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A COMPLETE KAHLER METRIC

OF POSITIVE CURVATURE ON C

PAUL F. KLEMBECK

Abstract. A complete Kahler metric of positive curvature on C is con-

structed and its importance is discussed.

The purpose of this paper is to exhibit an example of a complete Kahler

metric on C with strictly positive Riemannian sectional curvature. To accom-

plish this, let r2 = S"_,z,2, on C and consider metrics on C of the form

g¡f = d2f(r2)/dz¡dzj, r -» f(r2) £ C°(R). We shall describe the conditions on

/ which make g¡j a complete metric of positive curvature, and then show that

if f(x) = /¡5(ln(l + t)/t) dt, these conditions are satisfied, so for this/, g^-is

a C °° complete Kahler metric of strictly positive curvature on C.

Previously, there have been no known examples of complete noncompact

Kahler manifolds of positive sectional curvature. Nevertheless several theo-

rems have been proved regarding the structure of such manifolds. In particu-

lar, such manifolds are Stein manifolds [3], they are real diffeomorphic to R2n

[5], and they admit no nonconstant bounded holomorphic functions [6]. For

these and other reasons, they have been conjectured to be biholomorphic to

C [4]. Thus, the existence of a complete Kahler metric of positive sectional

curvature on C is not surprising; but it is not trivial. One can easily show

that C admits a complete Kahler metric of positive curvature: By the

existence of isothermal coordinates [2] any complete metric on R 2 of positive

sectional curvature is a Hermitian metric of positive sectional curvature

relative to some complex structure; the resulting complex manifold is in fact

C as a consequence of the Blanc Fiala Theorem [1] or of the general result

quoted on the nonexistence of nonconstant bounded holomorphic functions.

If one then takes products of C with itself one obtains a complete Kahler

metric of nonnegative sectional curvature and positive Ricci curvature on C.

However, there is no obvious way to perturb this metric to obtain a complete

Kahler metric of positive sectional curvature, for there is difficulty in finding

a perturbation which gives a merely Hermitian metric of positive sectional

curvature and, in addition, there is the difficulty of maintaining the Kahler

condition, which is given, in effect, by a differential equation. Here, the

problem of satisfying the Kahler condition is solved by considering only
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metrics derived from a global potential function, but to check the positivity of

the sectional curvatures requires complicated curvature calculations.

Clearly,

| 44J + /"(r2)( | íaIÍ S *5 |.*=/'i/2)(

so g is positive definite if f'(r2) > 0 and f'(r2) + r2f"(r2) > 0 for all r, and g

is complete if the integral ¡o)jf'(r2) + r2f"(r2) dr diverges. In addition, g is

spherically symmetric so we may restrict the curvature computation for g to

the complex line L = [z¡ = 0|/ > 1} without loss of generality. Since g is a

Kahler metric, a messy but elementary computation on L gives

Rjklñ = f"(r2)(8Jk-8a+8JJ¡k)

+ r¿

+

f'"(r2)
(f"(r2)f

f'(r2)
(8jk\8Im  + 8jmi8lk + 8lml8jk + 8lk\8jm )

(2f"(r2) + r2f'"(r2)Y (f"(r2)Y
rf""(r2) - r2 -     —— + 4r2 -

f'(r2) + r2f"(r2) fin
VjklmV

On the set

5 = span{3/3z;, d/dzk\i, k > 1} c TC"L,

Rßäm = /V)(SjiSss + SjA- )   and   gy = /'(r2)6-

so g has constant holomorphic sectional curvature —2f"(r2)/f'(r2). There-

fore, if f"(r2) < 0 for all r, the Riemannian curvatures of all real two planes

contained in S will be positive. By spherical symmetry we may assume the

remaining two planes to be spanned by two real vectors of the form

v 3,-3        ^i_9,r3 3,-3 L^<-.X = a -—+a^^,    Y = b -—+b^+c-—+ c^,       a, b, c E C,
3z, 3z, dzx 3z, 3z, 3z,

and by the above

(ab - âb) 2f"(r2) + 4r2/'"(r2) + r4/"(r2) - r'

(2f"(r2) + r2/"V2))2

f'(r2) + r2f"(r2)

- 2aâcc /V) + r2f(r2) - r'
(/V))2

f(r2)

K(X. Y) -
- (ab-5b) (fir1) + r2f"(r2)f + 4aäccf'(r2)(f(r2) + r2f"(r2))

Here (ab - ab)2 < 0 as ab - âb is imaginary, and
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(2/"(r2) + ^'"(r2))2

2f"(r2) + 4r2f'"(r2) + r4f""(r2) - r2 -
fir2) + rY(r2)

f'(r2) + r2f"(r2)    g   ,    g

ïF^£('¥^) + *V))).
Thus the conditions for 8y(/-2)/3z,3zy to be a complete Kahler metric on

C of strictly positive curvature are:

(a)/'(r2) + r2f"(r2) > 0,

(b) iZ}/f'(r2) + ^"(r2)  dr diverges,

(c)/"(r2) < 0,

(d) (/"in)2
f"(r2) + r2/'"(r2) - r2 < 0,   and

Consider now the function

,rMn(l + *)

f(r2) =/o x ¿if 6 C*(R).

Here

lnil + A-)                         A-/(l + X) -ln(l + X)
f'i*)--^-       /"(*)"-^-.

and

/'(/•2) + r2/"(i-2) = (l + r2)-1,

so/satisfies conditions (a), (b) and (c). Also,

(/"C"2))2 ln(l + r2) - r2
f"(r2) + r2/'"(r2) - ,2 ̂ f  = * '-  < 0

/(') r2(l + r2) ln(l + r2)

and

¿i('iW*W))-^T<« (l+r1)

so conditions (d) and (e) are satisfied.

Thus   for /(r2) = f£(\n(l + x)/x) dx, g =d2f(r2)/dzidz~J   is  a   complete

Kahler metric of strictly positive sectional curvature on C.
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