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A Complete LTE Mathematical Framework for the

Network Slice Planning of the EPC
Jonathan Prados-Garzon, Abdelquoddouss Laghrissi, Miloud Bagaa, Tarik Taleb, and Juan M. Lopez-Soler

Abstract—5G is the next telecommunications standards that
will enable the sharing of physical infrastructures to provi-
sion ultra short-latency applications, mobile broadband services,
Internet of Things, etc. Network slicing is the virtualization
technique that is expected to achieve that, as it can allow logical
networks to run on top of a common physical infrastructure
and ensure service level agreement requirements for different
services and applications. In this vein, our paper proposes a novel
and complete solution for planning network slices of the LTE
EPC, tailored for the enhanced Mobile BroadBand use case. The
solution defines a framework which consists of: i) an abstraction
of the LTE workload generation process, ii) a compound traffic
model, iii) performance models of the whole LTE network, and
iv) an algorithm to jointly perform the resource dimensioning
and network embedding. Our results show that the aggregated
signaling generation is a Poisson process and the data traffic
exhibits self-similarity and long-range-dependence features. The
proposed performance models for the LTE network rely on these
results. We formulate the joint optimization problem of resources
dimensioning and embedding of a virtualized EPC and propose
a heuristic to solve it. By using simulation tools, we validate the
proper operation of our solution.

Index Terms—LTE, EPC, Network Slicing, NFV, Softwarized
Networks, Mobile Networks, Traffic characterization, Resources
dimensioning, and Network embedding.

I. INTRODUCTION

F IFTH Generation (5G) mobile networks play a paramount

role in the forthcoming global industrial digitalization. 5G

will cover all the vertical market needs in a cost effective

manner. Compared to its predecessor (i.e., the Long-Term

Evolution (LTE) technology), the requirements for 5G systems

include, among many others, higher network flexibility and

scalability, as well as x100 increase in cost effectiveness [1]–

[4]. To meet these challenging goals, network softwariza-

tion (NS) is envisaged as the cornerstone to build the 5G

technology [5], [6]. The concept of NS is mainly based on

i) Network Function Virtualization (NFV), which decouples

network functions from proprietary hardware enabling them

to run as software on virtualization containers such as virtual

machines (VMs) [7], and ii) Software Defined Networking
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(SDN), which fully separates control and data planes in

network nodes allowing network programmability.

Under the NS approach, isolated, fully automated, pro-

grammable, flexible, and service-customized networks known

as network slices can be deployed on top of a common physical

infrastructure [8]–[10]. This approach is referred to as network

slicing. It will allow the mobile operators to cover the different

market scenarios and use cases that demand heterogeneous,

diverse and possibly mutually incompatible requirements [5].

The adoption of network slicing in 5G mobile networks

requires optimal solutions for planning the slices according

to the different use cases requirements. This mainly involves

the dimensioning of the resources and its embedding in a

given infrastructure. Furthermore, these processes have to

be done in a manner that ensures the Quality of Service

(QoS) requirements for each use case. Likewise, faced with a

decreasing Average Revenue Per User (ARPU), operators are

challenged to reduce, or even optimize, i) the acquirement and

maintenance of the physical infrastructure (i.e., capital expen-

ditures -CAPEX-), and ii) the ongoing expenses to properly

operate the network equipment (i.e., operating expenditures -

OPEX-). Many techno-economic models have been proposed

to reduce the CAPEX and OPEX such as in [11], [12].

Our work aims to design a complete solution for network

slices planning of the LTE Evolved Packet Core (EPC), which

is tailored for the enhanced Mobile BroadBand (eMBB) use

case [7], [13]. To that end, we propose a framework consisting

of the following components:

• An abstraction of the LTE workload generation pro-

cess, for both Control Plane (CP) and Data Plane (DP),

along with a compound traffic model that includes the

most representative services consumed in current cellu-

lar networks. This is required to estimate the service

consumption when there is no previous knowledge of

the workload demand. This component is also useful to

generate synthetic workloads for experimentation (e.g., to

stress a virtualized LTE network).

• Holistic analytical models to predict the performance

(e.g., packet loss probability and response time) of a

virtualized EPC (vEPC). We apply queuing theory and

stochastic network calculus to develop the CP and DP

models, respectively. For a given workload and a set

of QoS requirements, our models facilitate resources

dimensioning.

• The corresponding formulation and heuristic to solve the

joint optimization problem of resources dimensioning and

embedding of the vEPC. We have suggested a multi-

objective optimization problem that minimizes the work-



2

load imbalances among a set of candidate Edge Clouds

(ECs) (i.e., Data Centers (DCs) deployed close to end

users) and maximizes the resources utilization, on the

network side, and Quality of Experience (QoE), on the

end user’s side. These objectives are subject to meet a set

of QoS requirements. For the CP, the QoS requirements

are defined as an upper bound on the average elapsed time

to move a User Equipment (UE) from IDLE to ACTIVE

states. For the DP, the QoS requirements considered are

the limit on the maximum one-way network delay and a

maximum packet loss probability at the vEPC. Addition-

ally, we impose a condition to limit the maximum number

of Central Processing Unit (CPU) cores to be assigned to

a single Virtual Network Function Component (VNFC)

instance. That is to take into account the actual limitation

on the number of CPU cores of the Physical Machines.

Sharing network resources between different users has

proven to reduce CAPEX and OPEX [14]–[16]. The above-

mentioned features, namely the performance-predictive mod-

els, the load balancing among ECs, and the maximization

of resource utilization will certainly induce considerable cost

savings. Also, the maximum number of CPU cores constraint

will have an impact on reducing the costs due to OPEX

[17]. Last, although the NS paradigm enables operators to

dynamically adapt the resources allocated to each network

slice and services [18], the on-demand plans offered by in-

frastructure providers are more expensive than the reservation

plans. Specifically, resources can be purchased as a reservation

for up to 70% off the on-demand price [19]. Thus, the network

slices planning is crucial for operators to save money.

As a starting point, this work is meant to enhance the

“Network Slice Planner” (NSP) [20]. NSP is a simulation tool

that implements accurate models for the users’ behavior, mo-

bility, and data consumption in cellular networks. Specifically,

we extend its data consumption model to include the most

representative services consumed in current mobile networks.

Then, by using NSP we characterize stochastically the ag-

gregated workload generation processes for the CP and DP.

Under our workload generation model, the results show that

the aggregated signaling generation process follows a Poisson

distribution and the aggregated DP workload exhibits Self-

Similarity (SS) and Long-Range Dependence (LRD) features.

Based on the aforesaid results, we develop holistic per-

formance models of a virtualized LTE network. The CP is

modeled following the same technique as in [21] for chains

of Virtual Network Functions (VNFs). The model includes

the main LTE entities and their messages exchange. The DP

is modeled as a queue fed by a fractional Brownian Motion

(fBm) process [22]. These comprehensive models allow us to

define efficient resources dimensioning algorithms.

Finally, the heuristic proposed in this work to solve the

planning for vEPC relies on the aforementioned performance

models. The algorithm is dubbed “Planner for the EPC as a

Service” (PES). By using a system-level LTE simulator, we

validate the correct operation of PES. We also show that PES

embedding algorithm reduces the workload imbalances among

candidate ECs in contrast to other baseline techniques.

The remainder of the paper is organized as follows. Section

II briefly reviews the related literature. Section III describes

the system model. Section IV includes the formulation of the

joint optimization problem of resource dimensioning and em-

bedding for the vEPC. In Section V, the modeling and analysis

to estimate the performance of the CP and DP are presented.

Next, in Section VI, we introduce the proposed heuristic to

perform the planning of the vEPC. Section VII explains the

experimental setup. Section VIII provides numerical results

that show the proper operation of our solution. Finally, Section

IX summarizes the main conclusions.

II. RELATED WORKS

This section briefly reviews the related literature. In par-

ticular, we focus on performance models and embedding

algorithms (i.e., on how to map VNFC instances to physical

infrastructures) for the vEPC.

A. Modeling of the vEPC

Analytical models constitute an agile way to predict the per-

formance of a system in advance. There are several proposals

in the literature tackling the analytical modeling of parts or the

entire vEPC [21], [23]–[27]. Invariably, these works employ

queuing theory.

In [24], Rajan et al. model the EPC as a D/D/m node. They

conclude that when simply replacing existing EPC elements

with virtualized equivalents, severe performance bottlenecks

occur. In [26], [27], Prados et al. analyze the performance of a

virtualized Mobility Management Entity (vMME) with a three-

tier design, inspired by web services, and using a Jackson’s

network (i.e., a network of M/M/m queues). Each queue repre-

sents a tier or VNFC of the vMME. The authors show that the

proposed model provides fairly good results for computational

resources dimensioning. In [21], the same authors enhance

the previous model by extending its applicability domain to

any chain of VNFs, increasing its flexibility, and using a

more accurate technique of analysis. Specifically, each VNFC

instance is modeled as a G/G/m queue. The resulting network

of queues is solved by using the approximated technique

proposed by Whitt et al. in [28] for the Queuing Network

Analyzer referred to, hereinafter, as the QNA method. For the

abovementioned use case (a three-tiered vMME), the authors

show the QNA method outperforms Jackson’s networks and

Mean Value Analysis techniques in terms of the response

time estimation error. Tanabe et al. propose in [23] a bi-

class (i.e., Machine-to-Machine and Mobile Broadband -MBB-

communications) queuing model for the vEPC. The CP and

DP of the vEPC are modeled as M/M/m/m and M/D/1 nodes,

respectively. This model constitutes the core of the vEPC-ORA

method which aims to optimize the resource assignment for

the CP and DP of the vEPC. Finally, in [25], Ren et al. propose

a dynamic resource provisioning algorithm for the vEPC

considering the capacity of legacy network equipment already

deployed. To evaluate the performance of their solution, they

model each vEPC element as a M/M/m/K queue and assume

that the VNF instantiation time is exponentially distributed.

The aforementioned works only model parts of the EPC

and/or do not capture the interactions among its elements.
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In this paper, this gap is covered. We consider the main

elements of the LTE network CP (i.e., UE, evolved Node B

-eNB-, MME, Serving Gateway -SGW-, Packet Data Network

Gateway -PGW-, Home Subscriber Server -HSS-, and Policy

and Charging Rules Function -PCRF-) as well as their interac-

tions. In this way, it is possible to predict the performance of

the whole LTE CP from the aggregated signaling generation

process. In [23], [25], the resources dimensioning of the

vEPC is also visited. Nevertheless, these works address the

dimensioning of each component in an isolated way. Only

then, it is necessary to define a processing delay budget for

each entity to be dimensioned in advance. Our holistic model

for an LTE network overcomes this limitation by enabling

the resources dimensioning algorithm to consider an overall

processing delay budget for the whole EPC. This leads to

resources savings.

For the DP, we leverage the results obtained for the analysis

of the LTE data traffic traces to derive its performance metrics.

Specifically, the vEPC DP is modeled as a single queue fed

by a fBm process. To the best knowledge of the authors, this

is the first work that uses stochastic network calculus results

for analyzing the performance of a vEPC.

B. Algorithms for the vEPC embedding

There is a rich literature proposing algorithms to embed the

whole vEPC or some of its entities in a physical infrastructure

[29]–[38]. In [29], Taleb et al. propose a heuristic algorithm for

virtualized SGWs (vSGWs) embedding. The algorithm tries to

minimize the frequency of mobility gateway relocations while

ensuring that a maximum capacity for each vSGW, which

handles the traffic load of a serving area, is not exceeded. This

work is extended in [32] where some additional objectives and

restrictions are considered. Regarding the objectives, the path

between UEs and PGWs is minimized, and the overall network

resource utilization is optimized. Concerning the restrictions,

this work was a pioneer in considering some relevant third

generation partnership project (3GPP) constraints.

In [30], Bagaa et al. address the embedding of the virtu-

alized PGW (vPGW). The embedding problem is formulated

as a multi-objective non-linear optimization problem which

minimizes the costs for the network operators, maximizes the

network performance, and balances the load equally among

the vPGW instances. To solve the problem, three heuristic

algorithms are proposed to achieve near-optimal solutions. In

[31], Basta et al. investigate different approaches to deploy the

core gateways (i.e., SGW and PGW) in the DCs. Specifically,

they consider a fully and partially virtualization approaches

for the gateways. The former consists in moving the CP and

DP functionalities of each gateway to a DC. The latter decou-

ples CP and DP functionalities by using the SDN paradigm

and only the CP part is hosted within a DC. In the same

context; relying on an SDN framework that decouples the

CP from the DP, Datsika et al. propose in [39] a Matching

Theoretic Flow Prioritization algorithm that aims to improve

the grade of service level and delay induced by the core

network congestion. This approach allows over the top service

providers to intervene in the virtual slices allocation process.

TABLE I: Notation.

Notation Description

m
(c)
l

Number of dedicated physical CPU cores allocated to instance
l of the VNFC c ∈ C.

mmax
Maximum number of dedicated physical CPU cores to be
allocated to a single virtualization container.

T e Actual mean response time for the CP entity e ∈ E.

T if Actual mean response time for the LTE interface if ∈ IF .

T
(SR)

Actual mean delay for the CP to carry out an SR procedure.

T
(CP )
budget Mean delay budget for the CP.

T
(max)
u

Actual maximum response time for the DP entity u ∈ U =

{UE, eNB,DPGW}.

T
(max)
if

Actual maximum response time for the LTE DP interface
if ∈ IFU = {Uu, S1− U}.

T
(DP )
max Actual maximum delay for the DP.

T
(DP )
budget

Maximum delay budget for the DP.

P (EPC) Actual EPC packet loss probability.

P
(EPC)
budget

EPC packet loss probability budget.

It has permitted to achieve efficient flows prioritization with

respect to the service providers’ policies and QoS demands.

In [33], Martini et al. formulate the problem of choosing the

VNF instances provided by a distributed set of DCs to serve

a given service chain request. The objective is to minimize

the overall latency of the chain. This optimization problem

can be formulated as a resource constrained shortest path

problem. In [34] [35], Baumgartner et al. formulate the joint

optimization problem of the virtual mobile core network topol-

ogy composition and embedding. The formulation guarantees

a maximum end-to-end latency and takes into account the

processing, queuing, and propagation delays. In [36], Bagaa

et al. address the placement of virtual instances of 4G (MME,

SGW, PGW) and 5G (AMF, SMF and AUSF) core network

elements over a federated cloud based on Mixed Integer Linear

Programming and coalitional formation game. Finally, Dietrich

et al. [37] formulate a mixed-integer linear program for the

vSGW and vMME embedding. To reduce its time complexity,

they transform it into a linear program by employing relaxation

and rounding techniques. Their proposal mitigates the load

imbalance in today’s mobile networks, which improves request

acceptance and resource utilization.

The resources dimensioning and embedding are treated

throughout the literature as separate problems. These two

stages of resources allocation are closely related and perform-

ing them in a coordinated way brings benefits. For instance,

there is a trade-off between the workload balance among a set

of candidate DCs (i.e., propagation delays) and the resources

utilization (i.e., processing delays) when an overall delay

budget to be met is partitioned among these two stages. Herein,

we formulate the joint optimization problem for planning the

vEPC to address this trade-off.

III. SYSTEM MODEL

A. System Architecture

Let us assume an evolved universal terrestrial radio access

network (E-UTRAN), already deployed with I eNBs, which

provides connectivity to a set of J UEs to the LTE EPC (see

Fig. 1). Each UE j is attached to an eNB i.
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Fig. 1: E-UTRAN deployment and ECs sites.

Fig. 2: Assumed LTE network architecture.

Let uji be a binary variable indicating whether the UE j is

attached to the eNB i (uji = 1) or not (uji = 0). We consider

the coverage map of this E-UTRAN as a rectangular area A
with height h and width w.

Within A, there are already deployed K ECs (see Fig.

1). Let r
(eNB)
i = (x

(eNB)
i , y

(eNB)
i ) ∀ i ∈ N ∩ {1, .., I},

r
(UE)
j = (x

(UE)
j , y

(UE)
j ) ∀ j ∈ N ∩ {1, .., J}, and r

(EC)
k =

(x
(EC)
k , y

(EC)
k ) ∀ k ∈ N∩{1, ..,K} denote two dimensional

vectors representing the positions of eNBs, UEs, and ECs

within A, respectively.

The MME, SGW, and PGW of the EPC will be implemented

as a set of VNFs that makes up a network service [18],

hereafter referred to as vEPC, and deployed on the candidate

ECs. We discard the option of deploying the vEPC as a single

VNF with several components (VNFCs), since, in this work,

we will assume that the LTE EPC internal interfaces such as

S11 and S5 will remain unchanged. Other EPC entities, such

as the HSS and the PCRF, might be located outside of the

ECs and implemented either as VNFs or physical network

functions (PNFs).

The aggregated workload generated by the J UEs attached

to the E-UTRAN is distributed among the K candidate ECs.

This workload distribution is performed at the granularity of

eNBs (i.e., each eNB i is assigned to a candidate EC k). Let vik
be a binary variable indicating whether the eNB i is assigned

to the EC k (i.e., vik = 1) or not (i.e., vik = 0). To serve its

corresponding workload, a vEPC is instantiated on each EC.

The LTE network architecture deemed in this work is

depicted in Fig. 2. We consider that the CP and DP of the

vEPC are fully decoupled. Also, we assume the interfaces,

between the CP functional entities, as the ones defined in

the 3GPP LTE standards. Consequently, each CP entity (e.g.,

Fig. 3: Workload generation model.

the MME, and the control functionalities of the SGW and

PGW -cSGW and cPGW-) are implemented separately as

a single VNF with a single component (VNFC). The DP

functionalities of the SGW and PGW are integrated on a

single VNF, with only one VNFC, that exposes the LTE S1-U

and SGi interfaces. We assume that all VNFCs of the vEPC

execute CPU-intensive tasks. Each VNFC might have multiple

instances. Considering the ETSI NFV architectural framework

and terminology [40][18] and without loss of generality, each

VNFC instance is supposedly running on an isolated virtual-

ization container such as a VM. Let m
(c)
l denote the number

of dedicated physical CPU cores allocated to the instance l
of the VNFC c ∈ C = {MME, cSGW, cPGW,DPGW}.

Since the number of CPU cores of a physical server is finite

and the latter are shared among several VMs, we consider that

m
(c)
l is limited to mmax (i.e., m

(c)
l ≤ mmax).

B. Workload generation model

In this paper, we address the eMBB use case. In this context,

the UEs run applications that generate and consume DP traffic.

We consider the abstraction presented in [27] for such a

process (see Fig. 3).

A session with duration Tsd is defined as the user’s activity

beginning from the time an application is launched to the time

it closes. A session consists of N application activity periods

(AAPs) of length Ton separated by N − 1 reading times of

duration D. An AAP is a time period in which the application

generates or consumes all necessary network traffic to perform

a given task (e.g., download the profile of a friend, or send

an instant message). A reading time is the temporal interval

during which the user performs any action that does not require

to generate network traffic such as deciding which friend’s

profile to visit next or reading a message.

Regarding the signaling workload, the users’ activity and

mobility trigger the LTE CP procedures. In this work, we only

consider the UE-triggered service request (SR), S1-Release

(S1R), X2-based Handover (HO), and tracking area update

(TAU) procedures. Although other procedures such as attach

and S1-based handover are heavier in terms of computational

resources consumption, they do not occur frequently in LTE

networks [41].

Once the UE is registered in the network, an SR procedure is

triggered during its idle-to-connected (i.e., IDLE to ACTIVE)

transitions. Then, whenever an AAP starts while the UE is

in idle mode, an SR procedure takes place (see Fig. 3).
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Conversely, an S1R procedure occurs during UE’s connected-

to-idle transitions during which the network releases the UE’s

resources. We also take into account the effects of an inactivity

timer. Its value is denoted as tI . The network waits tI units

of time after that an AAP finishes before triggering an S1R

(see Fig. 3). A HO procedure is triggered when a UE is in

connected mode and performs a cell change, but the target

cell is attached to the same MME as the source cell’s. Finally,

we assume that a TAU procedure is triggered whenever a

UE carries out a Tracking Area (TA) change. These TAs are

predefined and are the same for any UE.

C. Performance Requirements

The LTE network has to meet a set of performance re-

quirements in terms of latency and packet loss probability

[42]. For the CP, the considered performance requirement is

an upper bound on the mean CP latency T
(CP )

budget defined by

the 3GPP, i.e., the average elapsed time to move an UE from

IDLE state to ACTIVE state [42]. In this work, we translate

this specification as the required average time to carry out a

service request procedure. Moreover, we consider the worst-

case scenario for the service request procedure, where the UE

authentication, NAS (Non-Access Stratum) security setup, and

the EPS (Evolved Packet System) session modification steps

occur during the SR.

Let T e and T if denote, respectively, the mean

response times of the CP entity e ∈ E =
{UE, eNB,MME, cSGW, cPGW,HSS, PCRF} and the

LTE interface if ∈ IF = {Uu, S1 − C, S11, S6a, S5, Gx}.

The mean time required to carry out an SR, T
(SR)

, in the

worst-case scenario can be computed as:

T
(SR)

= 5 · TUE + 8 · T eNB + 5 · TMME + 2 · T cSGW

+ 2 · T cPGW + THSS + TPCRF + 8 · TUu + 7 · TS1−C

+ 2 · TS11 + 2 · TS6a + 2 · TS5 + 2 · TGx

(1)

The above equation means that during an SR call flow in the

worst case scenario the UE, eNB, MME, cSGW, cPGW, HSS,

and PCRF entities have to process, respectively, 5, 8, 5, 2, 2,

1, and 1 control messages. Also, 8, 7, 2, 2, 2, and 2 control

messages have to traverse, respectively, the LTE Uu, S1-C,

S11, S6a, S5, and Gx interfaces [43]. Then, the CP delay

requirement can be expressed as T
(SR) ≤ T

(CP )

budget.

For the DP, the performance requirements considered are

the maximum DP delay budget T
(DP )
budget and the packet loss

probability at the vEPC P
(EPC)
budget . We consider T

(DP )
budget as the

maximum time it takes for a packet to travel from the SGi

interface at the SGW/PGW VNFC to the UE application. The

P
(EPC)
budget is the maximum allowable packet loss at the DPGW

VNFC receive buffer.

Let T
(DP )
max and P (EPC) denote the actual maximum delay of

the DP and the packet loss probability of the EPC, respectively.

We can compute T
(DP )
max as:

T (DP )
max = T

(max)
UE + T

(max)
eNB + T

(max)
DPGW + T

(max)
Uu + T

(max)
S1−U

(2)

where: T
(max)
UE , T

(max)
eNB , and T

(max)
DPGW are respectively the

actual maximum DP packet processing delay at the UE,

eNB, and DPGW. And T
(max)
Uu and T

(max)
S1−U are the actual

maximum delays for the DP radio and backhaul interfaces,

respectively. Then, the DP requirements can be expressed as

T
(DP )
max ≤ T

(DP )
budget and P (EPC) ≤ P

(EPC)
budget .

IV. PROBLEM FORMULATION

In this section, we formulate the joint optimization problem

to distribute the aggregated workload generated by the E-

UTRAN among the candidate ECs and to perform the di-

mensioning of the required resources for each vEPC instance.

Taking into account the defined system model, it can be

formulated as follows:

Objectives :

minimize





|K|
∑

k=1

∣

∣

∣

∣

∣

∣

|I|
∑

i=1

|J|
∑

j=1

vikuij −
|J |
|K|

∣

∣

∣

∣

∣

∣



 (3a)

minimize





|K|
∑

k=1

|I|
∑

i=1

vik · dik



 (3b)

minimize





|K|
∑

k=1

∑

c∈C

∑

l

m
(c)
l



 m
(c)
l ∈ N (3c)

where dik = ||r(eNB)
i − r

(EC)
k || is the Euclidean distance

between eNB i and EC k.

Constraints :
CP :

C1 : T
(SR)

k ≤ T
(CP )

budget, (3d)

DP :
C2 : max

(

T (DP )
)

≤ T
(DP )

budget, (3e)

C3 : P (EPC) ≤ P
(EPC)
budget , (3f)

Others

C4 : m
(c)
l ≤ mmax ∀ k ∈ [1, |K|] ∩ N (3g)

C5 :

|K|
∑

k=1

|I|
∑

i=1

vik = |I|, vik ∈ {0, 1} (3h)

The decision variables of the optimization problem are vik
and m

(c)
l . Objective (3a) aims to distribute the workload as

equally as possible or to minimize the workload imbalances

across the candidate ECs. The goal is optimally achieved when

the same number of users (|J |/|K|) is assigned to every EC

k ∈ K. Objective (3b) aims to minimize the propagation

delays. The corresponding objective function is minimized

when every eNB i ∈ I is assigned to the nearest EC k∗ ∈ K,

where k∗ = argmink∈K(dik). Last, objective (3c) intends

to minimize the total number of CPU instances allocated to

the vEPC or, equivalently, to maximize the utilization of the

computational resources.

Constraints (3d), (3e), and (3f) guarantee that the QoS

requirements are fulfilled. Specifically, Constraint (3d) ensures
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Fig. 4: LTE control plane model.

that the actual mean delay to carry out a service request for

the vEPC k (i.e., vEPC instance running on EC k) is lower or

equal than the mean CP latency T
(CP )

budget. Constraint (3e) and

(3f) ensure that the maximum DP delay budget and the packet

loss probability at the EPC are met, respectively. Constraint

(3g) limits the maximum number of physical cores requested

for a single VNFC instance. Having a single VNFC instance

would be optimal for minimizing the amount of required

resources (statistical multiplexing). However, each physical

server has a maximum number of physical cores, i.e., the

number of physical cores we can request per VNFC instance

is limited. Moreover, in general, the higher is the number of

physical cores requested for a VNFC instance, the lower is its

availability. Finally, Constraint (3h) guarantees that all eNBs

are assigned to a candidate EC k (or vEPC instance k).

V. ANALYSIS AND MODELING

A. LTE CP modeling

We model the CP of the LTE as an open network of G/G/m1

queues (see Fig. 4), where each queuing node represents an

instance of a given entity of the LTE network. The MME,

cSGW, and cPGW might have several instances, each of which

is modeled as a G/G/m queuing node with m
(c)
l servers.

The servers of a queuing node represent the CPU instances,

allocated to the entity instance, processing control messages

in parallel. As stated in Section III-A, m
(C)
l ≤ mmax. For

the sake of simplicity, only one instance is considered for the

rest of LTE CP entities (e.g., UE, eNB, HSS, and PCRF). The

corresponding G/G/m queuing node that models the instance

of these entities might have an arbitrary number of servers as

they might be deployed as PNFs.

The traffic sources are located at the eNB and the UE,

since the LTE signaling procedures considered in this work

(e.g., SR, S1R, HO, and TAU) are triggered by these entities.

Specifically, the TAU and SR procedures are triggered by the

UE and the S1R and HO procedures are triggered by the eNB.

In the same way, the traffic sinks are placed at the MME

instances.

To solve the network of queues, we employ the QNA

method [28] which is described in Appendix A. This technique

1In Kendall’s notation, a G/G/m queue is a queuing node with m servers,
arbitrary arrival and service processes, FCFS (First-Come, First-Served)
discipline, and infinite capacity and calling population.

was applied and validated in [21] to estimate the mean

response time of a VNF with several VNFCs. In this work, we

use the QNA method to estimate the mean response times of

the LTE CP entities T e ∀ e ∈ E. To that end, the QNA method

uses a reduced set of the following input parameters:

• The steady state transition probabilities matrix P = [pki],
where pki denotes the probability of a packet to leave

node k to node i and p0k = 1 − ∑

i pki denotes the

probability of a packet at node k to leave the network. In

this work, we provide the expressions to compute P for

the LTE CP (refer to Appendix B).

• The mean and squared coefficient of variation (SCV) of

the external arrival processes at node k, λ0k, and c20k.

Please note that only the UE and the eNB have external

arrival processes in our model (see Fig. 4). Considering

the abstraction described in section III-B for the signaling

generation process, we found that these arrival processes

are Poissonian (see Section VIII-A). Then, c20k = 1∀ k.

• The mean and the SCV of the service processes at each

queue k, µk and c2sk.

B. LTE DP modeling

For the considered architecture, the LTE DP consists of

three network entities namely, UE, eNB, and DPGW, which

are connected in tandem. Since the focus is on the vEPC

dimensioning, we assume that the UE and eNB entities have

constant maximum delays.

The same methodology as applied to model the LTE CP

cannot be used to model the vEPC DP as it can only provide

overall mean performance metrics of a queuing network, but

not the performance bounds such as those defined in Section

III-C (e.g., T
(DP )
max and P (EPC)) for the DP. Moreover, the

stochastic characterization of the aggregated DP traffic carried

out in this work (see Section VIII-A) shows that the vEPC

DP workload arrival process exhibits SS and LRD features.

Conventional queuing theory does not comprise such kind of

arrival process [44]. Then, we model the DPGW as a single

queue fed by a fBm process. More precisely, we use the model

that was first reported in [22] and also derived in [44] from

stochastic network calculus results. This model can provide

the performance bounds of a tandem of queues with SS and

LRD input in an effective and simple way.

To characterize the arrival process, we adopt the model

proposed in [22]. Let At denote the cumulating arrival process

to the DPGW queue, i.e., the cumulative amount of traffic

(i.e., in number of packets) arriving at the DPGW in the time

interval [0, t]. The following model is considered for At [22]:

At = λ · t+
√
λ · α · Zt (4)

where Zt is a normalized fBm parameter with Hurst parameter

H ∈ (1/2, 1], λ > 0 is the mean input rate, and α > 0 is a

variance coefficient.

Under the above packet arrival model and considering a

constant rate server with capacity C, the violation probability

ǫ = P [B > b] of a backlog bound b can be approximated as

[22], [44]:

ǫ ≈ exp

(

− (C − λ)2H

2 · κ(H)2 · λ · αb2−2H

)

(5)
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where κ(H) = HH(1−H)1−H . The above equation gives us

an approximation for the probability of saturation of a buffer

of size b packets or equivalently the packet loss probability at

a queue fed with a fBm arrival process.

Finally, the maximum response time of a queuing node with

buffer size b and constant rate server with capacity C can be

computed as:

T (max) =
b+ 1

C
(6)

By using (5) and (6), we can perform the dimensioning of

the required capacity of the DPGW.

VI. PES: PLANNER FOR THE EPC AS A SERVICE

Algorithm 1 PES Algorithm

Input: eNBs positions r
(eNB)
i along with the number of UEs

they serve NUE
eNB(i) =

∑

j uji, and the QoS specs T
(DP )
budget,

P
(EPC)
budget , and T

(CP )

budget.

Output: eNBs assigment (i.e., vik), and total number of

processing instances allocated to each vEPC entity per

EC (e.g., mMME , mcSGW , mcPGW , and mDPGW ).

1: [NUE
EC , vik] ⇐ Partitioning(r(eNB),NUE

eNB)
2: for each k ∈ K do

3: Compute the processing delay budgets for the vEPC CP

and DP, T
(CP )
proc−budget and T

(DP )
proc−budget, using (7) and (8).

4: For NU = NUE
EC(k), estimate the external arrival pro-

cesses (λ(CP ), λ(DP ), α(DP ), and H(DP )) using (9)-(15)

5: [mMME(k), mcSGW (k), mcPGW (k), mDPGW (k)]
⇐ Dimensioning(λ(CP ), λ(DP ), α(DP ), H(DP ),

T
(CP )
proc−budget, T

(DP )
proc−budget, P

(EPC)
budget )

6: end for

In this section, we propose a heuristic method to find a

sub-optimal solution of the problem formulated in Section IV.

To achieve a method with low-complexity, we decouple the

process of workload distribution among the candidate ECs

and the resources dimensioning of the vEPC at each EC.

The heuristic method, depicted in Algorithm 1, proceeds as

follows. Initially, the partitioning algorithm assigns each eNB

to a candidate EC (see Algorithm 2). The idea in this algorithm

is to distribute the workload as equally as possible among the

candidate ECs, while guaranteeing a maximum propagation

delay for the backhaul network t
(max)
prop−backhaul. The algorithm

initializes the workload assigned to each EC k NUE
EC(k), which

is measured as the number of assigned UEs, to zero. Then, it

iteratively finds the candidate EC k∗ with the lowest workload

allocated and its nearest eNB i∗ being not assigned yet. If

the propagation delay limit between the EC k∗ and the eNB

i∗ is not violated, then, the eNB i∗ is attached to the EC

k∗ (vi∗k∗ = 1). Otherwise, the EC k∗ is excluded from the

set of candidate ECs K. The algorithm ends when all eNBs

are allocated. Observe that, in the worst case scenario, the

algorithm requires NeNB+NEC iterations to assign all eNBs.

Please note that the number of UEs attached to each eNB

is assumed to be known. On the one hand, if the E-UTRAN

is in the operation phase, the operator can know accurately

the average number of UEs attached to each eNB. On the

other hand, if the E-UTRAN is not in the operation phase, the

operator can estimate the average number of UEs attached to

each eNB from the population density map of the coverage

geographical area and the expected market shares.

Algorithm 2 E-UTRAN Partitioning Algorithm

Require: All eNBs of the set I have to be assigned to an EC

of the set K.

Input: eNBs positions r
(eNB)
i along with the number of UEs

they serve NUE
eNB(i) =

∑

j uji, the ECs positions r
(EC)
k ,

and the maximum propagation time for the backhaul

network t
(max)
prop−backhaul.

Output: eNBs assigment, i.e., vik
1: Initialization NUE

EC =
−→
0 , vik = 0

2: while I 6= ∅ do

3: k∗ = argmin
k∈K

(NUE
EC(k))

4: i∗ = argmin
i∈I

||r(EC)
k∗ − r

(eNB)
i ||

5: if ||r(EC)
k∗ − r

(eNB)
i∗ || ≤ t

(max)
prop−backhaul · c then

6: I ⇐ I\i∗, vi∗k∗ = 1
7: NUE

EC(k
∗) ⇐ NUE

EC(k
∗) + NUE

eNB(i
∗)

8: else

K ⇐ K\k∗
9: end if

10: end while

Once the eNBs assignment is carried out, the process-

ing time budgets for the vEPC CP T
(CP )
proc−budget and DP

T
(DP )
proc−budget can be computed. To that end, we can evaluate

T
(SR)

and T
(DP )
max , in (1) and (2), for TMME , T cSGW ,

T cPGW , and T
(max)
DPGW , equal to zero, respectively. Formally,

T
(SR)

0 = T
(SR)

(TMME = 0, T cSGW = 0, T cPGW = 0) and

T
(DP )
max0 = T

(DP )
max (T

(max)
DPGW = 0). Then,

T
(CP )
proc−budget = T

(CP )

budget − T
(SR)

0 (7)

T
(DP )
proc−budget = T

(DP )
bugdet − T

(DP )
max0 (8)

Then, once there is an estimation of the number of UEs to

be served by each EC, we can also estimate the aggregated

external arrival processes, for both the LTE CP and DP, which

are inputs to the resources dimensioning algorithm. We use

an abstraction of the LTE workload generation process, along

with a compound traffic model, to perform such an estimation.

We characterize stochastically these arrival processes in Sec-

tion VIII-A, where the curve fittings are provided to estimate

the main parameters to model them as a function of the users’

number.

Finally, the resources dimensioning is carried out (see

Algorithm 3). The dimensioning of the vEPC CP and DP

is performed separately. Since we are considering only one

VNFC for the vEPC DP, its dimensioning simply requires

solving numerically (5). For the CP, we propose a novel algo-

rithm which searches for the minimum number of processing

instances to be allocated to the vEPC CP for a given EC so that

a processing delay budget T
(CP )
proc−budget is met. The algorithm
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Algorithm 3 Dimensioning Algorithm

Input: Processing delay budgets for the vEPC CP

T
(CP )
proc−budget and DP T

(DP )
proc−budget; P

(EPC)
budget ; External

arrival processes characterization for CP and DP (λ(CP ),

λ(DP ), α(DP ), and H(DP )).

Output: number of physical cores allocated to each vEPC

entity mMME , mcSGW , mcPGW , and mDPGW

1: {DATA PLANE:}
2: Solve (5) numerically for b ≤ T

(DP )
proc−budget · C − 1 and

ǫ ≈ P
(EPC)
budget to obtain the required DP processing capacity

C. Then, mDPGW = ⌈C/µDPGW ⌉.

3: {CONTROL PLANE:}
4: Initialization mMME = ⌈λMME/µMME⌉, mcSGW =

⌈λcSGW /µcSGW ⌉, mcPGW = ⌈λcPGW /µcPGW ⌉,

MCP = mMME + mcSGW + mcPGW , T
(CP )
proc =

8 · TMME(mMME) + 3 · TcSGW (mcSGW ) + 2 ·
TcPGW (mcPGW );

5: while T
(CP )
proc > T

(CP )
proc−budget do

6: MCP ⇐ MCP + 1
7: for each m ∈ {mMME , ...,MCP − mcSGW −

mcPGW } ∩ N do

8: for each n ∈ {mcSGW , ...,MCP − mMME −
mcPGW } ∩ N do

9: l = MCP −m− n
10: Taux = 8·TMME(m)+3·TcSGW (n)+2·TcPGW (l)

11: if T
(CP )
proc > Taux then

12: T
(CP )
proc ⇐ Taux, mMME ⇐ m, mcSGW ⇐ n,

mcPGW ⇐ l
13: end if

14: end for

15: end for

16: end while

iterates until the processing delay budget is fulfilled. At each

iteration, it increments by one the number of processing

instances MCP allocated to the vEPC CP. For a given MCP ,

the algorithm explores different combinations to distribute

these instances among the different VNFCs to be dimensioned

(e.g., MME, cSGW, cPGW), and choose the one providing

the lowest processing delay. To achieve the linear complexity,

the search space is limited at each iteration (see line 12 of

Algorithm 3). In the algorithm, Tmme(m), TcSGW (n), and

TcPGW (l) denote, respectively, the mean response times of

the MME, cSGW, and cPGW for a given number of allocated

processing instances m, n, and l. These mean response times

are estimated by using the QNA method (refer to Appendix

A). Please note that, although it is not explicitly included in

Algorithm 3, for each ‘processing instances allocation (m,

n, l), it is necessary to re-estimate both the internal flow

parameters at each queue, using (16)-(22), and the transition

probability matrix, using (31)-(41).

The number of instances or, equivalently, the num-

ber of virtualization containers for each vEPC entity

at a given EC can be simply computed as follows:

⌈mMME/mmax⌉, ⌈mcSGW /mmax⌉, and ⌈mcPGW /mmax⌉,

and ⌈mDPGW /mmax⌉.

Fig. 5: Markov chain based model for social networking.

Fig. 6: Scenario realization with a population density of 1000

users per km2.

VII. EXPERIMENTAL SETUP

To validate the models developed in this work and to

assess our solution for EPC slices planning, we employed two

software tools: i) the NSP [20], and ii) a system-level simulator

of an LTE network.

A. Network Slice Planner

We used the NSP [20] to generate the synthetic signaling

and data traffic in an LTE network. We extended the compound

traffic model of this tool by including the traffic models

employed in [27]. The setup for each service type (see Table

II and Fig. 5) relies on models taken from the literature,

which are derived from real traces. Specifically, the main

references used for the different services setup are [46] for

social networking; [47] for Mobile Instant Messaging; [48] for

web browsing; [49] and [45] for video streaming; and [50] and

[51] for video calls. According to [52], the services considered

account for more than 70% of the peak aggregate traffic in the

American mobile access networks.

The output traces of the NSP were used to characterize

the aggregate packet arrival processes at the LTE CP and DP.

These traces are also used as inputs for our system-level LTE

network simulator.

B. LTE network simulator

The system-level LTE network simulator was developed

within the NS3 environment. It implements the messages

exchange between the main LTE network entities. The traces

generated from the NSP are used as inputs of the simulator
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TABLE II: Compound traffic model for Mobile Broadband users

Traffic Type Parameters Statistical Characterization

Social
Networking
Papp = 0.20

Inter-arrival session times (Tsst) Log-normal distribution: µ=2.245 σ=1.333 (samples in seconds)

Number of APPs per session (N ) From Markov chain depicted in Fig. 5.

Reading time (D) Log-normal distribution: µ = 1.789, σ = 2.366 (samples in seconds).

AAPs length (Ton)
Request data consumption (Markov Chain): i) friend page = 1300 kB, ii) message
page = 1 MB, iii) scrapbook page = 2 MB, and iv) photo page = 750 kB.

Video
streaming

Papp = 0.20

Inter-arrival session times (Tsst) Log-normal distribution: µ = 2.1, σ = 1.3 (samples in seconds).

Number of APPs per session (N ) 1 (Constant)

Reading Time (D) Since N = 1, no reading times

AAPs length (Ton)

• Video length: power-law (xmin = 32.8285, α = 2.2619) (samples in seconds)
• Video resolutions: i) 360p: 3 Mb/min, ii) 480p: 5 Mb/min, iii) 720p: 10

Mb/min, and iv) 1080p: 15 Mb/min.
• Download model according to [45]

Mobile
Instant

Messaging
Papp = 0.20

Inter-arrival session times (Tsst) Log-normal distribution: µ = 2.411, σ = 2.276 (samples in seconds)

Number of APPs per session (N ) 1 (constant)

Reading Time (D) Since N = 1, no reading times

AAPs length (Ton) Message length (in KB): Power-law distribution (xmin = 0.4823 KB, α = 2.2566).

Web
browsing

Papp = 0.20

Inter-arrival session times (Tsst) Exponential distribution: λ−1
= 1200 seconds

Number of AAPs per session (N ) Geometric distribution: p = 0.893

Reading times (D) Exponential distribution: λ−1
= 30 seconds

AAPs length (Ton)

• Main object size: Truncated log-normal distribution: µ = 15.098, σ = 4.39 ·
10

−5, min = 100 B, max = 6 MB (samples in bytes).
• Embedded object size: Truncated log-normal distribution: µ = 6.17, σ =

2.36 · 10−5, min = 50 B, max = 2 MB (samples in bytes).
• Number of embedded objects per webpage: Truncated Pareto distribution:

mean = 22, shape = 1.1.
• Parsing time: Exponential distribution: λ−1

= 0.13 seconds.

Video
calling

Papp = 0.20

Inter-arrival session times (Tsst) Exponential distribution: λ−1
= 1200 seconds

Number of APPs per session (N ) 1 (constant)

Reading Time (D) Since N = 1, no reading times

AAPs length (Ton) Pareto distribution: k = −0.39, s = 69.33, and m = 0 (samples in seconds)

to emulate the workload generation in the LTE network.

To distribute the users through the coverage area of the

E-UTRAN, we employed the model presented in [53]. To

generate Radio Access Network (RAN) deployment (i.e., the

distribution of the eNBs), we adapted the heuristic proposed in

[54]. Fig. 6 shows the synthetic E-UTRAN scenario considered

in this work for a population density of 1000 UEs/km2.

The scenario consists of three urban zones where most of the

population is concentrated. Additionally, four candidate ECs

are considered, and their positions are randomly generated.

Each LTE functionality deployed as a VNFC of the vEPC

is simulated as a First Come First Served (FCFS) queue with

multiple generic servers. The rest of the LTE entities (e.g., UE,

eNB, HSS, and PCRF) and the network delays (e.g., trans-

mission, propagation, and switches processing), among any

couple of EPC entities, are simulated as infinite servers (i.e.,

constant processing delay without a queuing waiting time).

Table III includes the configuration of the main parameters

for the simulator. The distribution of the service time for each

entity to be deployed was obtained experimentally.

VIII. NUMERICAL RESULTS

In this section, some numerical results are reported to assess

the proposed solution for the planning of LTE EPC slices.

A. Workload Characterization

By using NSP, we generated signaling and data traffic

traces for 100000 UEs and different population densities. The

simulated measurement period was set to 10000 seconds.

Following the analysis of the traces in [55], we depicted

the rate process on 6 different time scales for both CP and

DP traffics. The chosen time scales were 1 ms, 10 ms, 100
ms, 1 s, 10 s, and 100 s. From these representations, we

concluded that the DP traffic showed self-similarity (i.e.,

statistically indistinguishable on different time scales). The

same phenomenon was not observed for CP traces. Based on

the aforementioned observations, we measured λ(DP ), α(DP ),

and H(DP ) parameters of the traffic model introduced in

Section V-B for the DP traces (see Fig. 7).

To estimate the mean rate λ(DP ), we simply counted

the number of packets collected in the trace and divided it

by the simulated measurement period. We obtained that in

average, each UE generates around 5.1121 packets per second

considering the compound traffic model defined in Table II. We

got a similar result regardless of the number of users NU and

the population density. Consequently, λ(DP ) = 5.1121 ·NU .

To measure α(DP ) and H(DP ), we followed the same

procedure as in [22]; we performed a linear regression from

the logarithms of the sample variances of the increments of

At for the 6 different time scales considered. Note that it is
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TABLE III: Parameters Configuration

eNB configuration

Maximum Tx power 20 W
Noise power 4 · 10−21 W/Hz
Number of antennas 1

Antenna gain 10 dB
Carrier frequency 2.3 GHz
Bandwidth 20 MHz
Noise figure 8 dB
Std of log-normal shadowing 8 dB
Spectral efficiency 10 bits/Hz
Minimum SNR Requirement 3.5 dB
Inactivity timer value 10 s

Service processes and mean response times for CP

µMME , µcSGW , and µcPGW 6700 packets per second

c2sMME
, c2scSGW

, and c2scPGW
0.65

TUE , T eNB , THSS , and
TPCRF

1 ms

TS6a and TGx 1.5 ms

TS11 and TS5 30 µs
Service processes for DP

µDPGW (per CPU instance) 1813236 packets per second

T
(max)
UE

100 µs

T
(max)
eNB

200 µs
Propagation delays

Speed of light in air 3 · 108 m/s
Speed of light in fiber 2 · 108 m/s

QoS requirements

T
(CP )
budget 25 ms

T
(DP )
budget

1 ms

P
(EPC)
budget

10
−6

supposed that At defined in (4) has stationary increments [22],

and V AR[At] = λ·α·t2H . Figure 7 shows the measured α(DP )

and H(DP ) for different numbers of users.

The measured values for H(DP ) versus NU range from

0.7 to 0.93 confirming the LRD of the DP traffic and the

fBm process is suitable to model the aggregated DP traffic

generation process. We fitted the following model:

H(DP ) =
(

H
(DP )
0 −H(DP )

max

)

· e−δ·NU +H(DP )
max

to the experimental H(DP ) curve (i.e., H(DP ) versus NU ).

Where H
(DP )
max = limNU→∞ H(DP ), H

(DP )
0 is the value of

H(DP ) when NU = 0, and δ is a rate constant. This model

is appropriate to fit H(DP ) because it is bounded (we know

beforehand that 0 ≤ H(DP ) ≤ 1) and its shape fits the

experimental data (we obtained an R-squared of 96.82%).

Regarding α(DP ), the slope of α(DP ) versus NU decreases

when NU increases, though the rate of change of this slope

tends to zero in the range of NU observed. Then, it seems

reasonable to estimate α(DP ) at any NU by using the linear

function defined from the last two points of measurements

(e.g., NU = 75000 and NU = 100000).

In summary, for a given number of users NU , we can

estimate the main parameters of the fBm process that models

the aggregated data traffic for our compound traffic model as

the following:

λ(DP ) = 5.1121 ·NU packets/second (9)

α(DP ) = 0.00216 ·NU + 1637.7 packets · second (10)

Number of users, N
U ×10
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Fig. 7: Variance coefficient α and Hurst parameter H mea-

surements versus the number of users NU for the aggregated

DP arrival process.

H(DP ) = 0.9172− 0.2025 · e−6.9430·10−5·NU (11)

For the CP, we measured the mean S
(CP )

0 = 1/λ
(CP )
0 and

the standard deviation σ
(CP )
0s of the control procedures inter-

generation times S
(CP )
0 and observed that S

(CP )

0 ≈ σ
(CP )
0s .

This result suggests that the generation process of LTE signal-

ing procedures is Poissonian. Then, we computed the empirical

cumulative distribution of the S
(CP )
0 and fitted S

(CP )
0 into an

exponential distribution. As it is shown in Fig. 9, both curves

are overlapped. Additionally, we performed a Kolmogorov-

Smirnov test to check whether the S
(CP )
0 samples come from

an exponential distribution. The test failed to reject the null

hypothesis at the 1% significance level. The same experiment

was conducted for different values of NU and the same result

was obtained. Specifically, we swept NU from 100 to 100000.

Consequently, the LTE CP workload generation process, under

the assumption that it follows the abstraction described in Sec-

tion III-B, follows a Poisson distribution. Then, the aggregated

arrival process at CP is fully characterized by the signaling

generation rate.

Finally, following the same procedure to measure λ(DP ), we

estimated the signaling rates per control procedure for different

population densities (see Fig. 8). It is observed that, unlike

the SRs and S1Rs rates per user, the HOs and TAUs rates per

user depend on the population densities. This fact is due to

the increase in the E-UTRAN density (i.e., number of eNBs

per km2) when the population density increases.

Let λSR, λS1R, λHO, and λTAU be respectively the aggre-

gated generation rate of the SR, S1R, HO, TAU procedures.

For our setup and a given number of users NU , these rates

can be estimated as:

λSR = λS1R = 0.0044 ·NU (12)

λHO = 4.2466 · 10−6 ·N2
U/(w · h) + 0.003272 ·NU (13)

λTAU = 2.6281 · 10−6 ·N2
U/(w · h) + 0.002025 ·NU (14)

And the aggregated signaling procedure generation rate λ(CP )

as

λ(CP ) = λSR + λS1R + λHO + λTAU (15)

B. EPC Network Slices Planning

To gauge the performance of our solution, we considered

the scenario which consists of the rural and urban zones layout

and the ECs positions depicted in Fig. 6. The assessment
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metrics are the algorithm runtime, the dimensioning of the

network and computational resources, and the network QoS

requirements defined in Section III-C. These metrics were

measured for different population densities. Additionally, we

compared our solution with two baseline approaches for the

workload partitioning:

• Workload partitioning based on proximity: each eNB is

assigned to the closest EC using Voronoi diagram. This

approach is labeled as “Voronoi” in the figures.

• A fully centralized approach: eNBs are assigned to the

same EC. The chosen EC is the nearest to the largest

concentration of users. This approach is labeled as “Cen-

tralized” in the figures.

First, we assessed the computational complexity of our

algorithm. Fig. 10 shows the runtime of our solution versus

the number of eNBs deployed at each considered population

density. We repeated each measurement five times and cal-

culated the average. The dimensioning algorithm (labeled as

“Dim. alg.”) and, more specifically, the CP dimensioning was

the heaviest part of the full algorithm in terms of complexity.

Thanks to the limitation of the search space at each iteration,

the CP dimensioning algorithm was able to achieve a linear

complexity. The partitioning algorithm (labeled as “Part. alg.”)

took a linear time, as it was expected, since that in the worst

case, it requires I +K iterations to assign all eNBs.

Second, we analyzed the computational resources estimated

by PES as depicted in Figs. 11a and 12a. The CP has a higher

demand of computational resources than DP in the considered

scenario, though the throughput demand is three orders of

magnitude higher for DP (see Figs. 11c and 12c), owing to

the fact that the processing of the control messages is heavier

than that one required for a data packet (see Table III). It is

worth mentioning that the computational resources allocated
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Fig. 10: Algorithm execution time of the distributed approach.

to the CP depend quadratically on the population density (see

Fig. 11a). This is attributable to the fact that the HO and TAU

procedures per user increase proportionally with the density

of the RAN, as shown in (13) and (14). Moreover, since the

MME has the highest visit ratio (VMME = 2.4196, while

VcSGW = 1.3585 and VcPGW = 0.7170), it was observed

that PES allocated most of the CP computational resources

to MME entity, followed by cSGW, and so forth. Third, we

validated the proper operation of PES. Figs. 11b and 12b

show the values of the QoS metrics obtained via simulation

for the different population densities studied. As it can be

observed, the target performance metrics (T
(CP )

budget = 25ms,

T
(DP )
budget = 1ms, and P

(EPC)
budget = 10−6) are always met, thus

validating the proper operation of PES.

As mentioned, we compared three different approaches to

distribute the workload among the candidate ECs. In general,

the Voronoi approach offers the best performance in terms of

delay (see Figs. 11b and 12b) owing to its minimization of

the propagation delays. Regarding the centralized approach,

it requires the lowest amount of computational resources

(see Figs. 11a and 12a). That is because it consolidates the

workload in a single EC, which leads to a better resources

utilization and facilitates the statistical multiplexing of the

computational resources (i.e., a lower number of virtualiza-

tion containers are required as shown in Fig. 11a). Finally,

the distributed approach (see Algorithm 2) minimizes the

workload imbalances among the candidate ECs as shown in

Figs. 11c and 12c. In scenarios where the candidate ECs

have a limited capacity, the distributed approach, included in

PES, would improve the request acceptance and infrastructure

utilization [37]. It is also appropriate for the planning of large

geographical areas where the centralized approach could not

meet the delay constraints, due to the high propagation delays.

IX. CONCLUSIONS

In this article, we proposed an integral solution for planning

the network slices of the LTE EPC. We characterized stochas-

tically the LTE signaling and data traffic workload, designed

accurate and detailed models to predict the performance of the

LTE networks, and formulated the joint optimization problem

of resources dimensioning and vEPC embedding for a set of

candidate ECs. Using this framework, we proposed a heuristic

for planning the vEPC, dubbed “Planner for the EPC as a

Service” (PES).

Regarding the LTE workload characterization, we described

an abstraction for the workload generation process and de-

signed a compound traffic model which includes the most
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representative services in current LTE networks. Specifically,

the services considered account for more than 70% of the

peak aggregate traffic in the American mobile access networks

[52]. We enhanced the NSP simulation tool by including

the proposed compound traffic model and generated synthetic

signaling and data LTE traces. From these traces, a stochastic

characterization of the aggregated arrival processes at LTE

CP and DP has been carried out. The results show that the

aggregated signaling generation process is roughly Poissonian

and the DP workload exhibits self-similarity and long-range

dependence features. Based on the workload characterization

results, we modeled the vEPC DP as a queue fed by a fBm

process and the LTE CP as a network of queues following a

similar technique to the one proposed in [21].

The planning of the EPC network slices has been formulated

as a multi-objective optimization problem that minimizes the

workload imbalances among a set of candidate ECs, and max-

imizes the resources utilization and the end user QoE, while

ensuring the set of QoS requirements defined in the 3GPP

LTE specs. Finally, a system-level LTE network simulator was

developed to validate the proper operation of PES.
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