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Abstract In this paper, we present a complete direct approach to nonlinear modeling of thin plates, which are
made of incompressible dielectric elastomers. In particular, the dielectric elastomers are assumed to exhibit
a neo-Hookean elastic behavior, and the effect of electrostatic forces is incorporated by the purely electrical
contribution to the augmented Helmholtz free energy. Our approach does not involve any extraction-type
procedure from the three-dimensional energy to derive the plate augmented free energy, but directly postulates
the form of this energy for the structural plate problem treated in this paper. Results computed within the
framework of this novel approach are compared to results available in the literature as well as to our own
three-dimensional finite element solutions. A very good agreement is found.

1 Introduction

The present paper is dedicated to the memory of Vladimir Vasilyevich Eliseev and his pioneering work
on modern versions of the linear and nonlinear theories for thin elastic rods, plates and shells, for which he
developed geometrically nonlinear equations in a compact tensorial form based on the principle of virtual work
applied to material lines and surfaces. His most essential contributions to the topic of this paper can be found
in [1–6]. The present paper is based upon Eliseev’s work on modeling of thin plates and shells as material
surfaces. In particular, we extend the direct approach for elastic shells he presented in [6] and that was further
developed by Vetyukov [7] to the case of electro-active plates modeled as electro-elastic material surfaces.

The general theory of elastic dielectrics, of which dielectric elastomers are a sub-class, dates back to
Toupin [8], and it has been further developed in, e.g., [9–12]. Elastic dielectrics belong to the class of so-called
smart or intelligent materials, with piezoelectric materials and electro-active polymers as prominent examples.
Concerning the latter, we refer to, e.g., [13] or [14]. A practically important sub-class of electro-active polymers
are dielectric elastomers, which are rubber-type materials that exhibit a polarization when an external electric
field is applied at electrodes mounted to its top and bottom surfaces. By this polarization, the electrodes get
attracted due to the corresponding electrostatic forces, such that the resulting squeezing yields large in-plane
deformations. This property is used for actuation, see, e.g., [15–19] for a survey on soft robotics, as well as
for sensing applications. This makes dielectric elastomers a promising technology, posing a soft alternative
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to piezoelectric ceramics. For three-dimensional Eulerian and Lagrangian formulations, we refer to [20,21].
Given the typical applications, devices made of dielectric elastomers are mostly put into practice in the form
of thin films, such that a structural mechanics approach is well suited, which motivates our modeling approach
for dielectric elastomer plates as electro-elastic material surfaces with mechanical and electrical degrees of
freedom. In general problems of dielectric elastomer actuators, numerical methods, such as the finite element
method, are applied implementing solid elements for general three-dimensional problems [21–24] or solid
shell elements to account for the typical thinness of the dielectric elastomer actuators, as developed in [25].
Within the three-dimensional modeling framework for dielectric elastomers, the works [26,27] are just a few
examples of the exhaustive literature. Multiple extensions—e.g., to electro-viscoelasticity treated in [28] or
electrostriction in [29]—have been reported as well.

Concerning the modeling of elastic plates and shells in a geometrically nonlinear framework, we refer the
reader to the above listed papers by Eliseev as well as to [30–32]. Shell-type finite element models for electro-
active polymers were investigated in [33], electro-elastic coupling of dielectric elastomers in combination with
studies on diverse failure phenomena, e.g., pull-in instability and the formation of wrinkles, was addressed
in [34], and further contributions to these topics can be found in [35,36]. With respect to our own contributions
to the field, we only mention recent works related to modeling of electro-active plates and shells as electro-
elastic material surfaces. In [37] we have studied piezoelectric shells, and in [38] dielectric elastomer plates
were investigated. Two-dimensional constitutive relations for the plate were derived by numerical integration
of a three-dimensional augmented free energy through the plate thickness imposing a plane stress assumption
and an a priori assumption concerning the distribution of the strain through the thickness of the plate in [38];
such an approach has also been used in [39] for hyperelastic shells.

The present paper is structured as follows. After a brief summary of the three-dimensional theory of
dielectric elastomers, the concept of electro-elastic plates as material surfaces is developed in detail. We start
with the material independent equations and focus on the direct derivation of a plate augmented free energy for
the electro-elastic material surface afterward. This derivation is based on the polar decomposition of the surface
deformation gradient tensor, which enables an additive decomposition of the augmented free energy into a
membrane part, a bending part, and an electrical part. The latter is shown to account for the electrostatic forces
responsible for the actuation behavior of the plate. A numerical implementation completes the theoretical part
of the paper. Results computed within the framework of this novel approach are compared to results available
in the literature as well as to our own three-dimensional finite element solutions. A very good agreement is
found.

2 Three-dimensional formulation

This Section presents a brief introduction to the three-dimensional theory of electro-elasticity; for more detailed
presentations we refer to [20,21,38]. We start with the energy balance

(

Sme
3 + S

pol
3

)

· ·
1

2
Ċ3 − P3 · Ė3 − ρ0Ψ̇3 = 0, (1)

in which we have the Helmholtz free energy per unit mass Ψ3 = Ψ3(C3, E3) with the right Cauchy–Green
tensor C3 = FT

3 ·F3, the material electric field vector E3, and the mass density ρ0 in the reference configuration.
Sme

3 and P3 are the—in general non-symmetric—mechanical second Piola–Kirchhoff stress tensor and the
material polarization vector. The notions of material electric field vector and material polarization vector
refer to the transformation of the corresponding spatial entities e3 and p3 by means of E3 = FT

3 · e3 and

P3 = J3F−1
3 · p3, see, e.g., [20] for details. Moreover, the deformation gradient tensors F3 = (∇3r3)

T and
J3 = detF3 were introduced with the invariant differential operator ∇3 in the reference configuration and the

position vector r3 in the actual configuration. S
pol
3 = P3E3 · C−1

3 is the so-called second Piola–Kirchhoff

polarization stress tensor, which is not symmetric in general, whereas the symmetric tensor SS
3 = Sme

3 + S
pol
3

is denoted as the symmetric second Piola–Kirchhoff stress tensor. Classical arguments from thermodynamics
for reversible electro-elasticity render the constitutive relations as

SS
3 = 2ρ0

∂Ψ3

∂C3
, P3 = −ρ0

∂Ψ3

∂E3
. (2)
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In nonlinear electro-elasticity, the Helmholtz free energy is augmented with an electrical term accounting for
the contribution to the free energy stemming from the permittivity in vacuum,

Ω3 = ρ0Ψ3 −
1

2
ε0 J3E3 ·

(

C−1
3 · E3

)

= ρ0Ψ3 + ρ0Ψ
aug
3 , (3)

resulting in

(

Sme
3 + S

pol
3 + SM

3

)

· ·
1

2
Ċ3 −

(

P3 + D
ε
3

)

· Ė3 − Ω̇3 = 0. (4)

Ω3 is the augmented free energy per unit volume in the reference configuration, and ε0 denotes the permittivity
in vacuum. In Eq. (4) the symmetric Maxwell stress tensor SM

3 ,

SM
3 = 2ρ0

∂Ψ
aug
3

∂C3
= ε0 J3

[

C−1
3 · E3E3 −

1

2
I3

(

E3E3 · · C−1
3

)
]

· C−1
3 , (5)

and the contribution D
ε
3,

D
ε
3 = −ρ0

∂Ψ
aug
3

∂E3
= ε0 J3C−1

3 · E3, (6)

from the permittivity in vacuum to the material electric displacement vector D3 have been introduced. More-
over, the material electric displacement vector D3 = P3 + D

ε
3 and the total second Piola–Kirchhoff stress

tensor S3 = Sme
3 + S

pol
3 + SM

3 obey the constitutive relations

S3 = 2
∂Ω3

∂C3
, D3 = −

∂Ω3

∂E3
. (7)

The total stress tensor is the sum of the mechanical stress tensor Sme
3 , the polarization stress tensor S

pol
3 , and

the Maxwell stress tensor SM
3 ; the sum of the latter two is also denoted as the electrostatic stress tensor in the

literature, Ses
3 = S

pol
3 + SM

3 with the definition

Ses
3 = D3E3 · C−1

3 −
1

2
ε0 J3C−1

3

(

E3E3 · · C−1
3

)

. (8)

The total stress tensor and the material electric displacement vector enter the equilibrium conditions and the
Gauss law of electrostatics as well as the continuity conditions. We introduce the total nominal stress tensor
as N3 = S3 · FT

3 and note the relations

V0 : ∇3 · N3 + bme
3 = 0 , ∇3 · D3 = 0,

∂V0 : n3 · [[N3]] = tme
3 , n3 · [[D3]] = −σ3, (9)

with the volume V0 and surface ∂V0 with unit outer normal vector n3 in the reference configuration. bme
3

are mechanical body forces, tme
3 are mechanical surface tractions at the boundary, and σ3 stands for surface

charges; at internal surfaces tme
3 and σ3 vanish, and the corresponding jump conditions are continuity conditions

rather than boundary conditions. Ponderomotive body forces b
pon
3 can be computed from b

pon
3 = ∇3 · Nes

3 =
∇3 ·

(

Ses
3 · FT

3

)

; electric contributions to the surface tractions would result from the mechanical jump conditions.
Here, one should pay attention that the Maxwell stress tensor exists in vacuum as well and therefore renders
a purely electrical contribution to the otherwise mechanical surface tractions.

Equivalently, the set of governing equations may be cast into a variational principle in the form

δΣ3 = 0;

with: Σ3 =
∫

V0

(

Ω3(C3, E3) − bme
3 · r3

)

dV +
∫

∂V0

(σ3ϕ3 − t3 · r3) dS. (10)

Here, t3 accounts for the mechanical surface tractions tme
3 as well as for the contributions from the Maxwell

stress tensor in vacuum. ϕ3 is the electric potential, by means of which the material electric field vector is
defined as E3 = −∇3ϕ3.
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2.1 Constitutive modeling for isotropic dielectric elastomers

For isotropic dielectric elastomers, we assume the Helmholtz free energy as the sum of a purely mechanical
part depending only on C3 and an electrical part,

Ψ3 = Ψ me
3 (C3) + Ψ el

3 (C3, E3), (11)

which results in

SS
3 = Sme

3 + P3E3 · C−1
3 = 2ρ0

∂Ψ me
3

∂C3
+ 2ρ0

∂Ψ el
3

∂C3
, P3 = −ρ0

∂Ψ el
3

∂E3
. (12)

Accordingly, the material electric polarization is computed solely from the electrical part of the Helmholtz
free energy, which we introduce in analogy to the augmentation term as

ρ0Ψ
el
3 = −

1

2
J3ε0χ̃ (C3)E3 ·

(

C−1
3 · E3

)

, (13)

with a deformation dependent spatial susceptibility χ̃ (C3). In the simplest setting of a material, which remains

isotropic when strained, see [26], this dependency is χ̃ (C3) = χ J−1
3 with the constant material susceptibility

χ . In this case, the material polarization is

P3 = ε0χE3 · C−1
3 , (14)

such that the polarization stress is symmetric,

S
pol
3 = P3E3 · C−1

3 = ε0χC−1
3 · (E3E3) · C−1

3 = 2ρ0

∂Ψ el
3

∂C3
, (15)

and it can be computed solely from the electrical part of the Helmholtz free energy. Combining the electrical
part of the Helmholtz free energy with the augmentation part to a total electrical contribution to the augmented

free energy ρ0Ψ
el,tot
3 finds

ρ0Ψ
el,tot
3 = ρ0Ψ

el
3 + ρ0Ψ

aug
3 = −

1

2
εE3 ·

(

C−1
3 · E3

)

, (16)

with the permittivity ε = ε0(J3 + χ), from which the electrostatic stress is computed as

Ses
3 = S

pol
3 + SM

3 = 2ρ0

∂Ψ
el,tot
3

∂C3
. (17)

Finally, the mechanical second Piola–Kirchhoff stress tensor turns out to be symmetric,

Sme
3 = 2ρ0

∂Ψ me
3

∂C3
, (18)

and it can be computed from the mechanical part of the free energy only. The latter part of the free energy is
assumed as any isotropic hyperelastic strain energy function in the form

ρ0Ψ
me
3 (C3) = ρ0Ψ

me
3

(

IC3, I IC3, I I IC3

)

, (19)

in which IC3 = trC3, I IC3 = C3 · · C3 and I I IC3 = detC3 are the invariants of C3. In this paper, we will
focus on incompressible isotropic dielectric elastomers with J3 = 1. In this case, the total stress tensor and
the material electric displacement vector are

S3 = 2
∂Ω3

∂C3
+ pC−1

3 , D3 = −
∂Ω3

∂E3
, (20)

in which p is a Lagrange multiplier to account for the incompressibility condition. In particular, a simple incom-
pressible neo-Hookean material law will be considered in the numerical examples, for which the augmented
free energy with J3 = 1 is

Ω3 =
µ

2
(trC3 − 3) −

1

2
εE3 ·

(

C−1
3 · E3

)

(21)

with the permittivity ε = ε0(1 + χ) and the Lamé parameter µ as the only material parameters.
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3 Electro-elastic plates as material surfaces

In this Section, we discuss the governing equations of a thin plate modeled as a two-dimensional electro-elastic
material surface with mechanical and electrical degrees of freedom. For details concerning these equations,
we refer the reader to [37,38]. In particular, we consider the plate as a two-dimensional continuum with five
mechanical degrees of freedom, three translations and two rotations. This resembles the notion of a single
rigid director d with d · d = 1 attached to each particle of the plate, which results in a Reissner-type theory;
see [40]. Furthermore, we take the director to correspond to the unit normal vector of the material surface,
d = n; then, we obtain a Kirchhoff–Love theory, see [41]. Concerning the electrical degrees of freedom, we
use only the dominant one, i.e., the electric potential difference V .

3.1 Strain measures

The material surface is plane in its reference configuration, and it is denoted as reference surface. In its deformed
or actual configuration, the material surface is denoted as actual surface. The first metric tensor of the plane
reference surface A = I is the two-dimensional identity tensor, and the second metric tensor is zero, B = 0.
For the actual surface, the first and second metric tensors are a and b. The reference configuration and the
actual configuration of the material surface are related to each other by means of a deformation gradient tensor
F = (∇0r)T with the differential operator ∇0 of the reference surface and the position vector r of points of
the material surface in the actual configuration. Also note that the second metric tensor of the actual surface
is b = bT = −∇n with the unit normal vector n of the actual surface, and a = ∇r = I3 − nn with the
three-dimensional identity tensor I3 holds for the first metric tensor. The differential operators ∇0 and ∇ with
∇0 = FT · ∇ refer to either the reference surface or the actual surface. We introduce two tensor-valued Green
strain measures for the material surface, which are defined as the difference between the two metric tensors in
the two configurations, with the proper transformation by means of F,

ε =
1

2

(

FT · a · F − A
)

=
1

2

(

FT · F − I
)

,

κ = −
(

FT · b · F − B
)

= −FT · b · F. (22)

Both strain measures remain constant if and only if the motion of the material surface is a rigid body motion,
see [7,42] for a discussion.

3.2 Material independent equations

In analogy to the three-dimensional formulation, a variational principle is introduced for the electro-elastic
material surface as

∫

A0

(

δAi + ( p · δr + m × n · δn − σδV )

)

dA0 + δAe,b = 0, (23)

with the area A0 of the reference surface. Note that the contribution from the external electric charge σ per
unit area of the reference surface, σδV with the voltage V , has migrated into the area integral. p and m are
purely mechanical external forces and moments per unit area of the reference surface, and δAi is the virtual
work of the internal forces, moments, and charges. External forces and moments acting at the boundary, which
involve both, mechanical and electrical contributions, are accounted for by means of the virtual work δAe,b.
Due to the fact that external forces and moments, p and m are assumed purely mechanical, ponderomotive
forces must be accounted for by means of δAi .

As we have already discussed above, the two strain measures ε and κ remain constant, if and only if
the motion of the material surface is a rigid body motion. Therefore, the virtual work of the internal forces,
moments, and charges must vanish, if the virtual motion is a rigid body motion with the voltage fixed; hence,

δAi = 0 → δε = 0 , δκ = 0 , δV = 0 (24)

must hold. δr and δn are formally assumed to be independent, such that the constraint that the variation of the
unit normal vector must lie in the tangential plane, δn + ∇δr · n = 0, is accounted for by means of a vector
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valued Lagrange multiplier q. Furthermore, two symmetric tensor-valued Lagrange multipliers τ and µ and a
scalar-valued Lagrange multiplier q are introduced to account for the constraints δε = 0, δκ = 0, and δV = 0,
such that the virtual work δAi in the variational principle is formally replaced with

−τ · · δε − µ · · δκ + qδV + q · (δn + ∇δr · n) . (25)

Then, the variational principle is rewritten to

0 =
∫

A0

(τ · · δε + µ · · δκ − q · (δn + ∇δr · n) − p · δr − m × n · δn) dA0

−
∫

A0

(q − σ)δV dA0 + δAe,b. (26)

Running through some straight forward mathematical procedures, we obtain the mechanical equilibrium con-
ditions within A0 as

∇0 · T̃ + p = 0 , ∇0 · µ̃ · a + q − m × n = 0, (27)

in which T̃ = τ ·FT + (µ ·FT ) ·b+F−1 · qn and µ̃ = µ ·FT were introduced. For the sake of brevity, we omit
the specific form of the dynamic boundary conditions, as they will not be needed in this paper. The Lagrange
multipliers τ and µ are identified as total second Piola–Kirchhoff stress measures, q as the transverse shear
force vector and q as the internal charge per unit reference area. Moreover, total external and internal charges

Qext =
∫

A0

σdA0 , Qint =
∫

A0

qdA0 (28)

are introduced, such that

Qext − Qint = 0 (29)

holds in addition to the mechanical equilibrium conditions.
Besides the derivation of the above equations, we can also conclude on the fact that the negative virtual

work of the internal sources can be written as the variation of an energy function; in particular, we have

−δAi = δΩ = τ · · δε + µ · · δκ − qδV, (30)

with the augmented free energy Ω = Ω(ε, κ, V ) per unit reference area of the plate. Formally computing the
variation of this energy as

δΩ =
∂Ω

∂ε
· · δε +

∂Ω

∂κ
· · δκ +

∂Ω

∂V
δV, (31)

one finds the constitutive relations of the electro-elastic material surface as

τ =
∂Ω

∂ε
, µ =

∂Ω

∂κ
, q = −

∂Ω

∂V
. (32)

3.3 Constitutive modeling for isotropic dielectric elastomer plates

The present approach to the modeling of plates as electro-elastic material surfaces involves two strain measures,
ε and κ . Talking about hyperelastic plates, we rather work with the right Cauchy–Green tensor C than with ε;
hence, we recall the definitions

C = FT · F = 2ε + I , κ = −FT · b · F. (33)

Next, we introduce the polar decomposition of the deformation gradient tensor as F = R · U, in which R is
an orthogonal tensor with n = R · N and U = UT is the symmetric stretch tensor of the material surface, see,
e.g., [41]; N is the constant unit normal vector of the plane reference surface. Then, the two strain measures
may as well be written in the form

C = U2 , κ = −U · RT · b · R · U. (34)
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In the case of a purely elastic problem, the principle of material frame indifference has been used in the
literature (see [41]) to show that the strain energy W per unit reference area of the material surface must have
the form

W = W (U, ∇0n · R) = W
(

U, U · RT · ∇n · R
)

. (35)

Therefore, W = W (C, κ) satisfies this condition, and in analogy

Ω = Ω (C, κ, V ) = Ω (U, ∇0n · R, V )

with: C = C(U) = U2 , κ = κ(U, ∇0n · R) = (∇0n · R) · U (36)

holds for the electro-elastic problem. For the purpose of constitutive modeling, we involve the alternative
second strain measure

K = U−1 · κ · U−1 = −RT · b · R, (37)

which we denote as curvature tensor. Then, Ω = Ω(C, K, V ) is a proper form for the augmented free energy
as well, for which we will discuss the specific form in the next Section.

3.3.1 Augmented free energy

The bottleneck in our formulation is the specific form of the augmented free energy Ω = Ω(C, K, V ); in
particular, when it involves hyperelastic material laws. A straightforward approach is to involve the three-
dimensional formulation as presented above. We briefly sketch this approach for an incompressible neo-
Hookean material. The starting point is the three-dimensional augmented free energy given in Eq. (21) together
with incompressibility condition detC3 = 1 or equivalently C33 = (detC2)

−1 with C3 = C2 +C33 N N . Then,
a plane stress assumption for the total second Piola–Kirchhoff stress tensor S3 = S2 enables to compute the
Lagrange multiplier p. Eventually, one finds the plane stress augmented free energy as

Ω2 =
µ

2

(

trC2 + (detC2)
−1 − 3

)

−
1

2
εdetC2E

2, (38)

in which the material electric field vector has been assumed as E3 = E N . The plane part S2 of the total second
Piola–Kirchhoff stress tensor and the thickness component D of the material electric displacement vector
follow as

S2 = 2
∂Ω2

∂C2
, D = −

∂Ω2

∂E
. (39)

Finally, the plane part of the right Cauchy–Green tensor C2 is approximated by means of the strain measures
ε and κ as C2 = 2(ε + Zκ) + I, where Z denotes the thickness coordinate; then, numerical integration
of Ω2 through the thickness finds the plate augmented free energy as Ω = Ω(ε, κ, V ). This approach has
been widely used in the literature, see, e.g., [39] or [43], as well as in our own previous work [38]. We note
that, according to [43], it is obvious that the models constructed in 2D manifold form, i.e., directly for the
material surface, are much more efficient than models requiring numerical integration. Therefore, we derive
the augmented free energy Ω = Ω(C, K, V ) directly for the material surface without the need to involve the
three-dimensional formulation. This latter aspect represents the main scientific novelty of this paper.

In the following, we will only concern ourselves with thin plates with thickness h made of isotropic and
incompressible hyperelastic materials, for which the material is assumed homogenous through the thickness
and obeys a neo-Hookean law. In order to introduce the specific form of the plate augmented free energy, we
start with an additive decomposition of Ω = Ω(C, K, V ) into a mechanical part and a total electrical part,

Ω = η0Ψme(C, K) + η0Ψel,tot(C, K, V ). (40)

Note that the total electrical part is composed of a purely electric part of the free energy plus an augmentation
term to account for the contribution from vacuum.

Strain energy We start with a discussion of the mechanical part, i.e., the strain energy, for which the polar
decomposition F = R · U enables a further additive decomposition into a membrane and a bending part,
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η0Ψme(C, K) = Wm(C)+ Wb(C, K). The membrane part is taken in analogy to a plane stress incompressible
neo-Hookean strain energy as

Wm = η0wm =
1

2

A

4

(

trC + (detC)−1 − 3
)

. (41)

Here, A = Y h(1−ν2)−1 is the membrane stiffness well known from linear plate theory. With ν = 0.5 we have
Young’s modulus as Y = 3µ, and A = 4µh holds. η0 is the mass per unit reference area and wm the membrane
energy per unit mass. In order to introduce the bending energy, we recall the polar decomposition F = R · U,
by means of which the deformation gradient tensor is multiplicatively decomposed into a plane part U and an
orthogonal part R. As the first part does not contribute to the bending deformation, the bending energy must
not directly depend on the stretch tensor U, and the corresponding intermediate configuration must be free of
bending stresses. Therefore, the bending energy should be formulated in terms of the curvature tensor only,

and be referred to the mass η per unit area in the intermediate configuration with a plate stiffness D̃ accounting
for the thickness of the plate in the intermediate configuration. Hence, we write the bending energy per unit
area in the intermediate configuration in analogy to the one of an isotropic incompressible Kirchhoff plate as

ηwb =
1

2
D̃

(

(trK)2 − detK
)

. (42)

Here, we have taken the standpoint that the curvature tensor is of an order of smallness that justifies the use of
an incompressible Saint Venant–Kirchhoff strain energy. With the area change from the reference configuration
to the intermediate configuration J = detU = detF, η = J−1η0 holds; obviously, η also represents the mass
per unit actual area. Noting in addition the three-dimensional incompressibility condition J3 = 1 = J F33 with

the thickness stretch U33 ≡ F33 = λ3, the plate stiffness in the intermediate configuration is D̃ = J−3 D, in
which D = Y h3/12(1 − ν2)−1 is the classical plate stiffness, which is D = µh3/3 for ν = 0.5. Therefore,
we have

Wb = η0wb =
1

2
(detC)−1 D

(

(trK)2 − detK
)

(43)

for the bending energy.

Total electrical energy In a homogenous plate with a homogenous electric field through the thickness, the
contribution from the total electrical free energy is written in analogy to a capacitor as 2ηΨel,tot = −c̃V 2, with
the voltage V and the capacity c̃ and mass η per unit actual area; the latter is identical to the mass per unit area
in the intermediate configuration emerging by means of U. c̃ is related to the capacity per unit reference area
c by c̃ = Jc. Therefore, we have

Ωel,tot = η0Ψel,tot = −
1

2
cV 2(detC) (44)

for the electrically homogenous case. In such a case, the total electrical free energy only contributes to the
membrane part of the augmented free energy, which only depends on C. In the more general scenario of a
non-homogenous electric field through the thickness of the plate, the total electrical free energy must also
contribute to the bending part of the augmented free energy; therefore, it must depend also on K. In order to
take this contribution into account, we propose to extend the energy wb defined in Eq. (42) with an electrically
motivated source term. Then, the total bending part of the augmented free energy is

ηωb =
1

2

(

D̃
(

(trK)2 − detK
)

− 2m̃∗trK
)

, (45)

which formally constitutes the classical bending energy of an isotropic Kirchhoff plate with a so-called
Eigenspannungsquelle m̃∗; the second term represents the bending part of the total electrical free energy.
Here, we have naturally extended our previous standpoint that the curvature tensor is of an order of smallness
that justifies the use of an incompressible Saint Venant–Kirchhoff strain energy to the electrical energy. Keep-
ing in mind that m̃∗ is an Eigenspannungsquelle per unit area in the intermediate configuration, it relates to
the Eigenspannungsquelle per unit area in the reference configuration m∗ by virtue of m̃∗ = Jm∗. Therefore,

η0ωb =
1

2

(

(detC)−1 D
(

(trK)2 − detK
)

− 2(detC)m∗trK
)

(46)
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holds. The first part is the bending energy from above, whereas the second part can be combined with electrical
energy introduced for a homogenous electric field to

Ωel,tot(C, K, V ) = η0Ψel,tot = −
1

2
cV 2detC −

1

2
2(detC)m∗trK. (47)

As m∗ must be proportional to V 2 and the capacity per unit reference area c is a constant, we write m∗ = cαV 2

and obtain the final form of the total electrical contribution to the augmented free energy as

Ωel,tot(C, K, V ) = η0Ψel,tot = −
1

2
cV 2detC (1 + 2αtrK) , (48)

in which α is a parameter characterizing the non-homogeneity of the electric field through the thickness.
Summarizing our result, the augmented free energy of an isotropic, elastically homogeneous and incom-

pressible hyperelastic neo-Hookean electro-elastic plate is proposed as

Ω(C, K, V ) =
1

2

A

4

(

trC + (detC)−1 − 3
)

+
1

2
(detC)−1 D

(

(trK)2 − detK
)

−
1

2
cV 2detC (1 + 2αtrK) . (49)

Finally, we note that the relations trK = tr(U−1·κ ·U−1) = tr(C−1·κ), detK = det(U−1·κ ·U−1) = det(C−1·κ)

and C = I + 2ε enable us to write the augmented free energy as Ω = Ω(ε, κ, V ), which closes the theory of
electro-elastic material surfaces for the specific case under consideration in this paper.

3.3.2 Constitutive relations revisited

Although the theory of electro-elastic material surfaces for the specific case under consideration is complete,
we take the time to discuss the constitutive relations in some more detail. Recalling the augmented free energy
as Ω = Ω(C, K, V ), we introduce alternative stress measures

n = 2
∂Ω

∂C
and m =

∂Ω

∂K
, (50)

such that the variation of Ω is

δΩ = n · ·
1

2
δC + m · · δK − qδV . (51)

In order to relate n with τ and m with µ, we keep the two identities

δC = U · δU + δU · U,

δκ = U · K · δU + δU · K · U + U · δK · U (52)

in mind, and re-formulate the variation of the augmented free energy to

δΩ = n̄ · · δU + m · · δK − qδV

=
(

τ̄ + 2sym
(

U−1 · m · K
))

· · δU + U · µ · U · · δK − qδV, (53)

with the Biot stress measures n̄ = sym (n · U) and τ̄ = sym (τ · U). This establishes the two relations

n̄ = τ̄ + 2sym
(

U−1 · m · K
)

,

m = U · µ · U. (54)

The alternative stress measures n and m are particularly useful to discuss the constitutive processes involved
in the present formulation. We start this discussion by recalling the polar decomposition F = R · U, by means
of which a plane intermediate configuration resulting from the stretch tensor U only is introduced, see Fig. 1.
In the reference configuration, the material surface is plane and undeformed with the strain measures C = I
and K = 0, in the intermediate configuration it experiences only the right Cauchy–Green tensor C = U2 with
K = 0, and the actual configuration conserves the right Cauchy–Green tensor C = U2, and due to the non-trivial
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Reference configuration

Intermediate configuration

Actual configuration

C = I , K = 0

C = U
2 , K = 0

C = U
2 , K = −R

T
· b · R

U

Ωm
(C

, V
) =

W
m
(C

) +
Ω el

,m
(C

, V
)

R

Ω
b (C

,K
, V ) =

W
b (C

,K) +
Ω

el,b (C
,K

, V )

F = R · U

Ω(C,K, V ) = Ωm(C, V ) + Ωb(C,K, V )

Fig. 1 Different configurations with F = R · U and assigned parts of the augmented free energy

second metric tensor b we have the curvature tensor as K = −RT · b · R. Besides this purely geometrical look
at the polar decomposition, more insight into the constitutive processes is gained, if the augmented free energy
is additively decomposed into a membrane part and a bending part, Ω(C, K, V ) = Ωm(C, V )+Ωb(C, K, V )

with

Ωm(C, V ) =
1

2

A

4

(

trC + (detC)−1 − 3
)

︸ ︷︷ ︸

=Wm(C)

−
1

2
cV 2detC

︸ ︷︷ ︸

=Ωel,m(C,V )

,

Ωb(C, K, V ) =
1

2
(detC)−1 D

(

(trK)2 − detK
)

︸ ︷︷ ︸

=Wb(C,K)

−
1

2
cV 2detC2αtrK

︸ ︷︷ ︸

=Ωel,b(C,K,V )

, (55)

see again Fig. 1. We now proceed with discussing a proper decomposition of the stress measures n and m as
well as of the internal charge q . For that sake we take the standpoint that the voltage is present in all three
configurations, the reference one, the intermediate one, and the actual configuration. Therefore, it is near at
hand to introduce the charge q0 = cV , which would be the resulting charge in case the electro-elastic material
surface were assumed as rigid.

Internal charge The total internal charge is

q = −
∂Ωel,tot

∂V
= q0detC (1 + 2αtrK) , (56)

with Ωel,tot = Ωel,m + Ωel,b as defined in Eq. (55). We immediately conclude that

q0 = q|C=I,K=0 = cV ; (57)

hence, q0 can be assigned to the reference configuration with C = I and K = 0. In the intermediate configu-
ration with C = U2 and K = 0, the internal charge changes to

qm = q|C,K=0 = q0detC = −
∂Ωel,m

∂V
, (58)

and it can be computed from the membrane part Ωel,m of the total electrical contribution to the augmented
free energy. This change of the charge is related to the fact that due to U the effective capacity is changed,



Direct approach to nonlinear modeling of dielectric elastomer plates 3933

and hence, the charge per unit area in the reference configuration must change as well. Therefore, the internal
charge q in the actual configuration is

q = qm + qb = qm (1 + 2αtrK) , qb = 2qmαtrK = −
∂Ωel,b

∂V
, (59)

in which the additional contribution qb results from the bending part Ωel,b of the total electrical contribution to
the augmented free energy. Moreover, qb = 0, if the geometry parameter α characterizing the inhomogeneity
of the electric field through the thickness is zero.

Electrostatic stress measures We proceed in our discussion with the electrostatic stress measures nes and mes,
which result from the total electrical contribution to the augmented free energy as

nes = 2
∂Ωel,tot

∂C
, mes =

∂Ωel,tot

∂K
. (60)

We start with nes and find

nes = −cV 2(detC)C−1 (1 + 2αtrK) , (61)

which can also be computed from the internal charge as nes = −qV C−1. Obviously, this resembles the notion
of an electrostatic stress measure taking the role of representing the effect of the electrostatic forces in the
present problem of an electro-elastic material surface. For the reference configuration with C = I and K = 0,
we have

nes = nes,0 = nes|C=I,K=0 = −cV 2I = −q0V I, (62)

independent of the deformation. Moving from the reference configuration to the intermediate configuration,
the electrostatic stress measure nes changes to

nes = nes,m = nes|C,K=0 = −cV 2(detC)C−1 = −qm V C−1 = 2
∂Ωel,m

∂C
, (63)

which can be either computed from the membrane part Ωel,m of the total electrical contribution to the augmented
free energy or from the internal charge qm in the intermediate configuration. Moving further to the actual
configuration, an additional contribution to nes comes into the picture, such that nes = nes,m + nes,b with

nes,b = −cV 2(detC)C−12αtrK = −qbV C−1 = 2
∂Ωel,b

∂C
, (64)

which can be computed from either Ωel,b or qb. Now, we turn our attention to the second electrostatic stress
measure mes. We first recall the definition of the Eigenspannungsquelle m∗ per unit area in the reference
configuration as m∗ = cαV 2 = αq0V . Then, we compute mes from Ωel,b as

mes =
∂Ωel,b

∂K
= −

1

2
cV 2detC2αI = −m∗I(detC). (65)

As m∗ has been introduced as an Eigenspannungsquelle, it is present in any of the three configurations as long
as a voltage is applied, and as long as α is not trivial. This fact follows from the classical interpretation of
an Eigenspannungsquelle as a source of self-stress acting in an elastic background structure, see the original
contributions [44,45]. The electrostatic stress measure mes resulting from m∗ is mes = −m∗I in the reference
configuration and it is mes = mes,m = −m∗I(detC) in both, the intermediate and the actual configuration.

Elastic stress measures The elastic stress measures ne and me follow from the purely mechanical part of the
augmented free energy, the strain energy, which we decomposed into a membrane part and a bending part,
W = Wm(C)+Wb(C, K). Accordingly, the reference configuration is free from elastic stress measures ne = 0
and me = 0. We compute the overall membrane elastic stress measure ne as

ne = 2
∂W

∂C
=

A

4

(

I − (detC)−1C−1
)

− (detC)−1 D
(

(trK)2 − detK
)

, (66)
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and the overall bending elastic stress measure me as

me =
∂W

∂K
= (detC)−1 1

2
D (ItrK + K) . (67)

With K = 0 in the intermediate configuration, we have the pure membrane contribution to ne as

ne,m = ne|C,K=0 =
A

4

(

I − (detC)−1C−1
)

= 2
∂Wm

∂C
, (68)

and me = 0. Hence, the intermediate configuration is free of any bending stresses; this is not surprising, as
this fact was actually used to derive the bending part of the strain energy. The bending elastic stress measure
me then evolves only for a non-trivial K, such that in the actual configuration we have

me = me,b =
∂Wb

∂K
= (detC)−1 1

2
D (ItrK + K) (69)

for the bending stress measure. In addition a further contribution to the membrane stress measure shows up,
because our approach to constitutive modeling involved a plate stiffness, which depends on the strain measure
C. This contribution is

ne,b = −(detC)−1 D
(

(trK)2 − detK
)

= 2
∂Wb

∂C
, (70)

such that ne = ne,m + ne,b is composed of two contributions—one from Wm and one from Wb, whereas
me = me,b only involves the contribution from Wb.

We summarize our results and represent them graphically in Fig. 2, by assigning specific parts of the stress
measures n and m as well as of the internal charge q to the three configurations.

– Reference configuration: In the undeformed reference configuration, we have C = I and K = 0, such
that n = nes,0 = −q0V I, m = mes,0 = −m∗I, and q = q0 = cV hold. The elastic stress measures are
zero in the reference configuration.

– Intermediate configuration: The intermediate configuration results from U, and the strain measures are
C = U2 and K = 0. In this scenario we have n = ne +nes,m = ne −qm V C−1, m = mes,m = −m∗I(detC),
and q = qm = q0detC with the elastic stress measure me = 0 and

ne = ne,m =
A

4

(

I − (detC)−1C−1
)

= 2
∂Wm

∂C
. (71)

– Actual configuration: Eventually the actual configuration involves the two strain measures C = U2 and
K = −RT · b · R, with n = ne + nes,m + nes,b = ne − qV C−1, m = me + mes,m = me − m∗I(detC) and
q = qm + qb = q0 (1 + 2αtrK) detC. The elastic stress measures are

Reference configuration

Intermediate configuration

Actual configuration

C = I , K = 0

n = −q0V I , m = −m∗
I

V , q = q0

C = U
2 , K = 0

n = ne,m − qmV C
−1

m = −m∗
IdetC

V , q = qm

C = U
2 , K = −R

T
· b · R

n = ne,m + ne,b − qmV (1 + 2αtrK)C−1

m = me,b − m∗
IdetC

V , q = qm (1 + 2αtrK)

U

Ωm
(C

, V
) =

W
m
(C

) +
Ω el

,m
(C

, V
)

R

Ω
b (C

,K
, V ) =

W
b (C

,K) +
Ω

el,b (C
,K

, V )

F = R · U

Ω(C,K, V ) = Ωm(C, V ) + Ωb(C,K, V )

Fig. 2 Different configurations with F = R · U and resulting stress measures n, m and internal charge q
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ne = ne,m + ne,b = ne,m − (detC)−1 D
(

(trK)2 − detK
)

= ne,m + 2
∂Wb

∂C
,

me = me,b = (detC)−1 1

2
D (ItrK + K) =

∂Wb

∂K
. (72)

3.3.3 Small strain regime

Finally, we approximate the augmented free energy in the small strain regime, in which we set C = I + 2λε

with λ as a formal small parameter; also κ is formally replaced by λκ . Concerning the voltage V , we assume
its square to be of order λ. Then, we expand the augmented free energy in the vicinity of λ = 0 up to terms of
order λ2, and setting λ → 1 we find

Ω lin(ε, κ, V ) =
1

2
A

(

(trε)2 − detε
)

+
1

2
D

(

(trκ)2 − detκ
)

−
1

2
cV 2 (1 + 2trε + 2αtrκ) . (73)

This resembles the physically linear constitutive theory for isotropic and incompressible dielectric elastomers,
insofar as the resulting constitutive relations for the total stress measures are linear in the strain measures. On
the other hand, the internal charge q is a nonlinear function of the voltage and the strain measures, as a bias
voltage is required to enable a sensing effect in dielectric elastomers. The mechanical part of the approximated
augmented free energy corresponds to the Koiter energy [46] for such a material, and the electrical part is a
straightforward extension toward electro-elasticity. Besides this interpretation, the approximated augmented
free energy also enables us to identify the material parameters of the nonlinear theory. For that sake, we recall
the linear theory of Kirchhoff plates with eigenstrains, see [47]; for the case of an isotropic incompressible
material obeying Hooke’s law the strain energy reads

ΩHooke =
1

2

(

A
(

(trε)2 − detε
)

− 2τ ∗trε
)

+
1

2

(

D
(

(trκ)2 − detκ
)

− 2µ∗trκ
)

, (74)

in which the actuation enters classically by means of Eigenspannungsquellen τ ∗ and µ∗. Comparing the
approximated augmented free energy with the linear strain energy, we conclude on τ ∗ = cV 2 and µ∗ =
αcV 2 = ατ ∗. We discuss two scenarios of importance for the present paper in detail; a single-layer plate with
a homogenous electric field and a bi-morph plate with a homogenous electric field only present in one of the
two identical layers.

Single-layer plate For a single-layer plate of thickness h the extensional and the plate stiffness for an incom-
pressible and isotropic material are defined as

A =
∫ h/2

−h/2

Y

1 − ν2
dz = 4µh , D =

∫ h/2

−h/2

Y

1 − ν2
z2dz =

µh3

3
, (75)

as ν = 0.5 and Y = 3µ hold. This confirms our original definition of the stiffnesses for the nonlinear theory.
The Eigenspannungsquellen τ ∗ and µ∗ in such a single-layer scenario are known as

(τ ∗, µ∗) =
∫ h/2

−h/2

ε0εr

(
V

h

)2

(1, Z)dZ =
(ε0εr

h
V 2, 0

)

, (76)

which confirms the meaning of c as the capacity per unit reference area. Moreover, we have

c =
ε0εr

h
, α = 0 (77)

for the nonlinear theory.
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Bi-morph plate For a bi-morph plate of thickness h with two identical layers, the stiffnesses need no further
discussion. Concerning τ ∗ and µ∗ we assume one layer—specifically, the top one—to be inactive, and a
homogenous electric field in the bottom layer. Then,

(τ ∗, µ∗) =
∫ h/2

0

ε0εr

(
V

h/2

)2

(1, Z)dZ =
(

2ε0εr

h
V 2,

1

2
ε0εr V 2

)

, (78)

from which the capacity c and the parameter α follow as

c =
2ε0εr

h
, α =

h

4
. (79)

With the material parameters identified, one can compute solutions for the nonlinear electro-elastic plate
problem.

4 Finite element implementations

4.1 Plate finite elements

In this Section, we briefly introduce the implementation of finite elements for the numerical solution of the
electro-mechanically coupled plate problem. The present version of the classical Kirchhoff–Love theory of
plates requires in general C1 continuity in the approximation of the deformed surface, which we achieve
using a four-node finite element with the following approximation scheme: 16 shape functions for each spatial
component of the position vector exactly represent any bi-cubic polynomial; the element thus has 48 mechanical
degrees of freedom. Despite inherent restrictions concerning the topology of the mesh and connections between
shell segments, the present finite element has a relatively broad spectrum of potential applications with respect
to both, research and development. For more details concerning this shell element, we refer to [32].

4.1.1 Implementation

The starting point for the implementation is the functional Σ = Σ(ε, κ, V, p),

Σ =
∫

A0

(Ω(ε, κ, V ) − p · r) dA0 = 0, (80)

which follows from the principle of virtual work, see Eq. (23), in which we assume no external forces and
moments acting at the boundary, no external moments applied in the domain of the plate, and the voltage to be
prescribed. Hence, the electrical contribution to the surface tractions at the vertical portions of the boundary
of the plate is neglected; this is justified, as has been shown in [38]. Then, the functional can be written as

Σ = ΣΩ + Σext, (81)

with the total plate augmented free energy

ΣΩ =
∫

A0

Ω(ε, κ, V )dA0, (82)

and with the potential energy Σext of the external force loadings p.
The plate is modeled as a continuum of material normal vectors, and its configuration is defined by the field

r(q1, q2) ≡ r(qα); −1 ≤ qα ≤ 1 are two material coordinates on a finite element. The unit normal vector
results from the natural basis:

rα =
∂ r

∂qα
≡ ∂α r , n =

r1 × r2

‖r1 × r2‖
, (83)

while the differential operator on the surface features the co-basis:

∇ = rα∂α , rα · rβ = δα
β . (84)
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We denote the four nodes of the finite element as i , j , k, and l and write the position vector as

r(qα) =
∑

m=i, j,k,l

(

rm Sm,1 + rm
1 Sm,2 + rm

2 Sm,3 + rm
12Sm,4

)

. (85)

This approximation features 12 nodal degrees of freedom: position vector rm , its derivatives with respect to
the local coordinates on the element rm

1 and rm
2 , and the mixed second order derivative rm

12. The conditions of
smooth coupling with the approximation on the neighboring elements lead to a unique set of the 16 bi-cubic
shape functions Sm,n(qα). The element itself is isoparametric: the reference geometry R is also approximated
by means of Eq. (85) and is thus C1 continuous. The validity of the presented approximation requires that the
coordinate lines qα = const are continuous across the element boundaries. The element degrees of freedom
are collected in a global vector, which contains all mechanical degrees of freedom, but no electrical degrees
of freedom as we only consider problems with applied voltages.

Finally, we seek for a stationary value of the total energy functional, Σ = ΣΩ +Σext. Here, Σ = Σ(r(qα))

depends on the field r(qα), which is approximated using Eq. (85). To compute the total energy functional
numerical integration over the elements, with 3 × 3 integration points per element, is used. This results in
nonlinear algebraic equations, from which equilibrium solutions are computed numerically by employing
Newton’s method for seeking the stationary points of Σ .

4.1.2 Boundary conditions

If an edge is free from kinematic constraints, then the external force factors acting on that edge need to be
accounted for; as we are only considering problems without external loadings at such edges this is trivial. At
a simply supported edge, the material points are fixed by appropriate penalty terms for the nodal positions
rm and the derivatives rm

α (α corresponds to the direction along the edge). If the edge is clamped, then the
direction of the normal vector n needs to be additionally constrained. For a straight edge n = const, and the
constraint will be fulfilled exactly, if we demand N · rm

β = 0 and N · rm
12 = 0, in which β corresponds to the

direction of the outer normal to the boundary of the domain.

4.2 Solid finite elements

As we will be using the three-dimensional formulation to validate the plate formulation, solid finite elements
are implemented for the incompressible neo-Hookean dielectric elastomer with the augmented free energy
as given in Eq. (21). To account for the incompressibility of the material response, a mixed formulation, in
which the displacement field u3 from the referential position R3 to the actual position r3, i.e., u3 = r3 − R3,
and the pressure p serve as variables (u-p form), see, e.g., Zienkiewicz et al. [48]. In the electric domain, we
employ the electric potential ϕ3 as independent variable, from which the material electric field is obtained as
its material gradient, E3 = −∇3ϕ3.

4.2.1 Implementation

For the numerical analysis, we use the open-source multi-purpose finite element code Netgen/NGSolve.1 Due to
their thin-walled nature, the structures in the subsequent problems are discretized with prism elements, which
are naturally aligned with the thickness direction. Both the components of the displacement field and the electric
potential are approximated by means of hierarchical quadratic shape functions, whereas the pressure field is
linearly interpolated. To reduce the number of unknowns, we employ symmetry conditions wherever applicable.
Throughout the subsequent examples, a discretization of the thickness direction into eight equidistant layers
of elements has proven to be sufficient. Regarding the (unstructured) triangular in-plane discretization, the
maximum length of an element edge is restricted to be not larger than a tenth of the smaller in-plane dimension
of the respective structure (with symmetry already accounted for). We use Newton’s method to solve the
nonlinear boundary value problem that is obtained by requiring stationarity of the augmented free energy in
Eq. (21).

1 Available for download at https://www.ngsolve.org.

https://www.ngsolve.org
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Table 1 Material parameters

µ1/Pa µ2/Pa µ3/Pa α1 α2 α3 µ/Pa εr

5.49 × 104 9.1 × 102 −6.3 0.7 3.25 −3.7 20,698 4.7

Table 2 Critical buckling voltage Vcrit,buckling

ShellFE3 Netgen/NGSolve [25]

Vcrit,buckling/V 2.700 2.709 2.829
Deviation – 0.33% 4.77%

4.2.2 Boundary conditions

For the three-dimensional model, simply supported boundary conditions are realized by constraining the
displacements along the respective edge on the center plane of the structure. In the proposed plate formulation,
the displacement of the center plane is prohibited at clamped boundaries, whereas a deformation in thickness
direction is not constrained. For this reason, the displacement in the thickness direction is only constrained
at the edge on the center plane of the structure. Any displacement parallel to the center plane, however, is
prohibited unless otherwise stated.

5 Validation

In this Section, we study example problems involving an incompressible and isotropic dielectric elastomer, for
which the Lamé parameter µ was computed from the material parameters of a three parameter Ogden material
used by Klinkel et al [25], see Table 1; hence, 2µ = µ1α1 + µ2α2 + µ3α3 holds.

5.1 Stability of a single-layer dielectric elastomer plate

We consider a single-layer rectangular plate with dimension a × b × h = 4 mm × 2 mm × 0.01 mm, which
is clamped at x = 0 and x = a, and free at the other two edges at y = ±b/2. At the two clamped edges
the displacement in the y-direction parallel to the clamped edges is not constrained. First, we compute the
critical buckling voltage at which the plane configuration loses stability and show the results in Table 2 for the
present theory (ShellFE3) and the three-dimensional formulation (Netgen/NGSolve) in comparison with the
result given in [25] for the Ogden-type material. A very good agreement is observed. In [25], hexahedral solid
shell elements with eight nodes and four nodal degrees of freedom are used, which are the three displacements
and the electric potential; the problem at hand was solved with 12 × 10 × 1 elements in [25]. Converged
solutions with 16 × 8 elements in ShellFE3 and a total of 4872 elements in Netgen/NGSolve were computed.

Next the voltage V is increased starting with 0V, and the non-dimensional deflection wmid/h of the
center point of the plate is presented in Fig. 3. An initial imperfection by means of a pre-deformation with a
corresponding non-dimensional center point deflection wmid,initial/h = 0.01 is taken into account, and wmid/h

is shown relative to wmid,initial/h. In the three-dimensional model, an imperfection is introduced by means of

a transverse surface load of 1 × 10−6 Nm−2, which is imposed on the center surface. In the left Figure of
Fig. 3 we show the present results (solid line) and the ones computed with Netgen/NGSolve (solid circular
markers), which are in very good agreement up to a voltage of V = 107.3 V, at which the volume elements
in Netgen/NGSolve failed to converge. In contrast, in the present formulation no convergence problems have
been observed up to a critical voltage of Vcritical = 153.5 V, which corresponds to the electro-mechanical
breakdown voltage Vbreakdown = Ebreakdownh = 0.687h

√
µ/ε = 153.215 V, see [38] for details. Numerical

results reported by Pechstein [24] using three-dimensional Tangential Displacement Normal Normal Stress

(TDNNS) mixed finite elements are shown in the right Figure of Fig. 3 up to a voltage of V = 150 V; in these
results only a quarter of the problem was discretized with 458 tetrahedral elements, and a nearly incompressible
neo-Hookean material with the Lamé parameters µ = 20,698 Pa and λ = 100 MPa was assumed. Again, a
very good agreement with the present results is observed. Figure 4 shows the non-dimensional center point
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Fig. 3 Non-dimensional center point deflection wmid/h for the buckling actuator: left—ShellFE3 (solid line) versus Net-
gen/NGSolve (solid circular markers), right—ShellFE3 (solid line) versus [24] (solid circular markers)

Fig. 4 Non-dimensional center point deflection wmid/h for the buckling actuator in the vicinity of critical buckling voltage
Vcrit,buckling: ShellFE3 (solid line) versus Netgen/NGSolve (solid circular markers)

Table 3 Center point deflection for V = 125 V

ShellFE3 [24] [25]

wmid/mm 0.72445 0.724315 0.7
Deviation – − 0.019% − 3.37%

deflection in the vicinity of the critical buckling voltage Vcrit,buckling, at which the supercritical pitchfork
bifurcation occurs, for a significantly smaller imperfection wmid,initial/h = 0.0001. The deviation between
the results computed with ShellFE3 and the ones with Netgen/NGSolve are due to the fact that we have not
changed the transverse surface load of 1 × 10−6 Nm−2 in Netgen/NGSolve, which represents a much larger
imperfection in comparison with wmid,initial/h = 0.0001.

Finally, the center point deflection for V = 125 V computed with the present theory is compared to the
results reported by Pechstein [24] and Klinkel et al. [25] in Table 3.

5.2 Bending of a bi-layer dielectric elastomer plate

As a second example, we are studying a rectangular plate with dimension a×b×h = 100 mm×50 mm×1 mm
made of two perfectly bonded dielectric elastomer layers. The electrode at the bonded interface is grounded,
and a voltage can be applied at the outer electrodes. In particular, the voltage is applied at the lower electrode,
and the upper one is grounded as well; this configuration will result in a bending actuator. The plate is clamped
at x = 0 and free at the other edges. We use 16 × 8 elements in the plate formulation and a total of 9272
elements in the three-dimensional formulation for computing converged solutions. At increasing voltage, the
actuator bends out of plane, see Fig. 5 for deformed configurations at different voltages. The voltage was first
increased with a step size of ∆V = 10 V, which was refined to ∆V = 1 V for voltages above 4000 V. Results
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Fig. 5 Deformed configuration at different voltages

Fig. 6 Non-dimensional end-point deflection wend/h and non-dimensional end-point axial position xend/h: ShellFE3 (solid and
dashed line) versus Netgen/NGSolve (circular markers)

for the non-dimensional end-point deflection wend/h and the non-dimensional end-point axial position xend/h

in the center of the free end are shown in Fig. 6 in comparison with the three-dimensional solution. Again a
very good agreement is observed. At V = 4362 V a 360◦ bending—defined by the end-point axial position
xend/h being zero—is reached with the present theory. Klinkel et al. [25] reported a value of V = 4200 V for
the Ogden-type material using 32 × 18 × 2 elements; the deviation of −3.71% is comparable to the deviation
we observed for the center point deflection in the first example, see Table 3.

5.3 A non-symmetric stability problem

In the last example, we study the non-symmetric problem of a bi-morph plate, with simultaneously acting
electrical and mechanical loads. The plate is composed of two identical and perfectly bonded layers, whereby
only one layer is electrically actuated. The plate has the dimension a ×b ×h = 4 mm×2 mm×0.02 mm with
simply supported boundary conditions at all four edges. Each individual layer has the thickness 0.01 mm. A
voltage V is applied to the outer electrode at the bottom layer while the interface is grounded and the top layer
is short circuited. In addition, a spatially constant mechanical pressure p = (ρgh)λ with the mass density ρ =
1100 kg m−3 and the load factor λ is applied in the negative thickness direction pointing upwards. Converged
solutions are computed with 16 × 8 elements in ShellFE3 and a total of 3432 elements in Netgen/NGSolve.
Two load scenarios are investigated. Either the load factor λ = (0, 1, 2)λcrit is held constant and the voltage V

is varied, or the load factor λ is varied for constant voltages V = (0, 1, 2)Vcrit. The values λcrit and Vcrit have
the following specific meaning. For values (λ, V ) < (λcrit, Vcrit) only one stable equilibrium path exists, see
the top row in Fig. 7 and for values (λ, V ) > (λcrit, Vcrit) we obtained two stable solution branches, see the
bottom row of Fig. 7. For the critical values (λcrit, Vcrit) = (0.0122, 6.41 V) a single equilibrium path with a
saddle point is found, see the center row of Fig. 7.

First, we discuss the stability behavior for a constant voltage V > Vcrit and for a varying mechanical
pressure in more detail; see also the right graph in the bottom row of Fig. 7. Due to the applied voltage, the
plate deforms into a configuration with center point deflections wmid > 0. Applying a mechanical pressure
in negative thickness direction wmid decreases continuously until snapping to a configuration with negative
values of wmid occurs. Upon decreasing the pressure back-snapping occurs at a pressure value smaller than the
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Fig. 7 Equilibrium paths of a simply supported plate: left column λ = (0, 1, 2)λcrit (top to bottom) and right column V =
(0, 1, 2)Vcrit (top to bottom); ShellFE3 (solid line) and Netgen/NGSolve (solid circular markers)

value for snapping. This behavior occurs for any values V > Vcrit with the critical pressure values depending
intrinsically on the magnitude of the applied voltage. Next, the pressure load factor λ is held constant while
the voltage V is varied; in this case bi-stable solutions exist for λ > λcrit, see the left graph in the bottom
row of Fig. 7. Again snapping upon loading and back-snapping upon unloading is observed. Figure 7 shows
results computed with ShellFE3 (solid lines) and Netgen/NGSolve (solid circular markers) with a very good
agreement between them. A practical application of the bi-stable behavior might be, for example, a voltage
sensitive switching device, where the necessary pressure level for snapping can be adjusted by choosing the
thickness of the dielectric elastomer switch properly.

Finally, we note that a structural mechanics framework—as developed in this paper—is especially valuable
when it comes to the analysis of stability problems using a semi-analytical approach to account for the dominat-
ing nonlinear terms, for example, studying the effect of geometric nonlinearities by simplified kinematics, e.g.,
using a von Kármán-type theory, combined with a low-order Ritz approximation. Examples of this approach
for the case of piezoelectric or thermoelastic plates can be found in [49,50] or [51] identifying that in similar
examples not only buckling and snap-through / snap-back, but also snap buckling behavior can be observed.
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6 Conclusions

In this paper we presented a complete direct approach for modeling geometrically and physically nonlin-
ear dielectric elastomer plates as two-dimensional electro-elastic material surfaces. In contrast to common
approaches, our formulation does not rely on the three-dimensional theory, but it directly develops the two-
dimensional one. In particular, the polar decomposition of the surface deformation gradient tensor was used
to postulate the augmented free energy of the material surface.

Numerical results computed with plate finite elements for the present novel theory were compared to 3D
finite elements implemented in Netgen/NGSolve, which are based on the three-dimensional counterpart to our
theory. A very good agreement between the results was found in all example problems.
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