
Vol.:(0123456789)1 3

Journal of Electronic Testing (2022) 38:603–621
https://doi.org/10.1007/s10836-022-06038-3

A Complete Design‑for‑Test Scheme for Reconfigurable Scan Networks

Natalia Lylina1 · Chih‑Hao Wang1 · Hans‑Joachim Wunderlich1

Received: 7 July 2022 / Accepted: 19 November 2022 / Published online: 19 January 2023
© The Author(s) 2023

Abstract
Reconfigurable Scan Networks (RSNs) are widely used for accessing instruments offline during debug, test and validation, as
well as for performing system-level-test and online system health monitoring. The correct operation of RSNs is essential, and
RSNs have to be thoroughly tested. However, due to their inherently sequential structure and complex control dependencies,
large parts of RSNs have limited observability and controllability. As a result, certain faults at the interfaces to the instru-
ments, control primitives and scan segments remain undetected by existing test methods. In the paper at hand, Design-for-test
(DfT) schemes are developed to overcome the testability problems e.g. by resynthesizing the initial design. A DfT scheme
for RSNs is presented, which allows detecting all single stuck-at-faults in RSNs by using existing test generation techniques.
The developed scheme analyzes and ensures the testability of all parts of RSNs, which include scan segments, control primi-
tives, and interfaces to the instruments. Therefore, the developed scheme is referred to as a complete DfT scheme. It allows
for a test integration to cover multiple fault locations can with a single efficient test sequence and to reduce overall test cost.

Keywords Reconfigurable scan networks · Design-for-Test · Test · Debug · Diagnosis

1 Introduction

Reconfigurable Scan Networks (RSNs) offer flexible access
to embedded instruments via scan segments thro-ughout
the system lifecycle. They are standardized by IEEE Std.
1149.1-2013 [14] and IEEE Std. 1687-2014 [15]. To ensure
the correct operation of RSNs and their interaction with the
instruments, RSNs themselves must be thoroughly tested.
Due to the low observability and controllability of certain
parts of RSNs, some faults may be undetectable by the exist-
ing methods. In this paper, we present a scheme to enhance
the design of RSNs in a way that all single stuck-at-faults in
RSNs are detectable by using existing Automated Test Pat-
tern Generation (ATPG) tools.

Initially, more focus has been put on using RSNs offline,
e.g. for post-silicon validation (PSV) and manufacturing test
and diagnosis. Recent standardization efforts (IEEE P2654
standard proposal [16], also discussed in [26]) suggest using

RSNs to access registers needed for the system-level test.
Research papers [13, 19, 29] use RSNs to perform health
monitoring and dependability management. All these appli-
cations rely on the correct operation of RSNs, which may
become a system dependability bottleneck. Already a single
fault in an RSN may corrupt scan paths, erroneous data may
be fetched by RSNs, and instruments may become inaccessi-
ble. During post-silicon validation, it may prevent extracting
the complete validation data from a device. Runtime-critical
instruments such as Adaptive Voltage and Frequency Scal-
ing, temperature control, etc., may become inaccessible due
to a fault in an RSN. Erroneous fault-handling mechanisms
may be triggered by faulty RSNs. As a result, even a system
failure may occur.

Faults in conventional scan chains can be tested by using
flush test sequences shifted through a scan chain [22]. These
sequences ensure the integrity of the scan cells and their
interconnection. Typically used flush sequences include
all ones, all zeros as well as the “0011” (“1100”) sequence
repeated to cover the whole length of the scan chain under
test. The test sequence shifted into the scan chain is com-
pared with the sequence at the scan out of the chain. If the
output sequence is different from the expected one, the scan
chain is faulty.

Responsible editor: K.-J. Lee

 * Natalia Lylina
 natalia.lylina@informatik.uni-stuttgart.de

1 Institute of Computer Architecture and Computer
Engineering, University of Stuttgart, Stuttgart, Germany

http://orcid.org/0000-0003-2358-0266
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06038-3&domain=pdf

604 Journal of Electronic Testing (2022) 38:603–621

1 3

For conventional scan chains, flush sequences test faults
for certain fault models, such as stuck-at faults, delay faults,
or consider broken scan chains. To detect the location of a
fault within a scan chain, the responses from the applied
Automated Test Pattern Generator (ATPG) test vectors need
to be analyzed. The paper at hand focuses on test and test-
ability questions. Therefore, fault localization is out of the
scope of this paper.

Compared to conventional scan chains, testing RSNs
is even more challenging. It is due to their high sequential
depth, the distributed control structure, as well as the com-
plex sequential and combinational dependencies [1]. Faults
in RSNs not only affect the shift logic of the scan chain
segments but also reside at the interfaces to the instruments
and the control primitives. Additionally, specific fault effects
in RSNs are observable only for certain configurations, and
sequential test pattern generation for such faults is unfeasible
for large networks. The known test solutions, presented in
[4, 6, 12, 18], e.g., may not detect all the faults due to low
observability and controllability of some RSN components.

Design-for-test (DfT) methods can be applied to enhance
the testability of specific parts of RSNs. The term “DfT for
RSNs” describes changes of the RSN design which support
a more efficient test generation with higher fault coverage, a
more efficient test application and more efficient test patterns
for the RSN. The preliminary papers [23, 32, 34] developed
DfT approaches to ensure the testability of the three com-
ponents of a Reconfigurable Scan Network:

• Scan interfaces in [32]: The testability of the update regis-
ters and the scan interfaces to the instruments is enhanced,
and the faults in the capture- and update-circuity of the
scan segments become detectable.

• Control primitives in [23]: The testability of control
primitives is enhanced. Existing methods test the con-
trol primitives by observing the length of an activated
path [1, 3, 6, 10, 18, 32, 34], and fail if an erroneously
activated path has the same length as the correct one. An
exact testability analysis method is presented to identify
all single control faults, which do not have an impact on
the length of the activated path. If such a fault is identi-
fied, automated resynthesis changes the length of a minor
number of scan paths to ensure fault detection.

• Scan segments in [34]: The test of the scan shift logic
is enabled by integrating a compact Built-In Self-Test
(BIST) structure. This BIST structure generates of a short
presequence that tests the shift logic of the currently acti-
vated scan path.

The paper at hand combines and extends the preliminary
results in [23, 32, 34] by presenting a Design-for-Test (DfT)
scheme which addresses all parts of an RSN. After applying
the proposed DfT techniques, state-of-the-art test generation

algorithms for RSNs like [1, 4, 6, 18] are able to generate test
sequences which detect all stuck-at faults and obtain complete
stuck-at-fault coverage. Therefore, the developed scheme is
referred to as a complete DfT scheme. The presented scheme
requires negligible hardware overhead and supports test gen-
eration with respect to more complex fault models as well.
An efficient test integration scheme is developed in a way that
a single test sequence covers multiple fault locations in an
enhanced RSN, and the overall test application time in terms
of the overall test application time is significantly reduced.

The extensions and improvements are in detail:

1. A complete DfT scheme is presented for the first time. It
considers all fault locations at the scan interfaces to the
instruments, the scan segments and the control primi-
tives. First, it identifies precisely untestable faults, and
then it re-synthesizes the corresponding components
with negligible hardware costs. In the resulting RSN
structure, existing ATPG techniques can detect all stuck-
at faults.

2. For the resulting RSNs, an efficient test integration
scheme is developed which allows to reduce the overall
test access time compared to applying the previously
developed methods [23, 32, 34] individually. The gener-
ated test sequences are capable to cover multiple fault
locations at a time. Each sequence contains a work-
load sequence and a short presequence. The workload
sequence tests faults at the scan interfaces and control
primitives. The self-generated presequence tests the shift
logic of the segments on the activated path.

3. The complete scheme is evaluated on a comprehensive
set of benchmarks. The experimental results show the
effectiveness and scalability of the developed approach.

The remainder of this paper is organized as follows. The
background information about RSNs and their modeling, as
well as the considered fault models, are presented in Sec-
tion 2. Section 3 summarizes the existing methods to test
RSNs and highlights their limitations. Section 4 provides
an overview of the developed DfT scheme. In Section 5, a
DfT scheme is presented for update registers and interfaces
to instruments. Section 6 presents a testability enhancement
technique for control primitives. Section 7 provides the
details about the scan segment test. Section 8 discusses the
overall test integration procedure. In Section 9, experimental
results are discussed, and Section 10 concludes the paper.

2 Background

This section presents background information about RSNs,
the graph-based RSN model and the considered fault
models.

605Journal of Electronic Testing (2022) 38:603–621

1 3

2.1 Reconfigurable Scan Networks (RSNs)

In Fig. 1, the internal instruments (shown in orange), such
as sensors and BIST registers, are accessed through RSNs
for observation and control. The test data registers (s1… s8)
access the instruments through a parallel interface and are
also referred to as the scan segments. The configuration seg-
ments (cs0… cs3) , shown in yellow, determine the values
of control signals. Those signals control the state of control
primitives such as scan multiplexers (shown with the cir-
cles with the matching indices in Fig. 1). Control primitives
determine the currently configured non-circular scan path
from a primary scan input to a primary scan output port of
an RSN. Such a path is commonly referred to as an Active
Scan Path (ASP) and is shown with a blue dashed line in
Fig. 1. In the considered example, an initial ASP traverses
the control registers cs0, cs2, and cs3, as well as the seg-
ments of the BIST register and the segment of the monitor.

Control signals in RSNs can be external or internal. If a
control signal comes from outside of an RSN, it is referred
to as an external control signal. If a signal comes from an
update register of a configuration segment, it is called an
internal control signal. The following control primitives are
commonly used to build RSNs:

• Scan Multiplexers (Scan Muxes) select between appro-
priate parts of the RSN depending on the value of the
address control signal and include them into an activated
path.

• Segment Insertion Bits (SIBs) include or exclude specific
parts of the RSN from an activated path depending on the
control signal assignments.

Each SIB (as shown in Fig. 2a) can be represented as a com-
bination of a scan segment and a scan multiplexer, as shown
in Fig. 2b. The underlying segment is only selected if the
SIB is asserted. If the SIB is de-asserted, the segment is
bypassed.

A small part of an RSN is shown in Fig. 3 with more
details. A post-SIB (shown as SIB in Fig. 3) includes or
excludes the remainder of the RSN from an activated path

depending on the control assignments. This RSN is used as
a running example for the remainder of the article.

In an RSN, scan segments are the scan primitives, which
shift the data through the RSN, as well as capture and update
the data through a parallel interface. Each scan segment
contains a shift register and an optional update register, as
shown in Fig. 4. The following types of scan segments exist:

• Data Segments are scan segments, which access the
instruments through a parallel interface. In data seg-
ments, the update registers serve as intermediate storage
for the information, which is provided to the instruments.

• Configuration Segments are scan segments, where the
information from the update registers is used to drive
the internal control signals. The state of configuration
segments defines the scan configuration.

Each access to an RSN can be represented as a transac-
tion. This transaction is commonly referred to as a Capture-
Shift-Update (CSU) operation [1]. The data is captured from
the instruments into the shift registers during the capture-
phase. During the shift-phase, the new data is shifted-in
from a primary scan input through an active scan path, while
the old data is shifted-out towards the scan output. Finally,

cs2

s1

s8

Sensor Sensor

BIST Monitor

s5

Trace Buffer

2 s4

s2

3

0

cs11

s6

Sensor

s7

Sensor

cs0

cs3s3

Sensor

Fig. 1 A Reconfigurable Scan Network accesses instruments

SIB
SI SO

0

1

SI

SO
FF

UFF

Segment Segment

a) b)

Fig. 2 SIB transformation for a post-SIB (configuration segment is
located after the multiplexer) a) High-level representation b) Detailed
structure

0

1
s2

cs1
0

1

s3

cs2

Scan-In Scan-Out

SIB

m1 m2

System
i2 i3

RSN
s1

i1

Fig. 3 Implementation of a small RSN part. i1 − i3 are the instru-
ments; cs1, cs2 are the configuration segments; s1 − s3 are the scan
segments; m1,m2 are the scan multiplexers. The SIB is asserted and
the multiplexers m1 and m2 are driven with the value “0”. The ASP is
shown in red

606 Journal of Electronic Testing (2022) 38:603–621

1 3

during the update-phase, the newly shifted-in data is clocked
into the update registers of the scan segments. The external
global control signals control the CSU operations and bring
an RSN into a known deterministic reset state if required.
The data at the scan input port comes from an access inter-
face, which can be either a Test Access Port (TAP) Control-
ler, or an alternate functional or non-functional interface, as
specified in the IEEE P1687.1 standard proposal [30]. The
collected data might be processed and evaluated offline or
online using on-chip computing, edge computing, or even
in the cloud.

Each scan segment consists of one or multiple scan cells.
A single scan cell Cellj consists of a shift flip-flop FFj (a part
of a shift register in Fig. 4), an optional update flip-flop UFFj
(a part of an update register), as well as of a few multiplexers
to control CSU-operations. A gate-level structure of a single
scan cell is shown in Fig. 5.

In a scan cell, the following paths are activated within a
CSU operation:

• A Shift Path starts at the scan input (SI) and ends at the
scan output (SO) of a cell. It contains two multiplexers

(the shift multiplexer M1 and the capture multiplexer M2)
and an internal data path of the shift flip-flop. During
the shift-phase of a CSU operation, the shift multiplexer
M1 propagates the data from the scan input through the
capture multiplexer M2 and the shift flip-flop towards the
scan output.

• An Update Path starts at the scan flip-flop’s output and
leads to the data output Q. This output may be connected
to an instrument or drive RSN-internal control signals.
The path comprises the update multiplexer M3 and the
internal data path of the update flip-flop. During the
update phase, the update multiplexer M3 propagates the
data from the update flip-flop to the output Q.

• A Capture Path starts at the data input D, traverses the
capture multiplexer M2 and the data path of the scan flip-
flop. During the capture phase, the capture multiplexer
M2 propagates the data from the instrument into the shift
flip-flop.

2.2 RSN Model

An RSN is modeled as a directed graph G ∶= (V ,E) , where
V is the vertex set, and E is the edge set. Each vertex cor-
responds to a scan primitive, a primary scan input or output,
or represents a fanout stem fi , as shown in Fig. 6 for the
example from Fig. 3. Each edge models a direct connectivity
between the vertices.

A source of an RSN graph is a vertex, which has only
outgoing edges, while a sink has only incoming edges. We
assume a single source SI ∈ V , and a single sink SO ∈ V . If
the modeled RSN has multiple scan inputs, then the corre-
sponding vertices are connected to a single pseudo-primary
source vertex. The same logic is valid for RSNs with mul-
tiple scan outputs. Control scan primitives, i.e., multi-input
scan multiplexers, SIBs, are modeled as a combination of
one or multiple scan segments and one or multiple two-input
scan multiplexers. The following relations are determined
for an RSN graph:

• Structural reachability: A vertex mj is structurally reach-
able from a vertex mi , if at least one path exists from mi
to mj.

• Reconvergence vertex [24]: A vertex mj is a reconver-
gence vertex of the vertex mi , if there are two paths p1 , p2
with the corresponding vertex sets V(p1) and V(p2) such

Scan Segment s1
Shift register

Instrument i1 Internal control

signals

Scan

in

Scan

out

Global control

signals (CSU)

Internal select

signal

Update register

FF1

UFF1

FFn

UFFn

Fig. 4 Scan segment internals

UFF1
0

1

Reset

SI SO

0

1

Capture M2

Update M3

0

1
D Q

Shift M1

Instrument

FF1

Fig. 5 Scan cell accesses an instrument through the data input D and
the data output Q

cs1 m1f1 cs2

s3

f2 m2

mSIB

sibf0SI SO

s1

s2

Fig. 6 RSN graph model

607Journal of Electronic Testing (2022) 38:603–621

1 3

that V(p1) ∩ V(p2) = {mi,mj} , mi is the source of both p1
and p2 , and mj is their sink.

• A closing reconvergence of a vertex mi is such a recon-
vergence vertex mj , which does not reach any other
reconvergence vertex of the vertex mi.

• A reconvergence region of a vertex mi includes all the
vertices, which are reachable from this vertex and also
reach its closing reconvergence.

Example: In Fig. 6, the reconvergency region of the vertex
f1 includes the vertices s1 and s2 , and the vertex m1 is a clos-
ing reconvergence.

2.3 Faults in RSNs

A fault in an RSN may affect the interfaces to the instru-
ments, the control signals, or the scan segments. The remain-
der of this subsection discusses possible fault locations and
their effects on the RSN functionality.

2.3.1 Faults at Interfaces to Instruments

Communication to the attached instruments and generation
of internal control signals can be affected by faults in the
update flip-flops, as well as the multiplexer M2 and M3 . Pos-
sible fault locations are shown in Fig. 5 with a red color and
explained below:

• A capture multiplexer M2 and data path of an update flip-
flop: A timing violation affecting the update flip-flop or
a fault at the capture multiplexer M2 may corrupt writing
the data to the instrument during the update phase.

• An update multiplexer M3 : If the update multiplexer M3
is faulty, it may prevent from reading correct data from
the instrument during the capture phase.

• A reset line of an update flip-flop: If the reset line of an
update register is affected by a stuck-at-0 fault, it may not
be possible to reset its value into an initial known state.

In general, controllability and observability shall never be
exercised through the instrument. Any attempt to do so
would require a bespoke and hence a non-scalable DfT solu-
tion. At the same time, the logic around an update register
can only be observed via the instrument. That makes the
value of the signal Q unobservable for a test. Similarly, the
value of D is uncontrollable, since it fully depends on the
value of the instrument. This makes the faults at the capture
multiplexer M2 and the update multiplexer M3 , as well as the
faults affecting the update flip-flops, in general not testable.

Example: In Fig. 3, a fault may affect an interface
between the scan segment s1 and the instrument i1 , as shown
with a grey box. If the capture-circuitry of the scan interface

of the scan segment s1 is faulty, incorrect data can be pro-
vided to the instrument i1.

2.3.2 Faults in Control Primitives

Faults in the control primitives, such as the scan multiplex-
ers and the SIBs, may arise due to defects in control lines,
or internal defects in the control primitives. These faults are
usually modeled as high-level “stuck-at” faults, as defined
in [6]:

• Scan Multiplexers: If a scan multiplexer always selects
a specific input with an identifier id, regardless of the
assignment to the address control line, we say that this
scan multiplexer is affected by a “stuck-at-id” fault.

• SIBs: If a certain SIB always provides access to the
underlying segment, regardless of the applied access
pattern, we say that this SIB is “stuck-at-asserted”. If
access to the underlying segment is never provided, the
SIB is “stuck-at-deasserted”.

Example: Assume the scan multiplexer m1 from Fig. 3 is
affected by a stuck-at-1 fault. Due to this fault, the scan seg-
ment s1 becomes inaccessible. The latter leads to the inac-
cessibility of the instrument i1 via the RSN.

2.3.3 Faults in Scan Segments

Examples of faults, which affect the primitives located on
the shift path of a scan segment, include setup- and hold-
time violations in the corresponding shift flip-flops. These
violations may prevent correct data from being latched into
the flip-flops while shifting.

Example: If the shift flip-flop of the scan segment s2 from
Fig. 3 has a setup-time violation, the data is not properly
latched into this flip-flop. The propagation through the acti-
vated path which traverses the scan segment s2 is affected.

3 State of the Art

Testing RSNs has been extensively studied in recent years.
This section summarizes the existing methods to test RSNs
with respect to the fault locations discussed above.

3.1 Test of Scan Interfaces

In [18], the primitives are tested, which are located at the
capture- and the update-paths of scan segments. Read and
write operations with opposite values are performed for
each segment on the active scan path. However, as dis-
cussed above, it is not possible to test the primitives located
at the interfaces independently from the values stored at the

608 Journal of Electronic Testing (2022) 38:603–621

1 3

connected instruments. In realistic designs, the value of the
instrument, may not be controllable or observable. Moreo-
ver, the existing test methods do not consider testing reset
lines of update registers.

3.2 Test of Control Primitives

Numerous works in the past have presented methods to
detect faults in control primitives and control lines. In [18],
the conditions for activating faults, which may alter or break
an activated scan path, are formally analyzed with a deter-
ministic test pattern generator. The generator tests the faults
in the combinational elements on the scan path, which are
located between two adjacent scan segments, but might not
be scalable due to the high sequential depth of an RSN. [4]
presents the first method to test those update registers, which
guide the operation of control primitives. In [6], the control
primitives themselves are targeted. A method is presented
for smaller RSN designs to minimize the test application
time while detecting faults in the control primitives. In
[5], the scalability of the test method above has been sig-
nificantly improved by presenting a scalable evolutionary
heuristic. In [11], the test method above has been used as
a basis for an efficient diagnostic procedure for permanent
faults in the control logic. An approach from [11] performs
access time optimization for RSNs located in multiple power
domains, and [12] enhances the method above in terms of
scalability. In [10], a post-silicon validation technique is pre-
sented, which identifies possible mismatches between the
specification and the actual silicon implementation of RSNs.
In [9], this method has been improved to consider equiva-
lence between the structural description of an RSN and its
Register Transfer Level implementation using simulation.

The above-mentioned test, validation, and diagnosis
methods rely on the fact that a fault or a mismatch is detected
based on the altered scan path length [1, 4–6, 9, 10, 18,
32]. However, if a such fault does not alter the length of the
activated scan path, it remains undetected. Although, the
untestable mismatches can be enumerated using simulation-
based techniques as in [10], the first systematic solution to
detect them during the test has been presented in [23] which
is extended in the article at hand.

3.3 Test of Scan Segments

Cantoro et al. [4] presents a method to test the scan shift
logic of a particular scan segment. First, an active scan
path is configured to select the target segment. Next, faults
are tested by shifting a flush sequence into an activated
path and observing the output sequence at the scan output.
If the expected sequence is shifted-out, the segments on
the scan path are fault-free. Otherwise, there is a fault. For
“stuck-at-faults”, flush sequences, such as 01100 or 10011,

are used. Such a sequence generates all possible transi-
tions, including “00”, “01”, “10”, and “11”. The flush
sequences are modifiable for more complex fault models,
such as delay faults.

4 Overview of the Developed DfT Scheme

As discussed above, specifics of some RSN structures may
affect the fault coverage. In Fig. 7, some examples of the
testability issues are presented, which would arise for the
RSN example from Fig. 3 if the existing test methods are
applied.

1. Undetected fault affecting an update register of s3 : If
the update register of the scan segment s3 is faulty, an
erroneous data might be captured into the corresponding
instrument i3 . The existing methods rely on the assump-
tion that the value in the instrument i3 is directly observ-
able, which is not always true.

2. Faulty Reset Line: The existing methods do not guar-
antee to detect faults affecting the reset values of the
update registers.

3. Undetected Fault at the Multiplexer m1 : If the multi-
plexer m1 is affected by a “stuck-at-1” fault, a path
through the grey-colored primitives would be activated
in Fig. 7 instead of the intended path in Fig. 3. Since
both paths have the same length, the fault at m1 would
remain undetected, and the data from the instrument i2
would appear at scan output instead of the data from the
instrument i1.

4. Corrupted Scan Path Integrity Due to the Faulty Seg-
ment s2 : If the scan segment s2 is faulty, the integrity of
the configured scan path (in grey) is corrupted. Using
the existing methods, it is not possible to detect this fault
concurrently with the functional operation.

0

1
s2

cs1
0

1

s3

cs2

Scan-In Scan-Out
SIB

m1 m2

System
i2 i3

RSN
s1

i1

s@1

Fig. 7 Testability issues in the RSN example from Fig. 3

609Journal of Electronic Testing (2022) 38:603–621

1 3

The remainder of this article presents a complete design-
for-test (DfT) solution for RSNs which overcomes the above
mentioned limitations of existing schemes.

The presented scheme has the following goals:

• Testability: Faults affecting all parts of an RSN must
be detectable, which includes instrument interfaces, scan
segments, and control primitives.

• Flexibility: The presented scheme must be adjustable
towards a used-defined fault model.

• Cost-efficiency: The presented scheme must have a low
hardware overhead.

• Compliance: The DfT logic must not affect precomputed
retargeting sequences.

• Scalability and Generality: The presented scheme must
apply to large arbitrary RSN designs.

• Compactness: Test sequence must be able to cover mul-
tiple test locations.

• Compatibility with the Existing Test Methods: The
presented DfT scheme must be compatible with the test,
diagnosis, and post-silicon validation methods discussed
above and is supposed to be used complementary to these
schemes.

5 Testability of the Scan Interfaces

This section discusses the testability enhancement of scan
interfaces between the scan segments and the instruments.
First, the problem is formulated for the fault locations, which
cannot be tested with the existing methods. Next, a DfT
enhancement is presented to significantly increase the cov-
erage of the faults at the scan interfaces of all data scan seg-
ments without corrupting the data stored in the instruments.
As a result, the scan cell internal multiplexers (M2 and M3 in
Fig. 5) and the update registers must become testable.

5.1 DfT Enhancement

The testability of the scan interfaces is improved by signifi-
cantly increasing the observability of the update registers.
The test of the multiplexers M2 and M3 is decoupled from
the data in the underlying instruments. With this scheme, the
corresponding fault effects become observable at the scan
output of a scan cell and can be propagated to the global
scan output port by using conventional test methods.

The test of scan interfaces to the instruments is enabled
by augmenting the initial scan cell structure (Fig. 5) with an
additional feedback loop between the update flip-flop and the
shift flip-flop, as shown with green color in Fig. 8.

The DfT structure provides direct visibility of the
update flip-flop without requiring knowledge about or
control over the connected instrument. The feedback loop

propagates the value stored in the update flip-flop into a
shift flip-flop. This data is then shifted through an acti-
vated scan path, such that the value of the update flip-flop
is observable at the scan output.

The feedback loop is activated by setting the control
signal FeedbackEn to a logic one. The scheme is compli-
ant with IEEE Std. 1687-2014 [15]. The feedback loop
can be described using the Instrument Connectivity Lan-
guage, and therefore can be readily handled by EDA tools
supporting this standard. The additional feedback enable
signal can be controlled externally by the access interface
or internally by using previously unused assignments to
the internal control signals.

The remainder of this section discusses how the DfT
scheme is applied to test the scan interfaces and the reset
functionality. Since the newly integrated DfT feedback
loop must be tested as well, a discussion about the test-
ability of the corresponding faults concludes the section.

5.1.1 Testability Enhancement for the Scan Interfaces

In an enhanced scan cell (Fig. 8), an update register can
be tested by writing complementary values into the update
flip-flops and reading them through a feedback loop. Faults
effects residing in the update flip-flop are propagated to the
scan output of the RSN with the help of the feedback path
(shown in green in Fig. 8) and the initial paths through a
scan cell by applying the following steps:

1. First, the newly introduced feedback line is used to prop-
agate the fault effect from the update flip-flop towards
the shift flip-flop.

UFF1
0

1

Reset

SI SO

0

1

0

1

D QFeedbackEn

FF1

ShiftEn

CaptureEn

1

0

Instrument

Capture M2

Update M3

Shift M1

Fig. 8 Scan cell with a DfT Enhancement (in green). The additional
scan multiplexer allows to propagate the data from the update flip-
flop to the shift flip-flop

610 Journal of Electronic Testing (2022) 38:603–621

1 3

2. Next, the data is shifted through the shift path towards
the scan output. During those two steps, the functional
operation of an RSN is paused.

3. Finally, the data at the scan output of the scan segment is
further propagated through an RSN by applying regular
CSU operations.

5.1.2 Testability Enhancement for the Reset Line

The reset lines of update flip-flops are testable with the help
of the DfT enhancement. To perform a test, an RSN is set
into a known state which differs from its reset state. A non-
reset state is read from the update flip-flops into the shift
flip-flops through the 1-branch of the feedback multiplexer,
as shown in Fig. 8. This value is propagated towards the
global scan out using conventional retargeting methods.
Then, a global reset is applied to activate faults affecting
the reset functionality. Next, the fault effects are read from
the update registers through the feedback loop and shifted
out of the RSN. The shifted-out sequences for reset and non-
reset states are compared to test a fault. Finally, a global reset
signal is applied again to bring the RSN into its initial state.

5.1.3 Testability of the Feedback Loop Primitives

The faults affecting the additional feedback loop primitives
are tested in multiple phases, while testing the D output of
the instrument and hence the feedback multiplexer 0-input
cannot be covered without controlling the instrument from
outside. This paper considers faults within the RSN includ-
ing the interfaces. Faults within the instruments lay out of
the scope and do not contribute to the resulting coverage.
In the first phase, the D-value is captured and observed by
setting FeedbackEn = 0 . Then, with FeedbackEn = 1 , D is
shifted into the loop and observed outside. If the feedback
multiplexer output stayed still at D, the corresponding stuck-
at-D faults at the multiplexer output, its 1-input or a stuck-
at-0 fault at FeedbackEn are detected. Next, D is shifted into
the loop to detect stuck-at-D at the multiplexer output and
1-input. Finally, D is shifted again into the loop, and with
FeedbackEn = 0 it will load D again, otherwise there is a
stuck-at-1 fault at FeedbackEn.

6 Test of Control Primitives

This section presents a method to formally validate whether
all the faults affecting the control primitives can be tested by
observing an erroneously activated scan path with a changed
length. If a fault exists, which is not testable this way, the
RSN is transformed into a testable functionally equiva-
lent one with negligible hardware overhead. In the result-
ing RSN, it is guaranteed that all the single faults affecting

the control primitives are testable. As a result, the exist-
ing methods to test RSNs can be efficiently applied to this
RSN. First, we present a formal definition of the testability
concept. Then we provide a scalable method for so-called
series-parallel RSNs defined below. Finally, we show how
can an arbitrary RSN be modeled as a series-parallel one.

6.1 Testability Concept

In this subsection, we present the testability concept for con-
trol primitives of RSNs.

Definition 1 An active scan path pathl is called to be “single
fault reachable” from another path pathk , if and only if there
is a single fault f which activates the path pathl instead of
pathk erroneously for some control input.

To check whether a given path is single fault reachable
from another path, their activation conditions are compared,
as shown in the example below.

Example: In Fig. 9, a multiplexer m1 has two inputs.
The paths through the upper branch of the scan multiplexer
are single fault reachable from the paths through the lower
branch, by a single fault affecting the address control signal
of m1.

If the paths arriving at different multiplexer inputs have
different lengths, any fault of the multiplexer control can
be tested.

Definition 2 A single fault f affecting the RSN control primi-
tives is categorized as “detectable by an altered path length
(DT-PL)” if under the same scan configuration, the length of
the paths through a fault-free RSN is different compared to
the length of any faulty path, which is single fault reachable
from the initial path.

For a “detectable by an altered path length” fault, it is
always possible to find a test sequence, which would detect
the fault. Otherwise, a fault is categorized as “undetectable
by a path length (UDT-PL)”, since the existence of such a
test sequence is not guaranteed.

0

1

0

1

0

1

m1

Fig. 9 Testability concept example

611Journal of Electronic Testing (2022) 38:603–621

1 3

Example: In Fig. 9, it is only necessary to compare the
sets of lengths through the upper and the lower branches of
m1 to identify, whether the faults affecting m1 are “detectable
by a path length”. If at least one path length exists, which
appears in both sets, it may not be possible to detect the fault
affecting m1 by an altered path length. In this example, the
paths through the upper branch consist of 1 and 2 scan cells
respectively. There also exist two other paths through the
lower input of the multiplexer with the lengths 1 and 3. So,
two paths shown in red have the same length, and the fault
affecting m1 is not “detectable by an altered path length”.

If an RSN contains any fault, which is not proven to be
detectable by a path length, it is referred to as an untest-
able RSN. The goal of this section is not only to determine
whether an RSN is testable, but also to pinpoint the exact
single faults location affecting the RSN control primitives,
which may not be detectable by differences in a path length,
and to resolve such untestable spots via resynthesis.

6.2 Series‑Parallel RSN Model

In the following, the testability analysis is extended for large
RSN designs by applying a divide-and-conquer algorithm on
so-called series-parallel RSN models.

Definition 3 Let G ∶= (V ,E) be a directed acyclic graph
with the vertex set V, the edge set E ⊂ V2 , a single source
sc ∈ V and a single sink si ∈ V . G is called series-parallel
(SP), if one of the following three statements is true:

1. G is an elementary series-parallel graph with
V = {sc, si} ; E = {(sc, si)}

2. G is a parallel composition of two series-parallel graphs
G1 ∶= (V1,E1) , G2 ∶= (V2,E2) :

scj and sij are sources and sinks of Gj ; j = 1, 2.
3. G is a series composition of two series-parallel graphs:

(1)
V ∶= V1 ∪ V2

E ∶= E1 ∪ E2

(2)

sc ∶= sc1 = sc2

si ∶= si1 = si2

V1 ∩ V2 = {sc, si}

(3)
V ∶= V1 ∪ V2

E ∶= E1 ∪ E2

(4)

sc ∶= sc1

si ∶= si2

si1 = sc2

Any directed graph, which does not fulfill the condi-
tions above is referred to as a non-series-parallel graph.
Fig. 10a shows an example of a series-parallel graph, and
Fig. 10b shows an example without the series-parallel
property.

The hierarchical relations are stored in a binary decom-
position tree, as shown in Fig. 11 for the running example,
where the vertices corresponding to the multiplexers are
located higher in the hierarchy than the vertices in their
reconvergence regions. The leaves of the decomposition
tree represent the scan primitives, while the intermediate
vertices define, whether the subgraphs are connected in
parallel, as shown with the green “P” vertices in Fig. 11,
or in series, as shown with the blue “S” vertices.

Example: Figure 11 shows a binary decomposition
tree for the graph from Fig. 6. The tree is constructed
bottom-up. First, the vertices s1 and s2 are connected in
parallel via the vertex m1 , as shown with the “P/m1 ” vertex
in Fig. 11. Next, this sub-RSN is connected in series with
the vertex cs1 and then with the vertex cs2 . The same logic
is applied to generate the remainder of the tree. The tree
generation continues until the vertex modeling the configu-
ration bit of the SIB is connected in series, as shown with
the top-level “S” vertex of Fig. 11.

In the following, we first present the initial testabil-
ity analysis and resynthesis for the case of series-paral-
lel RSNs. The developed approach processes large RSN
designs in a scalable way. Finally, we show how can the
developed methods be applied to arbitrary RSNs.

a)

b)

Fig. 10 Series-parallel property examples a) Series-parallel graph b)
Non-series-parallel graph

612 Journal of Electronic Testing (2022) 38:603–621

1 3

6.3 Testability Analysis of Series‑Parallel RSNs

In this section, a divide-and-conquer approach is formulated
to process the series-parallel graph of an RSN in a bottom-
up manner. The analysis starts with elementary graph struc-
tures, such as parallel and series connections between the
vertices of the RSN graph.

For the vertices connected in parallel, the testability con-
cept from Section 6.1 is applied. The testability of the ver-
tices connected in series does not depend on one another
and thereby can be considered independently. As soon as
the smaller subgraphs are processed, the analysis abstracts
each such subgraph into a single edge. The computation
then proceeds with the analysis of bigger subgraphs until
the whole RSN graph is processed. The remainder of this
subsection presents the details of the testability analysis
implementation.

Let the set pathsj be the set of paths through a subgraph
Gj , where each path pathl has a length pathLenl and is acti-
vated if the path activation conditions condsl are satisfied.
The set Lj contains all the path lengths through the sub-
graph. For two subgraphs G1 and G2 , the following cases
are considered:

• Series composition:

For two serially-connected subgraphs, the set of path lengths
through the resulting graph G includes all the possible com-
binations of the sums of the paths through the individual
subgraphs.

At the same time, the conditions for activating the partial
paths should not be contradicting:

A fault f in G1 , which is detectable by an altered path length,
leads to a changed length of at least one path path1 through
G1:

where pathLenf
1
 is the length of a faulty path, � is the relative

change to the path length compared to the fault-free case,
which arises due to a fault f.

Given the single fault assumption, the subgraph G2 is
fault-free, and any path through G, which includes an erro-
neously activated partial path through G1 , also differs from
a fault-free path by the value of �:

As a result, the fault f is detectable in G by an altered path
length.

• Parallel composition:

For two subgraphs connected in parallel, the set of path
lengths includes the lengths of the paths, which traverse one
of the subgraphs:

The sets of path lengths should not be intersecting:

If the intersection is not empty, it indicates a problematic
spot, meaning that the fault is undetectable by an altered
path length. For all paths path1 and path2 through G, such
that path2 is single fault reachable from path1 or vice versa,
the information about the differences between the corre-
sponding path lengths is saved.

The paths through an RSN are analyzed recursively with
a binary decomposition tree. Each time, the computation
considers a series or a parallel composition of subgraphs.
The initial computation starts with the leftmost leaf of the
tree. The vertices of the tree are traversed in the order of the
Reverse Polish notation.

After the analysis is completed for the subgraph, it is
abstracted to a single vertex of the binary decomposition
tree. All possible path lengths through the subgraph are used
for the annotation of this vertex. The computation continues
with the next low-level subgraph until all low-level graphs

(5)
L ∶= {pathLen1+pathLen2|

pathLen1 ∈ L1, pathLen2 ∈ L2}

(6)cond(path) ∶= cond(path1) ∧ cond(path2)

(7)pathLen
f

1
∶= pathLen1 + �

(8)pathLenf ∶= [pathLen1 + �] + pathLen2

(9)L ∶= L1 ∪ L2

(10)L1 ∩ L2 = �

S

sibP/mSIB

bypassS

P/m2

s3 bypass

cs2

P/m1

s1 s2

cs1

S

S

Fig. 11 Binary decomposition tree for the graph in Fig. 6

613Journal of Electronic Testing (2022) 38:603–621

1 3

are processed and then proceeds to a higher level, until the
whole RSN is analyzed.

If all the target faults are detectable by an altered path
length, then the RSN is already testable. Then the testability-
enhancing resynthesis is not needed for this RSN. Other-
wise, if the RSN is not testable, the information about the
control primitives with undetectable faults is saved and used
for resynthesis. The saved information also includes the pos-
sible differences of the partial path lengths.

Example: Given the decomposition tree from Fig. 11, the
computation starts at the configuration segment cs1 . The tree
is traversed following the Reverse Polish notation until the
first parallel composition vertex is found. First, the subgraph
consisting of the vertices P∕m1 , s1 and s2 is analyzed, and
possible path lengths are used for vertex annotation. The
computation continues with analyzing the subgraph con-
sisting of the vertices P∕m2 , s3 and s4 . As soon as all low-
level subgraphs are analyzed, the higher-level subnetwork
through the vertex P∕mSIB is analyzed.

6.4 Testability‑enhancing Resynthesis

For the resynthesis of series-parallel RSNs, the following
cases are considered for the subgraphs G1 and G2:

• Series Composition: A fault in G1 only affects the path
lengths through this subgraph, and does not change the
path length through the second subgraph G2 , and vice
versa. Therefore, it is not required to consider the sub-
graphs simultaneously.

• Parallel Composition: The lengths of the paths through
the 0-input of the multiplexer mi must be distinct
from the lengths of the paths through the 1-input. Let
Diff = {l0 − l1|l0, l1 path length through 0, 1 input } and
m = min{|c||c ∉ Diff } . If m = 0 , the paths through the
different multiplexer inputs are not “single fault reach-
able”. If m ∉ Diff , we can insert m flipflops in front of
the 1-inputs of the multiplexers which leads to distinct
path lengths. If −m ∉ Diff , we can put m scan cells in
front of the 0-input, but not at the 1-input.

Example: Consider the example from Fig. 9 again. To
ensure that a fault at m1 is detected by an altered path length,
two scan cells are added at the lower scan-input of the mul-
tiplexer mi , as shown in Fig. 12.

The resynthesis algorithm is applied recursively by tra-
versing a binary decomposition tree in the same order as
during the testability analysis. After the testability in a sub-
graph is enhanced, this subgraph is abstracted to a single
vertex. Each vertex is annotated with the possible lengths
of the path considering the newly added cells. After all the
lower-level subgraphs are processed, the computation goes
one level higher in the binary decomposition tree, until the

whole RSN is processed. In the resulting RSN, all the single
faults affecting the RSN control primitives are detectable by
a changed path length.

6.5 Application for Arbitrary RSN Structures

The method presented above is only applicable if an RSN
can be represented by a series-parallel graph. The method
presented in Section 6.5.1 below allows us to identify
whether the initial graph is series-parallel. Although most
RSNs graphs are series-parallel, for some RSNs, additional
steps might be required to obtain a functionally equivalent
series-parallel graph, as shown in Section 6.5.2. After an
equivalent series-parallel representation of a non-series-
parallel RSN graph is constructed, this generated represen-
tation is used for performing the testability analysis and the
automated resynthesis presented above.

6.5.1 Validation of the Series‑Parallel Property

To check whether a specific RSN graph is series-parallel, a
few simple checks are applied first. Then a reduction algo-
rithm based on [33] is used:

• Initial Checks First, the reachability of all scan primi-
tives is computed. If the initial RSN graph has multiple
sinks or sources, auxiliary vertices are added to the RSN
graph and serve as a pseudo-primary sink and source
correspondingly. The acyclicity of the initial graph is
validated, since a graph, which contains cycles, is non-
series-parallel by definition. If the initial RSN graph con-
tains cycles, an acyclic representation is constructed by
removing a few edges in a similar way as it is well-known
in partial scan design [20].

0

1

0

1

0

1

m1

Fig. 12 Resynthesis example: The testability issue from Fig. 9 is
resolved by inserting two scan cells

614 Journal of Electronic Testing (2022) 38:603–621

1 3

• Main Flow The main flow of the check follows the well-
known reduction algorithm from [33]. If two vertices v1
and v2 of the RSN graph are connected in series or in par-
allel, they are merged into a single vertex. The vertices
are merged until it is not possible to merge any pair of
vertices. For a series-parallel graph, after the algorithm
above is applied, the whole RSN graph is represented
with a graph, which consists of a single vertex. If such
a representation is not possible, the graph is non-series-
parallel and has to be further processed as described
below. The Church-Rosser property of the applied reduc-
tion system [7] allows to apply reductions in an arbitrary
order to validate the series-parallel property.

6.5.2 Transformation into a Series‑Parallel Graph

To build a series-parallel equivalent representation of a non-
series-parallel graph region, a minimized number of addi-
tional virtual vertices is added into the initial RSN graph
[17]. Since the virtual changes are reverted in the resynthesis
phase, additional hardware overhead is not needed to trans-
form the RSN graph into a series-parallel representation.

In the RSN graph, the fanout stems are identified, which
prevent the RSN graph from being series-parallel. Any
fanout stem fviol in the stem region of another fanout stem
finit , which has either the same closing reconvergence gate
or its closing reconvergence is reachable from the closing
reconvergence of the stem finit , is referred to as a viola-
tion spot. To resolve the violation, the vertices, which are
located between the fanout stem finit and the violation spot
fviol , are duplicated and are placed after the violation stem
in the graph representation. The violation spots are resolved
sequentially until a series-parallel representation of the RSN
graph is obtained. The violation spots and their relative pro-
cessing order, are selected in a topological order of the RSN
graph, which starts at the scan input port. The fanout stems
located closer to a primary scan-in vertex are processed first,
followed by the fanout stems in their stem region. Each time,
the computation either goes deeper in the hierarchy or moves
forward to a succeeding fanout stem.

Example: In Fig. 13, a connection from the vertex f3 to
the vertices m2 and m3 makes the RSN graph non-series-
parallel. If it would be simplified as much as possible, a two
vertex representation will not be achieved.

The decomposition tree for the resulting structure is
shown in Fig. 14. In Fig. 15, an NSP region is transformed
into a series-parallel form by duplicating the vertex s3 and
the fan-out stem f3.These changes are virtual, are only
used to achieve a scalable computation flow and will be
reverted after the resynthesis, which works as follows.

Assume that in Fig. 13 the scan segments corresponding
to the vertices s4 and s3 have the same length. Then the dupli-
cated vertex s3c in the series-parallel representation in Fig. 15
would also have the same length as s4 . As a result, the fault
affecting the vertex m2 will be undetectable by an altered path
length. To resolve the testability problem, an additional scan
cell will be added to the RSN. This change is not virtual and
is not reverted, since it enhances the testability of the network.

The resulting binary decomposition tree, as shown in
Fig. 16, only contains parallel and series compositions, as
well as the leaf nodes, which correspond to the individual
scan segments. It can be processed to enhance the test-
ability, as discussed above.

7 Test of Scan Segments

The method presented above ensures that the faults affecting
the control primitives are testable. In this section, the test
of scan segments is considered. In contrast to the existing

cs2

s3

m2 cs3 m3f2

f3

s4cs1 m1f1

s1

s2

Fig. 13 Non series-parallel graph

NSP

cs2

P/m1

s1 s2

cs1

S

S

S

Fig. 14 Binary decomposition tree for the non-series-parallel RSN
graph in Fig. 13

duplicated

vertices

cs2

s3

m2 cs3

m3f3

f2 s4

s3c f3c

Fig. 15 Transformed subgraph of the non-series-parallel graph from
Fig. 13

615Journal of Electronic Testing (2022) 38:603–621

1 3

schemes in Section 3, the test of scan segments is applied
concurrently with instrument access. A compact built-in
self-test structure is added to the RSN and is used to gener-
ate a short test presequence. This presequence is augmented
with a workload sequence, shifted into the tested RSN, and
is used to check the shift logic of the scan segments in the
currently configured scan path, as shown in Section 7.1. An
example implementation of a concurrent BIST structure for
RSNs is shown in Section 7.2.

7.1 Test Pattern Generation

Each complete test sequence (Fig. 17a) includes a workload
sequence W and a flush test sequence T. Workload sequences
access RSNs and are generated as further discussed in Sec-
tion 8.2. Flush test sequences are used to test the shift logic
of the scan segments on the currently activated scan path.
In general, a flush test sequence is symmetric with respect
to inversion. This means that if a sequence T =< tn−1, ...t0 >
is a flush test for the activated scan path, then its inversion
T =< tn−1, ...t0 > is one as well.

For testing stuck-at faults in a scan path, the applica-
ble sequences include a sequence “00110” and its inver-
sion “11001”. For different fault models, other flush test
sequences can be used. The flush test sequences can
be either provided by automated test equipment (ATE)
together with the workload sequences or generated on-site,
as discussed below in Section 7.2.

Fig. 17b represents the bit sharing mechanism, which
is used for merging the workload sequence with the
flush presequence. There, the last bit w0 of the workload
sequence W =< wm−1, ...w0 > is used to decide, which of
the tail flush test sequences (T or T) overlaps with the head
of W by at least one bit, and there is no need to repeat these
overlapping bits in T or T . For stuck-at faults, the worst-
case reduction in the test application time comprises 20%
of a five-bit flush test sequence, if a constant overlap of
the last bit is considered.

7.2 Test Pattern Application

ROSTI (RSN Online/Offline Self-Test Infrastructure) is
a self-test structure for RSNs to generate test sequences
and attach them to the workload sequences. Its structure
is shown in Fig. 18 and includes a test sequence genera-
tor (TSG), an acceptor, and a controller. ROSTI is placed
between the RSN and the TAP controller.

Data is propagated from a TAP controller through
ROSTI to the RSN, and back towards the TAP controller.
ROSTI operates as follows:

• After the capture signal and with the shift signal, a
flush test sequence is generated in the test sequence
generator, and it is inserted in front of the workload
sequence.

• The flush sequence and the workload sequence are
shifted towards the scan input of the RSN and are further
propagated through the activated path.

• If the path is not corrupted, the bits of the presequence
are shifted out unchanged, and the workload sequence
is at the target instrument. If the path is faulty, the Viol
violation signal indicates a defect in the RSN.

The idea behind ROSTI is valid for a wide range of fault
models. To extend ROSTI for a fault model of interest, the
flush test sequence needs to be modified. The same applies

P/m3

s3

S

S P/m2

s3c s4

cs2

P/m1

s1 s2

cs1

S

S

cs3

S

Fig. 16 Binary decomposition tree for a series-parallel representation
of the non-series-parallel graph from Fig. 13

(a)

(b)

Workload sequence Pre-sequence T or T

Shared

bits

Fig. 17 Test sequence construction a) workload sequence is aug-
mented with a flush sequence b) bit sharing mechanism

616 Journal of Electronic Testing (2022) 38:603–621

1 3

to the exact implementation of the test sequence generation
and acceptor blocks. ROSTI can be implemented as a simple
hardware block as presented below. In the following, the
hardware implementation is explained in a block-by-block
manner including three major parts:

1. Test Sequence Generator (TSG) The TSG is used to gen-
erate flush test sequences (“01100” or “10011” for stuck-
at-faults) based on the first bit of a workload sequence,
and to merge them without adding any hold cycle. The
TSG operates as follows:

(a) Reuse the first bit: The first bit of the workload
sequence is reused as the first bit of the generated
flush test sequence.

(b) Generate and apply the flush test sequence: The
rest of the flush sequence are generated in a four-
bit shift register.

(c) Apply the workload sequence: As soon as the
flush test sequence is generated and shifted into
the RSN, the workload sequence starts to being
shifted into the RSN for the whole length of the
workload sequence.

2. Acceptor The acceptor is used to compare the shifted-out
results with the expected ones, and to issue an internal
violation signal if these values do not match. As soon
as the workload sequence is shifted into the acceptor,
its first bit is recorded into a flip-flop of the acceptor. It
allows deciding which flush test sequence (“01100” or
“10011”) to use in a given test sequence. The acceptor
is constructed as a finite state machine, which consists
of a few flip-flops and a few logic gates. The presented

acceptor is independent of the length of the ASP. Its
hardware costs depend only on the length of the test
sequence since the acceptor is controlled by the avail-
able global shift and update signals.

3. Controller The major task of the controller is to generate
the violation signal (Viol) with the correct timing. When
a violation occurs, i.e. if an RSN test fails and the accep-
tor issues the internal violation signal, ROSTI raises the
violation signal to the system. This signal is triggered by
the rising transition of the clock signal after the removal
of the shift signal and it holds for one cycle. The control-
ler also is used to propagate the first bit of the workload
test sequence from the test sequence generator toward
the acceptor to allow correct test response comparison.

The P1687.1 standard proposal [30], which is also dis-
cussed in [8], suggests using access mechanisms rather than
just a JTAG Test Access Port (TAP) controller to access an
RSN. [21] presents a hardware module to perform online
retargeting block which is used as a part of an access mecha-
nism. In [27], a scan encryption module is implemented as a
part of a custom access mechanism. TIn the paper at hand,
the developed self-test block represents an access interface
together with a TAP controller and an access port, which
enables RSN self-test and is also in line with the P1687.1
standard proposal.

8 Test Integration

This section discusses the integration of the presented DfT
scheme into the RSN-under-test. First, a summary of the
necessary changes to the RSN structure is presented fol-
lowed by some details about test sequence construction for
the enhanced RSN. Finally, the application of the developed
DfT scheme throughout the lifetime is discussed.

8.1 Changes to the RSN Structure

The developed DfT scheme for scan interfaces, control primi-
tives, and segments is integrated during the design phase. A
summary about the testability enhancements is provided below.

1. Scan Interface Observability Enhancement (see
Section 5): The design-for-test scheme is integrated to
increase the observability of the update registers. As a
result, the faults in the capture- and update-circuity of
the scan segments become detectable, and the interfaces
to the instruments (including the interface of s3 in Fig. 7)
can be tested. The reset functionality of the update flip-
flops is now also testable.

2. Control Primitives Testability Enhancement (see Sec-
tion 6): The RSN structure is analyzed to check whether

ROSTI

TSG

Controller

AcceptorTAP

controller

Access

Port

System

Manager

R
S
N

CSU CSU

Viol

Fig. 18 RSN Online/Offline Self-Test Infrastructure (ROSTI) struc-
ture

617Journal of Electronic Testing (2022) 38:603–621

1 3

any single fault affecting the RSN control primitives is
undetectable by a changed path length. It implies, that
if the path length is correct, then the correct path is acti-
vated through the RSN. Thereby it is ensured that the
registers of the correct instruments are accessed. In our
example, fault detection is ensured by adding a single
scan cell c1 before the multiplexer m1.

3. Scan Segment Test Enhancement (see Section 7): The
described compact BIST hardware is integrated into the
RSN. It allows testing the shift logic of the scan seg-
ments concurrently. A fault affecting a scan segment is
detected with the help of a flush test presequence, as
soon as a path through this segment is activated.

In Fig. 19, the example from Fig. 7 is enhanced with the
required DfT changes above. In the resulting RSN, all the
testability issues are resolved.

The developed scheme is intended to support the offline
test of RSNs. It not only tests the control primitives and the
interfaces to the instruments but also examines the shift logic
of those scan segments which are included in the currently
configured Active Scan Path. Although an Automated Test
Equipment (ATE) can also handle testing the scan segments,
it could be costly since it requires an extra step. ROSTI auto-
matically generates and compares flush sequences, and, in
the presence of ROSTI, an ATE will only need to examine
one violation signal. After the presented DfT scheme is inte-
grated, ROSTI can be reused to test the shift logic of the
scan segments on the activated scan path online concurrently
to the functional workload. If a fault is detected by ROSTI,
the information about it can be further reused to support
the operation of fault-tolerant or error-resilient networks [2].

8.2 Test Sequence Construction

As soon as the testability flaws in the initial RSNs are iden-
tified and resolved, a sequence of efficient test patterns can
be generated and applied to the RSNs. To test specific scan

segments, it is required to include them into an activated
scan path. Test compression and scheduling algorithms are
beyond of the scope of this paper. A set of test sequences
can be generated automatically to cover the whole RSN
structure with a minimized test application time, as in [1,
5, 12].

To keep this paper self-contained, a test sequence genera-
tion process is briefly summarized below. Unlike the con-
ventional structural test, the test of RSNs requires multiple
reconfigurations. Therefore, workload sequences generated
by a TSG are of two types:

• Access Sequences configure a desired path through the
RSN by switching scan multiplexers, and opening and
closing SIBs. Those sequences are generated by using
a Test Sequence Generation algorithm. In this work, the
TSG is based on the retargeting engine, which has been
first published in [1]. It ensures that the scan primitives
of an RSN are covered by activating a minimized number
of activated scan paths.

• Workload Test Sequences test the scan primitives which
are included in the activated path. They are usually based
on flush test sequences and are applied after a desired
active scan path is configured.

Each workload test sequence may include an instrument
test sequence W, which is used for testing the interface to
instruments, and a flush test sequence T, which is responsi-
ble for testing the shift logic of the scan segments on the cur-
rently activated scan path. After the test is applied, the flush
test sequence will be shifted-out unchanged in the fault-free
case. The bits of the workload sequence would contain the
test results for the scan interfaces. The length of the shifted-
out sequence is used as an indicator for single faults affecting
the RSN control primitives. The same applies to the single
flip-flop transparency faults in the shift registers, since they
reduce the length of the activated path by one shift cycle.
Similarly, an access sequence contains a sequence to retarget
an RSN and a flush test sequence T to test the shift logic on
the path.

9 Experimental Results

The complete design-for-test method is implemented in the
framework eda1687, which has first been presented in [1]. It
uses Instrument Connectivity Language (ICL) descriptions
of RSNs as input for test generation and generates Hard-
ware Description Language (HDL) descriptions for gate-
level synthesis.

The experiments have been conducted on a CPU Intel(R)
Xeon(R) W-2125 CPU at 4.00GHz with 132 GB of main mem-
ory. The remainder of the section summarizes the experiments

0

1
s2

cs1
0

1

s3

cs2

SIB

m1 m2

System
i1 i2 i3

RSN1. Enhance

observability

2. Ensure

single fault

detection
s1 c1

ROSTI3. Enable concurrent test

Fig. 19 RSN example from Fig. 7 is enhanced by using the developed
DfT Scheme

618 Journal of Electronic Testing (2022) 38:603–621

1 3

for the individual DfT enhancements. Next, the results are
provided for the complete DfT method, which considers test
integration. In the experiments, stuck-at faults affecting scan
interfaces, scan segments, and scan multiplexers are considered.

9.1 Scan Interfaces

A gate-level description of a scan segment is enhanced. A
feedback line is injected to improve the testability of a scan
interface and a reset line. Enhanced scan segments are used
further as scan primitives for all RSN benchmarks during
test sequence generation and synthesis.

9.2 Control Primitives

For any RSN design, the developed DfT method ensures that
the RSN is testable for single faults in the control primitives.
If all faults affecting the control primitives are detectable
by an altered path length, the testability of the RSN is algo-
rithmically proven. The ability to prove this property for
any arbitrary RSN structure eliminates the danger of silent
data corruption for single faults affecting the RSN control
primitives and is thereby one of the major contributions of
this article. To ensure fault detection, the lengths of a minor
number of scan chains may be slightly increased.

The scalability and the effectiveness of the developed
method have been proven using the benchmarks from the
ITC’2016 [31] and the DATE’2019 benchmark sets [28]. As
shown in Table 1, for the benchmarks TreeBalanced, Min-
gle, BasicSCB from the ITC’2016 [31]set, the testability
analysis identified single stuck-at faults affecting the RSN
control primitives, which are undetectable by an altered path
length (Column 3). The total number of faults is reported
in Column 2. To ensure fault detection, a minor number of
scan cells (Column 5), has been added to the initial RSN
structure. This number is negligible compared to the total
number of faults in the benchmark (Column 4). Thanks to
the scalable algorithm, the runtime is acceptable even for the
most time-consuming benchmarks (Column 6).

9.3 Scan Segments

To test scan segments, an RTL description of ROSTI has
been developed. ROSTI requires four flip-flops for the test

sequence generator and another four bits for the acceptor.
For the ROSTI controller, eight flip-flops are used. The
architecture of ROSTI is independent of the RSN and the
number of the required flip-flops is also fixed for any RSN
under test. To test ROSTI itself, a commercial tool has been
used to perform test pattern generation with a full-sequential
ATPG setting. It achieves a fault coverage of 96.84% with
16 patterns and 278 test cycles.

The developed DfT enhancements for scan interfaces and
scan segments are independent of the RSN. The gate-level
fault coverage for stuck-at-faults is determined with a com-
mercial sequential stuck-at-fault simulator.

9.4 Complete DfT Method

In this section, the complete developed DfT approach is
evaluated. To evaluate the testability-enhancing resynthesis
for control primitives on a wider benchmark set, while being
able to assess the DfT enhancements for scan interfaces and
shift logic, the benchmarks have been constructed with the
help of the ITC’02 SoC (System-on-a-Chip) benchmark set
[25]. The characteristics of the benchmarks are presented in
Table 2. In Column 2 the number of hierarchical levels, and
the number of scan multiplexers are given, followed by the
number of scan segments in Column 4 and the number of
scan cells in Column 5.

The experimental results for the developed scheme are
shown in Table 3:

• Integration of the Design-for-Test Scheme:

Table 1 Control Primitives
Testability Enhancement

(1) Design (2) # Total Faults (3) # Undetected
Faults

(4) # Total Cells (5) # Added
Cells

(6) Runtime [s]

BasicSCB 40 8 176 4 1.0
Mingle 52 16 270 8 1.2
TreeBal-

anced
200 12 5,581 6 2.1

Table 2 RSN Benchmark circuits

Design #Hier. #Scan #Scan #Scan #ASPs
lvl muxes segs cells

u226 2 59 99 1 457 615
d281 2 67 117 3 880 774
d695 2 178 335 8 407 2,385
h953 2 63 109 5 649 702
g1023 2 94 159 5 400 1,005
f2126 2 45 81 15 834 540
q12710 2 30 51 26 188 327
p34392 3 142 245 23 261 1,815

619Journal of Electronic Testing (2022) 38:603–621

1 3

– Scan Interfaces: Scan registers are enhanced by
injecting a feedback line.

– Control Primitives: The testability for single stuck-at
faults in the control primitives is proven for all the
benchmarks. As detailed in Section 8.4, for general
RSNs the testability property is not guaranteed. The
total number of faults affecting the control primitives
is given in Column 2. The runtime is provided in
Column 3 and is negligible for all the benchmarks.

– Scan Segments: ROSTI is integrated to generate self-
test for scan segments.

• Simulation of Test Sequences: The test cost in terms of
the number of clock cycles for different test sequence sets
is given in Columns 4-6. The details about the generated
test sequence sets are provided below:

– Scan Interfaces and Control Primitives: Access
sequences configure a desired active scan path. They
are generated as in [1] and cover all the scan segments
and all the branches of scan multiplexers. Since any
active scan path which includes a faulty control primi-
tive is guaranteed to have a different length compared
to a fault-free path, faults in control primitives are
detectable. Workload test sequences are generated to
test scan interfaces in the enhanced RSN as detailed
in Section 5. The corresponding test cost in terms of
clock cycles is provided in Column 4.

– Scan Segments: To test those scan segments, which
are located on the configured path, a test sequence
is constructed of a workload test sequence to config-
ure a desired path and a flush test sequence. ROSTI
generates flush test sequences to test the shift logic
of the selected scan segments. The test cost is given
in Column 5.

Area overhead compared to the underlying RSN is given
in Column 8 and is negligible. A commercial sequential

stuck-at-fault simulator is used to determine the gate-level
fault coverage. The fault coverage for RSN benchmarks with
feedback lines in the scan segments is given in Column 9.
Fault coverage is above 92.60% for nine benchmark circuits,
and is 94.72% on average. To mitigate the coverage gap
above, it is necessary to test the interfaces to instruments
and logic. If scan segments are enhanced by integrating a
feedback line and the workload patterns are used to test the
scan interface, a complete fault coverage is obtained for all
the benchmarks.

In the resulting RSNs, faults in scan interfaces, control
primitives, and scan segments are detectable. The scalability
and effectiveness of the developed DfT scheme have been
shown for a wide range of benchmarks.

10 Conclusion

In this paper, the first design-for-test scheme is presented,
which allows for complete covering all the stuck-at faults in
a Reconfigurable Scan Network. It significantly enhances
the RSN testability, such that faults affecting the interfaces
to the instruments, the control primitives, and the scan seg-
ments can be tested. Each test sequence may cover multiple
faults, which allows for significantly optimizing the size of
the test sequence set.

The presented scheme is flexible for the fault model, has
a low hardware overhead, and does not require changing the
RSN topology rules. Therefore, it is compliant with the exist-
ing test methods for RSNs and is supposed to be used com-
plementary to these schemes. The scheme is also flexible with
respect to the access mechanisms, and can be controlled by
the workload test patterns from an ATE, from the cloud, or
even stored on-chip internally. The experimental results show
that the presented scheme generates test sequences with com-
plete fault coverage and reduced test cost. It is scalable with
the increasing size and complexity of RSNs.

Table 3 Experimental results

Control primitives Runtime Test Cost [#cycles] Overhead[%] Coverage [%]

(1)Design (2) #faults (3) [s] (4) Inter. (5) Segs. (6) Sum (7) Our (8) with respect
to the RSN

(9) with feedback

u226 118 0.2 15,536 22,647 38,183 17,996 0.69 93.65
d281 134 0.2 32,863 34,113 66,976 35,959 0.27 95.51
d695 356 0.3 84,026 116,234 200,260 93,566 0.19 92.17
h953 126 0.2 44,296 38,247 82,543 47,104 0.18 96.32
g1023 188 0.3 46,443 50,418 96,861 50,463 0.20 95.66
f2126 90 0.1 114,563 75,269 189,832 116,723 0.06 95.11
q12710 60 1.0 184,971 109,904 294,875 192,231 0.03 95.43
p34392 288 2.2 181,591 156,403 337,994 188.851 0.06 94.70

620 Journal of Electronic Testing (2022) 38:603–621

1 3

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was supported by the German Research Foundation
(DFG) under grant WU 245/17-2 (ACCESS) and partially supported by
Advantest as part of the Graduate School “Intelligent Methods for Test
and Reliability” (GS-IMTR) at the University of Stuttgart.

Data Availability The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on
reasonable request.

Declarations

Conflicts of Interest The authors declare that they have no conflict of
interest or competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Baranowski R, Kochte MA, Wunderlich H-J (2015) Reconfigur-
able scan networks: modeling, verification, and optimal pattern
generation. ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES) 20(2):1–28

 2. Brandhofer S, Kochte MA, Wunderlich H (2020) Synthesis of fault-
tolerant reconfigurable scan networks, in Proc. Automation Test in
Europe Exhibition (DATE), Mar, Design, pp 798–803

 3. Cantoro R, Damljanovic A, Reorda MS, Squillero G (2018) A
new technique to generate test sequences for reconfigurable scan
networks in Proc. IEEE International Test Conference (ITC) pp
1–9

 4. Cantoro R, Montazeri M, Reorda MS, Zadegan FG, Larsson E
(2015) On the Testability of IEEE 1687 Networks, in Proc. IEEE
Asian Test Symposium (ATS) pp 211–216

 5. Cantoro R, San Paolo L, Sonza Reorda M, Squillero G (2018) An
evolutionary technique for reducing the duration of reconfigur-
able scan network test, in Proc. IEEE International Symposium on
Design and Diagnostics of Electronic Circuits Systems (DDECS)
pp 129–134

 6. Cantoro R, Zadegan FG, Palena M, Pasini P, Larsson E, Reorda
MS (2018) Test of reconfigurable modules in scan networks. IEEE
Transactions on Computers (TC) 67(12):1806–1817

 7. Church A, Rosser JB (1936) Some properties of conversion. Trans
Am Math Soc 1(2):472-482

 8. Crouch AL, Van Treuren BG, Rearick J (2020) P1687.1: Access-
ing Embedded 1687 Instruments using Alternate Device Inter-
faces other than JTAG, in Proc. IEEE European Test Symposium
(ETS), 2020, pp 1–6

 9. Damljanovic A, Jutman A, Portolan M, Sanchez E, Squillero G,
Tsertov A (2019) Simulation-based equivalence checking between
IEEE 1687 ICL and RTL, in Proc. IEEE International Test Confer-
ence (ITC) pp 1–8

 10. Damljanovic A, Jutman A, Squillero G, Tsertov A (2019) Post-
silicon validation of ieee 1687 reconfigurable scan networks, in
Proc. IEEE European Test Symposium (ETS) pp 1–6

 11. Habiby P, Huhn S, Drechsler R (2020) Power-aware Test Sched-
uling for IEEE 1687 Networks with Multiple Power Domains, in
Proc. IEEE International Symposium on Defect and Fault Toler-
ance in VLSI and Nanotechnology Systems (DFT) pp 1–6

 12. Habiby P, Huhn S, Drechsler R (2021) Optimization-based test
scheduling for IEEe 1687 multi-power domain networks using
boolean satisfiability, in Proc. International Conference on Design
Technology of Integrated Systems in Nanoscale Era (DTIS) pp
1–4

 13. Ibrahim AMY, Kerkhoff HG (2019) An On-chip IEEE 1687 net-
work controller for reliability and functional safety management
of system-on-chips, in Proc. IEEE International. Test Confer-
ence in Asia (ITC-Asia) pp 109–114

 14. IEEE (2013) Standard for Test Access Port and Boundary-Scan
Architecture IEEE Std. 1149.1-2013 (Revision of IEEE Std
1149.1-2001), pp 1–444

 15. IEEE (2014) Standard for Access and Control of Instrumen-
tation Embedded within a Semiconductor Device, IEEE Std.
1687-2014, pp 1–283

 16. IEEE Standard for System Test Access Management (STAM) to
Enable Use of Sub-System Test Capabilities at Higher Archi-
tectural Levels, IEEE Std. P2654

 17. Keller J, Gerhards R (2014) PEELSCHED: A simple and paral-
lel scheduling algorithm for static taskgraphs, PARS: parallel-
algorithmen, -rechnerstrukturen und -systemsoftware, vol. 28

 18. Kochte MA, Baranowski R, Schaal M, Wunderlich H (2016)
Test Strategies for Reconfigurable Scan Networks, in Proc.
IEEE Asian Test Symposium (ATS) pp 113–118

 19. Kochte MA, Wunderlich H-J (2018) Self-Test and Diagnosis for
Self-Aware Systems. IEEE Des Test 35(5):7–18

 20. Kunzmann A, Wunderlich H-J (1990) An analytical approach to
the partial scan problem. J Electron Test Theory Appl (JETTA)
2(1):163–174

 21. Larsson E, Murali P, Kumisbek G (2019) IEEE Std. P1687.1:
Translator and Protocol, in Proc. IEEE International Test Con-
ference (ITC) pp 1–10

 22. Lee K-J, Breuer MA (1990) A universal test sequence for cmos
scan registers, in Proc. Custom Integrated Circuits Conference
pp 28.5/1–28.5/4

 23. Lylina N, Wang C-H, Wunderlich H-J (2021) Testability-enhanc-
ing resynthesis of reconfigurable scan networks, in Proc. IEEE
International Test Conference (ITC), Virtual App 1–10

 24. Maamari F, Rajski J (1990) A method of fault simulation based
on stem regions. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD) 9(2):212–220

 25. Marinissen EJ, Iyengar V, Chakrabarty K (2002) A set of bench-
marks for modular testing of SOCs, in Proc. IEEE International
Test Conference (ITC) pp 519–528

 26. Portolan M, Rearick J, Keim M (2020) Linking chip, board,
and system test via standards, in Proc. IEEE European Test
Symposium (ETS) pp 1–8

 27. Portolan M, Valea E, Maistri P, Natale GD (2022) Flexible and
portable management of secure scan implementations exploiting
p1687.1 extensions. IEEE Des Test 39(3):117–124

 28. Raiola P, Thiemann B, Burchard J, Atteya A, Lylina N, Wun-
derlich H.-J, Becker B, Sauer M (2019) On secure data flow in
reconfigurable scan networks, in Proc. Conference on Design,
Automation Test in Europe (DATE), pp 1–6

 29. Shibin K, Devadze S, Jutman A, Grabmann M, Pricken R (2017)
Health Management for Self-Aware SoCs Based on IEEE 1687
Infrastructure. IEEE Des Test 34(6):27–35

http://creativecommons.org/licenses/by/4.0/

621Journal of Electronic Testing (2022) 38:603–621

1 3

 30. Standard for the Application of Interfaces and Controllers to
Access (1687) IJTAG Networks Embedded Within Semiconduc-
tor Devices, IEEE Std. P1687.1

 31. Tsertov A, Jutman A, Devadze S, Reorda MS, Larsson E, Zade-
gan FG, Cantoro R, Montazeri M, Krenz-Baath R (2016) A suite
of IEEE 1687 benchmark networks, in Proc. IEEE International
Test Conference (ITC) pp 1–10

 32. Ull D, Kochte M, Wunderlich H (2017) Structure-oriented test of
reconfigurable scan networks, in Proc. IEEE Asian Test Sympo-
sium (ATS) pp 127–132

 33. Valdes J, Tarjan RE, Lawler EL (1979) The recognition of series
parallel digraphs, in Proc. Annual ACM Symp on Theory of
Comput 1-12

 34. Wang C-H, Lylina N, Atteya A, Hsieh T-Y, Wunderlich H-J (2021)
Concurrent test of reconfigurable scan networks for self-aware sys-
tems, in Proc. IEEE International Symposium on On-Line Testing
And Robust System Design (IOLTS), Virtual pp 1–7

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Natalia Lylina received the Master of Science (M.Sc.) double degree in
computer science from Moscow Power Engineering Institute (National
Research University), Russian Federation and Technical University of
Ilmenau, Germany in 2017. Since 2017 she is with the Institute of

Computer Architecture and Computer Engineering at the University
of Stuttgart as a PhD student. She is a Student Member of IEEE. Her
research interests include dependable systems, test and diagnosis infra-
structure and reconfigurable scan networks.

Chih‑Hao Wang received his B.Sc. and Ph.D. degree in electrical engi-
neering from National Sun Yat-sen University, Kaohsiung, Taiwan, in
2013 and 2020, respectively. During 2019 to 2020, he was a visiting
scholar of the Institute of Computer Architecture and Computer Engi-
neering at the University of Stuttgart, Germany, and he is currently a
postdoctoral researcher of the same institute. He is a Member of IEEE.
His research interests include VLSI testability and reliability, concur-
rent error detection, and reconfigurable scan networks.

Hans‑Joachim Wunderlich received the diploma degree in mathemat-
ics from the University of Freiburg, Germany, in 1981 and the Dr. rer.
nat. (Ph.D. degree) from the University of Karlsruhe in 1986. Since
1991, he has been a full professor and from 2002 to 2018 served as the
director of the Institute of Computer Architecture and Computer Engi-
neering at the University of Stuttgart, Germany. He is a Life Fellow of
IEEE. He has been associated editor of various international journals
and program committee member of a variety of IEEE conferences on
design and test of electronic systems. He has published 11 books and
book chapters and around 300 reviewed scientific papers in journals
and conferences. His research interests include test, reliability, fault
tolerance and design automation of microelectronic systems.

	A Complete Design-for-Test Scheme for Reconfigurable Scan Networks
	Abstract
	1 Introduction
	2 Background
	2.1 Reconfigurable Scan Networks (RSNs)
	2.2 RSN Model
	2.3 Faults in RSNs
	2.3.1 Faults at Interfaces to Instruments
	2.3.2 Faults in Control Primitives
	2.3.3 Faults in Scan Segments

	3 State of the Art
	3.1 Test of Scan Interfaces
	3.2 Test of Control Primitives
	3.3 Test of Scan Segments

	4 Overview of the Developed DfT Scheme
	5 Testability of the Scan Interfaces
	5.1 DfT Enhancement
	5.1.1 Testability Enhancement for the Scan Interfaces
	5.1.2 Testability Enhancement for the Reset Line
	5.1.3 Testability of the Feedback Loop Primitives

	6 Test of Control Primitives
	6.1 Testability Concept
	6.2 Series-Parallel RSN Model
	6.3 Testability Analysis of Series-Parallel RSNs
	6.4 Testability-enhancing Resynthesis
	6.5 Application for Arbitrary RSN Structures
	6.5.1 Validation of the Series-Parallel Property
	6.5.2 Transformation into a Series-Parallel Graph

	7 Test of Scan Segments
	7.1 Test Pattern Generation
	7.2 Test Pattern Application

	8 Test Integration
	8.1 Changes to the RSN Structure
	8.2 Test Sequence Construction

	9 Experimental Results
	9.1 Scan Interfaces
	9.2 Control Primitives
	9.3 Scan Segments
	9.4 Complete DfT Method

	10 Conclusion
	References

