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ABSTRACT

In this paper an algorithm based on the ensemble empirical
mode decomposition (EEMD) is presented. The key idea on
the EEMD relies on averaging the modes obtained by EMD
applied to several realizations of Gaussian white noise added
to the original signal. The resulting decomposition solves the
EMD mode mixing problem, however it introduces new ones.
In the method here proposed, a particular noise is added at
each stage of the decomposition and a unique residue is com-
puted to obtain each mode. The resulting decomposition is
complete, with a numerically negligible error. Two examples
are presented: a discrete Dirac delta function and an elec-
trocardiogram signal. The results show that, compared with
EEMD, the new method here presented also provides a bet-
ter spectral separation of the modes and a lesser number of
sifting iterations is needed, reducing the computational cost.

Index Terms— Empirical Mode Decomposition, Biomed-
ical Signal Processing, Heart Rate Variability

1. INTRODUCTION

Empirical Mode Decomposition (EMD) [1] is an adaptive
method introduced to analyze non-linear and non-stationary
signals. It consists in a local and fully data-driven separa-
tion of a signal in fast and slow oscillations. However, EMD
experiences some problems, such as the presence of oscil-
lations of very disparate amplitude in a mode, or the pres-
ence of very similar oscillations in different modes, named as
“mode mixing”. To overcome these problems, a new method
was proposed: the Ensemble Empirical Mode Decomposition
(EEMD) [2]. It performs the EMD over an ensemble of the
signal plus Gaussian white noise. The addition of white Gaus-
sian noise solves the mode mixing problem by populating the
whole time-frequency space to take advantage of the dyadic
filter bank behavior of the EMD [3]; however it creates some
new ones. Indeed, the reconstructed signal includes residual
noise and different realizations of signal plus noise may pro-
duce different number of modes. In order to overcome these
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situations, in this paper we propose a variation of the EEMD
algorithm that provides an exact reconstruction of the origi-
nal signal and a better spectral separation of the modes, with
a lower computational cost.

The paper is organized as follows. In Sec. 2 the main
EEMD concepts are recalled, the new method is introduced
and the data used for the experiments is described. In Sec.
3 the results obtained via the method here proposed are pre-
sented and compared with EEMD. Finally, the conclusions
are discussed in Sec. 4.

2. MATERIALS AND METHODS

2.1. Ensemble Empirical Mode Decomposition

EMD [1] decomposes a signal !(") into a (usually) small
number of Intrinsic Mode Functions (IMFs) or modes. To be
considered as an IMF, a signal must satisfy two conditions: (i)
the number of extrema and the number of zero crossing must
be equal or differ at most by one; and (ii) the mean value of
the upper and lower envelope is zero everywhere.

EEMD defines the “true” IMF components (here notated
as #$% in what follows) as the mean of the corresponding
IMFs obtained via EMD over an ensemble of trials, gener-
ated by adding different realizations of white noise of finite
variance to the original signal ![&]. EEMD algorithm can be
described as:

1. generate !![&] = ![&] + '![&], where '![&] (( =
1, . . . , #) are different realizations of white Gaussian
noise,

2. each !![&] (( = 1, . . . , #) is fully decomposed by EMD
getting their modes #$% !

"[&], where + = 1, . . . ,, in-
dicates the modes,

3. assign #$% " as the +-th mode of ![&], obtained as
the average of the corresponding #$% !

": #$% "[&] =
1
#

∑#
!=1 #$% !

"[&].

2.2. Our Method

Observe that in EEMD, each !![&] is decomposed indepen-
dently from the other realizations and so for each one a
residue -!"[&] = -!"−1[&]− #$% !

"[&] is obtained.
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Fig. 1. Decomposition of a 512-sample long delta function
by: (a) EEMD (#$% ); (b) Our method (#̃$% ). Noise stan-
dard deviation . = 0.02. Ensemble size # = 500.

In the method here presented, the decomposition modes
will be noted as #̃$% " and we propose to calculate a unique
first residue as:

-1[&] = ![&]− #̃$% 1[&], (1)

where #̃$% 1[&] is obtained in the same way as in EEMD.
Then, compute the first EMD mode over an ensemble of
-1[&] plus different realizations of a given noise obtain-
ing #̃$% 2 by averaging. The next residue is defined as:
-2[&] = -1[&] − #̃$% 2[&]. This procedure continues with
the rest of the modes until the stopping criterion is reached.

Let us define the operator /$(⋅) which, given a signal,
produces the 0−th mode obtained by EMD. Let '! be white
noise with # (0, 1). If ![&] is the targeted data, we can de-
scribe our method by the following algorithm:

1. decompose by EMD # realizations ![&] + .0 '![&] to
obtain their first modes and compute

#̃$% 1[&] =
1

#

∑#

!=1
#$% !

1[&] = #$% 1[&].

2. at the first stage (+ = 1) calculate the first residue as in
Eq. (1): -1[&] = ![&]− #̃$% 1[&].

3. decompose realizations -1[&] + .1 /1('![&]), ( =
1, . . . , #, until their first EMD mode and define the
second mode:

#̃$% 2[&] =
1

#

∑#

!=1
/1

(
-1[&] + .1 /1('

![&])
)
.

4. for + = 2, . . . ,, calculate the +-th residue:

-"[&] = -("−1)[&]− #̃$% "[&]. (2)

5. decompose realizations -"[&] + ." /"('![&]), ( =
1, . . . , #, until their first EMD mode and define the
(+ + 1)-th mode as

#̃$% ("+1)[&] =
1

#

∑#

!=1
/1(-"[&] + ." /"('

![&])).

(3)
6. go to step 4 for next +.

Steps 4 to 6 are performed until the obtained residue is no
longer feasible to be decomposed (the residue does not have
at least two extrema). The final residue satisfies:

1[&] = ![&]−
∑%

"=1
#̃$% ", (4)

with , the total number of modes. Therefore, the given signal
![&] can be expressed as:

![&] =
∑%

"=1
#̃$% " +1[&]. (5)

Eq. (5) makes the proposed decomposition complete and pro-
vides an exact reconstruction of the original data.

Observe that the .! coefficients allow to select the SNR
at each stage. Concerning the amplitude of the added noise,
Wu and Huang suggested [2] to use small amplitude values
for data dominated by high-frequency signals, and vice versa.
Following then, in this work, we used a few hundred of re-
alizations and fixed the same SNR for all the stages. This
value might depend on the application. In all the implementa-
tions we use the EMD toolbox available on: http://perso.
ens-lyon.fr/patrick.flandrin/emd.html

2.3. Data

Synthetic and real signals will be analyzed in the present pa-
per. We consider a synthesized single 2[&] Dirac signal of
512 samples. This function was used in [4] to suggest that
noise could help data analysis in cases where EMD cannot be
performed, giving birth to EEMD in [2]. A second example
will be considered, using real data: Electrocardiogram (ECG)
signals from the MIT-BIH Normal Sinus Rhythm Database1.

3. RESULTS AND DISCUSSIONS

As a first example, we apply the proposed method to a single
delta signal 2[&]. In Fig. 1 are depicted the decompositions
obtained by EEMD and the one obtained by the new method
here proposed. In both cases, an ensemble size of # = 500
were used, with .0 = 0.02, corresponding to a SNR of 34 dB.
In the left panel, it can be seen that EEMD produces thirteen
modes, while in the right one, only nine modes are obtained
by the method here proposed.

In both decompositions the amplitudes of the modes one
to five are similar (0.01 ≤ ∣#$% "∣ ≤ 0.5 for + = 1, . . . , 5)

1http://www.physionet.org/cgi-bin/ATM
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Fig. 2. Spectra of modes 3 to 7 obtained by: (a) EEMD
(#$% ); (b) Our method (#̃$% ).
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Fig. 3. Decomposition of a 10-second length ECG signal by:
(a) EEMD (#$% ); (b) Our method (#̃$% ). Noise standard
deviation . = 0.2. Ensemble size # = 500.

and less than 10−3 for + = 6, . . . , 8, with lower energy in the
EEMD cases. EEMD modes nine to thirteen have very low
amplitude (max(∣#$% "∣) ≤ 2×10−4.) Additionally #$% "

(+ ≥ 8) are not symmetric as expected. This low energy issue
in the case of EEMD is due to the effect of averaging over all
realizations, while a large variation in the number of modes
could be observed. Table 1 shows how many realizations !!

produced a given number of modes in our examples. For 2[&]
only one realization produced seven modes, 17 realizations
produced eight modes, and so on. In order to perform the av-
eraging it is necessary to pad with zeros the missing modes,
getting low amplitudes when averaging. A different solution
could be to set the number of modes (usually at 1+[3452(6)],
with 6 the signal length); in this case the EEMD method
would no longer be fully adaptive. The method here proposed
does not suffer from this difficulty because: (i) each realiza-
tion of residue plus noise is decomposed until the first mode
is reached, and (ii) for the final mode , we use as stopping
criterion the one used in EMD [1].

Also, observe that in #$% 4 the central maximum is
smaller than the lateral maxima and that #$% " (5 ≤ + ≤ 7)
present no central maximum. In contrast, in the right side of
Fig. 1 we can appreciate a similar behavior for all modes,
consistent to what would have been obtained performing a
wavelet analysis. Flandrin et al. [4] obtained similar re-
sults when they calculated an equivalent impulse response for
EMD by adding noise to a 256-sample long delta function
and averaged the corresponding IMFs using an ensemble size
of 5000. In our case we need just a tenth of the realizations.

Compared with EEMD, another advantage of the method
here proposed concerns the number of sifting iterations
needed for such 2 signals. While EEMD required 278931
sifting iterations totally, the method here proposed required
only 140939, which is almost a half.

In order to compare the spectral separation properties, the
PSD of modes three to seven for both methods are shown in
Fig. 2. On the right it can be observed that the mode’s spectra
obtained by the new decomposition are less overlapped than
those obtained from EEMD, showing a clearer separation of
the frequency content between the modes.

In summary, it can be appreciated that in the case of delta
like signals, the method here proposed provides a clearer net
decomposition than the EEMD.

Different authors have proposed to use EMD or EEMD
for ECG denoising [5, 6]. ECG signals are characterized by
spike-like events (QRS complexes), similar to discrete Dirac
2 functions previously analyzed. In our experience with ECG
signals, severe mode mixing was observed when decompos-
ing them by EMD. Although EEMD alleviates the mode mix-
ing, it is still too much time consuming because of the large
number of sifting iterations required to achieve the decompo-
sition. In Fig. 3 both decompositions of an ECG signal are
presented, obtained by EEMD (left) and with the new method
here proposed (right). An ensemble size of # = 500 was used
in both cases, with standard deviation . = 0.2 of the added
noise (SNR = 14 dB). It can be appreciated in the right panel
that in the seventh mode the fundamental frequency (% ) of
the signal is clearly captured, while in the case of EEMD,
% appears with lower energy in modes seven and eight (left
panel). Therefore, a fundamental frequency extraction algo-
rithm could fail to identify the mode that contains it when
applied to an EEMD decomposition.

The RR signal, defined as the distance between consec-
utive R peaks in the ECG, is widely used to study the heart
rate variability (HRV) which contains information about the
state of the autonomous nervous system (ANS). While this
approach provides a non-uniformly and low rate sampled sig-
nal, an estimation of the instantaneous heart frequency from
the proper mode obtained using our method, would allow a
uniformly sampled heart rate estimation at a higher frequency.

Boxplots of the sifting iterations required by each decom-
position are presented in Fig.4. Note the different ranges in
the vertical axes (2500 vs 500). Moreover, while in the EEMD

!"!-



# 7 8 9 10 11 12 13 14 !
"[#] 1 17 175 234 66 6 1 - 500
ECG - - 2 58 240 187 12 1 500

Table 1. Number of EEMD modes for each realization (.
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Fig. 4. Boxplots showing the sifting iterations for each mode.
(a) EEMD ; (b) Our method. Note the different scales for the
amplitude.

case the total number of iterations is 342199, in the case of
the method here proposed it is 105314. It is clear that the new
method provides an improvement in terms of computational
cost, requiring only the 30.8% of the sifting iterations of the
EEMD for this signal.

The completeness of the new method is guaranteed by Eq.
(5). To numerically confirm this property, we present in Fig.
5 the reconstruction error, for both decompositions, computed
as the difference between the ECG signal and the sum of the
modes. In the case of our method, the maximum amplitude
is less than 2× 10−15 (the round off error from the precision
of the computer) with a standard deviation of 2 × 10−14. To
achieve this precision with EEMD (which does not guarantee
a complete decomposition) it would be necessary to increase
the number of realizations to over 1029, considering that in
EEMD, the remaining noise has a standard deviation of .& =
./
√
# , turning the process extremely expensive in terms of

computational cost.

4. CONCLUSIONS

In this work we have presented a new algorithm for analyz-
ing and processing non-linear and non-stationary signals. The
new method was successfully tested on artificial and real sig-
nals.

The method here proposed has the advantages of requiring
less than half the sifting iterations that EEMD does, and that
the original signal can be exactly reconstructed by summing
the modes. Decomposition completeness was theoretically
demonstrated and numerically verified in the case of ECG
signal. Because of that, a smaller ensemble size is needed
resulting in a significant computational cost saving. In that
sense, the novel method recovers some of the EMD properties
lost by EEMD, such as completeness and a fully data-driven
number of modes.
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Fig. 5. Reconstruction error for: (a) EEMD ; (b) Our method.

In future works statistical studies will be carried out in
order to determine the proper ensemble size and the amplitude
of the added noise.
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