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The aim of this paper is to provide a gradient clustering algorithm in its complete form, suitable for direct use without re-
quiring a deeper statistical knowledge. The values of all parameters are effectively calculated using optimizing procedures.
Moreover, an illustrative analysis of the meaning of particular parameters is shown, followed by the effects resulting from
possible modifications with respect to their primarily assigned optimal values. The proposed algorithm does not demand
strict assumptions regarding the desired number of clusters, which allows the obtained number to be better suited to a real
data structure. Moreover, a feature specific to it is the possibility to influence the proportion between the number of clusters
in areas where data elements are dense as opposed to their sparse regions. Finally, the algorithm—by the detection of one-
element clusters—allows identifying atypical elements, which enables their elimination or possible designation to bigger
clusters, thus increasing the homogeneity of the data set.
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1. Introduction

Consider an m-element set of n-dimensional vectors:

x1, x2, . . . , xm ∈ R
n. (1)

Generally, the task of clustering relies upon the division
of the above data set into subsets (clusters), each con-
taining elements similar to one another, yet significantly
differing from elements of other subsets (for a basic no-
tion, see (Anderberg, 1973; Jain and Dubes, 1988; Everitt
et al., 2001)). Such a comfortable, intuitively obvious def-
inition is equally awkward both from a theoretical and a
practical point of view, as it contains visible and hidden
imprecisions. Above all there is no unambiguous defini-
tion of what denotes “similarity” (and, consequently, “dif-
ference”) of elements, nor is it clear if the number of clus-
ters is to be arbitrarily assumed or defined as a result of

the structure of real data (1) itself, or how to measure the
quality of the divisions imposed. If it is also taken into ac-
count that the mathematical apparatus does not have a nat-
ural methodology for solving such problems, the existence
becomes obvious of an excessive number of heuristic iter-
ative procedures, each of them characterized by different
advantages and disadvantages, as well as certain proper-
ties which may be of benefit in some problems and of no
profit in others.

Another kind of difficulty in the use of such heuristic
iterative procedures is that many of these methods were
developed 30–40 years ago, when computer access was
the privilege of a selected group of specialists, in pos-
session of deep knowledge necessary for comprehensive
analysis of the obtained results. In many cases, a lot
of conditions and parameters—among others such fun-
damentals as a stop criterion or the assumed number of
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clusters—are left for the user to decide. A basis for the
analysis of collected results was often presented by view-
ing their graphical representation, not easy even when us-
ing specialized visualization methods, particularly in the
multidimensional case when n > 2.

The above is now in complete contradiction to the
demands of the majority of contemporary users of these
methods. The availability of computer technology means
that they often do not have specialist knowledge for com-
prehensive analysis. The best solution for these users
is to provide a complete algorithm, taking into account
“automatic” procedures for fixing all quantities appear-
ing there, both functions and parameters, as well as clear
information concerning their influence on the obtained
results and—in consequence—advantages and disadvan-
tages arising from their potential changes.

In the now classic paper (Fukunaga and Hostetler,
1975), the authors formulated a natural idea of clustering,
employing notable possibilities entering into widespread
use of statistical kernel estimators at that time, today the
main method of nonparametric estimation. The basis of
the above concept is treating the data set (1) as a random
sample obtained from an n-dimensional random variable,
calculating the kernel estimator of the density of its dis-
tribution, and making the clear assumption that particular
clusters correspond to modes (local maxima) of the esti-
mator, and so “valleys” of the density function constitute
a bordering of such clusters. The presented method was
formulated as a general idea only, leaving the details—as
was the generally accepted behavior of that time—to the
painstaking analysis of the user. Its naturalness and clar-
ity of interpretation allowed the method to be applied in
many varied specialist tasks such as tracking, image seg-
mentation, information fusion, and video processing (see
(Zhang et al., 2005) for a list of examples), interesting mu-
tations and supplements (see, e.g., (Yang et al., 2003) or
(Cheng, 1995)), and even unwitting repetition of the same
idea (Wang et al., 2004).

The aim of this paper is to present gradient clustering
algorithm based on Fukunaga and Hostetler’s concept in
its complete form, suitable for direct use without requiring
users to have a deeper statistical knowledge or to conduct
laborious research. All parameters appearing here can be
effectively calculated using convenient numerical proce-
dures based on optimization criteria. Moreover, making
use of a near-intuitive interpretation of the concept of the
gradient algorithm itself, as well as its theoretical base—
kernel estimators, an illustrative analysis of the signifi-
cance of particular parameters will be given, and the ef-
fects achieved through their possible change with respect
to the above mentioned optimal values, depending on con-
ditions of the problem in question and user preferences.

The main feature of the algorithm under research is
that it does not demand strict assumptions regarding the
desired number of clusters, which allows the obtained

number to be better suited to a real data structure. In the
paper, the parameter directly responsible for the number
of clusters will be indicated. At a preliminary stage its
value can be calculated effectively using optimization cri-
teria. It will also be shown how possible changes to this
value (which may be performed but are not necessary) in-
fluence the increase or decrease in the number of clusters,
although without defining their exact number. Moreover,
the next parameter is indicated, and its value will influence
the proportion between the number of clusters in dense
and sparse areas of data set elements. Here also its value
can be assumed based on optimization ground, or possi-
bly subject to modifications with the goal of increasing
the number of clusters in dense areas of data set elements
while simultaneously reducing or even eliminating them
from sparse regions, or vice-versa. This possibility is par-
ticularly worth underlining as practically non-existent in
other clustering procedures.

By its nature, the algorithm commonly creates one-
element clusters, which can be treated as atypical ele-
ments (Barnett and Lewis, 1994) in a given configuration
of clusters. This could be the basis for eliminating ele-
ments which create them in order to increase the homo-
geneity of the data set. However, by the above mentioned
modification of the appropriate parameter, leading to a re-
duction in the number of clusters in sparse areas, these
elements may also be assigned to the closest clusters.

Moreover, the appropriate relation between the above
mentioned two parameters permits a reduction or even
elimination of clusters in sparse areas, usually without in-
fluencing the number of clusters in dense areas of data set
elements.

The complete gradient clustering algorithm proposed
in this paper has, of course, its application limits, mainly
that it is not intended for tasks where the desired number
of clusters is strictly defined. The calculation time be-
comes relatively great, which may cause difficulties with
its use in tasks carried out in real time. For multidimen-
sional problems, i.e., when n > 5, it might prove nec-
essary to apply first procedures for the reduction of di-
mensionality. Typical concepts are described in the book
(Larose, 2006, Chapter 1) and those dedicated to algo-
rithms of data analysis and mining using the kernel es-
timators methodology, based on the simulated annealing
method, are presented in (Kulczycki and Łukasik, 2009)
and will soon be the subject of further research.

A preliminary version of this article was presented as
(Kulczycki and Charytanowicz, 2008).

2. Statistical kernel estimators

Consider an n-dimensional random variable X with a dis-
tribution characterized by the density f . Its kernel esti-
mator f̂ : R

n → [0,∞), calculated using experimen-
tally obtained values for the m-element random sample
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x1, x2, . . . , xm, in its basic form is defined as

f̂(x) =
1

mhn

m∑

i=1

K

(
x − xi

h

)
, (2)

where m ∈ N\{0}, the coefficient h > 0 is called
a smoothing parameter, while the measurable function
K : R

n → [0,∞) of unit integral
∫

Rn K(x)dx = 1, sym-
metrical with respect to zero and having a weak global
maximum in this place, is called the kernel. The choice of
the kernel K and the calculation of the smoothing param-
eter h is made most often with the criterion of the mean
integrated square error.

Thus, the choice of the kernel form has—from a sta-
tistical point of view—no practical meaning and, thanks
to this, it becomes possible to take into account primarily
properties of the obtained estimator (e.g., its class of regu-
larity, assigned positive values) or aspects of calculations,
advantageous from the point of view of the application
problem under investigation (for a broader discussion, see
(Kulczycki, 2005, Section 3.1.3; Wand and Jones, 1994,
Section 2.7 and Section 4.5) and also (Muller, 1984) for
individual aspects). The most popular in practice is the
normal kernel:

K(x) =
1

2πn/2
exp

(
− xTx

2

)
. (3)

Note that it is differentiable to any degree and assumes
positive values in the whole domain.

The fixing of the smoothing parameter h has signifi-
cant meaning for the estimation quality. Too small a value
causes a large number of local extremes of the estima-
tor f̂ to appear, which is contrary to the actual properties
of real populations. On the other hand, too big values of
the parameter h result in the overflattening of this esti-
mator, hiding specific properties of the distribution under
investigation. According to the universal cross-validation
method (Kulczycki, 2005, Section 3.1.5; Silverman, 1986,
Section 3.4.3), it can be calculated as a value realizing the
minimum of the function g : (0,∞) → R in the form

g(h) =
1

m2hn

m∑

i=1

m∑

j=1

K̃

(
xj − xi

h

)
+

2
mhn

K(0), (4)

while K̃(x) = K∗2(x) − 2K(x), whereas K∗2 denotes
a convolution square of the function K . For the normal
kernel (3), we have

K∗2(x) =
1

(4π)n/2
exp

(
− xTx

4

)
. (5)

A range of other methods of calculating the smoothing pa-
rameter have been investigated under specific conditions.

In particular, for the one-dimensional case one can rec-
ommend the simple and effective plug-in method (Kul-
czycki, 2005, Section 3.1.5; Wand and Jones, 1994, Sec-
tion 3.6.1), although the above described universal cross-
validation method can also be applied here.

In the case of the basic definition of the kernel es-
timator (2), the influence of the smoothing parameter
on particular kernels is the same. Advantageous results
are obtained thanks to the individualization of this ef-
fect, achieved through the so-called modification of the
smoothing parameter. It relies on mapping the positive
modifying parameters s1, s2, . . . , sm on particular ker-
nels, described as

si =

(
f̂∗(xi)

s

)−c

, (6)

where c ∈ [0,∞), f̂∗ denotes the kernel estimator with-
out modification, s is the geometrical mean of the num-
bers f̂∗(x1), f̂∗(x2), . . ., f̂∗(xm) and, finally, defining the
kernel estimator with the modification of the smoothing
parameter in the following form:

f̂(x) =
1

mhn

m∑

i=1

1
sn

i

K

(
x − xi

hsi

)
. (7)

Thanks to the above procedure, the areas in which
the kernel estimator has small values (e.g., in the range
of “tails”) are additionally flattened, and the areas con-
nected with large values are peaked, which permits to bet-
ter reveal individual properties of the distribution. The
parameter c stands for the intensity of the modification
procedure. Based on indications for the criterion of the
integrated mean square error, the value

c = 0.5 (8)

can be suggested.
Owing to the basic form of the kernel estimator (2),

the smoothing parameter has the same influence on par-
ticular coordinates of this variable. Taking into account
the possibility of sizable differences in scales of the above
coordinates, for some of these the value of the parameter
may turn out to be too small, whereas for others—too big.
Because of this, a linear transformation is applied:

X = RY, (9)

where the matrix R is positive definite. In practice, its two
main forms are used: diagonal,

R =

⎡

⎢⎣

√
Var(X1) · · · 0

...
. . .

...
0 · · · √

Var(Xn)

⎤

⎥⎦ , (10)

and general,
R =

√
Cov(X), (11)
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where Var(Xi) means the variance of the i-th coordinate,
while Cov(X) stands for the covariance of the variable
X . Following the transformation (9), the kernel estimator
takes the form

f̂(x) =
1

mhndet(R)

m∑

i=1

K

(
R−1 x − xi

h

)
. (12)

As a result, the scales of the particular coordinates become
equal, while in the case of the general form (11), addition-
ally, the shapes of kernels stretch out in a direction defined
by proper correlation coefficients.

The naturalness and clarity of the kernel estimator
concept allow us to easily adapt its properties to condi-
tions of an investigated problem, e.g., by restricting the
support of the function f̂ . The case of the left-sided
boundary of a one-dimensional random variable, i.e., the
condition f̂(x) = 0 is to be fulfilled for every x < x∗,
with any x∗ ∈ R fixed, will be presented below. The
concept of the proposed procedure consists of realizing a
symmetrical “reflection” with respect to the boundary x∗
of the fragment of any i-th kernel lying beyond the interval
[x∗,∞) and treating it as a fragment of a kernel “caught”
in the symmetrical “reflection” of the element xi with re-
spect to the boundary x∗, thus at the point x∗− (xi −x∗),
so that 2x∗−xi. The basic form of the kernel estimator (2)
may then be described as

f̂(x) =
1

mh

m∑

i=1

χ[x∗,∞)(x)
[
K

(
x − xi

h

)

+ K

(
x + xi − 2x∗

h

)]
,

(13)

where χ[x∗,∞) denotes the characteristic function of the
interval [x∗,∞). The parts of the particular kernels “cut
off” beyond the assumed support are therefore “com-
pleted” inside the support in the direct neighborhood of
the boundary, and so in the range of error most often ac-
cepted in practice.

The concepts described by (7), (12) and (13) can be
joined in a natural manner.

Detailed information regarding kernel estimators is
presented in the monographs (Kulczycki, 2005; Silver-
man, 1986; Wand and Jones, 1994). Examples of prac-
tical applications can be found in the publications (Kul-
czycki, 2007; 2008).

3. Complete gradient clustering algorithm

As in Introduction, consider an m-element set of
n-dimensional vectors (1). It will be treated as a random
sample obtained from the n-dimensional random vari-
able X , with distribution having a density f . Using the
methodology described in Section 2, a kernel estimator
f̂ can be created. Let us make a natural assumption that

particular clusters are related to its modes, or local max-
ima of the function f̂ , and mapping onto them elements of
the set (1) is realized by transposing those elements in the
gradient direction ∇f̂ , with an appropriate fixed step.

The above is carried out iteratively with the gradi-
ent clustering algorithm (Fukunaga and Hostetler, 1975),
based on the classic Newton procedure (Kincaid and Ch-
eney, 2002, Section 3.2), defined as

x0
j = xj for j = 1, 2, . . . , m, (14)

xk+1
j = xk

j + b
∇f̂(xk

j )

f̂(xk
j )

for j = 1, 2, . . . , m and k = 0, 1, . . . , k∗,

(15)

where b > 0 and k∗ ∈ N\{0}. In practice, it is recom-
mended that

b =
h2

n + 2
(16)

(Fukunaga and Hostetler, 1975)1.
In order to refine the above concept to the state of

a complete algorithm, the following aspects need to be
formulated and analyzed in detail:

1. formula for the kernel estimator f̂ ,

2. setting a stopping condition (and, consequently, the
number of steps k∗),

3. definition of a procedure for creating clusters and as-
signing to them particular elements of the set (1), af-
ter the last, k∗-th step,

4. analysis of the influence of the values of parameters
on the obtained results.

The above tasks are the subjects of the following sections.

3.1. Formula of the kernel estimator. For the needs
of further parts of the concept presented here, the kernel
estimator f̂ is assumed in a form with the modification of
the smoothing parameter of standard intensity (8), as is
linear transformation using the diagonal form of the ma-
trix (10)2.

1For ease of computations one can make use of ∇f̂(x)/f̂(x) =

∇ln(f̂(x)). Moreover, the value of this expression is sometimes ob-
tained by computing the so-called mean shift—in this case, the gradi-
ent clustering algorithm is known in the literature as the mean shift al-
gorithm (procedure); see, for example, (Cheng, 1995; Comaniciu and
Meer, 2002; Yang et al., 2003). The method of evaluating the above
expression is of no relevance for further parts of the presented material.

2Using the general form of the transformation matrix (11) results in
elongating kernels in one direction. This causes a difference in the rate of
the convergence of the algorithm (14)–(15) with respect to the direction
of the transposition of elements of the set (1), unjustified from the point
of view of the clustering task and, consequently, interfering with the ob-
tained results. Also for this reason, the product kernel (Kulczycki, 2005,
Section 3.1.3; Wand and Jones, 1994, Section 4.2), very useful in practi-
cal applications, was rejected.
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The kernel K is recommended in the normal form
(3) due to its differentiability in the whole domain, conve-
nience for analytical deliberations connected with the gra-
dient, and assuming positive values, which in every case
prevents from division by zero in the formula (15).

3.2. Setting a stop condition. It is assumed that the
algorithm (14)–(15) should be finished, if after the con-
secutive k-th step the following condition is fulfilled:

|Dk − Dk−1| ≤ aD0, (17)

where a > 0 and

D0 =
m−1∑

i=1

m∑

j=i+1

d(xi, xj), (18)

Dk−1 =
m−1∑

i=1

m∑

j=i+1

d(xk−1
i , xk−1

j ), (19)

Dk =
m−1∑

i=1

m∑

j=i+1

d(xk
i , xk

j ), (20)

while d means a Euclidean metric in R
n. Therefore, D0

and Dk−1, Dk denote sums of distances between partic-
ular elements of the set (1) before starting the algorithm
as well as after the (k − 1)-th and k-th steps, respectively.
Primarily, it is recommended that

α = 0.001. (21)

A potential decrease in this value does not significantly
influence the obtained results, although increases require
individual verification of their correctness. The conver-
gence of the above algorithm is proven in Appendix.

Finally, if after the k-th step the condition (17) is ful-
filled, then

k∗ = k (22)

and, consequently, this step is treated as the last one.

3.3. Procedure for creating clusters and assigning
particular elements to them. At this stage, the follow-
ing set is investigated:

xk∗
1 , xk∗

2 , . . . , xk∗
m , (23)

consisting of the elements of the set (1) after the k∗-th
step of the algorithm (14)–(15). Following this, the set of
mutual distances of the above elements

{
d(xk∗

i , xk∗
j )
}

i=1,2,...,m−1
j=i+1,i+2,...,m

(24)

should be defined. Its size is given as

md =
m(m − 1)

2
. (25)

Taking (24) as a sample of a one-dimensional ran-
dom variable, the auxiliary kernel estimator f̂d of mutual
distances of the elements of the set (23) ought to be cal-
culated. Regarding the methodology of kernel estimators
presented in Section 2, the normal kernel (3) is once again
proposed, as is the use of the procedure of smoothing pa-
rameter modification with a standard value of the param-
eter (8), and additionally left-sided boundary of a support
to the interval [0,∞).

The next task is to find—with suitable precision—
the “first” (i.e., for the smallest value of an argument) a
local minimum of the function f̂d belonging to the interval
(0, D), where

D = max
i=1,2,...,m−1

j=i+1,i+2,...,m

d(xi, xj). (26)

For this purpose, one should treat the set (24) as a random
sample, calculate its standard deviation σd, and next take
in sequence the values x from the set

{
0.01σd, 0.02σd, . . . , [int(100D) − 1]0.01σd

}
, (27)

where int(100D) denotes the integer part of the number
100D, until finding the first (the smallest) of them which
fulfils the condition

f̂d(x − 0.01σd) > f̂d(x) and f̂d(x) ≤ f̂d(x + 0.01σd).
(28)

This valueă3 will be denoted hereinafter as xd, and it can
be interpreted as half the distance between “centers” of
potential clusters lying closest together.

Finally, the clusters will be created. To this aim, one
should:

1. Take the element of the set (23) and initially create a
one-element cluster containing it.

2. Find an element of the set (23) different from the one
in the cluster, closer than xd; if there is such an el-
ement, then it should be added to the cluster, other-
wise, proceed to Point 4.

3. Find an element of the set (23) different from ele-
ments in the cluster, closer than xd to at least one of
them; if there is such an element, then it should be
added to the cluster and Point 3 repeated.

4. Add the obtained cluster to a “list of clusters” and re-
move from the set (23) elements of this cluster; if this
so-reduced set (23) is not empty, return to Point 1,
otherwise, finish the algorithm.

3If such a value does not exist, then one should recognize the exis-
tence of one cluster and finish the procedure. A similar suggestion may
be made for the irrational, yet formally possible case where m = 1, as
the set (24) is then empty.
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The “list of clusters” so defined contains all clusters
marked out in the above procedure. Therefore it becomes
the complete gradient clustering algorithm in the basic
form—its possible modifications and their influence on
the obtained results will be presented in the next section.

3.4. Analysis of the influence of the values of param-
eters on the obtained results. It is worth repeating that
the presented clustering algorithm did not require a pre-
liminary, often arbitrary in practice, assumption concern-
ing the number of clusters—their size depending solely
on the internal structure of data, given as the set (1). In
the application of the complete gradient clustering algo-
rithm in its basic form, the values of the parameters used
are effectively calculated taking optimization reasons into
account. However, optionally—if the researcher makes
a decision—by an appropriate change in values of kernel
estimator parameters, it is possible to influence the size
of the number of clusters, and also the proportion of their
appearance in dense areas in relation to sparse regions of
elements in this set.

In the example presented now, the elements of the
set (1) have been generated pseudorandomly, for a distri-
bution selected specially to highlight the above aspects.

As mentioned in Section 2, too small a value of the
smoothing parameter h results in the appearance of too
many local extremes of the kernel estimator, while too
great a value causes its excessive smoothing. In this situa-
tion lowering the value of the parameter h with respect to
that obtained by procedures based on the criterion of the
mean integrated square error creates, as a consequence, an
increase in the number of clusters. At the same time, an
increase in the smoothing parameter value results in fewer
clusters. It should be underlined that in both cases, de-
spite having an influence on the size of the cluster number,
their exact number will still depend solely on the internal
structure of data. Based on research carried out, one can
recommend a change in the value of the smoothing pa-
rameter by between −25% and +50%. Outside this range,
the obtained results require individual verification.

Figure 1 shows the illustratively chosen sample set
of two-dimensional vectors. When applying the smooth-
ing parameter value calculated with the cross-validation
method (see Section 2), three clusters are obtained. Fol-
lowing a decrease in this value by 25%, their number
grows to four, as one cluster divides in two. On the other
hand, a 50% increase results in the identification of only
two clusters, with two of the original clusters uniting.

Next, as mentioned in Section 2, the intensity of the
modification of the smoothing parameter is implied by the
value of the parameter c, given as standard by the formula
(8). Its increase smoothes the kernel estimator in areas
where elements of the set (1) are sparse and also sharpens
it in dense areas—in consequence, if the value of the pa-
rameter c is raised, then the number of clusters in sparse

Fig. 1. Effects of changing the value of the smoothing parame-
ter h: calculated by the cross-validation method (a), low-
ered by 25% (b), raised by 50% (c).

areas of data decreases, while at the same time increasing
in dense regions. Inverse effects can be seen in the case
of lowering this parameter value. Based on research car-
ried out we can recommend the value of the parameter c
to be between 0 (meaning no modification) and 1.5. An
increase greater than 1.5 requires individual verification
of the validity of the obtained results. Particularly, it is
recommended that c = 1.

Figure 2 shows an illustrative sample set of
two-dimensional vectors. When the standard value c =
0.5 is applied, four clusters are obtained—two in dense ar-
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Fig. 2. Effects of differentiation intensity of smoothing param-
eter modification through changes in the value of the pa-
rameter c: standard value c = 0.5 (a), value lowered to
c = 0 (b), value increased to c = 1 (c).

eas and two in sparse regions. If c = 0, there is no change
in the number of clusters; however, the clusters in dense
areas coalesce, and an additional cluster appears in sparse
regions. Similarly, when c = 1, the number of clusters
remains the same, but in dense areas the number increases
to three, while decreasing to one in sparse regions.

Practice, however, often prevents changes to clusters
in dense areas of data—the most important from an appli-
cational point of view—while at the same time requiring a
reduction or even elimination of clusters in sparse regions,

as they frequently pertain to atypical elements (outliers)
commonly arising due to various errors. Putting the above
together, one can propose an increase in both the standard
scale of the smoothing parameter modification (8) and the
value of the smoothing parameter h calculated on the cri-
terion of the mean integrated square error, to the value h∗

defined by the formula

h∗ =
(

3
2

)c−0.5

h. (29)

The joint action of both these factors results in a twofold
smoothing of the function f̂ in the regions where the ele-
ments of the set (1) are sparse. Meanwhile, these factors
more or less compensate for each other in dense areas,
thereby having small influence on the detection of these
clusters. Based on research carried out, one can recom-
mend a change in the value of the parameter c from 0.5 to
1.0. Increasing it to above 1.0 demands individual verifi-
cation of the validity of the obtained results. Particularly
it is recommended that c = 0.75.

Figure 3 once more shows an illustrative sample set
of two-dimensional vectors. In the case of the standard
value of the parameter c = 0.5, four clusters appear—
two in dense areas and two in sparse regions. When c =
0.75 was assumed and, consequently, h∗ = (3/2)0.25h ≈
1.11h, the first two clusters remained unchanged, but the
two peripheral ones united. For c = 1 and h∗ = 1.22h
this was also then eliminated.

Finally, it is worth mentioning a possibility of reduc-
ing the set (24). In practice, it is too large not only because
of the square dependence regarding the size of the set (1),
occurring in the formula (25), but also due to the fact
that the estimator f̂d concerns a one-dimensional random
variable, while f̂ , usually multidimensional, by nature de-
manding notably greater a sample size. For a very large
size of the sample (24) it is worth using data-compression
procedures well-known in literature, see, e.g., (Girolami
and He, 2003; Pal and Mitra, 2004, Section 2.5).

4. Summary and application examples

The subject of this article is the gradient clustering algo-
rithm, based on the natural assumption that if one treats a
data set, given as n-dimensional vectors, as a sample ob-
tained from an n-dimensional random variable, then par-
ticular clusters correspond to modes (local maxima) of its
density estimator, while assigning particular data set ele-
ments to them takes place by transposing those elements
in the direction of the density function gradient. A com-
plete form was presented, suitable for direct use without
requiring a deeper statistical knowledge or laborious re-
search by users.

A basic characteristic of the complete gradient clus-
tering algorithm investigated here is that a fixed number
of clusters is not required, just an indication of its size,
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(a)

(b)

(c)

Fig. 3. Effects of simultaneous changes in the values of the pa-
rameters h and c: standard value c = 0.5 and h calcu-
lated by the cross-validation method (a), value increased
to c = 0.75 and h calculated according to the formula
(29) (b), value increased to c = 1 and h calculated ac-
cording to the formula (29) (c).

which allows the number of clusters to be suited to the
real structure of data. Applying the algorithm in its basic
form does not require the user to supply arbitrary values
for parameters, as they may be calculated using optimiz-
ing criteria; however, there also exists the possibility of
their optional change. Thus, with a proper modification of
parameter values, it is possible to influence the approxi-
mate quantity of clusters alone (although their exact num-

ber will depend on the internal structure of data), as well
as—which is particularly worth underlining—the propor-
tion of their appearances in dense as opposed to sparse
areas of data set elements. Especially, it is possible practi-
cally not to intervene in the number of clusters in dense ar-
eas, at the same time significantly reducing, or even elim-
inating, clusters in sparse regions. The algorithm often
creates one-element clusters, which indicates that they are
atypical in a given data structure—it can be then homog-
enized by their elimination or by assigning them to the
nearest clusters through the above mentioned appropriate
change in parameter values.

Now, three application examples of the investigated
algorithm will be presented, firstly for improving the qual-
ity of the kernel estimator of the distribution density, de-
scribed in Section 2, next, for use in a classification task—
referring to a real research problem from biology—for a
set of real data available in classic literature, and then for
the practical task of planning the marketing strategy of
mobile phone operators.

Consider first the example of an eighty-element ran-
dom sample illustrated in Fig. 4. In order to find a distribu-
tion density, the kernel estimators methodology, presented
in Section 2, will be used, with the application of a nor-
mal kernel, a cross-validation method, a procedure for the
modification of the smoothing parameter with standard in-
tensity (8), and a linear transformation. So, the matrix R
calculated for the sample considered is for the diagonal
form (10):

R =
[

8.77 0
0 4.15

]
, (30)

and for the general form (11):

R =
[

8.77 1.41
1.41 4.15

]
. (31)

In the first case, this results in the contour lines of kernels
being stretched horizontally by about 45%, while in the
second case the direction undergoes a turn of about 30ř
counter-clockwise. Thus, in both cases the shapes of ker-
nels do not fit any clearly-outlined data subset and do not
even represent any kind of “compromise” between them.

In order to improve the quality of the estimator, the
random sample shown in Fig. 4 was submitted to the com-
plete gradient clustering algorithm with c = 1 and the
smoothing parameter value obtained using the formula
(29), after which for each defined cluster a linear trans-
formation matrix was calculated in its general form (11),
giving the following:

R′ =
[

0.18 −0.22
−0.22 4.74

]
, (32)

R′′ =
[

3.14 3.21
3.21 3.57

]
. (33)
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Fig. 4. Illustration of the improvement in the quality of the ker-
nel estimator by the application of the local linear trans-
formation matrices (32)–(33).

Applying them separately to the obtained clusters, the
shape of the kernels was appropriately stretched—for il-
lustration, see Fig. 4 once more.

Knowing the theoretical distribution density from
which the sample was generated, the mean integrated
square error value was calculated. For the whole
80-element random sample, this error was only 2% less
for the general form of the transformation matrix (31) than
for the significantly simpler diagonal form (30). Such a
small difference comes from the fact that—as mentioned
above—in both cases the kernel shapes are almost equally
poorly suited to the data structure. After using the com-
plete gradient clustering algorithm and calculating the ker-
nel estimators separately for the obtained clusters, the er-
ror decreased by about 50% for the general transforma-
tion matrices (32)–(33), and for the diagonal forms of the
matrices—by about 20%. Both cases show evident advan-
tages arising from the applications of preliminary cluster-
ing data with the help of the complete gradient clustering
algorithm. Similar results occurred for other distributions,
also multimodal, and for various random sample sizes.

The next example is based on real data referring to
the often-found in Europe beetle of the genus Chaetoc-
nema, existing in three speciesă: conicinna, heikertin-
geri and heptapotamica. The work (Lubischew, 1962,
Tables 4–6), offers six features measured in 21, 31 and
22 males of the above species, respectively. The first fea-
ture, “width of the first joint of the tarsus in microns (the
sum of measurements for both tarsi)”, dominates, while
the fourth, “the front angle of the aedeagus (1 unit = 7,5ř)”
and the sixth, “the aedeagus width from the side (in mi-
crons)”, are of medium importance. The remaining three
are less significant. For the sake of graphic presentation
and facilitating interpretation of the results obtained on a
plane, the investigation below was limited to the two men-
tioned first.

Figure 5 shows points representing particu-
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Fig. 5. Empirical data for three species of the beetle genus
Chaetocnema (X-axis—width of the first joint of the tar-
sus, Y -axis—the front angle of the aedeagus).

lar individually tested beetles (Lubischew, 1962,
Tables 4–6). Some of them were characterized by identi-
cal measurements—in these cases corresponding points
were given the symbol “×2”. As a result of clustering
using the complete gradient clustering algorithm for
standard parameter values, the data set was divided into
four clusters, with one of them containing one element.

Considering the task of classification with the clus-
tering procedure, one can ascertain that three elements
marked in Fig. 5 as A, B, C were wrongly assigned. The
first of these forms the aforementioned one-element clus-
ter, the second was wrongly included in the left-hand clus-
ter representing the species heptapotamica, and the third
was placed in the lower-right-hand heikertingeri, while all
three should belong to the upper-right-hand cluster repre-
senting the species conicinna.

The basic conditioning of the problem—even with-
out knowing the number of species—shows that the one-
element cluster is erroneous. Following the instructions
presented above, this cluster was eliminated in the typical
way by taking c = 1 and the modification of the smooth-
ing parameter h value, according to the formula (29).
Thus the number of clusters was reduced to three. The
point A was assigned to the left-hand cluster representing
the species heptapotamica, which is not actually correct
from the classification task point of view, as it should be-
long to the upper-right-hand cluster of conicinna. So the
complete gradient clustering algorithm made three mis-
takes in classifying the beetle genus Chaetocnema. Look-
ing at Fig. 5 it is worth noticing, however, that in the
case of points A and B these mistakes are justified—the
above points are placed very close to elements of the left-
hand cluster of the species heptapotamica. With respect to
the point C such diagnosis is not so unambiguous, though
worth pointing out is the fact that it lies close to a signifi-
cant concentration of elements from the lower-right-hand
cluster representing heikertingeri.



132 P. Kulczycki and M. Charytanowicz

For comparison, the same data were subjected to the
classic k-means algorithm, available in statistical pack-
ages Statistica and SPSS. Standard parameter values as
well as procedure forms were used during their run-
ning. It is worth stressing that the k-means algorithm
availed of the a priori assumed correct number of clus-
ters, which in many applications may not be known, or
even such a “correct”—from a theoretical point of view—
number might not exist at all (see the example for planning
the marketing strategy for mobile phone operators, be-
low). Thus, for the k-means algorithm from Statistica, the
clustering process led to four erroneous classifications—
wrongly assigned points are marked in Fig. 5 with the let-
ters ‘a’, ‘b’, ‘c’ and ‘d’—the first three were included in
the lower-right-hand cluster representing the heikertingeri
space, although they should be part of the upper-right-
hand conicinna, while the fourth, actually belonging to
the left-hand heptapotamica, was given to the upper-right-
hand cluster of conicinna. The k-means algorithm from
SPSS, however, generated 18 misclassifications. Here,
a group of 15 elements in the left part of the lower-
right-hand cluster representing the heikertingeri space—
in Fig. 5 surrounded by a dashed line—were placed in the
upper-right-hand cluster of conicinna, while for one ele-
ment, marked in Fig. 5 by the letter ‘x’, the opposite clas-
sification error was the case. Moreover, the points ‘y’ and
‘z’ were put in the left-hand cluster representing the hep-
tapotamica space, while they should actually belong to the
upper-right-hand conicinna. When interpreting the rela-
tive positions of particular points in Fig. 5, in both cases
errors created by the k-means algorithm are most often
difficult to explain in terms that would be easy for people
to understand.

The above comments can be generalized to the re-
sults of numerous tests carried out with the aim of com-
paring the complete gradient clustering algorithm investi-
gated here with other classic clustering procedures besides
k-means, e.g., hierarchical methods. It is difficult to con-
firm here the absolute supremacy of any one of them—to
a large degree the advantage stemmed from the conditions
and requirements formulated with regard to the problem
under consideration, although the complete gradient clus-
tering algorithm allowed greater possibilities of adjust-
ment to the real structure of data and, consequently, the
obtained results were more justifiable to a natural human
point of view. A very important feature for practition-
ers was the possibility of firstly functioning using stan-
dard parameter values, and the option of changing them
afterwards—according to individual needs—by the modi-
fication of two of them with easy and illustrative interpre-
tations.

The complete gradient clustering algorithm was also
successfully practically applied to planning the marketing
strategy for mobile phone operators with respect to cor-
porate clients. The aim of the research here was to in-

vestigate the appropriate behavior towards a given client,
based on factors such as a mean monthly income from
each SIM-card, the length of subscription, and the num-
ber of active SIM-cards. There was no a priori theoretical
premise for setting the number of clusters characterizing
particular types of clients. The data representing particu-
lar clients were divided into clusters, resulting in the pos-
sibility of defining a preferred marketing strategy with re-
spect to each of them on the basis of fuzzy data obtained
from experts.

A deep analysis and exploration of information con-
tained in the client database not only allows the develop-
ment of the best—from the client as well as the operator
point of view—options for offering the most satisfaction
possible to the former and at the same time the appropri-
ate steering of the development of the latter, but also the
acquisition of new clients. In particular, after the prelimi-
nary phase was performed for standard parameter values,
the intensity of the modification of the smoothing parame-
ter was increased by taking c = 1, with the aim of dividing
the largest cluster containing over half of the elements and
reducing small, and therefore less meaningful, clusters.
Finally, 17 clusters were distinguished as a result for the
complete gradient clustering algorithm, which was an ac-
ceptable size as far as further analysis was concerned, and
consequently a change in the smoothing parameter value
was not carried out, with the standard value remaining.
The two largest clusters contained 27% and 23% of data
base elements, with the next medium two in possession of
14% and 7%—most often elements of typical characteris-
tics. The rest of the clusters accounted for less than 3%,
most often atypical and firm-specific, although properly
grouped. For details, see the publication (Kulczycki and
Daniel, 2009).

The concept presented in this article is universal,
and in particular cases the details may be refined, as an
example see the different concepts of the stop criterion
based on entropy applied in the works (Rodriguez and
Suarez, 2006; Carreira-Perpinan, 2006).
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Appendix

Here a proof is provided that the algorithm presented in
Section 3.2 converges, therefore that after a sufficient (fi-
nite) number of steps the condition (17) with the notations
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(18)–(20) is fulfilled with probability 1. To this end, it is
enough to show that

lim
k→∞

|Dk − Dk−1| = 0 (34)

with probability 1, and therefore, for every ε > 0 there
exists k̃ ∈ N such that

∣∣∣∣
m−1∑

i=1

m∑

j=i+1

d(xk̃
i , xk̃

j ) −
m−1∑

i=1

m∑

j=i+1

d(xk̃−1
i , xk̃−1

j )
∣∣∣∣ < ε.

(35)
So let ε > 0 be arbitrarily fixed. From the defini-

tion of the kernel estimator and the normal kernel form,
it follows that the set x ∈ R

n such that ∇f̂(x) = 0 has
measure zero. Because at the beginning of Section 3 it
was assumed that elements of the set (1) are treated as
realizations of a random variable with distribution having
density, the probability that one of them belongs to this set
is zero. Therefore, ∇f̂(xi) �= 0 for i = 1, 2, . . . , m with
probability 1.

In the paper (Fukunaga and Hostetler, 1975) it was
shown that in this case, for the normal kernel and the
parameter b given by the formula (16), the algorithm
(14)–(15) transposes the elements x1, x2, . . . , xm to the
proper modes of the estimator f̂ . A result is that for any
fixed i = 1, 2, . . . , m−1 and j = i+1, i+2, . . . , m there
exists k̃i,j ∈ N such that for every natural k greater than
k̃i,j we have

∣∣d(xk
i , xk

j ) − d(xk−1
i , xk−1

j )
∣∣ <

2ε

m(m − 1)
(36)

(remember that a convergence sequence is a Cauchy one).
As the number of factors in the sums appearing in the for-
mula (35) equals m(m − 1)/2, then denoting

k̃ = max
i=1,2,...,m−1

j=i+1,i+2,...,m

k̃i,j , (37)

one obtains the condition (35), which finally completes
this proof, establishing the convergence of the algorithm
presented in Section 3.2 with probability 1.
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