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ABSTRACT. A generalization of the resolution method for higher order logic is presented. The 
languages acceptable for the method are phrased in a theory of types of order ~ (all finite 
types)--including the h-operator, propositional functors, and quantifiers. The resolution 
method is, of course, a machine-oriented theorem search procedure based on refutation. In 
order to make this method suitable for higher order logic, it was necessary to overcome two 
sorts of difficulties. The first is that the unifying substitution procedure--an essential feature 
of the classic first-order resolution--must be generalized (it is noted that for t h e  h i g h e r  order 
unification the proper notion of substitution will include h-normalization). A general unifica- 
tion algorithm is produced and proved to be complete for second-order languages. The second 
difficulty arises because in higher order languages, semantic intent is essentially more "inter- 
woven" in formulas than in first-order languages. Whereas quantifiers could be eliminated 
immediately in first-order resolution, their elimination must be deferred in the higher order 
case. The generalized resolution procedure which the author produces thus incorporates quan- 
tifier elimination along with the familiar features of unification and tautological reduction. 
It is established that the author's generalized resolution procedure is complete with respect 
to a natural notion of validity based on Henkin's general validity for type theory. Finally, 
there are presented examples of the application of the method to number theory and set theory. 

KEY WORDS AND PHRASES; theorem-provlng, resolution, second-order logic, type theory, 
unification, matching 
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Introduction 

In  the last few years interest has increased in mechanization of proving theorems 

in higher order logical systems. A motivation for this is the following: basic mathe- 

matical theories such as set theory, number theory, and in a sense even the theory 

for the equality relation cannot be finitely axiomatized in the first-order predicate 

calculus. This fact destroys the possibility (in a first-order approach) of using 

finite methods which are the core of mechanical theorem-proving. These and other 

reasons have been discussed in [5, 12] and also [15]. 

The approaches followed for the higher order theorem-proving differ mainly 

in the degree of generality. The most general approach is represented by [3, 12]. 

However, the main objective there is to mechanize the description of mathematical 

theories rather than proofs of theorems. 

The second approach deals with systems based on some equivalents of full 
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w-calculus with types (see [1, 7, 16]). However, these results can be considered as a 
basis for only partial mechanization of proofs. 

The third approach involves a more complete mechanization of proofs, but re- 
stricts the language to a portion of the full co-order type calculus. We will concen- 
trate on this approach. The first result of this kind was obtained by J. L. Darling- 
ton in [5] and then developed in [6]. Both are a generalization of the resolution 
principle for skolemized theorems of restricted second-order logic. Other attempts 
to mechanize fragments of set theory are presented in [171. 

This paper is a direct continuation of the author's earlier report [13]. The major 
progress is due to the fact that the preskolemization is not needed here. It  has a 
vital significance for the scope of application of the method since even very simple 
theorems of set theory cannot be directly skolemized (see Section 6, Examples 3 
and 4). It  should be noted that both papers are a continuation of Darlington's 
approach. 

Section 1 of this paper provides a specification of the class of languages which 
can be used to formulate theorems. Roughly speaking these languages are un- 
ambiguous, they are type-based with built-in "h" operator, existential and uni- 
versal quantifiers, and they have the possibility of using other (defined) operators 
which bind variables. The theorems are collections of clauses which are finite sets 
of literals. Literals are well-formed formulas which may be composed, among 
other things, of propositional connectives and quantifiers. In Section 2 we give the 
basic rules of object manipulation: substitutions and X-normalization. 

In Section 3 we present a procedure for forming a general unifier of a set of 
object classes. We prove that this procedure is complete for languages of the second 
order. 

Section 4 introduces the notion of a system (countable collection of clauses) and 
such properties of systems as inconsistency and unsatisfiability. The latter con- 
cept corresponds to the intuitive one as well as to an adaptation of Henkin's no- 
tion of validity in general models of type theory [1, 8]. 

Section 5 is devoted to a method of detecting the unsatisfiability of a system. 
To this end, we produce a generalized resolution rule which combines Robinson's 
resolution principle with some rules specific for the higher order like k-contraction 
and V, 3-elimination. This resolution procedure is proved to be complete for 
second-order languages (complete in the sense of validity given in Section 4). 
More specifically, the unsatisfiability of a system can be finitely detected by iterat- 
ing the production of finite resolution subsets. 

In Section 6 we give examples of applications of the above method to prove 
some theorems of number and set theory (among them Cantor's theorem). 

In the concluding remarks there are stated some open problems of theoretical 
and practical nature. An Appendix includes a proof of convergence for the iterative 
R-contraction in the discussed languages, and also flowcharts for the various al- 
gorithms presented in the paper. 

1. Language 

In this section we specify the class of languages acceptable by the methods of the 
remaining sections of the paper. Subsections 1.1 and 1.2 give a very general and 
abstract specification of the structure of the languages. This inclusion seems de- 
sirable, as higher order languages have features affecting mechanization unfamiliar 
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in the typical approach of first-order logic. However, if the reader is familiar with 

a conventional language for higher order logic and wishes to pass over the abstract 
specification of the languages (or Subsections 1.1 and 1.2), the example of Sub- 

section 1.3 gives concrete and familiar illustrations of the definitions essential to 

understanding the results of the remaining sections of the paper. 

1.1. Let  A be a countable set of distinct elements called characters. Such no- 

tions as string of characters, equality of strings, concatenation of strings, and oc- 

currence of a string in another string are assumed to be familiar to the reader and 

will not be defined. In the following, if not stated otherwise, the small letters a, 

b, d, f, g, u, v, w, x, y, z will denote strings. The n th  (n > 1) character from the 
left in a string x will be denoted by x[n], and the set of all strings of A by A*. 

1.2. Let  L be a subset of A* whose elements are called objects (e.g. in a typical 

language objects will be terms, well-formed formulas, etc.), x is subobject of y 

means that  x and y are objects and x occurs in y. We shall say that  x is a proper 

subobject of y iff x is a subobject of y and x ~ y. A proper subobject x of y is a 

direct subobject of y iff there is no proper subobject z of y such that  x is a proper 

subobject of z. 

L is called an acceptable set of objects iff it satisfies the following conditions: 

1.2.1. The characters " . " ,  " ~ " ,  "3" ,  "V",  and "k"  are elements of A. 

1.2.2. There exists a decidable procedure to recognize objects from other 

strings. 
1.2.3. If x, y are distinct direct subobjects of z then there is no string occurring 

simultaneously in x and y (i.e. x and y do not "overlap";  on the other hand, z 

might have characters which do not occur in any direct subobject).  
1.2.4. There is a set T whose elements are called types. T is defined inductively 

as follows from a fixed countable set To : t C T i f f  

(a) tC  To, or 
(b), t = ( t l , ' " , t n )  (n > 2 ) , w h e r e t ,  E T (1 < i <  n) a n d t ~ E T o .  
We shall define a mapping ord of T into the set of integers by the following 

formula: 
~1 if t E T 0 ,  

ord(t) =dee I max {ord(t,)} + 1 where t = ( h , ' " ,  in), n >_ 2 if otherwise. 

1.2.5. There exists a recursively decidable mapping r of L into T such that  if x 

is a string and y, w, z are objects and x is the result of replacement in y of some 

nonbound (see 1.2.8) occurrences of z by w, then r(z) = r(w) implies tha t  x 

is an object and r(x) = r (y) .  r (x)  is called the type of x. 

1.2.6. There exist two mutually disjoint subsets V and E of A. Their  elements 

are called respectively variables and existential parameters. They satisy the following 

conditions: 
1.2.6.1. If u E V there exist infinitely many distinct variables u l ,  u2, . . .  , 

such that  r(u) = r(u,)  ( i  >_ 1). 
1.2.6.2. For each t C T, there exist infinitely many distinct existential pa- 

rameters cl ,  c2, . . .  , such that  r(c,) = t ( i  >_ 1). 

1.2.7. If r( f )  -- ( h , " ' ,  tn) (n >_ 2) and x l , - . - ,  xm (0 < m < n) are 
objects such that  r(x,)  = t, (1 < i < m), then the concatenation f x l . . . x ,~  is 
called a functional semi-object. A functional semi-object f x l . . ,  xm becomes an ob- 
ject, called a functional object, if it  is not a part  of a functional semi- 
object fxl .  • • XmXm+I" • • Xk (k > m),  in the given context. 
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If f x l . ' . x ,~  is a functional object with r ( f )  as above, then f, x l ,  . . .  , x~ are 
its direct subobjects and 

x~) =dof~ty incase  m ffi n - -  1, 
v ( f  xl . . . ( (  t ~ + ~ , . . . , t , )  in case m < n - -  1. 

f is called its head and x, (1 < i < n) its i-lh argument. 

This definition makes our grammar context sensitive. I t  could be avoided by  

introducing full bracketing (see [16]); however it would cause some undesirable 

technical difficulties in the Unification Algorithm and disturb the simplicity of the 

notation. 

1.2.8. There will be certain classes of objects called binding scope objects which 

will be distinguished in having some (at  least one) fixed direct subobjects called 

binding designators. These satisfy the following conditions: 

(a) A binding designator must be an occurrence of a variable. 

(b) Whenever an object y is obtained from a binding scope object x by replac- 
ing an occurrence of a variable u by a variable v (where r (u )  ffi r (v ) ) ,  then y is a 

binding scope object, and u is a binding designator for x iff v is a binding designa- 
tor for y. 

In a binding scope object x, if u is a binding designator for x, then every occur- 

rence of u in x is called bound in x. Furthermore,  such occurrences will be called 

bound in z if x is a subject of an object z. If an occurrence of a variable in an object 

if not bound it is called free. 

1.2.9. If  u~, . . -  , u~ (m > 1) are distinct variables and x is an object then 

ku l . . . um*x ,  is a binding scope object, Ul, - "  , u ~ ,  x are its only subobjects, 

and u~, . . .  , u,~ are its binding designators. 

~(V(Ul), . . .  , ~-(u~), tx) if r (x )  = tl, where tlis a basic type, 
T(X) =de f  ~t 

( ( 1 " ( U a ) , . . . , r ( u , , ) , h , . . . , t , )  if r(x) = ( t l , ' " , t , ) .  

Such an object will be called a h-function. 

1.2.10. The set T contains a type L ITERAL.  Each object of type L I T E R A L  

will be called a literal (these are the "well-formed formulas").  If x is a literal then 

the concatenation -~x is an object and also a literal. The  set of literals will be called 

the language of L or simply the language. 

1.2.11. If  u is a variable, Q is V or 3 ,  and x is a literal, then Qux is a binding 

scope object of type LITERAL,  where u and x are its only direct subobjects and 

u is its binding designator. 
Comments. The conditions 1.2.2-1.2.5 and 1.2.10 essentially say that  our lan- 

guages are unambiguous. The condition 1.2.5 additionally guarantees tha t  the 
application of a substitution is always possible. 

Moreover, conditions 1.2.7, 1.2.9, 1.2.10, and 1.2.11 introduce into the syntax 
of some special objects which respectively correspond to functional expressions, 

X-expressions, well-formed formulas, and their existential and universal quanti- 
fication. The feature of types (which may be interpreted as metalinguistic vari- 

ables) makes it possible to avoid bracketing without a danger of ambiguity (com- 

pare with [4, 7, 16]). 
1.3. Example of an acceptable language. What  kind of languages does our 

abstract definition allow? An immediate observation is tha t  a language using 
"bracket-free" or "Polish prefix notat ion" will be acceptable. But  this is not re- 
quired except for functional objects with variable heads. Subject to this feature, 
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and the requirement that V, 3,  X, and -~ are "built into" the language, virtually 
any normal notation used by mathematicians can be easily adapted to satisfy the 

requirements of our acceptable languages. 

We shall now give the description of a particular language which we shall use 
in examples in the remainder of the paper. Furthermore, we shall give illustrations 
of the abstract definitions of Section 1.2. 

The specific characters of the language (which are also objects of the language) 
are given in Table I. 

We now give three rules for recursively generating the set of objects L: 
(1) Each of the characters in Table I is an object. 
(2) New objects of type CLASS or LITERAL are formed according to Table 

II. The words class and literal in Table II denote any object of that type. 
(In each of the objects formed in Table II, the direct subobjects are exactly those 

denoted by the class and/or literal. Thus, the characters {, N, ~ ,  V, etc., are not 

direct subobjects of, and are not included in any proper subobject of the newly 
formed object, but they can be thought of as characters which identify or charac- 
terize the newly formed object. The first three objects on the left side of the table 
are binding scope objects. The "b.d." and arrow indicates the binding designator, 
but this notation has no status in the language.) 

(3) Finally, it is apparent from the definitions above that new objects may be 
formed (from those obtained by Table I and Table II) by the built-in features of 

TABLE I 

(CLASS, LITERAL (CLASS, (CLASS,  CLASS, 
TYPE CLASS CLASS) LITERAL) LITERAL) 

Intuitive inter- individual unary func- 0-ary predi- unary predi- binary predi- 
pretation of element tion cate eate cate 
the type 

Constants: 0 A, C, S 
(existential 
parameters) a, b, c, d F, G 

Variables x, y, z f, fl , "" 
U ,  t)~ " ' "  ~ ~1  ~ " ' "  

p, q P, Q, R P~ 

TABLE II 

New objects formed of type CLASS New objects formed of type LITERAL 

{class [ literal} class = class 

(b.d.) class E class 

U class class class ~ class 

T 
(b.d.) (literal h literal) 

N class class (literal Y literal) 
T 

(b.d.) (literal ~ literal) 

class + class 
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the language: forming functional objects, X-expressions, forming quantified literals 
with V or 3,  and placing -7 in front of a literal. 

All of the objects of L for our example are given by the above three rules. 
Quantified literals and X-expressions give examples of binding scope objects 

as well as those of Table II. In each case the direct subobjects will be identified by 
dotted lines drawn around them (no official status, of course!), and the binding 
designator will be indicated by "b.d." and an arrow (see Figure 1). 

(b.d.) 

T 
(b.d.) 

T 
(b.a.) 

Xtv)'t P x_. ; • 
T 

(b.d.) 

(Here, x in Qx is bound m the main object, but not by the 
binding designator of the main object.) 

(Notice that the type of this N-ob|ect is 
(CLASS, LITERAL).)  

FIG. 1 

2. X-Normalization and Substitution 

We start with defining the notion of object classes. 
2.1. A pair of occurrences of a variable is called bound together its a~ object x 

iff these occurrences are bound in x and for each subobject y of x both occurrences 
are bound in y or neither of them is. 

Let x, y be a pair of objects. We shall say that  x ~-~ y iff x results from y by chang- 
ing only some bound occurrences of variables providing that  if a pair of occurrences 
is bound together in y then the corresponding pair is bound together in x and vice 
versa, and that  the type of corresponding variables remains the same (such change 
is usually called "alphabetic change of bound variables"). 

I t  is easy to prove that  the relation " ~ "  is reflexive, symmetric, and transitive 
on L, and hence it is an equivalence relation. Therefore it  partitions the set L 
into the set of equivalence classes denoted L'. Elements of L' we shall call object 

classes. We shall adopt the following notation: If x denotes an object then ~ de- 
notes the object class to which x belongs. The notion of object classes simplifies 
considerably the definition of substitution and consequently X-contraction. I t  
will become clear in further discussion (see Subsection 2.2). 

The mapping r can be naturally induced on the set of object classes in the follow- 
ing manner: 

if ~ E I f  then r(~) = r (x) .  

Notice that  r on L' is well defined because x ~-~ y implies r(x)  = r (y ) .  

2.2. A finite set of ordered pairs { (uz, ~1), " '"  , (u . ,  ~n)} is called a substitution 

i f f f o r a l l i  (1 < i < n) 4, is an object class and r(g,) = r ( u , ) , a n d u l , . . . , u ~  

are distinct variables. Substitutions will be denoted by Greek letters: a, ~, ~/, ~', 
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and ~ where ~ denotes the empty substitution. In order to simplify the notation ( to  

avoid barring and superfluous parentheses) in the further text  we shall represent a 
substitution {(ul, ~1), "." , ( u , ,  £)} as {ul ~--xl ,  . . .  , u ,  ~--x,}. 

Let  x be an object and a a substitution where a = {ul ~--Wl, - . .  , u ,  ~--w.} 

(n > 1). £a is called the direct application of a to x and is defined as an object 
class ~ such that  z is the result of the replacement of all free occurrences of u l ,  • • • , 

u ,  in an object y respectively by  wx, • • • , w~, provided that  x ~ y and each vari- 
able which occurs bound in y does not occur free in any w~ (1 _~ i _< n).  I t  is 

easy to verify tha t  such a y always exists (it  follows from 1.2.5 and 1.2.6) and tha t  
is determined uniquely. 

However, the above definition of the application of substitution does not  pro- 

vide for the possibility of replacing functional subobjects, which is essential for 

higher order systems. In order to generalize it suitably we must first introduce the 
notion of X-normalization. 

2.3. A functional object such that  its head is a X-function we call a X-object. 
Let b be a X-object or else a X-function such that  b = X u l . . . u , . x . y l . . . y , ~  (0 < 

m < n) where x is not a X-function and Y l ' " y ,  are the arguments of b. Now we 
define 

~ : ~ { u ~ - - y l , . . - , u m ~ - - y ~ }  if m ffi n, 
Ap(b)  def ) 

¢Xu~+l . . .u , .x .{u l  <--- yl , " "  , u~ ~-- y,~} if m < nn. 

Now suppose that  b is a X-function such that  b = Xul..  "Uk'fU~'" "Uk" (0 < 

j _< k and we also allow the trivial case that  k = 0), where fu j  . . .  uk is a func- 

tional object and u#, • • • , uk are some of its arguments which have no free occur- 
rences in f.  Then we define 

Rd(b) -~defl ] if j = 1, 

~Ul"''Uj--I"f" otherwise. 

Finally for any k-object or k-function b we define: 

i ~ ix =def Rd( Ap(b)  ) 

We call I/~ Ix the X-contraction of b. 
The X-contraction always exists (due to the fact tha t  it  is not an object but  the 

object class). Its uniqueness clearly follows from uniqueness of the direct sub- 
stitution application. 

The above definition of X-contraction is adopted from the original Church defini- 
tion of X-conversion [4] with some modifications. 

Let  x, y be objects. We shall say that  x is immediately convertible into y and de- 
note it cony(x, y) iff y is the result of the replacement of a X-object z occurring in 

x by an element of the object class [ ~ Ix. Furthermore we shall define that  x is 
convertible into y and denote it conv*(x, y) iff conv(x, y) or there exists an object 

z such that  conv*(x, z) and conv(z, y). 
An object x is called normal iff for each of its subobjects b which is a X-object 

or a X-function we have b = [b Ix • The following theorem relates the above no- 
tions and describes an important  property of our languages. 

THEOREM 1. To each object class ~ there corresponds a unique object class ~ such 
that y is a normal object and conv* ( x, y) holds. 

The proof of this theorem is given in Appendix I. On the basis of this theorem 
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we shall define a mapping norm on L' as follows: 

norm(£) =det ~, 

where £ E L '  and y is a normal object such that  conv*(x, y) holds. 

Finally, we shall define the application of substitution o" to an object class £ by the 

formula below: 

£ o a =d~f norm(£a) .  

In the case of the first-order language, the application and the direct application 

of substitutions are identical. 

I t  should be noted that  the above definition would be quite awkward if applied 

directly to objects instead of object classes. 

Ex~mp/e. 

Vu(u E x ^ r u E  a) o { x ~  Au, f ~ hv.(a + v).} • Vz(z E Au ^ (a + z) E a). 

I t  is easy to notice tha t  if we were to deal with objects instead of object classes, 

the above application of substitution would not be feasible: inserting Au in place 

of x would bind the previously free u. The use of object classes makes the general- 

ized application of substitution a total operation, where in the case of objects 

it would only be partial. 
2.4. Clearly generalized substitutions can be identified with mappings of L'  

into the set of normal object class. In  order to preserve this property of substitu- 

tions we shall follow Robinson [14] in defining the composition of substitutions. 

Let  ~, ~ be a pair of substitutions such that  ~ = {ul ~- xl ,  . . .  , u ,  ~-- x,I and 
= {vl ~-- y l ,  "" • , v~ ~-- y~} where m, n > 0. Then the composition of substitu- 

tions ~, ~ is defined as follows: 

where {v,, , - . .  , v,k} = {vl, . . .  , v,} - {ul, - . -  , u~}. I t  can be proved tha t  for 

each object class £ and substitutions ~, 7, ~, we have 

(.~o~)o~, =.~o(~o~) and (~o~)o r = ,~o(~,o~). 

3. Unification 

In  this section we give a unification procedure which will prove to be adequate for 

second-order logic. The term "matching procedure" has also been used elsewhere. 
The reader should recall tha t  a mechanization of logic, in the style initiated by 

Robinson [14], replaces the many varied axioms and rules of inference of conven- 
tional logic by a single powerful rule of inference called resolution. This rule of 

inference must consequently be quite complex and must in a sense embody the 

conventional logical procedures which depend on instantiation and generalization. 
This task is, of course, accomplished by unification. 

3.1. Let  X be a set of object classes. We shall call a substitution a a unifier 
of X iff for all ~, ~ E X we have ~ o ~r = ~ o ~. A set ~ of unifiers of X is called a 

general unifier of X iff for each unifier ~ of X there exists a pair of substitutions 
a, ~ s u c h t h a t  ~ E 12 and ~ = a o ~ .  

Remark. Intuitively, finding a general unifier for a set X of object classes 
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amounts to generating all (in a certain canonical sense) possible ways in which 
the objects can be deformed into each other through substitution. A trivial, but  
inessential, assumption for the discussion below is tha t  all of the object classes 
in X are of the same type (since substitution preserves type).  Also, the reader 
may realize that  the main task of producing a general unifier for a (finite) set 
will reduce to producing a general unifier for two object classes. 

The reader may recall that  producing a general unifier in first-order logic can 
be accomplished by a rather direct process of substituting terms for individual 
variables until the unification is accomplished. However, in higher-order logic we 
should expect that  the procedure must be more complicated because there win 
usually be a greater variety of ways in which object classes can be unified. 

3.2. Suppose we wish to unify two object classes 5~ and 60. We will proceed 
by attempting (through substitution) to make do and b0 more similar--in stages. 
At each stage, one or several different attempts (or possibly none) might be appli- 
cable. (What  we mean by "a t tempts"  will be specified soon, and called elementary 
unification substitutions.) Thus our procedure to unify do and 50 will appear as a 
tree, each node of which will be a triple (4, 6, a) where 4, 6 are object classes (repre- 
senting our progress thus far in attempting to unify d0 and 60) and ~ will be a sub- 
stitution (showing how we obtained 5 and 6 from d0 and 60). Such a triple will be 
called a progress triple. Of course, the initial node of the tree will be the triple 
(do, b0, at,> which we will call the initial triple. (We remark that  ~0 could be thought 
of as e, the empty substitution, but later when we wish to unify more than two 
object classes, it is convenient to be able to allow a nonempty initial substitution.) 
Each node will be connected to each (if any) of the subsequent nodes of the tree 
by an elementary unification substitution. 

3.3. There will be two cases when a progress triple (4, 6, a) will have no subse- 
quent nodes. First, if a = 6, then we will call (5, 6, a) a unified triple. Second, if 
5 ~ b, but no elementary unification substitution applies, we will call <5, b, ¢) a 
dead end. In either case, that  branch of the tree ends with <4, 6, ¢). 

3.4. Elementary unification substitutions. We now explain what elementary 
unification substitutions can be applicable to a progress triple <5, 6, 6). We may 
assume that  5 ~ 6. Our first task is always to find the first character (from the 
left) at which 5 and 6 "essentially" differ. Formally this means tha t  we find the 
first n ( ~_ 1) such that  for all objects a and b belonging to object classes 5 and b, 
respectively, a[i] = bill (1 < i < n - 1) and a[n] ~ bin]. Of course, by attempt- 
ing alphabetical changes of variables, it is easy to find such n and particular ob- 
jects a and b. Each of the rules below will be symmetric for both a and b, but we 
will only state each for a. Granting this, each rule depends on how a[n] occurs in a, 
but we stress that  in a given situation more than one rule might be applicable, or 
even that  a particular rule might be applicable in more than one way. In each case 
the elementary unification substitution will be denoted by ~ and will consist of re- 
placing a single free variable g occurring in a by a term (usually a X-function) of 
the appropriate type. (Informally we remark that  g will be a[n] in the second and 
third rules, but  will not be a[n] in the first rule.) 

(1) Elimination Rule. (Intuitively, in this case, we will replace the free head 
of some functional subobject in which a[n] occurs in such a way as to "eliminate" 
a[n].) Formally, find a functional subobject gx,. • • xp of a where g is a free variable 
and such that  a[n] occurs in xk (1 < k < p). (So automatically g occurs to the 
left of a[n].) Now l e t f  be a new variable which does not occur in a or b and which 
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is of the proper type for the substitution: 

ffi {g ,--- X U r  . " U ~ ' / U .  " " U k - l U k + i "  " "U~.}, 

where r ( u 0  = r(x,) .  (Notice that  ~ will have the intended effect of "eliminating" 
a[n].) 

(2) Projection Rule. (Intuitively, in this case, we have found that  a[n] is 
itself the free variable head of a functional subobjeet, and we replace this entire 
subobject by one of its arguments of the appropriate type.) Formally, a[n] is a 
free variable g in the functional subobject gz~. • .xp of a, and also, for some i (1 _< 
i < p) we find that  r(z,)  -- r (gxl . . .xp) .  Then we put  

= {g ~ X u ~ . . . u , , . u , . } ,  

where r(u,)  = 7(x,). (Notice that  the substitution is of the proper type and has 
the intended effect of "projecting" onto an argument.) 

(3) Imi tat ion Rule. (In this case, we have again found (as in rule (2)) tha t  
a[n] is the free variable head g of a functional subobject Ox~" • • xp in a where p ~ 0, 
so we also allow the case that  g is an "individual" variable. However, now the sub- 
stitution we make will also depend on the particular subobject y of b which begins 
with b[n]. Intuitively, we will replace 0 by a function which will " imitate"  the 
structure of y.) Having found g and y in this situation we specify what we mean by 
an "imitation" y* of y: y* = y in case y has no direct subobjects. 

Otherwise y = a ly la2 . . ,  a ,y~a , ,+ l  (m >_ 1) where the y, are its direct sub- 
objects which are not occurrences of variables bound in b, and a ,  are concatena- 
tions of some constant letters and bounded variables. ( I t  reflects the fact tha t  our 
grammar does not require that  y is a concatenation of its subobjects.) In this case 
y -- alhxa2"'ot, ,h~a,~+l,  where h, -- f ,  v x . . . v kux . . . u l ,  (1 _< i _< m),  v l , - . . ,  
vk (k > 0) are all the binding designators of y, and vl, . .  • , vk, u l ,  • • • , up are 
distinct. Furthermore, r (u , )  = ~-(x~) (1 < j _< p) and each f~ is a new variable 
of the appropriate type which does not occur in a or b. 

Finally we put  

= {a ~ X u x . . . u ~ . y  .}. 

We remark that  the object of imitation is to force the eventual task of unification 
to subobjects--which are less "complex" syntactically. As this rule is the most 
particularly characteristic of our method, and also the most difficult to under- 
stand, examples illustrating its necessity will be given soon. 

The above three rules are most frequently needed in the unification process. 
However, in order to preserve the completeness of the unification procedure we 
shall add two more rules which capture more pathological situations. 

(4) Repetition Rule. In this case, like in rule (2), a[n] is the free variable head g 

of a functional subobject gxl . .  • x~ in a where p > 1. (Intuitively this rule adds an 

argument to this functional subobject which may be needed later.) Formally 

= {g  ( - - - ~ u l  . . .  u p . y u l  . . .  u p u l . } ,  

where 1 _< l < p and f is a new variable of appropriate type. 

(5) Identification Rule. In this case, both a[n] and b[n] are free variable heads of 

respective functional subobjects gxx . . .  x~, and hyx . ' .  y ,  of a and b. This rule is 
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supposed to guarantee detection of unifying substitutions which are built jointly of 
subobjects of xl • • • xp, yl • • • y , .  

= (g ~ - X u l  . - -  up./(u1 . . .  upgl(ul . . .  up) . . .  g , ( u l  . . .  up)). 
h ' ~ - X v l ' "  v,.f(hl(Vl . "  v,) . . .  hp(vl " "  v , ) v l ' "  v~).}. 

(The parentheses in the formula above are not a part  of the expressions and are 

introduced only for visual convenience.) 

This completes our list of elementary unification substitutions, as is formally 

characterized in the general theorems that  follow. Some heuristic modifications 

will be mentioned in Subsection 3.8. 

3.5. Next, for each elementary unification substitution ~ which is applicable to a 

progress triple (d, b, a) we obtain the subsequent progress triple (5~, b~, (r~) de- 

termined by ~ as follows: 

5~ = ¢io~, ~ = ~o~, and a~ = ~o~,  

with the particular modification that  if ~ includes any substitutions of the form 

f ¢-  x where f is a variable which does not occur in the initial triple (a0, b0, no), 

then such f ~-- x may be deleted from a~ as superfluous. (Tha t  is, such f was intro- 

duced somewhere midway in the branch leading from (do, 60, a0) to (5~, 6~, a~) 

and now may be forgotten. Later we will refer to such variables f as "new" vari- 
ables.) 

3.6. Now, given an initial triple (do, bo, o'), form the entire unification tree 
T(5o, 60, a) inductively by applying each applicable elementary unification sub- 
stitution to each progress triple and thus obtaining its subsequent triples. We 

remark tha t  it is by no means obvious whether or not  this tree is finite. Next  de- 

fine: 

= {, J , is the substitution designated in some unified triple of T(d~, 60, a)}. 

(Recalling the definition of Subsection 3.3; one may sec intuitively tha t  we form 8 
by collecting the "successful" substitutions from the ends of the branches of T.) 

3.7. Finally, a natural proposal for a unifier for two object classes 51 and 

would be 

£ { a , ,  ~ }  =do, S(51,  ~ ,  ~). 

And we may extend this definition inductively to more than two object classes 

by: 

£ { 5 1 ,  " ' "  , 5 , ,  5,..{-1} = d e f  {ff o 71 [ (7 ~ £ { a l ,  " ' "  , a)} and 77 C 8(51 o a, a~+l o a, a}}. 

Of course, this says that  we extend ~ to one more object class 5,+1 by at tempting 
to unify 51 and 5,+1 subject to the various substitutions a which have already been 

found successful up through 5, .  Notice also that  in this definition we could just 
as well t ry  to unify 5,+1 o a with ~ o a, • -. , or d, o ¢, since these are all the same 

as 5~ o a. (We remark that  this construction of £ might fail even to be the limit 

of effective processes because some T(d, b, a) upon which its inductive definition 
depends might fail to be finite. This worry will not concern us now. However, 

it  should be apparent tha t  £ could be given as the limit of effective processes by a 
slight complication of the definition.) 
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3.8. Heuristic modifications. Above we have stated the proposed Unification 
Algorithm in a simple, general form. This has been desirable to reflect the intuition 
behind the formulation of the elementary unification substitution rules. However, 
the reader will realize that in particular applications many duplications may be 
produced. We now list a few heuristic modifications which we will incorporate in 
the examples. Each of these modifications has the effect of removing superfluous 
elementary unification substitutions which would be specified by the rules of Sec- 
tion 3.4. 

(a) In the Imitation Rule: If a[n] = g is an "individual" variable (i.e. the 
number of arguments p = 0) then we may set the "imitation" of y, y* = y. 

(b) In the Imitation Rule: If y is a functional object with head h, then we 
may use h instead of flu1 • • • up+k in forming y*. 

The two modifications just given will have the effect of removing some of the 
unnecessary "descendants" of the particular substitution modified. The next 
modification, however, is of a more complicated sort: In this case, the applicability 
of a particular elementary unification substitution ~ to a progress triple (~, b, a) 
will enable us to disregard other substitutions which might, by Section 3.4, have 
been applicable to the same (d, b, a) (i.e. this modification works on a "horizontal" 
level rather than a "vertical" level as with (a) and (b) above). 

(c) Suppose we have found the Imitation Rule applicable where y (as in the 
rule) is an "individual" variable (i.e. type, ~-(y) = to) and furthermore, there is no 
free occurrence of y in gxl . . .  xp. Then we keep this imitation substitution exactly 
as is (i.e. ~ -- {g ~ k u l . . . u p . y . }  and ( ~ ,  b~, ~ )  is formed normally). However, 
we may now forget all other instances of the Projection Rule and the Imitation Rule 
which might normally be applicable starting with either a[n] or bin] (recall the 
rules are symmetric). This is because the one imitation substitution will produce 
the most general unifier possible. 

3.9. 
Example 1. In the following we give examples of each of the elementary uni- 

fications: 

Eliminations: 
(lab,  2x -~ f y, e) (fib, flY, {f2 ~-- Xuv.flv. }), 

2 a 
(f2ab, f y, e) (fta, fla, { f  ~ Xuv.flu. }), 

(fx, fa, e) ---~ (y, y, {f <--. Xu.y.}) .  
Projections: 
(f2xy, a, e) ~ (x, a, {f2 ~-- huv°u.}), 
(f2xy, b, e) ~ (y, b, {f2 ~ ~kUV°V°}). 

Imitations: 
~X, Aa, e) ~ (a, a, {f ~ Xu.a.}),  
~x,  a, e) ~ (Aa, Aa, {x <-- Aa}), 
(x, Ab, ~) ~ (Aflx, Ab, {f ~ Xu.Aflu.}) ,  

2 ( f  xy, (a + b), e ) ~  ((.h~xy + 12 xy), (a + b), {12 *--huv.(fl2UV + £2uv).}). 

Example 2. In Figure 2 we show the elementary unifications applied to a 
single node of a unification tree. The example is chosen to illustrate how many 
elementary unifications may all apply to the same progress triple. 

Example 3. In Figure 3 there is presented a complete unification tree. This 
tree has five terminals. Terminals 1, 2, 4, and 5 represent unified triples and 3 
is a "dead end." 
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(ff$~xy, ghb, ~) 

~qx, ghb, {f~ ~-- Xuv u }) ' ~  ~ "x3'(gf'xy, gfh,bh2b, {h ~ Xu.fZh,uh,u. }) 
! 

f ~gy, ghb, {y" ~ Xuv.v.}) 

(gf~xy, gb, { h ~ hu. u. } ) 

FiG. 2 

(g~, (a + b), e) 

(x, (a q- b), Ig ~-- hu.u.})  ((fix q- f2x), (a + b), Ig ~-- ku. (.flu -I-.fzu).}) 

I / I 
imitation projection imitation 

z ~ (a + b) y~ ~ Xu.u. $ 1 ~  Xu.a. 

1 / 1 
( ( a + b ) , ( a q - b ) ,  ( ( x q - f ~ x ) , ( a q - b ) ,  ( ( a q - $ ~ z ) , ( a - l - b ) ,  
{g ~ Xu.u.,  z ~ (a + b)}) {a ~- Xu. (u + f2u).}) {g ~ Xu. (a + f lu) .})  

imitation projection imitation 
r ~- a .f~ ~- Xu.u .  $2 ~-- Xu.b.  

((a + f.za), (a q- b), ((a -b x),  (a q- b), ((a q- b), (a + b), 
{g ~-- ~u. (u q- f2u). ,  x ~- a}) {g ~-- ~u. (a q- u).}) {g ¢- ku. (a -I- b).}) 

proJection imitation imitation 

((a + a), (a + b), ((a + b), (a + b), ((a + b), (a + b), 
{ g ~ - - ~ u . ( u + u ) . , x ~ - - - a } )  { g ~ - - ~ u . ( u q - b ) . , x * - - a } )  { y ~ - - X u . ( a q - u ) . , x ~ - - b } )  

® ® ® 

Fio.  3 

3.10. Order and complexity of languages. In this subsection we introduce 
some notions which are pertinent to the main theorem of this section: to establish 
the applicability of the unification procedure for second-order languages. 

Let  f x l . .  • x ,  (m >_ 1) be a functional object. We shall say that  

f o r d ( f x t . . . x , )  =def max {ord r(X,)l + 1. 
l_<,_<,n 

(Recall the definition of ord in Subsection 1.2.4.) We now define that  a set X of 

object classez has order k iff 

k = max{ford(fxl. • • x , )  ; where f x l . . .  Xm C X and f is variable.} 
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Notice that  this notion of order depends only on variables, and thus seems to 

suggest the "complexity" of possible substitutions into X. Indeed, it wiU be very  

useful in this subsection to have a suitable measure of the complexity of substitu- 

tions. As a first step we will introduce the "complexity" of an object which ex- 

presses the extent to which its subobiects are "nested." 

Define a mapping comp of L into the set of integers as follows: 

(0  if x has no direct subobjects 

comp(x) =de~ ~maxX{Comp(x,)} + 1 where X is the set of all direct subobjects 
( of x. 

Now we shall define a mapping Comp of the set of substitutions into the set N* 

of ordered tuples of integers (this set is described in the proof of Theorem 1; see 
Appendix I) : 

Comp(a)  =dof ( n l , . . . , n k ) ,  

where n, (1 < i < k) is the total number of subobjects of complexity i which 

occur in any of x , ,  . - .  , x,~ where a = {u, ~ x l ,  . . -  , u,, +- x~}. 

This measure of complexity for substitutions is somewhat difficult to grasp 

because it is not apparently linear. This feature is indispensible for the "na tura l i ty"  

of the notion in our main application. The set N* is, of course, given the usual 

well-order of transfinite ordinal type w ~ which is denoted as < in Appendix I. 

I t  is essential here only to note tha t  < is a well-order and that  this order preserves 

the "natural i ty"  of the complexity of substitutions. In forming Comp(a) ,  notice 

tha t  once an object x is counted in an n , ,  then any of its subobjects can only be 

counted in some n~ for j < i. Thus for example, 

Coinp({g ~ Nu.(u + Au) . ,  x ~ Afa}) = (2, 2, 1) 

because there are two subobjects (Au and fa) with complexity 1; and two sub- 

objects ( (u  + Au) and Afa) with complexity 2; and one subobject 

(Nu. (u + A u ) . )  

with complexity 3. 

We will present one more notion informally to help motivate the proof of the 

main theorem of Subsection 3.11. We want to compare how different substitutions 
affect object classes ~ and 330 which we are trying to unify. Let  V be a fixed set of 

variables (in application, V will generally be the free variables appearing in do, 

330). We will say that  a substitution T is no more specific than a for V (or "more 

general") and write r _~ v a in case there exists a substitution ~ such that  

i f - -  newv = v o ~ - -  newv,  

where u+--x Cnewv iff u ~ V. Intuitively, T < v a  means that T can be de- 

formed into a by composition of substitutions, provided that we restrict our atten- 

tion only to the parts of the substitutions which replace variables in V. Clearly, 

_< v is a reflexive partial order with ~ < v ~. With this notation, if ~ is a unifier 

for do and 330, then any general unifier for them must have a r with v < v ~. 

The relationship between the "specific" order ( <  v) and the complexity ( < )  

of substitutions of the form a -  newv points out a clear distinction between 

first-order languages and those of higher order. For first-order languages T < v 
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implies Comp( r  - newv) < Comp(a  - new~). This is because composition of 
substitutions involving only first-order variables cannot decrease complexity. 

However, this is not the case for languages with higher order variables because we 
can have situations such as the following: 

T ---- {X ,~-f fx} ,  

. = {$ ~ -  X u . u . } ,  

but 

Comp(r )  = (1, 1), 

Comp(~) = (1), 

~'o~ = { x , ~ - . x , f ~ - - k u . u . } ,  C o m p ( r o  ~) ffi (1).  

And if we have V = {x}, then we even have r _<v r o ,7 -- newv = ~. Neverthe- 

less, the proof of the main theorem given in Subsection 3.11 will involve relating 

_< v and < for applications connected with the unification procedure. 

3.11. Completeness of unification for second-order languages. 

THEOREM 2. I f  X = {dl, " '" , din} (m  >_ 2) where a l ,  . . .  , a~ are object classes 

of order not larger than two then ~{al , . .  • , am} is a general unifier of X .  

PROOF. The proof will be presented in three major parts. We will now summarize 

the idea of the proof. Notice from the definition of a general unifier tha t  this notion 

is nontrivial only for sets of object class which have some unifier. So at  first, we will 

concentrate our at tention on object classes do and 60 which have some unifier a. 

The do, b0 and a are arbitrary but  fixed. Motivated by the example of a we will put  
the unification procedure to work on do and bo to produce inductively a particular 

branch of the unification tree T(do, 60, e). The kth level of this branch will be de- 

termined by  a substitution ~k (yielding (do o ak, boo a~, ak)). We fix the set V (as in 
Subsection 3.10) as the variables free in do, b0 and those being replaced by ~. Now, 

each of the ak which we produce inductively has the property of being no more 

specific than o" for V (o'k _<v o'). In particular, we will exhibit a~ and ~ such that  
= ~k o ~k - newv.  We can think of ~k as being a reminder for ~ because it  carries 

the essential remaining information about the form of a which has not already been 

reduced (thus, 710 = a because we must have a0 = e). Now clearly, if some ~ unifies 

{do, bo}, then a is taken care of in producing a general unifier for {do, 60} because 

a~ _< v ~. The second part  of the proof involves showing that  indeed, some ak does 

unify do and 60. The idea is that  if ak-1 did not already unify do and b0 then the new 

reminder ~k produced must have Comp(yk) strictly < Comp(yk_l). And since -< is a 
well-order, we conclude that  the production of distinct ak must end. The third par t  

of the proof extends the result to sets of several object classes. 
Now we give the first part  of the proof. We have do, b0 and ~ as above and we will 

produce the inductive sequence a~, ~k such that  

(do o o'~, bo o ak ,  ak) E T(ao, bo, ~) (1) 
and 

= ak ° yk -- new(~?k), (2) 

where u ~-- x E new(7/~) iff u is a "new" variable as defined in the ratification pro- 

cedure in Subsection 3.5. Clearly new(y~) ~ newv for V as specified in the last 

paragraph. 
To start  the induction, of course ~o = e and 70 = a. Let  us assume (1) and (2) 

are valid for k ffi i ( i  > 0). Let  us also denote a = do o a , ,  b ffi b0 o a , .  First we 
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shall prove that  if do o ¢~ ~ b0 o ~, then there exist substitutions ~ and ~ such tha t  

• ,+l = ~ o ~ -- new(G) (3) 

~, = ~ o ~ - -  new(T). (4) 

Let  n be the integer as defined in the Unification Algorithm and let c, d be sub- 

objects of a, b respectively, such tha t  their leftmost characters are a[n] and b[n]. 

Since a[n] ~ b[n] the only way to unify a and b is to: 

( a )  eliminate c, d from a, b, or 

(/~) unify c and d. 

In  case ( a )  there must exist integers m, l (1 g m _< n) such that  aim] is a free 

occurrence of variable and the head of some functional subobject x of z, c is a sub- 

object of t h e / t h  (1 < 1 < p) argument of x, and aim] ~ k u l . . . u p . v .  C ~, ( p  >_ 1) 
such that  ut does not occur in v. This last condition is necessary to eliminate c from 

a o ~ ; however for objects of order higher than two it could be achieved otherwise 

(see [7, pp. 11-14]). These properties imply that  there exists a "new" variable fl  

such that  {a[m] ~ h u l . . . u p . v .  } = {a[m] ~-- h u l . . ,  u p . f l u l . .  "Ul--lUl+l"" "Up" } o {j~ 

XUl"''m--lU~+I"" "Up'V.}. In  this case if we define 

= {a[m] ~-- k u l . . . u ~ . f l u l . . . m - l m + l . . . u v .  }, and 
= {.fl ~ k u l . . . u ~ _ l u ~ + l . . . u ~ . v . }  U (~, - {a[m] ~- hu l . . . up .v .} ) ,  

then it is easy to verify tha t  eq. (4) is satisfied. 

In the case (B) let c o ~i -- d o y~. Obviously at least one of a[n], b[n] must be a 

variable. Let  us assume tha t  it is a[n]: ( I f  b[n] is also variable the following reason- 

ing should be repeated with appropriate modifications.) In  this case c is a functional 
object (possibly a variable). Assuming that  a, b are normal, in order to unify c 

with d there must exist v such that  a[n] ~ Xu~. • . u~ .v .  E ~, (p >_ 0). Now one of 

the following subcases must occur: 
(~1) d is unifiable with some / th  argument of c, or 

(~2) v and d must be identical at  least on their highest syntactical level, so d 
can be obtained from v by replacing all the direct subobjects v~, . - .  , vt of v by  

corresponding subobjects d l ,  . . .  , dt of d (1 _> 0). 
(/~3) bin] is also variable, bin] ¢ -  Xv~ . . .  v~.w.  ~ ~, and v, w consists of a com- 

bination of subobjects of c and d. 

In subcase (~1) let ~ = {a[n] ~-- kul-- . u~ ,u t . }  and ~ = ~ - ~. 
In subcase (/~2) the substitution {a[n] ~-- Xu~..-up-v-} can be decomposed as 

follows: {a[n] ~ Xu~. . .u~ .v .}  = {a[n] ~-- Xu~. . . u ~ . w . }  o {f~ ~ ku l .  . .u~.g~. , . . .  , 

f~ ~-- ku~ . . . u~ .g~ . } ,  where w is obtained from V by replacing v~, . . . ,  v~ 

by  f~u l . . . u~+~,  . . .  , f~u~. . .u~+~,  where the fi (1 _~ i < l) are "new" variables 
satisfying the requirements of the Unification Algorithm, and the g, (1 < i < l) 

are appropriate objects. Let  

= {a[n] ~ k u ~ . . . u ~ . w . }  and 

= (7, -- {a[n] ,,-- ]ku~. . .u~, .v .})  U {f~ ~ ~ u ~ . . . u ~ . g l . }  U {f~ , , -  Xu~ . . . up .g~ . } .  

I t  is easy to notice tha t  in both subcases eq. (4) is satisfied. 
I t  is important  to notice tha t  ~, as defined above, corresponds precisely to the 

substitution ~ specified in the Unification Algorithm (the cases (cO, (~1), (B2), 

(~3) correspond respectively to the elimination, projection, imitation, and com- 
bination of repetition with identification rules of the Unification Algorithm). 
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Hence  f rom t h e  a s sumpt ion  t Z a t  (1) is va l id  for  k = i and  f rom (3) i t  follows t h a t  

(1) is also t rue  for k = i "4- 1. 

I t  r emains  to  p rove  the  v a l i d i t y  of (2 ) .  I n  o rder  to  do t h a t  le t  us  examine  t h e  

fol lowing chain  of equal i t ies :  

a,+l o ~ - -  new0/ )  = 

I ( a ,  o ~ --  new(G))  o ~/ - -  new(r/)  = 

I I  ( a ,  o ~ o 7/ - -  new(~ o 7/)) - -  n e w ( y )  = 

I I I  ( a ,  o (~/, O n e w ( y ) )  - -  new(~ o ~/)) - -  n e w ( y )  = 

I V  ( a l  o ~/~ - -  new(~  o ~/)) - new(y )  = 

V ( a ,  o ~ / , -  n e w ( y , ) )  - new(y )  = 

VI  a ,  o ~/, - new(r/ ,)  = a. 

E a c h  of t he  above  equal i t ies  is a consequence of the  one i m m e d i a t e l y  above  us ing 

the  previous  resul ts  as i nd ica t ed :  I follows f rom (3) ,  I I  follows f rom the  def ini t ion 

of composi t ion  of subs t i tu t ions  and  p roper t i e s  of funct ion  new, I I I  uses (4 ) ,  I V  

follows for the  same reasons as I I ,  V depends  on (4) ,  and  f inal ly V I  uses (3 ) ,  (4 ) ,  

and  the  induc t ive  a s sumpt ion  k = i t oge the r  wi th  (2) .  These  equal i t ies  i m p l y  t h a t  

fo rmula  (2)  holds for k = i A- 1 and  consequen t ly  ~/ = 7/,+1, which  proves  e q u a l i t y  

(2)  for all k (k > 0) .  This  comple tes  t he  first  p a r t  of t he  proof.  

T h e  second p a r t  of th is  proof  ut i l izes  t he  resul ts  (1)  and  (2)  to  p rove  t h a t  t h e r e  

exists n (n  >_ 0) such t h a t  (r. is a unifier  of a0,  b0 • 

Now we shall  e s t ima te  t he  va lues  of the  complex i ty  of t he  " r e m i n d e r "  subs t i t u -  

t ion  ~/s (J >_ 0) ,  p rov ided  t h a t  ~ o ¢s ~ b0 o (rs • 

I n  case ( o 0 :  if Comp(~/s) -- ( n l ,  . . .  , nk ,  - - .  ,nm)  where  

/c = c o m p ( X u l . . . u p . w . )  

t hen  Comp(ys+ l )  = (~1, " ' "  , nk - 1, . . .  , urn). Th is  follows f rom the  fac t  t h a t  

7/,+~ = ( ~  - {a[m] ~ -  X u l . - . u v . v . } )  U {fl ~ Xu~...ul_lu~+l...up.v.} and  t h a t  

comp (Xul. • • uv" v o) = comp(Xul ,  • • u~_lUt+l.., up.  v. ) "4- 1. 

I n  subcase  (/31): if Comp(Tb) = (n~, . . . ,  n~) then  since ~/,+1 = ~/i - 

Comp(~b+l)  = (nl  - -  /1, " "  , n, ,  - -  i,~) where  ( i l ,  - . .  , i,,) = C o m p ( ~ )  ~ 0. 

I n  subcase  (/32) : if Comp(~b)  = ( n l ,  . . .  , nk ,  - . .  , ~t~) where  

k = c o m p ( h u l .  • .up.v.) 

t hen  C o m p ( T b + l  ) = ( m l  , • • • , m k - - I  , n k  - -  1,  n k + l  , " • • , r i m ) .  T h i s  follows f rom the  

fact  t h a t  ~/~+1 = (~b - - '  {a[n] ~-- X u l . . . u v . v . } )  U [J~=~{fl ~ Xul...uv,g,.} where  

g, ( i  = 1, . . .  , l) a re  objec ts  whose complexi t ies  a re  c lear ly  equal  to  or smal le r  

t h a n  the  cor responding  complexi t ies  of the  d i rec t  subob jec t s  v~ ( i  ffi 1, • • • , l) of v. 

Consequen t ly  c o m p ( u l . . . u p . v . )  _> c o m p ( u ~ . . . u p . g 1 . )  -t- 1 for all  i (1 < i < 1). 

Subcase  (/33) can be  t r e a t e d  in a s imi lar  w a y  as (/32). 

T h e  resul ts  above  i m p l y  t h a t  if do o a~ ~ boo as t hen  Comp(~/¢) >- Comp(~/¢+l), 

where  " ~ "  is the  wel l -order  specified in L e m m a  1 of A p p e n d i x  I .  T h u s  such a 

sequence ~/1, "- -  , ~b, " ' "  m u s t  be finite. So the re  m u s t  exist  k (k _> 0) such t h a t  

a0 o ak = /~0 o (r~, which  comple tes  t he  second p a r t  of t he  proof.  

T h e  resul t  above  toge the r  w i th  (1)  impl ies  t h a t  for an  a r b i t r a r y  pa i r  of ob jec t s  

a l ,  a~ wi th  a unifier a the re  exists k (k  _> 0) and  subs t i tu t ions  a~ , ~/~ such t h a t  

o- = ~ o ~/~ and  ¢r~ ~ 8(~1, dz,  ~). This  comple tes  t he  proof  of our  t he o re m for m =- 2. 

T h e  r ema inde r  of t h e  proof  proceeds  b y  induc t ion  on  m. 

Le t  us assume t h a t  the  t h e o r e m  is va l id  for m = i ( i  >_ 2) .  L e t  a be  a unifier  of 
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{at, " '"  , a,+d. Obviously a is also a unifier of {at, . . .  , ad and from our inductive 
assumption it follows that  there exists a pair of substitutions ~, ~ such tha t  

E fl{at, " " ,  at} and • = ~ o ~. Clearly ~ is a unifier of at ° ~, a~+~ o ~; hence from the 
validity of the theorem for m = 2 follows the existence of substitutions ~', ~' such 
that  ~' E S(at o ~, a,+t o ~, ~) and ~ = ~' o ~'. Thus the definition of f~ gives 

o ~' E f~{at, . . .  , a,+t}. F r o m ,  = ~ o ~1 and ~ -- ~' o ~' follows a = (~ ( )  o ~'. 
This completes the proof of Theorem 2. 

I t  is important to notice that  Theorem 2 is not valid for third-order objects. For 
example, let a, u, B , #  be characters, r (a)  = t, r (u)  = r ( B )  = (t ,  t ) ,  and 1-(~b) = 
((t, t), t) where u, 4~ are variables. Then a general unifier of the set {4,B, Ba}  must 
contain the following substitutions: q~ ~-- ku. B a .  and $ ~-- X u . u a . .  However, our 
unification procedure will provide only the first one. 

3.12. In Figures 4-6 we present some examples of applications of the Unifica- 

tion Algorithm (for simplicity, the bars over object classes are omitted). The ratified 

triples are circled. 

E x a m p l e  1. See Figure 4. 

E x a m p l e  2. See Figure 5. 

E x a m p l e  3. See Figure 6. 

~$x, Aaa ,  ~) 

(ASxAf~x, a , If *-- Xu.Aftu.})  

• Aa, Aaa ,  a}~) (AAx, AAa, {f ~-- Xu.Au.~) (AAf2AAf, x, AAa,  

((aaa, aaa, (/(AAa, AAa, ( 
k.. {f ~ Xu .Au. ,  x ~ a t~.., {f ~-" Xu 'AAa'~/  {f *--- Xu .AAu.} )  

Fie. 4 

1 (a, Aa, { f ~  Xu.u.}) 

~A_Aa, AAa, {f ~-- Xu.Au.})) 

(ffa, Afa, ~) 

1 
(AflAfaa, AAfta, 

{f ,-- Xu.Af~u.]) 

--11 
(AAf,  aa.fta, AaASta, 

{f . -  Xu .aA f ,  u.}) 

<add~.Aa, A . . . Aa, (A . . . Af,,A . . " A f ,  a, A~ . A f ,  a, 
2n--2 ~ ' ~  ~ ~ n-~l 

{f '-  x~,'~=.~,=~4u'l) I f , -  Xu.A..-Af,~,.I) 

Fro. 5 
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0 (/Aa, A/a, 0 

1 ~Aa, An, {f ~-- Xu.u.}~ (AllAn, AAfla, {f ~ ku.Aflu.}) 

f *-- X u . A ~  {f  ~-- Xu . . . .  f . u . } )  ,~-1~ ~ ~  a,..a 
: : 

Fro. 6 

3.13. In Example 1 the unification tree and, obviously, the most general unifier 
are finite. In Example 2 the unification tree is infinite but the most general unifier 
is finite (counts as a single substitution). In Example 3 both the unification tree 
and the most general unifier are infinite. 

Generally speaking, the unification cases where the most general unifier is finite 
will be called regular (Examples 1 and 2). If in addition the unification tree is finite 
the case will be called strongly regular (Example 1). A unification in which there is 
no finite general unifier (Example 3) bill be called essentially singular. 

There is a very simple way to discover if a set Q is strongly regular, which is given 
in the following propositions. 

PROPOSITION 1. The unification tree for a pair of object classes of order not larger 

than 2 is strongly regular if  there is never a case of the imitation rule being applicable 

to a pair of subob3ects such that the variable g being replaced occurs free in the "imitated" 

object w. 

Obviously if the unification tree for (a, b, e) is regular then the general unifier of 
set {a, b} is finite. This leads to the following generalization. 

PROPOS~TmN 2. I f  for all i , j  (1 < i, j _< m) the unification trees for {(a, , a~ , 0} 
are regular and {all, • • • , am} is a set of object classes of order not larger than 2, then 

~{a~ , . . . ,  a~} is j lni te .  

The proofs of these propositions arc left to the reader. 

4. Systems 

In this section we discuss first the notion of a system, which serves as our basis for 

proving theorems by refutation. Next we develop a notion of unsatisfiability which 

corresponds to the usual intuitive notion, but mainly which will prove to be ex- 

tremely useful when we consider generalized resolution itt Section 5. 

4.1. A finite set of literal classes is called a clause. Clauses will be denoted by 

capital Latin letters. A pair of clauses X = {l~, . . - ,  lm}, Y = {pl, " " ,  p,,} 

(m > 1) is called complementary iff p~ = --1 l, for I < i < m. Such a pair of clauses 

will be denoted X, .~. An empty clause will be denoted D.  
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A countable set of clauses is a system. Systems will be denoted by boldface capital 
Latin letters. 

The above is obviously adopted from Robinson's first-order resolution terminol- 
ogy. According to it a clause is interpreted as the disjunction of literals, while a 
system is interpreted as the conjunction of clauses. It should be noted that the 
notion of "atom" is eliminated from this discussion, since we may use literal classes 
of great complexity. Although semantic intent might seem "submerged" by such a 
liberal definition avoiding atoms, it will prove very useful in higher order logic: pre- 
skolemization, much less "atomization," is not in general possible here. 

We now give propositional definitions of model and inconsistency and note their 
property of "compactness." 

A subset M of (iX is called a model for a system X iff for each X, X E X implies 
X N M ~ ~2f and M does not contain a pair of complementary literals. 

A system X is inconsistent iff it has no model. Let X be a system. The set GR(X) 
called the ground 7evolution of X is defined below: 

GR(X) = d~f {Z ] Z E X or exist X, Y E X and x such that ~ E X, 

- ~  E Y, andZ  = (X - {El) (J (Y - {-~})}. 

Furthermore let GR ° (X) =dof X, and GR ~+1 (X) =a~ GR(GR" (X)) for n >_ 0. 
The following result is a generalization of Robinson's theorem from [14], for count- 

able systems. 
'~OREM 3. A system X is inconsistent iff  there exists n (n  >_ O) such that 

[] E GR"(X).  
The theorem of course is familiar. I t  makes use of the (propositional) Compact- 

ness Theorem of logic [17] and is easily adapted to our needs by Robinson [14]. 
4.2. Clearly a system inconsistent by the propositional definition above is 

"intuitively inconsistent." But the reverse is not the case: By these propositional 
definitions the system composed of the clauses { ~ }  and { ~ }  is formally not 
inconsistent. Yet we want to say that such a system is "unsatisfiable" in a natural 
sense. This will be somewhat complicated, but the obvious first step is to provide 
for the partial "elimination of quantifiers." 

First we shall introduce some auxiliary notions. A substitution {vl ~-- ul ,  - . .  , 
v~ ~-- u~} (n >_ 1) is called a variable change iff {ul ~-- v l ,  . . .  , u,, ~ v,} is also a 
substitution. A pair of literal classes ~, ~ are called variants iff there exist variable 
changes ~, ~ such that p = ~ o a, and ~ = 15 o ~. 

Now we shall introduce our version of combined rules of generalization and 
existentialization. For practical convenience the rule of double negation is also 
included. 

Let p, q be literals. We shall say that ~ is a simple Q-reduction of p iff 

 vu,. 
(1) i f p ' =  1or then ~ is a variant of or 

which is obtained by replacement of all free occurrences of u in r by some arbitrary 
variable (possibly u) which is not free in r; 

I~ur  ~ o { u u , . - - f v ,  . . .  v,} 

(2) if p=  ('~llCrvu r then ~= (-~*°re° 
ffwl . . 
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where f or g is an existential parameter of the appropriate type arbitrary but 
uniquely assigned respectively to the set of variants of ~ o r E ;  here Vl, -. • , 
v, ,  wl, . . .  ,wm (n, m ~ 0) are all the distinct variables occurring free respec- 
tively in ~lup and ~Vup;  

(3) i f p  = ~ - ~ r  then q = v; 
(4) if otherwise then q = p. 
The Q-rule could be given a shorter formulation where only upper subeases of 

(1), (2) were treated, and the other subcases together with (3) replaced by ap- 
propriate axioms. However, it would obviously make the proof longer, and does not 
make implementation of the Q-rule really easier. 

We shall say that  ~ is Q-reduction of p iff for some ~, ~ is a simple Q-reduction of 
and f is a Q-reduction of P- 
We shall also say that  a clause X = {~1, " '" , ~kl is a Q-reduction of a clause 

Y = {~1, ." • , ~k} iff ~ is a Q-reduction of ~ .  
4.3. Now we shall introduce a version of the instantiation rule which combines 

substitution with the elimination of some quantifiers. 
A clause X is an instance of a clause Y under the substitution a (or simply instance) 

iff for some subclause Z c Y, X -- ( (Y -- Z) [J (Z o a) Q) o ~, where WQ denotes 
a Q-reduction of W. 

The necessity of the double application of substitution in forming an instance is 
illustrated in the example at the end of this subsection. 

Let X be a system. The extensionn of X is given by 

E(X) --def {Z ] Z is an instance of some X E X}. 

This is of course a system, and indeed a very rich system which consists exactly 
of all the instances of clauses of X. Indeed, it provides the bridge from our proposi- 
tional definition of inconsistency of Subsection 4.1 with the usual intuitive notion of 
unsatisfiability: A system is called unsatisfiable iff E(X)  is inconsistent. We give an 
example of how E(X)  provides an intuitive decomposition of the possibly complex 
literal classes appearing in X. (In this example and elsewhere we will omit the bars 
which should indicate object classes.) 

Example. Let X be the system: 
(1) {(Vx Qx ~ Vx3y  P~xy)}, 
(2) {Qu}, 
(3) {-~p2av}, 
(4) {-~(p ~ q), -~p, q}. 

Now X itself is not inconsistent, but E(X)  has the following clauses as members 
(among many, many others) : 

(5) {Qa}, 
(6) { ~P2aFa}, 
(7) { ~ ( V x  Qx ~ Vx~ly p2xy), Qa, P2aFa}. 

These arise from the substitutions {u ~-- a}, {v ~-- Fal, {p ~ VxQx, q ~- Vx~y  P2xy, 
x ~ a} and Q-reductions. Notice that  clause (4) is essential to supply semantic 
intent to the symbol D.  

4.4. We have given the notion of unsatisfiability in the above form as it  will be 
more compatible with our discussion of generalized resolution in Section 5. However, 
our notion is exactly equivalent to the usual notion based on Henkin's theory of 
general models for type theory [8]. 

A system X is called original iff no existential parameter occurs in any literal of 
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any clause of X. X is complete iff whenever a propositional functor occurs in X 
then X contains its semantic description (all the three clauses from the list of 
axioms (1) to (9) in the beginning of Section 6 in which this functor occurs). 

THEOREM 4. I f  X is an original and complete system with extension E(X) such 

that E( X)  has a model (see definition, Subsection 4.1), then X has a general Henkin 

model. 
The proof of this theorem was provided by D. C. Jensen [9]. The idea of the 

proof is as follows: A Henkin model H consists of a domain of elements for each 
type; the base universe is the domain of objects of type CLASS. The domain for 
objects of type LITERAL is {T, F}. The domain for each compound type (tl ,  t2) 
is a class of functions from the domain for tl to the domain for t2 • (This class is 
usually not all functions, but is closed under certain operations.) Then H is a model 
for a system X if each clause in X is valid under each assignment of variables to 
elements of the appropriate domains. Now a model 3i for E ( X )  m the sense of 
Subsection 4.1 amounts only to an assignment of the truth value T to certain 
literals. However, we can construct a Henkin model H for X using this M. The 
proof is involved but proceeds along the following lines: First it is noted that E(X) 
is so rich that M already includes a complete atomic description for a suitable base 
universe for H. This is the case because E(X) forces a "decomposition" of complex 
formulas as illustrated in the example above. Next proper domains for compound 
type symbols are produced. Finally, it is shown that each clause in X is valid in the 
Henkin sense in the H which was produced. Our notion of unsatisfiability may be 
compared with others in the literature (see [1, 8, 15]). 

The restriction that the system must be original is introduced to safeguard 
against the possibility of inserting existential parameters which already occur in the 
system. It  expresses the conditions under which the rule-C (or existential instantia- 
tion) can be legally applied in predicate calculus. 

5. Resolution 

In this section we shall synthesize the earlier results and formulate the method o 
detecting the unsatisfiability of a system. This method can be interpreted as a 
generalized resolution principle. The resolution will be the only inference rule for 
our systems which combines the properties of cut rule, simple substitution, X- 
normalization, and quantifier elimination. In a way it satisfies the conditions stated 
by Andrews in [1, p. 38]. 

Let X, Y be a pair of clauses. A clause Z is called a resolvent of X, Y iff Z = 
((X - M) U ( Y' - N) ) o a, where Y' is an arbitrary but fixed variant Y such that 
no variable occurs free in X and Y' simultaneously, M _C X, 2~ ~ Y', and a C ~(P) 
where P is such Q-reduction of M U N that no variable introduced in M O N occurs 
free in X of Y'. 

Let X be a system. The set R ( X ) ,  called the resolution of X, is defined as follows: 

R ( X )  =def X U {Z[ Z is a resolvent of some X, Y C X}. 

Furthermore we define R°(X) = X and for all n (n > 0), R'+I(X)  = 
R ( R ~ ( X ) ) .  Now we may state the final result of this paper. We shall say that a 
system X is of order k iff the set of literals of which it consists is of order k. 

THEOREM 5. Let X be an original system of order not larger than 2. X is unsatis- 

fiable iff there exists n such that [] C R ' ( X ) .  
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PROOF. First we shall prove the "if" part. To simplify this part of the proof we 
introduce the notion of liberalized ground resolution as follows: 

*GR(X) =def {Z I Z E X or there exist X, Y E X and a literal x 
such that Z = ( X -  {4}) (J ( r -  {~})} .  

We note that *GR(X) is larger than GR(X) but in fact they are essentially the 
same from the standpoint of refutation (i.e. [] E *GR(X) iff [] E GR(X)) .  
Define *GR~(X) analogous to GR' (X) .  

Now we shall establish the following implication: for all n >_ 0, 
(1) X E E(R'~(X)) implies that there exists Y, Y E *GR'(E(X))  and 

Y C X .  
For n = 0 the above is obviously true. 
Let us assume inductively that the assertion is valid for n = i. If X E E(R'+~(X) ) 

then according to the definition of the operator E there is a clause Z E R~+I(x) and 
a substitution a such that X is an instance of Z under a. 

But this means that either 

(a) Z E R'(X),or 
(b) Z = ((U - M) (J (V' - N ) ) o ~ w h e r e  U, V E R'(X) a n d M ,  N, 

satisfy the conditions stated in the definition of the resolvent. 
In case (a) the proof of the assertion is obvious. 
In case (b), from the definition of the resolvent it follows that there are Q- 

reductions M~, N¢ of M, N such that MQ o ~ = N~ o ~. 
It is an easy exercise to check that there will also exist Q-reductions M1 and Ni 

o f M o ( ~ o a )  a n d N o ( ~ o a )  such t h a t M l o ( ~ o a )  = N l o ( ~ o a )  = {2}. (That 
is, the first application of ~ o a is harmless as far as unification is concerned.) 

Now (U - M) o ~ and (V' - IV) o ~ are subsets of Z, so let Ul and Vi be the 
corresponding subsets of X (which is an instance of Z). Using the singleton {2} 
obtained above define U2 = U1 U IZ} and V2 = V1 lJ I -~2}. I t  is easy to check that 
U2 and V2 are instances of U and V' under ~ o a. Thus U2, V2 E E(R'(X)) .  

From the inductive assumption it follows that there exist U3, V3 such that 
Ua ~ U2, V8 _c V2 and U3, V3 E *GR~(E(X)). Setting 

if follows that 

and, of course, 

Y = (Us - {z}) (9 (V3 - {~2}), 

Y _c (g2 - {2}) U (V2 - {-~2}) = U, U V1 = X, 

Y E *GR '+~ (E(X)). 

This proves implication (1). 
Now let [] E R'~(X). Then obviously [] E E(Rn(X)) and from (1) it follows 

that there exists Y, Y E *GR'(E(X))  and Y C []. That clearly proves that 
Y = [] and in view of Theorem 3 E(X) is inconsistent. It  proves that X is un- 
satisfiable and completes the "if" part of the proof. 

In order to prove the "only if" part we shall show that 
(2) GR(E(X))  C E(R(X)).  
Now let us assume that Y E GR(E(X)) .  This means that 
(a) Y E E(X),  or 
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(b) there exists a literal z and clauses Ui ,  V1 such tha t  U1, V1 E E ( X ) ,  ~ E 
Ui ,  .-~ E V1, and Y ffi (Ui - {~}) (J (V1 - {-~}) .  

In  case (a) the proof is obvious. 

In case (b) from the definition of operator E it follows that  there exist clauses 

U, V E X, and substitutions $, ~ such that  IN(U1 ,  U, $) and IN(V1, V, ~). 
( IN(Y,  Z, q) should be read "Y is an instance of Z under ~.") Without  losing 

generality we may also assume that  U, V, ~, y are chosen so tha t  V = V j  and if 

= {ul ~-- xl ,  - - .  , u,~ ~-- xm}, y = {vl ~-- y l ,  " "  , v~ ~-- yn} then u l ,  . . .  , urn, 

vl,  • • • , v~ are all distinct, no v, (1 < i < n) occurs in U and no u, (1 < i < m) 
occurs in V. This assumption is justified by the fact tha t  there are either infinitely 

many, or none, distinct variables of any type. 

Let  a = {ul ~-- x l ,  . - .  ,um ~-- x~ ,  vl ~-- y l ,  " '" , vn ~-- y.}. Then obviously 
IN(  U1, U, a) and IN(V1,  V, a) .  I t  is easy to prove tha t  there exist maximal 

subsets M, N of U, V such tha t  {2} is an instance of both M and N under ~. Then 

from Theorem 2 it  follows that  there exist substitutions ~ and 8 such tha t  a = 

o O and ~ E ~ ( P ) .  In view of the results above we have IN(  Y, ( U - M) U (V - 

~ ) ,  ~ o ~). So clearly there exists a Z such that  IN(Y,  Z, ~) and IN(Z ,  (U  - 

M) U ( V  - ~ ) ,  ~). Since V = V' it becomes obvious tha t  Z is a resolvent of 

U, V E X so Z E R(X)  and consequently Y E E(R(X)) .  This proves (2) and by 

induction on n we can easily establish tha t  

(3) G R ~ ( E ( X ) )  C E ( R ~ ( X )  for n p_ 0. 

From the definition of unsatisfiability it follows that  E ( X )  is inconsistent, and 

by Theorem 3 there exists n such that  [] E G R ~ ( E ( X ) ) .  In view of (3),  if [] E 

E ( R ' ( X ) )  tha t  means that  there exists X E R~(X) such tha t  I N ( [ ] ,  X, ~). 

However, this implies tha t  X -- [] ,  and completes the entire proof. 
5.2. Theorem 5 is a generalization of the original Robinson result for first- 

order logic. However there is an essential difference: Sets R ' ( X )  may become 
infinite here. Thi~ fact forces us to define some strategy of selecting finite subsets of 

R ' ( X )  without losing the completeness. I t  can be easily achieved in many ways; 

one of these methods is presented below. 

Let  d, b be object classes and a a substitution. We shall define a subset of S(a, b, ~) 
as follows: 

S (k) (a, b, a) = d~f { ~ ] ~ is a substitution designed in some unified triple of 

T (5, b, a) before the level k + 1} 

for k ~ 0. 
Now let ~(k){51, ~2} --d~f S(k)(a, b, a) and 

~(k){a~, . . .  , a , ,  a~+l} =de~ U {s(~)(a, o ~, a,+l o ~, a> I ~ E ~ { a ~ ,  . . . ,  a,}} 

for all i ~ 2. 
Obviously limb_= S (~) (a, b, a) = S(a, b, a) and lim~=,o ~(~){51, . . . ,  d,} = 

~{a~, . . . ,  a,} for ( i  ~ 2). 
In an analogous way if X is a system let R(~) (X)  be a system defined as follows: 

Z E R(~)(X) iff there exists a quadruple of clauses X, Y, M, N and substitution a 

such t h a t X ,  Y E  X, M _ ~ X , ~ C  Y ' , a n d Z =  ( X - - M )  @ a U  ( Y ' -  ~ )  ® a 

where a E 12(~) (P)  where P is as in the definition of resolution. We also define: 

]on+l 
R~ °) ( X )  -- X and ,~(~) (X)  = R(~) (R~) (X ) ) .  
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From this definition it immediately follows that for each X and all n, k (n, k > 0), 

R~) (X) is finite and lim~.~ R~) (X) = R" (X). 
Finally, Theorem 5 can be generalized as follows: 
THEOREM 6. Let X be an original system of the order not larger than 2. X is up- 

satisfiable iff there exist k, n such that [] E R~k) (X), and R(~) (X) is finite. 

The proof of this theorem is obvious. 
However, it should be mentioned that the above method of finitizing the resolu- 

tion sets is far from being practical, and the problem of dealing with infinite resolu- 
tion sets requires separate consideration. 

6. Application of the Method 

This section is devoted to applications of our method to various proofs. 
To economize on notation we shall assume that a clause {~51, p~, .- .  , Psi 

(n > 1) will be simply denoted as pl,  p2, .-- , p~ • 
First we shall state the axioms of the propositional calculus, which will be used in 

later proofs. (A similar approach has been used by Bledsoe in [2].) 

(1) ~ ( p  ~ q), -~p, q, 
(2) (p ~ q),p, 
(3) (p ~ q), _nq, 
(4) -~(p ^ q),p,  
(5) -~(p ^ q),q, 
(6) (p ^ q), -np, _nq, 
(7) -~(p v q), p, q, 
(8) (p v q), -~p, 
(9) (p v q),-~q. 

6.1. The following two examples from number theory are chosen to emphasize 
the advantages of not destroying the original form of the theorems. It  is obviously 
possible in our system to realize the idea of "marco predicates" as postulated by 
Meltzer in [10]. 

Example 1. First we shall prove unsatisfiability of the system consisting of 

clauses (1) to (9) and the following: 

(10) x = x  

(11) ~PO, ~PSa,  Px 

(12) -7Vx(x = 0 V 3 y x  = Sy) 

Proof, 

(13) -~(b = 0 Y 3 y b  = Sy) 

(14) 4 ( 0  = 0 V 3yO = Sy), 

(Sa = 0  V 3y  Sa = Sy) 

(15) .-10=O, ~ ( S a = O  V ~y 
Sa = Sy) 

(16) -7(Sa = 0  V 3y Sa = Sy) 

(17) -nSa = Sy 

(18) [] 

(property of equality), 

(part of the axiom of induction), 

(negated theorem). 

from (12) and Q-rule, 

from (11), (13) P e-- Xu.(u = 0 Y 3y  

U = Sy) . ,  

from (8), (14), 

from (10), (15), 
from (9), (16), and Q-rule, 

from (10), (17). 
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Example 2. 
from its original form. 

(10) .-1Sx = O ) 

(11) (x + Sy) = S(x + Y) I (axioms of number theory), 
(12) ( x + O )  = x  
(13) ~PO, ~PSa,  Px (part of the induction axiom), 
(14) -~x = y, ~ x  = z, y = z (property of equality), 
(15) m V x V y ( ( y  + x) = 0 D (negated theorem). 

y -- 0) 

Proof. 

(16) m V y ( ( y + b )  = O D y  =0)  
(17) - ~ ( ( d + 0 )  = O:Dd = 0), 

~ ( ( c +  Sa) = O D e  = 0 )  

(18) -~((d+0) f 0 ~ d = 0 ) ,  
(c + Sa) = 0 

(19) (d+O)  = O,(c+ Sa) = 0 from(2) ,  (18), 
(20) ~d  = O, (c + Sa) = 0  f rom(3) , (18) ,  
(21) --1(4 + O) = y, y = O, (c from (14), (19), 

+ Sa) - -0  
(22) ~(d  + O) -- d, (c + Sa) = 0  from(20),  (21), 
(23) (c + Sa) = 0 from (12), (22), 
(24) ~ ( c + S a )  = y , y = O  f rom(14) , (23) ,  
(25) S(c + a) = 0 from (11), (24), 
(26) 

Now we shall prove another number theoretical theorem starting 

from (15) and Q-rule, 
from (13), (16), Q-rule, and P ~-- 

Xu.Vy( (y + u) = O D y = 0)., 
from (2), (17), 

D from (10), (25). 

It  is clear that if proofs of the above theorems were made after completing 
skolemization and atomization they would be much longer. Moreover, there is one 
more advantage: If we keep the theorems in their "natural form" they seem to be 
more suitable to attack by heuristic strategies derived from some "natural" proof 
techniques. For example, the choice of proper substitution for the predicate P 
(line (14) in Example 1 and line (17) in Example 2) can be justified by some 
simple heuristic reasons. 

6.2. In the following we shall present proofs of the three theorems from set 
theory. 

Example 3.1 The following presents a proof of a part of De Morgan's law. It  
should be noted that it is impossible to preskolemize this system. 

(10) mVux E fu,xE rl ufu (definition of N), 
( l l )  ~ 3 u x  E fu,x E U ufu (definition of U), 

(12) ~ x  E Cy,~xEy'~ (definition of C), 
(13) xE  Cy, xE y ¢ 
(14) -~V x~'f(x E C (J ufu D x E (negated theorem). 

NuCfu) 

Proof. 

(15) ~ (a E COuFu ~ a E from (14) and Q-rule, 
NuCFu) 

(16) a E COuFu from (2), (15), 

In tu i t ive ly ,  i n t e rp re t  f'lufu as fl,f, for in tersec t ion  indexed by  i, and  s imi lar ly  b y  Uufu. 
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(17) -aa E UuFu 

(18) ~ a  E Fu 

(19) ~ a  E nuCFu 
(20) -~a E CFb 

(21) a E Fb 

(22) [] 

~om(12) ,  (16), 
~om(11) , (17) ,  and Q-ru~, 
~om(3 ) ,  (15), 
~om(10) ,  (19), and Q-rule, 
~om(13) ,  (20), 
f rom(18) , (21) .  

Example 4. 

skolemized: 

(10) x E {u [Pu}, ~Px~  

(11) mx E { u l P u } , P x ~  

(12) ~ V z ( z  E {u[3vP~uv} 

3v z E {u I fu r})  

Proof. 

(13) ~ ( a  E {ul3vp2uv} 

~v a E { u I P2uv} ) 
(14) a E {ul3vP2uv 
(15) P~ab 

This is another simple example of a theorem which cannot be pre- 

16) ~ a  E {uIP2uv} 
17) ~p2av 

18) [] 

Example 5. Here we shall prove half 

(10) x E {uiPu}, mPx~ 

(11) mx E { u l P u } , P x ~  
(12) m x =  y, ~Px,  Py 

(13) d E  x , x ~ y  

(14) ~ d  E y, x C y  
(15) 3 f V x ( x  ~ a ~  3y(y  E a ^ 

fy = x)) 

Proof. 

(16) V x ( x C _ a ~ 3 y ( y  E a h 

fy = y)) 
(17) (x C a ~ ~ly(y E a h 

Fy = x)) 

(18) m x ~ a ,  Gx E a h 
FGx = x 

(19) ~ x C a ,  Gx E a 
(20) ~ x  C a, FGx = x 

(21) --~Rz, ~qz ,  z E- {u l ( R u h  
Qu)} 

(22) Rz, ~ z  E {ul (Ru ^ Qu)} 

(23) Qz, ~ z  E {ul (Ru ^ Qu)} 

(axiom of class formation), 

(negated theorem). 

from (12) and Q-rule, 

from (2), (13), 
from (11), (14), Q-rule and 

P ~ ~u.3vP~uv., 

from (3), (13), and Q-rule, 
from (10), (16), and P ~ ~,u.P~uv., 
from (15), (17). 

of Cantor's theorem (see [11, p. 56]). 

(axioms of class formation), 

(axiom of equality), 

(definition of "c_" relation'), 

(negated theorem). 

from (15) and Q-rule, 

from (16) and Q-rule, 

f rom( l ) ,  (17), 

Actually, the parameter d should be given as a binary function 
fled notation clearly follows as a special case. 

from (4), (18), 
from (5), (lS), 
from (6), (10), and 

P *- hu. (Ru h Qu). ,  
from (4), (11), and 

P ~ hu. (Ru h Qu). ,  
from (5), (11), and 

P ~-- Xu.(Ru h Qu). ,  

(of x and y), but this simpli- 
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(24) ~ x  ~_ a, ~PFGx, Px 

(25) -~{ui(-~u E Fu ^ q~)/~ 

a, ~QG{u i ( mu E Fu ^ 

Qu)}, G{u I ( ~ u  E Fu ^ 

Qu)} E {ul (-~u E Fu ^ 
Qu)} 

(26) m { u l ( ~ u  E Fu ^ Qu)} 

a, ~QG{u I ( ~ u  E Fu ^ 
Qu)} 

(27) m { u [ ( ~ u  E Fu A u E a)} 
C a  

(28) d E { u l ( ~ u  E Fu h u E a)} 
(29) (-~d E Fd ^ d E a) 

(30) d E a 
(31) ~ d  E a 
(32) [] 

from (12), (20), 
from (21), (24), R ~ X u . ~ u  E Fu.,  

P (-- Xu.Gx E u. ,  z ,-- G{u I ( ~ u  
E Fu ^ Q u ) } , x ~ - { u l ( ~ u  

E Fu A Qu)} 

from (22), (25), R ~-- ku. ~ u  E Fu.,  

z~--G{u I ( m u  E Fu ^ Qu)}, 

from (19), (26), and Q ~ Xu.u E a., 

• ~ - { u l  (-~u E Fu h u E a)l 
from (13), (27), 
from (11), (28), and P ~ X u . ( ~ u  

E Fu h u E a) . ,  
from (5), (29), 
from (14), (27), 
from (30), (31). 

Some comments about this proof. In lines (16) to (20) an atomization of the 
original theorem is performed. Lines (21) and (22) are characteristic of many 
proofs where there is a necessity to introduce a predicate which is not an atomic 
formula (in this case it is X u . ( m u  E Fu A u E a ) . ) .  The derivation of line (25) 
is based on an interesting example of double second-order unification to obtain a 
merge. I t  should be noted that the above proof would be impossible to realize 
without use of some axioms of propositional calculus (axioms of conjunction (4) 
and (5)).  

7. Conclusion 

The method described above is clearly a proper generalization of the resolution 
principle for second-order logic. However, its application raises many problems 
which do not exist in the first-order case. We shall present some of them. 

The main problem is due to the fact that growth of the resolution sets in the 
presence of second-order axioms is much faster. It  focuses our attention on special 
strategies to accelerate the search. Most of the first-order general strategies can be 
directly applied (like set of support, merging, ancestry filters, and unit preference), 
but some, such as Pl-deduction, need modifications. However, it seems to be im- 
perative to develop problem oriented strategies which will be suited to particular 

mathematical theories. The common feature of these strategies should be a pos- 

sibility of dealing with much more complex atomic formulas than in first order. 

Special consideration must be given to the fact that the unification of second- 

order literals generally involves many unifiers. This implies introducing some 

schemas of preference ordering of unifiers while producing resolvents. It  becomes 

especially important when a general unifier is infinite. 

The last group of problems is connected with the computer implementation of 

this method. Since the structure of the objects and the manipulation of them are 

more complex, there is clearly a need for some special data structure and manipula- 

tion rules which will suit the specific features of the higher order systems. 
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Append ix  I 

THEOREM 1. For each object class ~ there corresponds a unique object class ~ such 

that y is a normal object and conv* ( x, y)  holds. 

PROOF. Proof of this theorem is partially provided in [1, pp. 8-13] ( the existence 

of a normal object y) and the rest can be obtained from the works of Church and 

Rosser. However,  we shall give here an independent proof which seems to be simpler. 

The proof is based on the following lemmas. 

Let  N* be the set of all finite tuples of natural  numbers,  ordered by  the relation 

" ~ "  as follows: (xl , • • • , x~) ~- (yl ,  • • • , y~) iff n > m or n = m and there exists 

k such tha t  for all i (0 < i < k), x~_, = ym-~ and x,_k > ym-k • 

LEMMA 1. If {X,} ( i = 1, 2, . ' .  ) is a sequence of elements of N *  such that X ,  ~. 

X,+~ , then this sequence is finite. 

A proof of this lemma can be easily obtained by application of a double induction: 

on the length of X,  and on the value of its r ightmost  component.  

We shall introduce some functions characterizing the type complexness of objects. 

Let  lord be a mapping of the set of X-objects into the set of integers described as 

follows: 

l o r d ( k u l . . . u , , . x . w l . . . w i n )  = d e f  max {ord ( r (u , ) )}  A- 1 

m < n).  And finally Lord is a mapping of L into N* given by  the (where 1 < 

formula 
Lord(x)  =d~f ( i , ,  " ' "  , ik), 

where x is an object and i s = number  of k-subobjects y of x such tha t  lord(y) = j .  

A X-object which has no proper k-subobjects is called minimal .  

LEMMA 2. Let  kul .  . . u , . x . w l .  . "win (n  >_ m > 1) be a min imal  X-object and let 

-- I hul. . . u , . x . w l .  . .w,~ [~ • I f  z is a k-subobject of y then lord(y) > lord(z). 

PROOF. Let  z = Xv l : . . v k . s . q l . . . q~  (1 < 1 < k). F rom the assumption it  

follows tha t  all x, wl ,  • . .  ,wm have no k-subobjects, and this means tha t  there exist 

such i0 tha t  w~ o = kv~. . ,  v~.s.. Now from the definitions of functions ord and lord, 

and the fact tha t  r (u , )  = r(w,)  (1 < i < n) combined with the above, we obtain 

the following: 

lord(y)  =- max {ord(T(u,))} A- 1 

= max {ord(r(w,))} + 1 ~ ord(r(zo,o)) + 1 

= ord( ( r (v l ) ,  . - . ,  r (v~) , r ( s ) ) )  + 1 

= max {ord(T(v,))} + 2 >_ max {ord(T(v~))} -t- 2 

= lord(z) + 1 > lord(z).  

This proves Lemma  2. 

Now we shall proceed with the main par t  of thc proof. 

Let  x, y be objects such tha t  cony(x, y)  holds and let contr(x, y) denote the k- 

subobject of x which is replaced in y by  its X-contraction. Let  us additionally assume 

tha t  contr(x,  y) is minimal. Let  Lord(x)  = (i~, . . .  , ik ,  "'" , i,,) and lord(contr  

(x, y))  = k where 1 < k < m. This means tha t  y has one k-subobject of lord =- ]c 

less and some new k-subobjects. However, all these new k-subobjects obviously 
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occur in contr(x, y) and by Lemma 2 their lord is smaller than k. These two results 
together with the definition of mapping Lord imply tha t  

Lord(y) = ( j l ,  " "  , j k - l ,  ik - 1, ik+l, . . .  , i~). 

This means that  Lord(x) > Lord(y).  
Now let a l ,  a2, . . .  , be a sequence of objects such that  cony(a , ,  a,+l) ( i  ~_ 1) 

holds and cont r (a , ,  a,+~) is minimal. I t  is easily noticed that  if a, is not a normal 
object then it has at  least one minimal k-subobject. Thus there also exists an object 
a,+l such tha t  cony(a , ,  a,+l). So, from the formula above it follows tha t  Lord(a,) ~- 
Lord(a,+~) for all i ~ 1. But  Lemma implies that  the sequence Lord(a,) (i = 
1, 2, . .  • ) must be finite. Thus there exists an n such that  a,  is a normal object and 
obviously conv*(al,  a,)  holds. Since al is an arbitrary object it remains only to 
prove tha t  the object class dd, uniquely corresponds to d~. 

Let us assume inversely tha t  there exists an object b such that  b is normal, 
conv*(al,  b) holds, and b ~ d , .  Let k be a number such tha t  conv*(ak, b) holds 
and * cony (ak+~, b) is false. Obviously such a k always exists and 1 < k _< n - 1. 
Since conv*(ak, b) holds, there exists a sequence bl, . . .  , b= (~n >_ 2) such that  

' ~ ' ~ Y  E S 

IP. :,.o,,o,.,)l 
1" @ 

© s  P EMPTY) NO 
~Y~S 

( 'S  N EMPTY) 
4 NO 

] NP: =N ] 
EMPTY 

i" 
I TAKE <°,=,O') ~R~ P I 

I 
1 P'.R-:,..,.o-,l 1 

FIND n SUCH THAT: 

(1) FOR ALL;  (1 < - ;<_n ) 

o[,3 =bi l l ,  
(z)a[n ] *u[°], 
(3) o [ n ]  IS NOT BOUNDED 
OCCURRENCE OF VARIABLE 

FIND LARGEST ; SUCH THAT : 
( t )  0 [ ; ]  I$ FREE OCCURRENCE OF VARIABLE, 
(z)  ; < j ,  

(3) THERE EXISTS k SUCH THAT °In I OCCURS IN k lit 
ARGUMENT OF THE FUNCTIONAL SUBOBJECT WITH 
HEAD 0[,] 

@OES SUCH ; EX,S 9 

I ¢ :={o(,l 4- ~"1 " "p.f"l' '"k-l"k.l 
(ELIMINATtON RULE ) 

NO 

°'} I 

Flowchart: part (a) 

NO , /~(g)  = T(X)  

~.WHERE 4~= {g . q - x }  , j  
• YES 

o = oo~ 

b ,= bo~ 

Cr'=S O ' o ~ - ~  IF g IGeNEW w 

L 0"o~ OTHERWISE 

YES ~ NO 

Flowchart: part (b) 
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o' • o ['. ] 
x : • SUITABLE SUBOBJECT OF 
., b BEGINNING IN bil l ]  [ g : " b in ]  I 

I_ u : [~-~- [ '~- - -~~9_.__ ' ' j x '  -SUITABLE SUBOBJECT 

I t -  (flS 9 A VARIABLE SUC BEGINNING IN a [ n ]  

k T"AT ORO(~(~)) = l  J I 
;,Es : ~  

C.lo)  - . ~ , ) )  NO I " 

•' 
" ° [ ' ]  I 

• SUITABLE SUBOBJECT OF b 
~GINNING IN ben]  

C 
(. is g,,A VARIABLE ) NO 

i 
~ .oEs ~ OCCUR TREE ~N x~ 

N ~  , ., 

'.::J: 7 :°;E;:::: !, 

:, b{.] I 
: ffi SUITABLE St)BOBJECT OF a, 

BEGINNING IN o[nl 

• It 
.... , . - } 1  

=i WHERE w ~ IS BEFINEB BY 
| ms I..ITATION R . ~  I 

363 

Flowchart: part (c) 

cony(b, ,  b,+t) holds for each i (1 < i < m - 1), bl = ak and be = b. Now, let 
c = contr(ak, ak+j) and c, be the subobject of b~ (1 < i < p < m) which is the 
image of c under the replacement induced by the conversion from b, to b~+l. There 
must exist certain p (1 _< p < m) such that  cp = contr(b~, b~+~) or cp disappears 
from b~+t (otherwise b~ would have a X-subobject which contradicts with the as- 
sumption that  b~ is a normal object). Now we shall define the sequence bl', • • • , b=' 
as follows: 

, ~result of replacing c~ in b, by an element of I e, I x ( t  < i _< p),  
b~ = (b~+l (p < i < m). 

I t  is easily noticed that  conv(b,', b,+l)' holds for all i (1 < i < m) and tha t  b~-l"' = 
b~. Moreover it can also be shown that  conv(ak+~, b2'). These two results imply 
that  conv*(ak+~, b~) holds, which contradicts the definition of k, and completes the 
proof of this theorem. 

Appeadix II  

A flowchart of the Unification Algorithm is presented in three parts. The notation 
used here is as close as possible to the one used in the description of the algorithm; 
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however some additional conventions are necessary: 

P denotes the recently completed level of the unification tree, 

N denotes the level which is under construction, 

S deuotes the set of unifiers recently produced. 

The  box indicates the possibility of a message to the user t ha t  a singu- 

lari ty is detected ( i t  may  cause an infinite looping!). 

I f  the algorithm terminates  or if the growth of S terminates,  S will be a most  

general unifier (in the case of the second-order language by  Theorem 2). However,  

S m a y  grow indefinitely (essential singulari ty).  
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