393,
.4526, −0.3825.
That H�M� in this case is not positive, and hence the Van

yl system is not a convex sum of Jones systems, was al-
ays known. However, one did not hitherto have a physi-

al basis on which this M could be judged as nonphysical.
nseparability has now given us such a physical basis.

Finally, the issue that has been settled in the present
ork can be viewed as one of lifting the linear input–
utput relation S�=MS at the level of Stokes vectors to an
nput–output relation at the level of field amplitudes. We
ave seen that a linear relation among Stokes vectors ef-
ected by a Mueller–Jones matrix can be lifted to the lin-
ar relation

E1� = aE1 + bE2,

E2� = cE1 + dE2, �5.1�

t the field amplitude level. Here a, b, c ,d are determin-
stic scalars. Indeed, these are precisely the entries of the
ones matrix of the system. It is also known [29] that for
ueller matrices whose associated Hermitian matrix
�M��0, the relation S�=MS can be lifted to a relation of

he form (5.1), a, b, c ,d being appropriately correlated
andom variables this time. Now there exist M matrices
hat map valid Stokes vectors into valid Stokes vectors
ut whose associated Hermitian matrix H�M� is indefinite,
nd in this last case understanding the relation S�=MS
t the field amplitude level remained a puzzle. The
resent work resolves this puzzle by simply showing that
here are no Mueller matrices of this last type: Every
hysical Mueller matrix can be understood at the field
mplitude level, either as a deterministic or as a stochas-
ic linear input–output relation.
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