
A Complete , Local and Parallel Reconfiguration

Algorithm for Cube Style Modular Robots

Serguei Vassilvitskiil
Cornell University
sv39@cornell.edu

Mark Yim
Palo Alto Research Center

yim@parc.com

John Suh
Palo Alto Research Center

jwsuh@parc.com

A b s t r a c t

We present a complete, local, and parallel recon-
figuration algorithm for metamorphic robots made up
of Telecubes, six degree of freedom cube shaped mod-
ules currently being developed at PARC. We show
that by using 2x2x2 meta-modules we can achieve
completeness of reconfiguration space using only local
rules. Furthermore, this reconfiguration can be done
in place and massively in parallel with many simulta-
neous module movements. Finally we present a loose
quadratic upper bound on the total number of module
movements required by the algorithm.

1 I n t r o d u c t i o n

Modular Self Reconfigurable Systems consist of
many identical robots that are very limited in their
actions. As the number of modules in a system in-
creases, the range of behaviors of the group of robots
grows exponentially. The task of self-reconfiguration is
important for developing self-sufficient systems. The
overall system can reconfigure itself to help accomplish
certain tasks such as locomotion, object manipulation
and sorting, or interaction with other systems, espe-
cially when there is a need to adapt to the environ-
ment.

Previous research has established that by group-
ing single modules into groups or meta-modules each
unit in the system increases its number of degrees of
freedom and the reconfiguration tasks are simplified
[4, 5, 7, 10]. However using meta-modules limits the
granularity of the possible configurations. Rus and
Vona require 4x4 meta-modules for complete 2D re-
configuration for expanding cube style modules, while
Nguyen et al. explore the possibility of 36 membered
meta-modules for 2D reconfiguration with hexagonal
modules. We propose meta-modules composed of 8
modules for 3D reconfiguration and guarantee com-
pleteness in the parallel reconfiguration.

We proceed by motivating the need for a new re-
configuration algorithm. In section 4 we describe the
hardware platform currently being developed at PARC
(formerly Xerox PARC) that inspired our work. We
then describe the new locomotion primitives for the

2x2x2 meta-modules. In section 7 we present the self-
reconfiguration algorithm along with its analysis and
correctness results.

2 R e l a t e d W o r k

The problem of reconfiguration for modular self-
reconfigurable robotic systems has received increased
interest. This work includes [[1]-[8], [12]-[15]]. In [14]
Walter et al. focus on limiting communication between
the individual modules. Pamecha and Chirikjian ex-
plore probabilistic techniques such as Simulated An-
nealing in [6]. Rus and Vona have proposed the use of
meta-modules to guarantee completeness of reconfigu-
ration spaces (the space of all possible configurations)
in [7, 8]. Their melt grow algorithm uses 4x4 meta-
modules to solve the general reconfiguration problem
in two dimensions.

More recently as the focus has shifted on decentral-
ized control and parallel actuation, Butler et al. in-
troduced Cellular Automata for distributed control[2],
along with the PacMan algorithm for concurrent actu-
ation by several modules [1].

3 M o t i v a t i o n

The ideal reconfiguration algorithm would be com-
plete for all possible shapes, allow for more than one
set of concurrent module movements and be com-
pletely autonomous. Each of the above algorithms
lacks one of the above properties: The PacMan
algorithm[I] along with the work by Walter et. al [14],
is not complete, while Melt-Grow [8] is not distributed
and does not allow for parallel actuation.

To incorporate all of the desirable features into one
algorithm, we begin by using 2x2x2 meta-modules.
Vassilviskii et. al [12] prove completeness for recon-
figuration using the 8 membered meta-modules and
the algorithm presented here follows this work. We
simplify the planning portion of the algorithm while
retaining completeness for the meta-module configura-
tion space. We provide an algorithm which performs
in place parallel distributed reconfiguration in worst
case quadratic time.

p. 1 1170-7803-7272-7/02/$17.00 © 2002 IEEE

 Proceedings of the 2002 IEEE
International Conference on Robotics & Automation

Washington, DC � May 2002

F i g u r e 1: One telecube module.

4 Bas i c O p e r a t i o n s of t h e T e l e c u b e M o d u l e

We look at the Telecube generation of modular

robots designed prototyped and currently being con-

structed at PARC [11]. Similar in design to the Crys-

talline modules used by Rus [7, 9], these modules are

cube shaped. The Telecube modules have the ability

to independently extend out each of the 6 faces of the

cube where as the Crystalline modules extend out of

only 4. These extensions and retractions provide the

modules' only form of motion. A picture of a module

is shown in Figure 1.

The module arms can extend independently up to

half of the body length, giving the robot an overall

2:1 expansion ratio along each dimension. A latching

mechanism on the plates on the end of each arm en-

ables two aligned modules to connect to each other.

For power routing, communication and alignment rea-

sons, the modules must remain globally connected in

one connected component at all times. While the mod-

ules are in construction, we have built a simulator to

develop and test reconfiguration algorithms.

The modules have the following low-level primitives:

ExtendArm(Direction): If there is room to ex-

tend the arm in Direction, extend the arm.

RetractArm(Direction)" Retract the arm in Di-
rection, at tempt ing to first disconnect from

neighbor if connected.

Connect(Direction)" If there is a neighboring

module in Direction, latch to tha t module.

Disconnect(Direction)" If there is a module is

currently latched in Direction, break the connec-

tion with the neighbor.

From these primitives, we can build more compli-

cated actions, such as Move(Direction). The explicit

sequence of actions tha t allows a module to move along

F i g u r e 2: The shaded module moves one arm length

a given direction is i l lustrated in Figure 2. A module

can pull towards a neighbor by retracting its arm, push

away from a neighbor by expanding its arm, or simul-

taneously retract its front arm and expand its back

arm, effectively "sliding along its arms" in a given di-

rection. Prior to moving, the module:

1. confirms tha t it has at least one neighbor along

the direction of motion on which it can push or

pull,

2. ascertains tha t it is moving into free space,

3. disconnects from all neighbors perpendicular to

the direction of movement

At any point during this process, the movement can

fail, in which case the module reverses what has been

done so far and returns to its original state.

Each module is also given simple sensing and com-

munication abilities. Modules can send messages

through their faceplates to their immediate neighbors

using a low bandwidth IR link. Each module can also

gauge the extension of each faceplate, read the contact

sensor on each of the faces, and determine whether it

is latched to a neighboring module.

5 S i m u l a t o r

To proceed with algorithm development, we have

built a simulator for the Telecube system. The simu-

lator writ ten in Java limits each module to the same

exact primitives as those of the true physical rood-

ule. Each module in the simulator has the opportuni ty

to move once per time step. To simulate the asyn-

chronous qualities of the system, the order in which

the modules move is randomized and is different each

turn.

For simplicity reasons we limit the state of the mod-

ule arms to either fully extended or fully contracted.

We also assume the module arms to be infinitely rigid

so tha t they occupy the nodes of a perfect lattice struc-

ture at all times. During each simulated move actuator

torque and stiffness constraints are imposed to make

sure the modules are not dragging more than two other

modules per move. The global connectivity constraint

is also checked before every disconnect request.

p. 2 118

iii iiiiiii~i~iiiiiiiiii

Figure 3: A schematic of one meta-module. Only one
layer shown.

The simulator has a Java 3D User Interface allowing

us to capture individual frames and animations of full

reconfigurations.

6 Pr imit ives

6.1 M e t a - M o d u l e s
To achieve completeness of reconfiguration, we use

meta-modules composed of 8 individual Telecubes.
The cubes are arranged in a tight cube with their arms

fully retracted. Each cube belongs to one and only

one meta-module during reconfiguration, though two

meta-modules may exchange individual cubes during

the process. A schematic of one layer of a meta-module

is shown in Figure 3.

We define three locomotion primitives: Move, Roll
and S-Roll. We envision the meta-modules located

in a three dimensional lattice, with each meta-module

having the coordinates (x,y,z). An adjacent meta-

module has one of the coordinates differing by 1, for

example (x, y, z + 1).

6.2 Move
The primitive Move(dirMove) is a natural extension

of the Move primitive for the individual modules, it

moves the meta-module one step in the given direction.

For example, Move(EAST) would result with a meta-

module at (x, y,z) to move to position (x + 1 ,y ,z) .

The moving meta-module requires two meta-modules

to move upon. The exact sequence of the moves by

the individual modules is shown in Figure 4.

6.3 Roll
The Roll(dirRoll, dirSubstrate) has no analog on

the lower level. The Roll allows for one meta-module

to "roll" around a corner of another meta-module.

For example, Roll(EAST, SOUTH) results in a Meta-

Module at (x, y, z) to move to position(x + 1, y - 1, z).

The Roll primitive requires for only one meta-module

in the neighboring space indicated by the dirSubstrate

direction. The exact sequence of moves by the individ-

ual modules during an execution of a Roll primitive is

shown in Figure 5.

N I I I N N I I I N N I I I N

N I I I N N I I I N N I I I N N I I I N N I I I N
_I.L _I_L _I_L _I_L _I.L _I.L _I_L _I_L _I.L _I.L _I_L _I_L _I_L _I.L _I_L _I_L _I_L _I.L _I_L _I_L

l 2 3 4 5

Figure 4: A meta-module executing Move(EAST). Only
one layer shown.

6.4 Tunnel l ing
While looking at the exact sequence of individual

motions that result in a meta-module move or a roll,

it is important to notice that each has a clear midpoint

when half of the active meta-module is occupying the

previous position and exactly half is occupying the new

position. These correspond to state 3 for Move and

state 7 for Roll. Also note that two adjacent meta-

modules can remain connected to each other even if

there is a gap of one module in width in between them

by extended the arms between them. Using these two

facts, we can string a number of Move and Roll opera-

tions together on adjacent meta-modules so that they

would be able to move without globally disconnecting

from each other.

For example, assume modules a, b, c are arranged in

a horizontal line. (Figure 6(i)) We assign the following

moves to them:

a: Move(EAST);

b: Roll(NORTH, EAST);

c: None;

The execution would be as follows: Module b begins

and completes the first half of the Roll(ii). At this

point, it stops and waits for module a to complete the

first half of the move. Once a completes the first half
of the move(ill), b finishes its roll(iv), after which a

finishes its move(v). There are two ways to look at

the result, we can either say that the hole which b now

occupies propagated through the structure to a or that

a has tunnelled through the structure. We can extend

this to longer chains of meta-modules by sequencing
Move(EAST) moves.

We can see that the structure remains globally con-

nected at all times, and will remain globally connected
for arbitrarily long such sequences. There exists, how-

ever, one special case, Consider the example shown in

Figure 7(i) and (ii). It appears that we are stuck at

(ii), and we need a new low level locomotion primitive.

i 2 3 4 S 5 ?

. : I ~1 H ~ ! 1 . 1]] ~
i ~ : ~ ~ ~ ~ : ~ : - ~ : ~ : ~ i ~ : ~ : ~ ~ 1 ::

:8~ 9 :10 ! :i 1 2 ! 3 14

Figure 5" The shaded meta-module executing
Move(EAST, SOUTH). Only one layer
shown. The other layer moves identically.

p. 3 119

i i£ iii iv V

Figure 6: An example of tunnelling by meta-module A
through meta-modules B and C

6.5 S-Roll
An S-Roll is the rarest primitive used, it requires

an exact sequence of operations before it such as the

one seen above. However, the solution is fairly trivial.
Since we know that there is a meta-module following

this path (else an S-Roll would not occur), we can

switch two modules with the meta-module behind us.

This is demonstrated in Figure 7 (iii) and (iv). At

the time the configuration reaches state (iv), the next

meta-module can continue with its motion.

7 Reconf igurat ion

As in [5] it is assumed the initial and final configu-

rations overlap by at least one meta-module. On the

whole, the algorithm is going to perform as follows:

• Select a module that can begin motion

• Plan a route for that module through the struc-

ture

• Execute the preplanned motions.

7.1 Select ion
Each meta-module maintains aa distance value, 5,

which keeps track of the minimum manha t t an distance

through the structure from this module to a module

that is already in place, i.e. to a module that is in

the final structure. (We note that the final structure

is always connected during the reconfiguration). This

value is easily maintained throughout the course of

reconfiguration by the following:

5 - Min(5 of neighbors) +l;

Theorem 1. Given a meta-module, M, in a con-

nected structure, S, If 5M >_ 5N where N is a neighbor

~ i ~ ~ i ~ ! i i " W ~ i ~ i ¸ ̧ ! i i i i ~ "] 7 " !

i ~ i ~ ' i ~ ~ ~ / ~ i ~ ~ ~ ~

i ,~ ~i~ ~ i i ~ ~i~ ~ iill ~W]I]~ ~ iill ,~ ~i~ ~ ~i~ ~ iill ,~
i~ ~iiiii~i i ii ~ i~ ~ iiiii~i ~ i iii~ ~ ~ i~i ~ i iii~ ~ iiiii~i ~ i ~ ~ i ~ ~ iiiii~i ~ i iii~ ~ i i ~ ~ i i

i i i iii iV
.

Figure 7: (i) The corner meta-module rolls to the East,
the leftmost meta-module moves East. (ii)
The tunnelling appears to be stuck. (iii)-(iv)
After an S-Roll the reconfiguration continues.

meta-module of M then S - M is a connected struc-

ture.

Proof. If 5M >_ 5N for all neighbors N then there ex-

ists a path for all N to the final structure that does

not go through M. Since the final structure is con-
nected within itself, the structure maintains a single

connected component with M removed.

Thus a meta-module is free to move once its distance
value is at least as great as that of its neighbors.

7.2 Planning
Once a meta-module knows that it is free to move,

it must plan a path through the structure to fill in one

more node of the final structure. This path will consist

of Move, Roll, and S-Roll commands and is guaranteed

to exist since the initial and final configurations over-

lap and the system has one connected component.

To plan a move, we follow the technique similar to

the PacMan algorithm [1]. We make one improvement,

that of using exponential iterative deepening search

instead of pure depth first search to find a path to the

goal. In an iterative deepening approach, one searches

first all of the nodes with depth less than 1, then all

of the nodes with depth less than 2, then less than 4

etc. Thus, although several of the nodes are searched

twice, we are much more likely to find a solution with

a lowest depth, resulting in a quicker reconfiguration.

Once the path through the structure is generated,

it can be trivially converted into a sequence of Move,
Roll, and S-Roll directions which are assigned to the

modules along the way.

7.3 Execut ion
The algorithm divides the meta-modules into two

groups during its execution. The first is the active

meta-modules identified in the selection step. They

initiate the planning sequence as above. The second

group is the passive meta-modules which act as part of

the structure, but are not actively planning their own

path. Rather, they are following the orders given to

them by the active modules during their path planning

as to where to move. These meta-modules may have

several directions in which they have been told to move

(or roll). It remains an open question whether there

exists a heuristic to rearrange the order of these too-

tions so as to minimize the total reconfiguration time

of the overall structure.

8 Analysis and Discuss ion

We argue that the algorithm presented above is par-

allel, local and complete. The fact that many modules

may be undergoing actuation at the same time is the

simplest to see. If there are two modules on the op-

posite ends of the structure that have their 5 values

higher than their neighbors', nothing prevents them

both from beginning to plan their path through the

structure. Likewise, if there are two meta-modules

which can begin their Roll or Move motions, indepen-

p. 4 120

dently from each other nothing will limit them in their
goal. Thus this algorithm is highly parallel.

All of the rules made by the modules are local rules.

A module checks whether or not the planning stage
can begin by consulting only its neighbors, a module

propagates the planning request only to its immediate
neighbors, and a module checks if it is safe to begin or

continue actuation only by contacting its local neigh-
bors. Thus there is never a centralized control point

necessary for reconfiguration. This point of the algo-

rithm is of key use in upgrading this system to a fault
tolerant system since disabling any one part of the

overall structure will not result in the complete loss of
functionality for the remaining active modules.

Finally, we argue that the any shape composed of

fully compacted meta-modules can reconfigure into
any other such shape using the above algorithm.

Lemma 1. While the reconfiguration is not com-

plete, there exists one meta-module, M whose 5 value

is at least as large as that of its neighbors.

Proof. Suppose such a meta-module does not
exist. This means that for any meta-module, there ex-

ists one neighbor whose 5 is strictly larger, which must
in turn have a neighbor whose 5 is strictly larger than

its 5. This must continue implying 5 is unbounded.
However, 5 is clearly bounded by the number of meta-

modules, N. Therefore, such a meta-module M exists.

Lemma 2. Let M be the meta-module such that

5M is higher than 5s where N is a neighbor of M.

Then there must exist a place adjacent to another
meta-module M' which is currently unoccupied but

sits in the final structure. Furthermore, there exists a

path through the structure between M and M'.

Proof. (1). Since the number of meta-modules

in the initial and the final structure is identical (no
meta-module can be created or disassembled), if

there exists a meta-module that is not in place, there

must exist a place in the final structure which is not
currently filled. (2). Since the both the initial and

final structure must remain globally connected at all

times, the union of the initial and final structures
has one connected component, so there must exist

an M' adjacent to an unfilled space from (1), and

there always exists a path between M and any other
meta-module M' .

Lemma 3. Given any two modules M and M',
an empty space, H, adjacent to M' , and a path

between M and H through the structure, the module

at M can tunnel through the structure and emerge at
H.

Proof. Any path through the structure can be
decomposed into a sequence of Roll, Move and S-RoU
operations to be performed by meta-modules. Since

the global connectivity constraint is never violated

during tunnelling, the meta-modules on the path
M , . . . , M ' can execute their movements, which would

result in the meta-module M emerging at H.

Theorem 2. Any connected structure of N meta-

modules can reconfigure into any other connected
structure of N meta-modules in place, in quadratic

time, as long as the two structures have at least one
meta-module in common at the start.

Proof. While there are meta-modules which are

not in place, we can invoke Lemma 1 to find them,

Lemma 2 to find the path to an empty space and
Lemma 3 to tunnel down the path to fill this space.

Since there are N meta-modules total, and the
structures share at least 1 meta-module in common,

the above process can be repeated at most N - 1
times. Each tunnelling move may involve at most N

meta-modules and each primitive takes O(1) time.
Therefore, the total runtime for the algorithm is

Furthermore, since all of the movements of the meta-
modules are restricted to be contained within the ini-

tial or the final structure, the algorithm performs this

reconfiguration in place.

We note that the time analysis above does not take
into consideration two meta-modules moving simulta-

neously, and thus we believe that the quadratic time

bound presented above is not a tight bound. We be-
lieve that in practice the worst case upper bound may

be significantly lower, however, the analysis to demon-

strate a tight upper bound remains an open problem.

9 R e s u l t s

In Figure 8, we present snapshots of the algorithm

on a reconfiguration from a flat sheet of meta-modules
to a table. Each colored cube is a meta-module con-

sisting of 8 individual Telecubes. There are 20 meta-

modules, resulting in 160 Telecubes. The algorithm re-
quired a total of 311 individual time steps to complete

the reconfiguration. The 311 is significantly smaller

than the worst case quadratic bound on the meta-
modules of 400.

10 C o n c l u s i o n

The reconfiguration algorithms for metamorphic

systems have lacked at least one of the desired prop-
erties: local decision making, completeness of recon-

figuration or parallel execution. We have presented

an algorithm which possesses all of the three qualities
and is guaranteed to execute in place in worst case

quadratic time. We resort to the use of meta-modules,

as otherwise the space of possible configuration can be
partitioned into classes with no configuration possible

between members of different classes.

p. 5 121

A c k n o w l e d g e m e n t s : This work is supported in part

by DARPA contract MDA972-98-C-0009.

R e f e r e n c e s

[1] Butler, Z., Byrned, S., Rus, D.: Distributed motion
planning for modular robots with unit-compressible mod-
ules~ Proceedings of the 2001 Conference on the Interna-
tional Robotics Systems.

[2] Butler, Z., Kotay, K., Rus, D., Tomita, K.: Cellular
Automata for Decentralized Control of Self-Reconfigurable
Robots~ in Proceedings of the 2001 IEEE Int. Conference of
Robotics and Automation workshop on Robotic Modular
Robots.

[3] Kotay, K. Rus, D.: Motion Synthesis for the Self-
reconfiguring Molecule. Proceedings of the 1998 Interna-
tional Conference on Intelligent Robots and Systems.

[4] Nguyen, A., Guibas, L., Yim, M.: Controlled Mod-
ule Density Helps Reconfiguration Planning~ New Direc-
tions in Algorithmic and Computational Robotics. A. K.
Peters 2001. 23- 36.

[5] Pamecha, A. and Chirikjian, G.: A Useful Metric for
Modular Robot Motion Planning, JHU Technical Report,
RMS-9-95-1.

[6] Pamecha, A. and Chirikjian, G.: A Bounds for Self-
Reconfiguration of Metamorphic Robots, JHU Technical
Report, RMS-9-95-2.

[7] Rus, D., Vona, M.: Crystalline Robots: Self-
reconfiguration with Compressible Unit Modules. Au-
tonomous Robots. January 2001. 10 (1): 107-124.

[8] Rus, D., Vona, M.: Self-Reconfiguration Planning
with Compressible Unit Modules. Proceedings of the 1999
IEEE Int. Conference on Robotics and Automation. 2513-
2520.

[9] Rus, D. Vona, M. A Physical Implementation of the
Crystalline Robot, Proceedings of the 2000 IEEE Int. Con-
ference of Robotics and Automation.

[10] McGray, C., Rus, D.: Self-Reconfigurable Molecule
Robots as 3D Metamorphic Robots. Proceedings of the
1998 Conference on Intelligent Robot Systems. 1

[11] Suh, J.W., Yim, M. and Homans, S.B.: Telecubes:
Mechanical Design of a Module for Self-Reconfigurable
Robotics. Proceedings of the 2002 IEEE Int. Conf. on
Robotics and Automation.

[12] Vassilvitskii, S., Kubica, J., Rieffel, E., Suh, J., Yim,
M.: On the General Reconfiguration Problem for Expand-
ing Cube Style Modular Robots. Proceedings of the 2002
IEEE Int. Conf. on Robotics and Automation.

[13] Unsal, C., Kiliccote, H., Patton, M., Khosla, P.: Mo-
tion Planning for a Modular Self-Reconfiguring Robotic
System. Distributed Autonomous Robotic Systems 4,
Springer, November, 2000.

[14] Walter, J., Welch, J. and Amato, N.: Dis-
tributed Reconfiguration of Metamorphic Robot Chains.
Proceedings of the Nineteenth Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Comput-
ing (PODC 2000), Portland, Oregon, 2000, pp. 171-180.

[15] Yoshida, E., Murata, S., Kaminura, A., Tomita,

K., Korokawa, H. and Kokaji, S.: Motion Planning for a

Self-Reconfigurable Modular Robot. Seventh International

Symposium On Experimental Robotics, 2000.

, ~ ~ i i i i i i i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i̧

iiiiiiiiiiiiiiiiiiii~
iii::~:ii:i~::~,~ ii::i::iii i::i:: ::ii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil

................... lllltllllllll/l/l/l/i:

)Illllllllllll/l/I/l/i}~:

~i~i~ii~iiiii:~i ~i~i:i: :i~~'iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iliiiiiiiiiii~i~iii!iliiiii!i!i~iiti!ii!iiiiiiiiiiiiiiiiii~li

iiiiiiiiii!i!ilililiiii(~ ~ii!iiii!iiiiii~

. ~i~i~i~i~i~i~i~i~i~i~

~ ~ % ! ! ! ! !!!!!!!!!!!!t!tlt!t!t~

F i g u r e 8: Snapshots of 311 step autonomous reconfigu-
ration from flat sheet to a table with 20 meta-
modules.

p. 6 122

	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

