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Abstract
Reconfigurable Scan Networks (RSNs) are widely used for accessing instruments offline during debug, test and validation, as 
well as for performing system-level-test and online system health monitoring. The correct operation of RSNs is essential, and 
RSNs have to be thoroughly tested. However, due to their inherently sequential structure and complex control dependencies, 
large parts of RSNs have limited observability and controllability. As a result, certain faults at the interfaces to the instru-
ments, control primitives and scan segments remain undetected by existing test methods. In the paper at hand, Design-for-test 
(DfT) schemes are developed to overcome the testability problems e.g. by resynthesizing the initial design. A DfT scheme 
for RSNs is presented, which allows detecting all single stuck-at-faults in RSNs by using existing test generation techniques. 
The developed scheme analyzes and ensures the testability of all parts of RSNs, which include scan segments, control primi-
tives, and interfaces to the instruments. Therefore, the developed scheme is referred to as a complete DfT scheme. It allows 
for a test integration to cover multiple fault locations can with a single efficient test sequence and to reduce overall test cost.
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1 Introduction

Reconfigurable Scan Networks (RSNs) offer flexible access 
to embedded instruments via scan segments thro-ughout 
the system lifecycle. They are standardized by IEEE Std. 
1149.1-2013 [14] and IEEE Std. 1687-2014 [15]. To ensure 
the correct operation of RSNs and their interaction with the 
instruments, RSNs themselves must be thoroughly tested. 
Due to the low observability and controllability of certain 
parts of RSNs, some faults may be undetectable by the exist-
ing methods. In this paper, we present a scheme to enhance 
the design of RSNs in a way that all single stuck-at-faults in 
RSNs are detectable by using existing Automated Test Pat-
tern Generation (ATPG) tools.

Initially, more focus has been put on using RSNs offline, 
e.g. for post-silicon validation (PSV) and manufacturing test 
and diagnosis. Recent standardization efforts (IEEE P2654 
standard proposal [16], also discussed in [26]) suggest using 

RSNs to access registers needed for the system-level test. 
Research papers [13, 19, 29] use RSNs to perform health 
monitoring and dependability management. All these appli-
cations rely on the correct operation of RSNs, which may 
become a system dependability bottleneck. Already a single 
fault in an RSN may corrupt scan paths, erroneous data may 
be fetched by RSNs, and instruments may become inaccessi-
ble. During post-silicon validation, it may prevent extracting 
the complete validation data from a device. Runtime-critical 
instruments such as Adaptive Voltage and Frequency Scal-
ing, temperature control, etc., may become inaccessible due 
to a fault in an RSN. Erroneous fault-handling mechanisms 
may be triggered by faulty RSNs. As a result, even a system 
failure may occur.

Faults in conventional scan chains can be tested by using 
flush test sequences shifted through a scan chain [22]. These 
sequences ensure the integrity of the scan cells and their 
interconnection. Typically used flush sequences include 
all ones, all zeros as well as the “0011” (“1100”) sequence 
repeated to cover the whole length of the scan chain under 
test. The test sequence shifted into the scan chain is com-
pared with the sequence at the scan out of the chain. If the 
output sequence is different from the expected one, the scan 
chain is faulty.
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For conventional scan chains, flush sequences test faults 
for certain fault models, such as stuck-at faults, delay faults, 
or consider broken scan chains. To detect the location of a 
fault within a scan chain, the responses from the applied 
Automated Test Pattern Generator (ATPG) test vectors need 
to be analyzed. The paper at hand focuses on test and test-
ability questions. Therefore, fault localization is out of the 
scope of this paper.

Compared to conventional scan chains, testing RSNs 
is even more challenging. It is due to their high sequential 
depth, the distributed control structure, as well as the com-
plex sequential and combinational dependencies [1]. Faults 
in RSNs not only affect the shift logic of the scan chain 
segments but also reside at the interfaces to the instruments 
and the control primitives. Additionally, specific fault effects 
in RSNs are observable only for certain configurations, and 
sequential test pattern generation for such faults is unfeasible 
for large networks. The known test solutions, presented in 
[4, 6, 12, 18], e.g., may not detect all the faults due to low 
observability and controllability of some RSN components.

Design-for-test (DfT) methods can be applied to enhance 
the testability of specific parts of RSNs. The term “DfT for 
RSNs” describes changes of the RSN design which support 
a more efficient test generation with higher fault coverage, a 
more efficient test application and more efficient test patterns 
for the RSN. The preliminary papers [23, 32, 34] developed 
DfT approaches to ensure the testability of the three com-
ponents of a Reconfigurable Scan Network:

• Scan interfaces in [32]: The testability of the update regis-
ters and the scan interfaces to the instruments is enhanced, 
and the faults in the capture- and update-circuity of the 
scan segments become detectable.

• Control primitives in [23]: The testability of control 
primitives is enhanced. Existing methods test the con-
trol primitives by observing the length of an activated 
path [1, 3, 6, 10, 18, 32, 34], and fail if an erroneously 
activated path has the same length as the correct one. An 
exact testability analysis method is presented to identify 
all single control faults, which do not have an impact on 
the length of the activated path. If such a fault is identi-
fied, automated resynthesis changes the length of a minor 
number of scan paths to ensure fault detection.

• Scan segments in [34]: The test of the scan shift logic 
is enabled by integrating a compact Built-In Self-Test 
(BIST) structure. This BIST structure generates of a short 
presequence that tests the shift logic of the currently acti-
vated scan path.

The paper at hand combines and extends the preliminary 
results in [23, 32, 34] by presenting a Design-for-Test (DfT) 
scheme which addresses all parts of an RSN. After applying 
the proposed DfT techniques, state-of-the-art test generation 

algorithms for RSNs like [1, 4, 6, 18] are able to generate test 
sequences which detect all stuck-at faults and obtain complete 
stuck-at-fault coverage. Therefore, the developed scheme is 
referred to as a complete DfT scheme. The presented scheme 
requires negligible hardware overhead and supports test gen-
eration with respect to more complex fault models as well. 
An efficient test integration scheme is developed in a way that 
a single test sequence covers multiple fault locations in an 
enhanced RSN, and the overall test application time in terms 
of the overall test application time is significantly reduced.

The extensions and improvements are in detail: 

1. A complete DfT scheme is presented for the first time. It 
considers all fault locations at the scan interfaces to the 
instruments, the scan segments and the control primi-
tives. First, it identifies precisely untestable faults, and 
then it re-synthesizes the corresponding components 
with negligible hardware costs. In the resulting RSN 
structure, existing ATPG techniques can detect all stuck-
at faults.

2. For the resulting RSNs, an efficient test integration 
scheme is developed which allows to reduce the overall 
test access time compared to applying the previously 
developed methods [23, 32, 34] individually. The gener-
ated test sequences are capable to cover multiple fault 
locations at a time. Each sequence contains a work-
load sequence and a short presequence. The workload 
sequence tests faults at the scan interfaces and control 
primitives. The self-generated presequence tests the shift 
logic of the segments on the activated path.

3. The complete scheme is evaluated on a comprehensive 
set of benchmarks. The experimental results show the 
effectiveness and scalability of the developed approach.

The remainder of this paper is organized as follows. The 
background information about RSNs and their modeling, as 
well as the considered fault models, are presented in Sec-
tion 2. Section 3 summarizes the existing methods to test 
RSNs and highlights their limitations. Section 4 provides 
an overview of the developed DfT scheme. In Section 5, a 
DfT scheme is presented for update registers and interfaces 
to instruments. Section 6 presents a testability enhancement 
technique for control primitives. Section 7 provides the 
details about the scan segment test. Section 8 discusses the 
overall test integration procedure. In Section 9, experimental 
results are discussed, and Section 10 concludes the paper.

2  Background

This section presents background information about RSNs, 
the graph-based RSN model and the considered fault 
models.
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2.1  Reconfigurable Scan Networks (RSNs)

In Fig. 1, the internal instruments (shown in orange), such 
as sensors and BIST registers, are accessed through RSNs 
for observation and control. The test data registers (s1… s8) 
access the instruments through a parallel interface and are 
also referred to as the scan segments. The configuration seg-
ments (cs0… cs3) , shown in yellow, determine the values 
of control signals. Those signals control the state of control 
primitives such as scan multiplexers (shown with the cir-
cles with the matching indices in Fig. 1). Control primitives 
determine the currently configured non-circular scan path 
from a primary scan input to a primary scan output port of 
an RSN. Such a path is commonly referred to as an Active 
Scan Path (ASP) and is shown with a blue dashed line in 
Fig. 1. In the considered example, an initial ASP traverses 
the control registers cs0, cs2, and cs3, as well as the seg-
ments of the BIST register and the segment of the monitor.

Control signals in RSNs can be external or internal. If a 
control signal comes from outside of an RSN, it is referred 
to as an external control signal. If a signal comes from an 
update register of a configuration segment, it is called an 
internal control signal. The following control primitives are 
commonly used to build RSNs:

• Scan Multiplexers (Scan Muxes) select between appro-
priate parts of the RSN depending on the value of the 
address control signal and include them into an activated 
path.

• Segment Insertion Bits (SIBs) include or exclude specific 
parts of the RSN from an activated path depending on the 
control signal assignments.

Each SIB (as shown in Fig. 2a) can be represented as a com-
bination of a scan segment and a scan multiplexer, as shown 
in Fig. 2b. The underlying segment is only selected if the 
SIB is asserted. If the SIB is de-asserted, the segment is 
bypassed.

A small part of an RSN is shown in Fig. 3 with more 
details. A post-SIB (shown as SIB in Fig. 3) includes or 
excludes the remainder of the RSN from an activated path 

depending on the control assignments. This RSN is used as 
a running example for the remainder of the article.

In an RSN, scan segments are the scan primitives, which 
shift the data through the RSN, as well as capture and update 
the data through a parallel interface. Each scan segment 
contains a shift register and an optional update register, as 
shown in Fig. 4. The following types of scan segments exist:

• Data Segments are scan segments, which access the 
instruments through a parallel interface. In data seg-
ments, the update registers serve as intermediate storage 
for the information, which is provided to the instruments.

• Configuration Segments are scan segments, where the 
information from the update registers is used to drive 
the internal control signals. The state of configuration 
segments defines the scan configuration.

Each access to an RSN can be represented as a transac-
tion. This transaction is commonly referred to as a Capture-
Shift-Update (CSU) operation [1]. The data is captured from 
the instruments into the shift registers during the capture-
phase. During the shift-phase, the new data is shifted-in 
from a primary scan input through an active scan path, while 
the old data is shifted-out towards the scan output. Finally, 
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during the update-phase, the newly shifted-in data is clocked 
into the update registers of the scan segments. The external 
global control signals control the CSU operations and bring 
an RSN into a known deterministic reset state if required. 
The data at the scan input port comes from an access inter-
face, which can be either a Test Access Port (TAP) Control-
ler, or an alternate functional or non-functional interface, as 
specified in the IEEE P1687.1 standard proposal [30]. The 
collected data might be processed and evaluated offline or 
online using on-chip computing, edge computing, or even 
in the cloud.

Each scan segment consists of one or multiple scan cells. 
A single scan cell Cellj consists of a shift flip-flop FFj (a part 
of a shift register in Fig. 4), an optional update flip-flop UFFj 
(a part of an update register), as well as of a few multiplexers 
to control CSU-operations. A gate-level structure of a single 
scan cell is shown in Fig. 5.

In a scan cell, the following paths are activated within a 
CSU operation:

• A Shift Path starts at the scan input (SI) and ends at the 
scan output (SO) of a cell. It contains two multiplexers 

(the shift multiplexer M1 and the capture multiplexer M2 ) 
and an internal data path of the shift flip-flop. During 
the shift-phase of a CSU operation, the shift multiplexer 
M1 propagates the data from the scan input through the 
capture multiplexer M2 and the shift flip-flop towards the 
scan output.

• An Update Path starts at the scan flip-flop’s output and 
leads to the data output Q. This output may be connected 
to an instrument or drive RSN-internal control signals. 
The path comprises the update multiplexer M3 and the 
internal data path of the update flip-flop. During the 
update phase, the update multiplexer M3 propagates the 
data from the update flip-flop to the output Q.

• A Capture Path starts at the data input D, traverses the 
capture multiplexer M2 and the data path of the scan flip-
flop. During the capture phase, the capture multiplexer 
M2 propagates the data from the instrument into the shift 
flip-flop.

2.2  RSN Model

An RSN is modeled as a directed graph G ∶= (V ,E) , where 
V is the vertex set, and E is the edge set. Each vertex cor-
responds to a scan primitive, a primary scan input or output, 
or represents a fanout stem fi , as shown in Fig. 6 for the 
example from Fig. 3. Each edge models a direct connectivity 
between the vertices.

A source of an RSN graph is a vertex, which has only 
outgoing edges, while a sink has only incoming edges. We 
assume a single source SI ∈ V  , and a single sink SO ∈ V  . If 
the modeled RSN has multiple scan inputs, then the corre-
sponding vertices are connected to a single pseudo-primary 
source vertex. The same logic is valid for RSNs with mul-
tiple scan outputs. Control scan primitives, i.e., multi-input 
scan multiplexers, SIBs, are modeled as a combination of 
one or multiple scan segments and one or multiple two-input 
scan multiplexers. The following relations are determined 
for an RSN graph:

• Structural reachability: A vertex mj is structurally reach-
able from a vertex mi , if at least one path exists from mi 
to mj.

• Reconvergence vertex [24]: A vertex mj is a reconver-
gence vertex of the vertex mi , if there are two paths p1 , p2 
with the corresponding vertex sets V(p1) and V(p2) such 
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that V(p1) ∩ V(p2) = {mi,mj} , mi is the source of both p1 
and p2 , and mj is their sink.

• A closing reconvergence of a vertex mi is such a recon-
vergence vertex mj , which does not reach any other  
reconvergence vertex of the vertex mi.

• A reconvergence region of a vertex mi includes all the 
vertices, which are reachable from this vertex and also 
reach its closing reconvergence.

Example: In Fig. 6, the reconvergency region of the vertex 
f1 includes the vertices s1 and s2 , and the vertex m1 is a clos-
ing reconvergence.

2.3  Faults in RSNs

A fault in an RSN may affect the interfaces to the instru-
ments, the control signals, or the scan segments. The remain-
der of this subsection discusses possible fault locations and 
their effects on the RSN functionality.

2.3.1  Faults at Interfaces to Instruments

Communication to the attached instruments and generation 
of internal control signals can be affected by faults in the 
update flip-flops, as well as the multiplexer M2 and M3 . Pos-
sible fault locations are shown in Fig. 5 with a red color and 
explained below:

• A capture multiplexer M2 and data path of an update flip-
flop: A timing violation affecting the update flip-flop or 
a fault at the capture multiplexer M2 may corrupt writing 
the data to the instrument during the update phase.

• An update multiplexer M3 : If the update multiplexer M3 
is faulty, it may prevent from reading correct data from 
the instrument during the capture phase.

• A reset line of an update flip-flop: If the reset line of an 
update register is affected by a stuck-at-0 fault, it may not 
be possible to reset its value into an initial known state.

In general, controllability and observability shall never be 
exercised through the instrument. Any attempt to do so 
would require a bespoke and hence a non-scalable DfT solu-
tion. At the same time, the logic around an update register 
can only be observed via the instrument. That makes the 
value of the signal Q unobservable for a test. Similarly, the 
value of D is uncontrollable, since it fully depends on the 
value of the instrument. This makes the faults at the capture 
multiplexer M2 and the update multiplexer M3 , as well as the 
faults affecting the update flip-flops, in general not testable.

Example: In Fig.  3, a fault may affect an interface 
between the scan segment s1 and the instrument i1 , as shown 
with a grey box. If the capture-circuitry of the scan interface 

of the scan segment s1 is faulty, incorrect data can be pro-
vided to the instrument i1.

2.3.2  Faults in Control Primitives

Faults in the control primitives, such as the scan multiplex-
ers and the SIBs, may arise due to defects in control lines, 
or internal defects in the control primitives. These faults are 
usually modeled as high-level “stuck-at” faults, as defined 
in [6]:

• Scan Multiplexers: If a scan multiplexer always selects 
a specific input with an identifier id, regardless of the 
assignment to the address control line, we say that this 
scan multiplexer is affected by a “stuck-at-id” fault.

• SIBs: If a certain SIB always provides access to the 
underlying segment, regardless of the applied access 
pattern, we say that this SIB is “stuck-at-asserted”. If 
access to the underlying segment is never provided, the 
SIB is “stuck-at-deasserted”.

Example: Assume the scan multiplexer m1 from Fig. 3 is 
affected by a stuck-at-1 fault. Due to this fault, the scan seg-
ment s1 becomes inaccessible. The latter leads to the inac-
cessibility of the instrument i1 via the RSN.

2.3.3  Faults in Scan Segments

Examples of faults, which affect the primitives located on 
the shift path of a scan segment, include setup- and hold-
time violations in the corresponding shift flip-flops. These 
violations may prevent correct data from being latched into 
the flip-flops while shifting.

Example: If the shift flip-flop of the scan segment s2 from 
Fig. 3 has a setup-time violation, the data is not properly 
latched into this flip-flop. The propagation through the acti-
vated path which traverses the scan segment s2 is affected.

3  State of the Art

Testing RSNs has been extensively studied in recent years. 
This section summarizes the existing methods to test RSNs 
with respect to the fault locations discussed above.

3.1  Test of Scan Interfaces

In [18], the primitives are tested, which are located at the 
capture- and the update-paths of scan segments. Read and 
write operations with opposite values are performed for 
each segment on the active scan path. However, as dis-
cussed above, it is not possible to test the primitives located 
at the interfaces independently from the values stored at the 
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connected instruments. In realistic designs, the value of the 
instrument, may not be controllable or observable. Moreo-
ver, the existing test methods do not consider testing reset 
lines of update registers.

3.2  Test of Control Primitives

Numerous works in the past have presented methods to 
detect faults in control primitives and control lines. In [18], 
the conditions for activating faults, which may alter or break 
an activated scan path, are formally analyzed with a deter-
ministic test pattern generator. The generator tests the faults 
in the combinational elements on the scan path, which are 
located between two adjacent scan segments, but might not 
be scalable due to the high sequential depth of an RSN. [4] 
presents the first method to test those update registers, which 
guide the operation of control primitives. In [6], the control 
primitives themselves are targeted. A method is presented 
for smaller RSN designs to minimize the test application 
time while detecting faults in the control primitives. In 
[5], the scalability of the test method above has been sig-
nificantly improved by presenting a scalable evolutionary 
heuristic. In [11], the test method above has been used as 
a basis for an efficient diagnostic procedure for permanent 
faults in the control logic. An approach from [11] performs 
access time optimization for RSNs located in multiple power 
domains, and [12] enhances the method above in terms of 
scalability. In [10], a post-silicon validation technique is pre-
sented, which identifies possible mismatches between the 
specification and the actual silicon implementation of RSNs. 
In [9], this method has been improved to consider equiva-
lence between the structural description of an RSN and its 
Register Transfer Level implementation using simulation.

The above-mentioned test, validation, and diagnosis 
methods rely on the fact that a fault or a mismatch is detected 
based on the altered scan path length [1, 4–6, 9, 10, 18, 
32]. However, if a such fault does not alter the length of the 
activated scan path, it remains undetected. Although, the 
untestable mismatches can be enumerated using simulation-
based techniques as in [10], the first systematic solution to 
detect them during the test has been presented in [23] which 
is extended in the article at hand.

3.3  Test of Scan Segments

Cantoro et al. [4] presents a method to test the scan shift 
logic of a particular scan segment. First, an active scan 
path is configured to select the target segment. Next, faults 
are tested by shifting a flush sequence into an activated 
path and observing the output sequence at the scan output. 
If the expected sequence is shifted-out, the segments on 
the scan path are fault-free. Otherwise, there is a fault. For 
“stuck-at-faults”, flush sequences, such as 01100 or 10011, 

are used. Such a sequence generates all possible transi-
tions, including “00”, “01”, “10”, and “11”. The flush 
sequences are modifiable for more complex fault models, 
such as delay faults.

4  Overview of the Developed DfT Scheme

As discussed above, specifics of some RSN structures may 
affect the fault coverage. In Fig. 7, some examples of the 
testability issues are presented, which would arise for the 
RSN example from Fig. 3 if the existing test methods are 
applied. 

1. Undetected fault affecting an update register of  s3 : If 
the update register of the scan segment s3 is faulty, an 
erroneous data might be captured into the corresponding 
instrument i3 . The existing methods rely on the assump-
tion that the value in the instrument i3 is directly observ-
able, which is not always true.

2. Faulty Reset Line: The existing methods do not guar-
antee to detect faults affecting the reset values of the 
update registers.

3. Undetected Fault at the Multiplexer m1 : If the multi-
plexer m1 is affected by a “stuck-at-1” fault, a path 
through the grey-colored primitives would be activated 
in Fig. 7 instead of the intended path in Fig. 3. Since 
both paths have the same length, the fault at m1 would 
remain undetected, and the data from the instrument i2 
would appear at scan output instead of the data from the 
instrument i1.

4. Corrupted Scan Path Integrity Due to the Faulty Seg-
ment s2 : If the scan segment s2 is faulty, the integrity of 
the configured scan path (in grey) is corrupted. Using 
the existing methods, it is not possible to detect this fault 
concurrently with the functional operation.
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Fig. 7  Testability issues in the RSN example from Fig. 3
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The remainder of this article presents a complete design-
for-test (DfT) solution for RSNs which overcomes the above 
mentioned limitations of existing schemes.

The presented scheme has the following goals:

• Testability: Faults affecting all parts of an RSN must 
be detectable, which includes instrument interfaces, scan 
segments, and control primitives.

• Flexibility: The presented scheme must be adjustable 
towards a used-defined fault model.

• Cost-efficiency: The presented scheme must have a low 
hardware overhead.

• Compliance: The DfT logic must not affect precomputed 
retargeting sequences.

• Scalability and Generality: The presented scheme must 
apply to large arbitrary RSN designs.

• Compactness: Test sequence must be able to cover mul-
tiple test locations.

• Compatibility with the Existing Test Methods: The 
presented DfT scheme must be compatible with the test, 
diagnosis, and post-silicon validation methods discussed 
above and is supposed to be used complementary to these 
schemes.

5  Testability of the Scan Interfaces

This section discusses the testability enhancement of scan 
interfaces between the scan segments and the instruments. 
First, the problem is formulated for the fault locations, which 
cannot be tested with the existing methods. Next, a DfT 
enhancement is presented to significantly increase the cov-
erage of the faults at the scan interfaces of all data scan seg-
ments without corrupting the data stored in the instruments. 
As a result, the scan cell internal multiplexers ( M2 and M3 in 
Fig. 5) and the update registers must become testable.

5.1  DfT Enhancement

The testability of the scan interfaces is improved by signifi-
cantly increasing the observability of the update registers. 
The test of the multiplexers M2 and M3 is decoupled from 
the data in the underlying instruments. With this scheme, the 
corresponding fault effects become observable at the scan 
output of a scan cell and can be propagated to the global 
scan output port by using conventional test methods.

The test of scan interfaces to the instruments is enabled 
by augmenting the initial scan cell structure (Fig. 5) with an 
additional feedback loop between the update flip-flop and the 
shift flip-flop, as shown with green color in Fig. 8.

The DfT structure provides direct visibility of the 
update flip-flop without requiring knowledge about or 
control over the connected instrument. The feedback loop 

propagates the value stored in the update flip-flop into a 
shift flip-flop. This data is then shifted through an acti-
vated scan path, such that the value of the update flip-flop 
is observable at the scan output.

The feedback loop is activated by setting the control 
signal FeedbackEn to a logic one. The scheme is compli-
ant with IEEE Std. 1687-2014 [15]. The feedback loop 
can be described using the Instrument Connectivity Lan-
guage, and therefore can be readily handled by EDA tools 
supporting this standard. The additional feedback enable 
signal can be controlled externally by the access interface 
or internally by using previously unused assignments to 
the internal control signals.

The remainder of this section discusses how the DfT 
scheme is applied to test the scan interfaces and the reset 
functionality. Since the newly integrated DfT feedback 
loop must be tested as well, a discussion about the test-
ability of the corresponding faults concludes the section.

5.1.1  Testability Enhancement for the Scan Interfaces

In an enhanced scan cell (Fig. 8), an update register can 
be tested by writing complementary values into the update 
flip-flops and reading them through a feedback loop. Faults 
effects residing in the update flip-flop are propagated to the 
scan output of the RSN with the help of the feedback path 
(shown in green in Fig. 8) and the initial paths through a 
scan cell by applying the following steps: 

1. First, the newly introduced feedback line is used to prop-
agate the fault effect from the update flip-flop towards 
the shift flip-flop.

UFF1
0

1

Reset

SI SO

0

1

0

1

D QFeedbackEn

FF1

ShiftEn

CaptureEn

1

0

Instrument

Capture M2

Update M3

Shift M1

Fig. 8  Scan cell with a DfT Enhancement (in green). The additional 
scan multiplexer allows to propagate the data from the update flip-
flop to the shift flip-flop
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2. Next, the data is shifted through the shift path towards 
the scan output. During those two steps, the functional 
operation of an RSN is paused.

3. Finally, the data at the scan output of the scan segment is 
further propagated through an RSN by applying regular 
CSU operations.

5.1.2  Testability Enhancement for the Reset Line

The reset lines of update flip-flops are testable with the help 
of the DfT enhancement. To perform a test, an RSN is set 
into a known state which differs from its reset state. A non-
reset state is read from the update flip-flops into the shift 
flip-flops through the 1-branch of the feedback multiplexer, 
as shown in Fig. 8. This value is propagated towards the 
global scan out using conventional retargeting methods. 
Then, a global reset is applied to activate faults affecting 
the reset functionality. Next, the fault effects are read from 
the update registers through the feedback loop and shifted 
out of the RSN. The shifted-out sequences for reset and non-
reset states are compared to test a fault. Finally, a global reset 
signal is applied again to bring the RSN into its initial state.

5.1.3  Testability of the Feedback Loop Primitives

The faults affecting the additional feedback loop primitives 
are tested in multiple phases, while testing the D output of 
the instrument and hence the feedback multiplexer 0-input 
cannot be covered without controlling the instrument from 
outside. This paper considers faults within the RSN includ-
ing the interfaces. Faults within the instruments lay out of 
the scope and do not contribute to the resulting coverage. 
In the first phase, the D-value is captured and observed by 
setting FeedbackEn = 0 . Then, with FeedbackEn = 1 , D is 
shifted into the loop and observed outside. If the feedback 
multiplexer output stayed still at D, the corresponding stuck-
at-D faults at the multiplexer output, its 1-input or a stuck-
at-0 fault at FeedbackEn are detected. Next, D is shifted into 
the loop to detect stuck-at-D at the multiplexer output and 
1-input. Finally, D is shifted again into the loop, and with 
FeedbackEn = 0 it will load D again, otherwise there is a 
stuck-at-1 fault at FeedbackEn.

6  Test of Control Primitives

This section presents a method to formally validate whether 
all the faults affecting the control primitives can be tested by 
observing an erroneously activated scan path with a changed 
length. If a fault exists, which is not testable this way, the 
RSN is transformed into a testable functionally equiva-
lent one with negligible hardware overhead. In the result-
ing RSN, it is guaranteed that all the single faults affecting 

the control primitives are testable. As a result, the exist-
ing methods to test RSNs can be efficiently applied to this 
RSN. First, we present a formal definition of the testability 
concept. Then we provide a scalable method for so-called 
series-parallel RSNs defined below. Finally, we show how 
can an arbitrary RSN be modeled as a series-parallel one.

6.1  Testability Concept

In this subsection, we present the testability concept for con-
trol primitives of RSNs.

Definition 1 An active scan path pathl is called to be “single 
fault reachable” from another path pathk , if and only if there 
is a single fault f which activates the path pathl instead of 
pathk erroneously for some control input.

To check whether a given path is single fault reachable 
from another path, their activation conditions are compared, 
as shown in the example below.

Example: In Fig. 9, a multiplexer m1 has two inputs. 
The paths through the upper branch of the scan multiplexer 
are single fault reachable from the paths through the lower 
branch, by a single fault affecting the address control signal 
of m1.

If the paths arriving at different multiplexer inputs have 
different lengths, any fault of the multiplexer control can 
be tested.

Definition 2 A single fault f affecting the RSN control primi-
tives is categorized as “detectable by an altered path length 
(DT-PL)” if under the same scan configuration, the length of 
the paths through a fault-free RSN is different compared to 
the length of any faulty path, which is single fault reachable 
from the initial path.

For a “detectable by an altered path length” fault, it is 
always possible to find a test sequence, which would detect 
the fault. Otherwise, a fault is categorized as “undetectable 
by a path length (UDT-PL)”, since the existence of such a 
test sequence is not guaranteed.

0

1

0

1

0

1

m1

Fig. 9  Testability concept example
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Example: In Fig. 9, it is only necessary to compare the 
sets of lengths through the upper and the lower branches of 
m1 to identify, whether the faults affecting m1 are “detectable 
by a path length”. If at least one path length exists, which 
appears in both sets, it may not be possible to detect the fault 
affecting m1 by an altered path length. In this example, the 
paths through the upper branch consist of 1 and 2 scan cells 
respectively. There also exist two other paths through the 
lower input of the multiplexer with the lengths 1 and 3. So, 
two paths shown in red have the same length, and the fault 
affecting m1 is not “detectable by an altered path length”.

If an RSN contains any fault, which is not proven to be 
detectable by a path length, it is referred to as an untest-
able RSN. The goal of this section is not only to determine 
whether an RSN is testable, but also to pinpoint the exact 
single faults location affecting the RSN control primitives, 
which may not be detectable by differences in a path length, 
and to resolve such untestable spots via resynthesis.

6.2  Series‑Parallel RSN Model

In the following, the testability analysis is extended for large 
RSN designs by applying a divide-and-conquer algorithm on 
so-called series-parallel RSN models. 

Definition 3 Let G ∶= (V ,E) be a directed acyclic graph 
with the vertex set V, the edge set E ⊂ V2 , a single source 
sc ∈ V  and a single sink si ∈ V  . G is called series-parallel 
(SP), if one of the following three statements is true: 

1. G is an elementary series-parallel graph with 
V = {sc, si} ; E = {(sc, si)}

2. G is a parallel composition of two series-parallel graphs 
G1 ∶= (V1,E1) , G2 ∶= (V2,E2) : 

scj and sij are sources and sinks of Gj ; j = 1, 2.
3. G is a series composition of two series-parallel graphs: 

(1)
V ∶= V1 ∪ V2

E ∶= E1 ∪ E2

(2)

sc ∶= sc1 = sc2

si ∶= si1 = si2

V1 ∩ V2 = {sc, si}

(3)
V ∶= V1 ∪ V2

E ∶= E1 ∪ E2

(4)

sc ∶= sc1

si ∶= si2

si1 = sc2

Any directed graph, which does not fulfill the condi-
tions above is referred to as a non-series-parallel graph. 
Fig. 10a shows an example of a series-parallel graph, and 
Fig. 10b shows an example without the series-parallel 
property.

The hierarchical relations are stored in a binary decom-
position tree, as shown in Fig. 11 for the running example, 
where the vertices corresponding to the multiplexers are 
located higher in the hierarchy than the vertices in their 
reconvergence regions. The leaves of the decomposition 
tree represent the scan primitives, while the intermediate 
vertices define, whether the subgraphs are connected in 
parallel, as shown with the green “P” vertices in Fig. 11, 
or in series, as shown with the blue “S” vertices.

Example: Figure 11 shows a binary decomposition 
tree for the graph from Fig. 6. The tree is constructed 
bottom-up. First, the vertices s1 and s2 are connected in 
parallel via the vertex m1 , as shown with the “P/m1 ” vertex 
in Fig. 11. Next, this sub-RSN is connected in series with 
the vertex cs1 and then with the vertex cs2 . The same logic 
is applied to generate the remainder of the tree. The tree 
generation continues until the vertex modeling the configu-
ration bit of the SIB is connected in series, as shown with 
the top-level “S” vertex of Fig. 11.

In the following, we first present the initial testabil-
ity analysis and resynthesis for the case of series-paral-
lel RSNs. The developed approach processes large RSN 
designs in a scalable way. Finally, we show how can the 
developed methods be applied to arbitrary RSNs.

a)

b)

Fig. 10  Series-parallel property examples a) Series-parallel graph b) 
Non-series-parallel graph
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6.3  Testability Analysis of Series‑Parallel RSNs

In this section, a divide-and-conquer approach is formulated 
to process the series-parallel graph of an RSN in a bottom-
up manner. The analysis starts with elementary graph struc-
tures, such as parallel and series connections between the 
vertices of the RSN graph.

For the vertices connected in parallel, the testability con-
cept from Section 6.1 is applied. The testability of the ver-
tices connected in series does not depend on one another 
and thereby can be considered independently. As soon as 
the smaller subgraphs are processed, the analysis abstracts 
each such subgraph into a single edge. The computation 
then proceeds with the analysis of bigger subgraphs until 
the whole RSN graph is processed. The remainder of this 
subsection presents the details of the testability analysis 
implementation.

Let the set pathsj be the set of paths through a subgraph 
Gj , where each path pathl has a length pathLenl and is acti-
vated if the path activation conditions condsl are satisfied. 
The set Lj contains all the path lengths through the sub-
graph. For two subgraphs G1 and G2 , the following cases 
are considered:

• Series composition:

For two serially-connected subgraphs, the set of path lengths 
through the resulting graph G includes all the possible com-
binations of the sums of the paths through the individual 
subgraphs.

At the same time, the conditions for activating the partial 
paths should not be contradicting:

A fault f in G1 , which is detectable by an altered path length, 
leads to a changed length of at least one path path1 through 
G1:

where pathLenf
1
 is the length of a faulty path, � is the relative 

change to the path length compared to the fault-free case, 
which arises due to a fault f.

Given the single fault assumption, the subgraph G2 is 
fault-free, and any path through G, which includes an erro-
neously activated partial path through G1 , also differs from 
a fault-free path by the value of �:

As a result, the fault f is detectable in G by an altered path 
length.

• Parallel composition:

For two subgraphs connected in parallel, the set of path 
lengths includes the lengths of the paths, which traverse one 
of the subgraphs:

The sets of path lengths should not be intersecting:

If the intersection is not empty, it indicates a problematic 
spot, meaning that the fault is undetectable by an altered 
path length. For all paths path1 and path2 through G, such 
that path2 is single fault reachable from path1 or vice versa, 
the information about the differences between the corre-
sponding path lengths is saved.

The paths through an RSN are analyzed recursively with 
a binary decomposition tree. Each time, the computation 
considers a series or a parallel composition of subgraphs. 
The initial computation starts with the leftmost leaf of the 
tree. The vertices of the tree are traversed in the order of the 
Reverse Polish notation.

After the analysis is completed for the subgraph, it is 
abstracted to a single vertex of the binary decomposition 
tree. All possible path lengths through the subgraph are used 
for the annotation of this vertex. The computation continues 
with the next low-level subgraph until all low-level graphs 

(5)
L ∶= {pathLen1+pathLen2|

pathLen1 ∈ L1, pathLen2 ∈ L2}

(6)cond(path) ∶= cond(path1) ∧ cond(path2)

(7)pathLen
f

1
∶= pathLen1 + �

(8)pathLenf ∶= [pathLen1 + �] + pathLen2

(9)L ∶= L1 ∪ L2

(10)L1 ∩ L2 = �

S

sibP/mSIB

bypassS

P/m2

s3 bypass

cs2

P/m1

s1 s2

cs1

S

S

Fig. 11  Binary decomposition tree for the graph in Fig. 6
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are processed and then proceeds to a higher level, until the 
whole RSN is analyzed.

If all the target faults are detectable by an altered path 
length, then the RSN is already testable. Then the testability-
enhancing resynthesis is not needed for this RSN. Other-
wise, if the RSN is not testable, the information about the 
control primitives with undetectable faults is saved and used 
for resynthesis. The saved information also includes the pos-
sible differences of the partial path lengths.

Example: Given the decomposition tree from Fig. 11, the 
computation starts at the configuration segment cs1 . The tree 
is traversed following the Reverse Polish notation until the 
first parallel composition vertex is found. First, the subgraph 
consisting of the vertices P∕m1 , s1 and s2 is analyzed, and 
possible path lengths are used for vertex annotation. The 
computation continues with analyzing the subgraph con-
sisting of the vertices P∕m2 , s3 and s4 . As soon as all low-
level subgraphs are analyzed, the higher-level subnetwork 
through the vertex P∕mSIB is analyzed.

6.4  Testability‑enhancing Resynthesis

For the resynthesis of series-parallel RSNs, the following 
cases are considered for the subgraphs G1 and G2:

• Series Composition: A fault in G1 only affects the path 
lengths through this subgraph, and does not change the 
path length through the second subgraph G2 , and vice 
versa. Therefore, it is not required to consider the sub-
graphs simultaneously.

• Parallel Composition: The lengths of the paths through 
the 0-input of the multiplexer mi must be distinct 
from the lengths of the paths through the 1-input. Let 
Diff = {l0 − l1|l0, l1 path length through 0, 1 input } and 
m = min{|c||c ∉ Diff } . If m = 0 , the paths through the 
different multiplexer inputs are not “single fault reach-
able”. If m ∉ Diff  , we can insert m flipflops in front of 
the 1-inputs of the multiplexers which leads to distinct 
path lengths. If −m ∉ Diff  , we can put m scan cells in 
front of the 0-input, but not at the 1-input.

Example: Consider the example from Fig. 9 again. To 
ensure that a fault at m1 is detected by an altered path length, 
two scan cells are added at the lower scan-input of the mul-
tiplexer mi , as shown in Fig. 12.

The resynthesis algorithm is applied recursively by tra-
versing a binary decomposition tree in the same order as 
during the testability analysis. After the testability in a sub-
graph is enhanced, this subgraph is abstracted to a single 
vertex. Each vertex is annotated with the possible lengths 
of the path considering the newly added cells. After all the 
lower-level subgraphs are processed, the computation goes 
one level higher in the binary decomposition tree, until the 

whole RSN is processed. In the resulting RSN, all the single 
faults affecting the RSN control primitives are detectable by 
a changed path length.

6.5  Application for Arbitrary RSN Structures

The method presented above is only applicable if an RSN 
can be represented by a series-parallel graph. The method 
presented in Section  6.5.1 below allows us to identify 
whether the initial graph is series-parallel. Although most 
RSNs graphs are series-parallel, for some RSNs, additional 
steps might be required to obtain a functionally equivalent 
series-parallel graph, as shown in Section 6.5.2. After an 
equivalent series-parallel representation of a non-series-
parallel RSN graph is constructed, this generated represen-
tation is used for performing the testability analysis and the 
automated resynthesis presented above.

6.5.1  Validation of the Series‑Parallel Property

To check whether a specific RSN graph is series-parallel, a 
few simple checks are applied first. Then a reduction algo-
rithm based on [33] is used:

• Initial Checks First, the reachability of all scan primi-
tives is computed. If the initial RSN graph has multiple 
sinks or sources, auxiliary vertices are added to the RSN 
graph and serve as a pseudo-primary sink and source 
correspondingly. The acyclicity of the initial graph is 
validated, since a graph, which contains cycles, is non-
series-parallel by definition. If the initial RSN graph con-
tains cycles, an acyclic representation is constructed by 
removing a few edges in a similar way as it is well-known 
in partial scan design [20].

0

1

0

1

0

1

m1

Fig. 12  Resynthesis example: The testability issue from Fig.  9 is 
resolved by inserting two scan cells
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• Main Flow The main flow of the check follows the well-
known reduction algorithm from [33]. If two vertices v1 
and v2 of the RSN graph are connected in series or in par-
allel, they are merged into a single vertex. The vertices 
are merged until it is not possible to merge any pair of 
vertices. For a series-parallel graph, after the algorithm 
above is applied, the whole RSN graph is represented 
with a graph, which consists of a single vertex. If such 
a representation is not possible, the graph is non-series-
parallel and has to be further processed as described 
below. The Church-Rosser property of the applied reduc-
tion system [7] allows to apply reductions in an arbitrary 
order to validate the series-parallel property.

6.5.2  Transformation into a Series‑Parallel Graph

To build a series-parallel equivalent representation of a non-
series-parallel graph region, a minimized number of addi-
tional virtual vertices is added into the initial RSN graph 
[17]. Since the virtual changes are reverted in the resynthesis 
phase, additional hardware overhead is not needed to trans-
form the RSN graph into a series-parallel representation.

In the RSN graph, the fanout stems are identified, which 
prevent the RSN graph from being series-parallel. Any 
fanout stem fviol in the stem region of another fanout stem 
finit , which has either the same closing reconvergence gate 
or its closing reconvergence is reachable from the closing 
reconvergence of the stem finit , is referred to as a viola-
tion spot. To resolve the violation, the vertices, which are 
located between the fanout stem finit and the violation spot 
fviol , are duplicated and are placed after the violation stem 
in the graph representation. The violation spots are resolved 
sequentially until a series-parallel representation of the RSN 
graph is obtained. The violation spots and their relative pro-
cessing order, are selected in a topological order of the RSN 
graph, which starts at the scan input port. The fanout stems 
located closer to a primary scan-in vertex are processed first, 
followed by the fanout stems in their stem region. Each time, 
the computation either goes deeper in the hierarchy or moves 
forward to a succeeding fanout stem.

Example: In Fig. 13, a connection from the vertex f3 to 
the vertices m2 and m3 makes the RSN graph non-series-
parallel. If it would be simplified as much as possible, a two 
vertex representation will not be achieved.

The decomposition tree for the resulting structure is 
shown in Fig. 14. In Fig. 15, an NSP region is transformed 
into a series-parallel form by duplicating the vertex s3 and 
the fan-out stem f3.These changes are virtual, are only 
used to achieve a scalable computation flow and will be 
reverted after the resynthesis, which works as follows.

Assume that in Fig. 13 the scan segments corresponding 
to the vertices s4 and s3 have the same length. Then the dupli-
cated vertex s3c in the series-parallel representation in Fig. 15 
would also have the same length as s4 . As a result, the fault 
affecting the vertex m2 will be undetectable by an altered path 
length. To resolve the testability problem, an additional scan 
cell will be added to the RSN. This change is not virtual and 
is not reverted, since it enhances the testability of the network.

The resulting binary decomposition tree, as shown in 
Fig. 16, only contains parallel and series compositions, as 
well as the leaf nodes, which correspond to the individual 
scan segments. It can be processed to enhance the test-
ability, as discussed above.

7  Test of Scan Segments

The method presented above ensures that the faults affecting 
the control primitives are testable. In this section, the test 
of scan segments is considered. In contrast to the existing 

cs2

s3

m2 cs3 m3f2

f3

s4cs1 m1f1

s1

s2

Fig. 13  Non series-parallel graph
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S

Fig. 14  Binary decomposition tree for the non-series-parallel RSN 
graph in Fig. 13
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Fig. 15  Transformed subgraph of the non-series-parallel graph from 
Fig. 13
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schemes in Section 3, the test of scan segments is applied 
concurrently with instrument access. A compact built-in 
self-test structure is added to the RSN and is used to gener-
ate a short test presequence. This presequence is augmented 
with a workload sequence, shifted into the tested RSN, and 
is used to check the shift logic of the scan segments in the 
currently configured scan path, as shown in Section 7.1. An 
example implementation of a concurrent BIST structure for 
RSNs is shown in Section 7.2.

7.1  Test Pattern Generation

Each complete test sequence (Fig. 17a) includes a workload 
sequence W and a flush test sequence T. Workload sequences 
access RSNs and are generated as further discussed in Sec-
tion 8.2. Flush test sequences are used to test the shift logic 
of the scan segments on the currently activated scan path. 
In general, a flush test sequence is symmetric with respect 
to inversion. This means that if a sequence T =< tn−1, ...t0 > 
is a flush test for the activated scan path, then its inversion 
T =< tn−1, ...t0 > is one as well.

For testing stuck-at faults in a scan path, the applica-
ble sequences include a sequence “00110” and its inver-
sion “11001”. For different fault models, other flush test 
sequences can be used. The flush test sequences can 
be either provided by automated test equipment (ATE) 
together with the workload sequences or generated on-site, 
as discussed below in Section 7.2.

Fig. 17b represents the bit sharing mechanism, which 
is used for merging the workload sequence with the 
flush presequence. There, the last bit w0 of the workload 
sequence W =< wm−1, ...w0 > is used to decide, which of 
the tail flush test sequences (T or T  ) overlaps with the head 
of W by at least one bit, and there is no need to repeat these 
overlapping bits in T or T  . For stuck-at faults, the worst-
case reduction in the test application time comprises 20% 
of a five-bit flush test sequence, if a constant overlap of 
the last bit is considered.

7.2  Test Pattern Application

ROSTI (RSN Online/Offline Self-Test Infrastructure) is 
a self-test structure for RSNs to generate test sequences 
and attach them to the workload sequences. Its structure 
is shown in Fig. 18 and includes a test sequence genera-
tor (TSG), an acceptor, and a controller. ROSTI is placed 
between the RSN and the TAP controller.

Data is propagated from a TAP controller through 
ROSTI to the RSN, and back towards the TAP controller. 
ROSTI operates as follows:

• After the capture signal and with the shift signal, a 
flush test sequence is generated in the test sequence 
generator, and it is inserted in front of the workload 
sequence.

• The flush sequence and the workload sequence are 
shifted towards the scan input of the RSN and are further 
propagated through the activated path.

• If the path is not corrupted, the bits of the presequence 
are shifted out unchanged, and the workload sequence 
is at the target instrument. If the path is faulty, the Viol 
violation signal indicates a defect in the RSN.

The idea behind ROSTI is valid for a wide range of fault 
models. To extend ROSTI for a fault model of interest, the 
flush test sequence needs to be modified. The same applies 

P/m3
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s3c s4

cs2

P/m1

s1 s2

cs1

S

S

cs3

S

Fig. 16  Binary decomposition tree for a series-parallel representation 
of the non-series-parallel graph from Fig. 13
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Fig. 17  Test sequence construction a) workload sequence is aug-
mented with a flush sequence b) bit sharing mechanism
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to the exact implementation of the test sequence generation 
and acceptor blocks. ROSTI can be implemented as a simple 
hardware block as presented below. In the following, the 
hardware implementation is explained in a block-by-block 
manner including three major parts: 

1. Test Sequence Generator (TSG) The TSG is used to gen-
erate flush test sequences (“01100” or “10011” for stuck-
at-faults) based on the first bit of a workload sequence, 
and to merge them without adding any hold cycle. The 
TSG operates as follows: 

(a) Reuse the first bit: The first bit of the workload 
sequence is reused as the first bit of the generated 
flush test sequence.

(b) Generate and apply the flush test sequence: The 
rest of the flush sequence are generated in a four-
bit shift register.

(c) Apply the workload sequence: As soon as the 
flush test sequence is generated and shifted into 
the RSN, the workload sequence starts to being 
shifted into the RSN for the whole length of the 
workload sequence.

2. Acceptor The acceptor is used to compare the shifted-out 
results with the expected ones, and to issue an internal 
violation signal if these values do not match. As soon 
as the workload sequence is shifted into the acceptor, 
its first bit is recorded into a flip-flop of the acceptor. It 
allows deciding which flush test sequence (“01100” or 
“10011”) to use in a given test sequence. The acceptor 
is constructed as a finite state machine, which consists 
of a few flip-flops and a few logic gates. The presented 

acceptor is independent of the length of the ASP. Its 
hardware costs depend only on the length of the test 
sequence since the acceptor is controlled by the avail-
able global shift and update signals.

3. Controller The major task of the controller is to generate 
the violation signal (Viol) with the correct timing. When 
a violation occurs, i.e. if an RSN test fails and the accep-
tor issues the internal violation signal, ROSTI raises the 
violation signal to the system. This signal is triggered by 
the rising transition of the clock signal after the removal 
of the shift signal and it holds for one cycle. The control-
ler also is used to propagate the first bit of the workload 
test sequence from the test sequence generator toward 
the acceptor to allow correct test response comparison.

The P1687.1 standard proposal [30], which is also dis-
cussed in [8], suggests using access mechanisms rather than 
just a JTAG Test Access Port (TAP) controller to access an 
RSN. [21] presents a hardware module to perform online 
retargeting block which is used as a part of an access mecha-
nism. In [27], a scan encryption module is implemented as a 
part of a custom access mechanism. TIn the paper at hand, 
the developed self-test block represents an access interface 
together with a TAP controller and an access port, which 
enables RSN self-test and is also in line with the P1687.1 
standard proposal.

8  Test Integration

This section discusses the integration of the presented DfT 
scheme into the RSN-under-test. First, a summary of the 
necessary changes to the RSN structure is presented fol-
lowed by some details about test sequence construction for 
the enhanced RSN. Finally, the application of the developed 
DfT scheme throughout the lifetime is discussed.

8.1  Changes to the RSN Structure

The developed DfT scheme for scan interfaces, control primi-
tives, and segments is integrated during the design phase. A 
summary about the testability enhancements is provided below. 

1. Scan Interface Observability Enhancement (see 
Section 5): The design-for-test scheme is integrated to 
increase the observability of the update registers. As a 
result, the faults in the capture- and update-circuity of 
the scan segments become detectable, and the interfaces 
to the instruments (including the interface of s3 in Fig. 7) 
can be tested. The reset functionality of the update flip-
flops is now also testable.

2. Control Primitives Testability Enhancement (see Sec-
tion 6): The RSN structure is analyzed to check whether 
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any single fault affecting the RSN control primitives is 
undetectable by a changed path length. It implies, that 
if the path length is correct, then the correct path is acti-
vated through the RSN. Thereby it is ensured that the 
registers of the correct instruments are accessed. In our 
example, fault detection is ensured by adding a single 
scan cell c1 before the multiplexer m1.

3. Scan Segment Test Enhancement (see Section 7): The 
described compact BIST hardware is integrated into the 
RSN. It allows testing the shift logic of the scan seg-
ments concurrently. A fault affecting a scan segment is 
detected with the help of a flush test presequence, as 
soon as a path through this segment is activated.

In Fig. 19, the example from Fig. 7 is enhanced with the 
required DfT changes above. In the resulting RSN, all the 
testability issues are resolved.

The developed scheme is intended to support the offline 
test of RSNs. It not only tests the control primitives and the 
interfaces to the instruments but also examines the shift logic 
of those scan segments which are included in the currently 
configured Active Scan Path. Although an Automated Test 
Equipment (ATE) can also handle testing the scan segments, 
it could be costly since it requires an extra step. ROSTI auto-
matically generates and compares flush sequences, and, in 
the presence of ROSTI, an ATE will only need to examine 
one violation signal. After the presented DfT scheme is inte-
grated, ROSTI can be reused to test the shift logic of the 
scan segments on the activated scan path online concurrently 
to the functional workload. If a fault is detected by ROSTI, 
the information about it can be further reused to support 
the operation of fault-tolerant or error-resilient networks [2].

8.2  Test Sequence Construction

As soon as the testability flaws in the initial RSNs are iden-
tified and resolved, a sequence of efficient test patterns can 
be generated and applied to the RSNs. To test specific scan 

segments, it is required to include them into an activated 
scan path. Test compression and scheduling algorithms are 
beyond of the scope of this paper. A set of test sequences 
can be generated automatically to cover the whole RSN 
structure with a minimized test application time, as in [1, 
5, 12].

To keep this paper self-contained, a test sequence genera-
tion process is briefly summarized below. Unlike the con-
ventional structural test, the test of RSNs requires multiple 
reconfigurations. Therefore, workload sequences generated 
by a TSG are of two types:

• Access Sequences configure a desired path through the 
RSN by switching scan multiplexers, and opening and 
closing SIBs. Those sequences are generated by using 
a Test Sequence Generation algorithm. In this work, the 
TSG is based on the retargeting engine, which has been 
first published in [1]. It ensures that the scan primitives 
of an RSN are covered by activating a minimized number 
of activated scan paths.

• Workload Test Sequences test the scan primitives which 
are included in the activated path. They are usually based 
on flush test sequences and are applied after a desired 
active scan path is configured.

Each workload test sequence may include an instrument 
test sequence W, which is used for testing the interface to 
instruments, and a flush test sequence T, which is responsi-
ble for testing the shift logic of the scan segments on the cur-
rently activated scan path. After the test is applied, the flush 
test sequence will be shifted-out unchanged in the fault-free 
case. The bits of the workload sequence would contain the 
test results for the scan interfaces. The length of the shifted-
out sequence is used as an indicator for single faults affecting 
the RSN control primitives. The same applies to the single 
flip-flop transparency faults in the shift registers, since they 
reduce the length of the activated path by one shift cycle. 
Similarly, an access sequence contains a sequence to retarget 
an RSN and a flush test sequence T to test the shift logic on 
the path.

9  Experimental Results

The complete design-for-test method is implemented in the 
framework eda1687, which has first been presented in [1]. It 
uses Instrument Connectivity Language (ICL) descriptions 
of RSNs as input for test generation and generates Hard-
ware Description Language (HDL) descriptions for gate-
level synthesis.

The experiments have been conducted on a CPU Intel(R) 
Xeon(R) W-2125 CPU at 4.00GHz with 132 GB of main mem-
ory. The remainder of the section summarizes the experiments 
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for the individual DfT enhancements. Next, the results are 
provided for the complete DfT method, which considers test 
integration. In the experiments, stuck-at faults affecting scan 
interfaces, scan segments, and scan multiplexers are considered.

9.1  Scan Interfaces

A gate-level description of a scan segment is enhanced. A 
feedback line is injected to improve the testability of a scan 
interface and a reset line. Enhanced scan segments are used 
further as scan primitives for all RSN benchmarks during 
test sequence generation and synthesis.

9.2  Control Primitives

For any RSN design, the developed DfT method ensures that 
the RSN is testable for single faults in the control primitives. 
If all faults affecting the control primitives are detectable 
by an altered path length, the testability of the RSN is algo-
rithmically proven. The ability to prove this property for 
any arbitrary RSN structure eliminates the danger of silent 
data corruption for single faults affecting the RSN control 
primitives and is thereby one of the major contributions of 
this article. To ensure fault detection, the lengths of a minor 
number of scan chains may be slightly increased.

The scalability and the effectiveness of the developed 
method have been proven using the benchmarks from the 
ITC’2016 [31] and the DATE’2019 benchmark sets [28]. As 
shown in Table 1, for the benchmarks TreeBalanced, Min-
gle, BasicSCB from the ITC’2016 [31]set, the testability 
analysis identified single stuck-at faults affecting the RSN 
control primitives, which are undetectable by an altered path 
length (Column 3). The total number of faults is reported 
in Column 2. To ensure fault detection, a minor number of 
scan cells (Column 5), has been added to the initial RSN 
structure. This number is negligible compared to the total 
number of faults in the benchmark (Column 4). Thanks to 
the scalable algorithm, the runtime is acceptable even for the 
most time-consuming benchmarks (Column 6).

9.3  Scan Segments

To test scan segments, an RTL description of ROSTI has 
been developed. ROSTI requires four flip-flops for the test 

sequence generator and another four bits for the acceptor. 
For the ROSTI controller, eight flip-flops are used. The 
architecture of ROSTI is independent of the RSN and the 
number of the required flip-flops is also fixed for any RSN 
under test. To test ROSTI itself, a commercial tool has been 
used to perform test pattern generation with a full-sequential 
ATPG setting. It achieves a fault coverage of 96.84% with 
16 patterns and 278 test cycles.

The developed DfT enhancements for scan interfaces and 
scan segments are independent of the RSN. The gate-level 
fault coverage for stuck-at-faults is determined with a com-
mercial sequential stuck-at-fault simulator.

9.4  Complete DfT Method

In this section, the complete developed DfT approach is 
evaluated. To evaluate the testability-enhancing resynthesis 
for control primitives on a wider benchmark set, while being 
able to assess the DfT enhancements for scan interfaces and 
shift logic, the benchmarks have been constructed with the 
help of the ITC’02 SoC (System-on-a-Chip) benchmark set 
[25]. The characteristics of the benchmarks are presented in 
Table 2. In Column 2 the number of hierarchical levels, and 
the number of scan multiplexers are given, followed by the 
number of scan segments in Column 4 and the number of 
scan cells in Column 5.

The experimental results for the developed scheme are 
shown in Table 3:

• Integration of the Design-for-Test Scheme:

Table 1  Control Primitives 
Testability Enhancement

(1) Design (2) # Total Faults (3) # Undetected 
Faults

(4) # Total Cells (5) # Added 
Cells

(6) Runtime [s]

BasicSCB 40 8 176 4 1.0
Mingle 52 16 270 8 1.2
TreeBal-

anced
200 12 5,581 6 2.1

Table 2  RSN Benchmark circuits

Design #Hier. #Scan #Scan #Scan #ASPs
lvl muxes segs cells

u226 2 59 99 1 457 615
d281 2 67 117 3 880 774
d695 2 178 335 8 407 2,385
h953 2 63 109 5 649 702
g1023 2 94 159 5 400 1,005
f2126 2 45 81 15 834 540
q12710 2 30 51 26 188 327
p34392 3 142 245 23 261 1,815
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– Scan Interfaces: Scan registers are enhanced by 
injecting a feedback line.

– Control Primitives: The testability for single stuck-at 
faults in the control primitives is proven for all the 
benchmarks. As detailed in Section 8.4, for general 
RSNs the testability property is not guaranteed. The 
total number of faults affecting the control primitives 
is given in Column 2. The runtime is provided in 
Column 3 and is negligible for all the benchmarks.

– Scan Segments: ROSTI is integrated to generate self-
test for scan segments.

• Simulation of Test Sequences: The test cost in terms of 
the number of clock cycles for different test sequence sets 
is given in Columns 4-6. The details about the generated 
test sequence sets are provided below:

– Scan Interfaces and Control Primitives: Access 
sequences configure a desired active scan path. They 
are generated as in [1] and cover all the scan segments 
and all the branches of scan multiplexers. Since any 
active scan path which includes a faulty control primi-
tive is guaranteed to have a different length compared 
to a fault-free path, faults in control primitives are 
detectable. Workload test sequences are generated to 
test scan interfaces in the enhanced RSN as detailed 
in Section 5. The corresponding test cost in terms of 
clock cycles is provided in Column 4.

– Scan Segments: To test those scan segments, which 
are located on the configured path, a test sequence 
is constructed of a workload test sequence to config-
ure a desired path and a flush test sequence. ROSTI 
generates flush test sequences to test the shift logic 
of the selected scan segments. The test cost is given 
in Column 5.

Area overhead compared to the underlying RSN is given 
in Column 8 and is negligible. A commercial sequential 

stuck-at-fault simulator is used to determine the gate-level 
fault coverage. The fault coverage for RSN benchmarks with 
feedback lines in the scan segments is given in Column 9. 
Fault coverage is above 92.60% for nine benchmark circuits, 
and is 94.72% on average. To mitigate the coverage gap 
above, it is necessary to test the interfaces to instruments 
and logic. If scan segments are enhanced by integrating a 
feedback line and the workload patterns are used to test the 
scan interface, a complete fault coverage is obtained for all 
the benchmarks.

In the resulting RSNs, faults in scan interfaces, control 
primitives, and scan segments are detectable. The scalability 
and effectiveness of the developed DfT scheme have been 
shown for a wide range of benchmarks.

10  Conclusion

In this paper, the first design-for-test scheme is presented, 
which allows for complete covering all the stuck-at faults in 
a Reconfigurable Scan Network. It significantly enhances 
the RSN testability, such that faults affecting the interfaces 
to the instruments, the control primitives, and the scan seg-
ments can be tested. Each test sequence may cover multiple 
faults, which allows for significantly optimizing the size of 
the test sequence set.

The presented scheme is flexible for the fault model, has 
a low hardware overhead, and does not require changing the 
RSN topology rules. Therefore, it is compliant with the exist-
ing test methods for RSNs and is supposed to be used com-
plementary to these schemes. The scheme is also flexible with 
respect to the access mechanisms, and can be controlled by 
the workload test patterns from an ATE, from the cloud, or 
even stored on-chip internally. The experimental results show 
that the presented scheme generates test sequences with com-
plete fault coverage and reduced test cost. It is scalable with 
the increasing size and complexity of RSNs.

Table 3  Experimental results

Control primitives Runtime Test Cost [#cycles] Overhead[%] Coverage [%]

(1)Design (2) #faults (3) [s] (4) Inter. (5) Segs. (6) Sum (7) Our (8) with respect 
to the RSN

(9) with feedback

u226 118 0.2 15,536 22,647 38,183 17,996 0.69 93.65
d281 134 0.2 32,863 34,113 66,976 35,959 0.27 95.51
d695 356 0.3 84,026 116,234 200,260 93,566 0.19 92.17
h953 126 0.2 44,296 38,247 82,543 47,104 0.18 96.32
g1023 188 0.3 46,443 50,418 96,861 50,463 0.20 95.66
f2126 90 0.1 114,563 75,269 189,832 116,723 0.06 95.11
q12710 60 1.0 184,971 109,904 294,875 192,231 0.03 95.43
p34392 288 2.2 181,591 156,403 337,994 188.851 0.06 94.70
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