
A Complete Mechanization of Second-Order Type Theory

TOMASZ PIETRZYKOWSKI

University of Waterloo, Waterloo, Ontario, Canada

ABSTRACT. A generalization of the resolution method for higher order logic is presented. The
languages acceptable for the method are phrased in a theory of types of order ~ (all finite
types)--including the h-operator, propositional functors, and quantifiers. The resolution
method is, of course, a machine-oriented theorem search procedure based on refutation. In
order to make this method suitable for higher order logic, it was necessary to overcome two
sorts of difficulties. The first is that the unifying substitution procedure--an essential feature
of the classic first-order resolution--must be generalized (it is noted that for t h e h i g h e r order
unification the proper notion of substitution will include h-normalization). A general unifica-
tion algorithm is produced and proved to be complete for second-order languages. The second
difficulty arises because in higher order languages, semantic intent is essentially more "inter-
woven" in formulas than in first-order languages. Whereas quantifiers could be eliminated
immediately in first-order resolution, their elimination must be deferred in the higher order
case. The generalized resolution procedure which the author produces thus incorporates quan-
tifier elimination along with the familiar features of unification and tautological reduction.
It is established that the author's generalized resolution procedure is complete with respect
to a natural notion of validity based on Henkin's general validity for type theory. Finally,
there are presented examples of the application of the method to number theory and set theory.

KEY WORDS AND PHRASES; theorem-provlng, resolution, second-order logic, type theory,
unification, matching

CR CATEGORIES: 3.61, 5.21

Introduction

In the last few years interest has increased in mechanization of proving theorems

in higher order logical systems. A motivation for this is the following: basic mathe-

matical theories such as set theory, number theory, and in a sense even the theory

for the equality relation cannot be finitely axiomatized in the first-order predicate

calculus. This fact destroys the possibility (in a first-order approach) of using

finite methods which are the core of mechanical theorem-proving. These and other

reasons have been discussed in [5, 12] and also [15].

The approaches followed for the higher order theorem-proving differ mainly

in the degree of generality. The most general approach is represented by [3, 12].

However, the main objective there is to mechanize the description of mathematical

theories rather than proofs of theorems.

The second approach deals with systems based on some equivalents of full

Copyright © 1973, Association for Computing Machinery, Inc. General permission to re-
publish, but not for profit, all or part of this material is granted provided that ACM's copy-
right notice is given and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the Association for Com-
puting Machinery.

This research was supported by NRC Grant A 5267.

Author's Address: Department of Applied Analysis and Computer Science, University of
Waterloo, Waterloo, Ontario, Canada.

Journal of the Assoc/atlon for Computing Machinery, Vol. 20, No. 2, April 1973, pp. 333-365.

334 TOMASZ PIETRZYKOWSKI

w-calculus with types (see [1, 7, 16]). However, these results can be considered as a
basis for only partial mechanization of proofs.

The third approach involves a more complete mechanization of proofs, but re-
stricts the language to a portion of the full co-order type calculus. We will concen-
trate on this approach. The first result of this kind was obtained by J. L. Darling-
ton in [5] and then developed in [6]. Both are a generalization of the resolution
principle for skolemized theorems of restricted second-order logic. Other attempts
to mechanize fragments of set theory are presented in [171.

This paper is a direct continuation of the author's earlier report [13]. The major
progress is due to the fact that the preskolemization is not needed here. It has a
vital significance for the scope of application of the method since even very simple
theorems of set theory cannot be directly skolemized (see Section 6, Examples 3
and 4). It should be noted that both papers are a continuation of Darlington's
approach.

Section 1 of this paper provides a specification of the class of languages which
can be used to formulate theorems. Roughly speaking these languages are un-
ambiguous, they are type-based with built-in "h" operator, existential and uni-
versal quantifiers, and they have the possibility of using other (defined) operators
which bind variables. The theorems are collections of clauses which are finite sets
of literals. Literals are well-formed formulas which may be composed, among
other things, of propositional connectives and quantifiers. In Section 2 we give the
basic rules of object manipulation: substitutions and X-normalization.

In Section 3 we present a procedure for forming a general unifier of a set of
object classes. We prove that this procedure is complete for languages of the second
order.

Section 4 introduces the notion of a system (countable collection of clauses) and
such properties of systems as inconsistency and unsatisfiability. The latter con-
cept corresponds to the intuitive one as well as to an adaptation of Henkin's no-
tion of validity in general models of type theory [1, 8].

Section 5 is devoted to a method of detecting the unsatisfiability of a system.
To this end, we produce a generalized resolution rule which combines Robinson's
resolution principle with some rules specific for the higher order like k-contraction
and V, 3-elimination. This resolution procedure is proved to be complete for
second-order languages (complete in the sense of validity given in Section 4).
More specifically, the unsatisfiability of a system can be finitely detected by iterat-
ing the production of finite resolution subsets.

In Section 6 we give examples of applications of the above method to prove
some theorems of number and set theory (among them Cantor's theorem).

In the concluding remarks there are stated some open problems of theoretical
and practical nature. An Appendix includes a proof of convergence for the iterative
R-contraction in the discussed languages, and also flowcharts for the various al-
gorithms presented in the paper.

1. Language

In this section we specify the class of languages acceptable by the methods of the
remaining sections of the paper. Subsections 1.1 and 1.2 give a very general and
abstract specification of the structure of the languages. This inclusion seems de-
sirable, as higher order languages have features affecting mechanization unfamiliar

Journal of the Association for Computing Machinery, Vol. 20, No. 2, Aprd 1973

A Complete Mechanization of Second-Order Type Theory 335

in the typical approach of first-order logic. However, if the reader is familiar with

a conventional language for higher order logic and wishes to pass over the abstract
specification of the languages (or Subsections 1.1 and 1.2), the example of Sub-

section 1.3 gives concrete and familiar illustrations of the definitions essential to

understanding the results of the remaining sections of the paper.

1.1. Let A be a countable set of distinct elements called characters. Such no-

tions as string of characters, equality of strings, concatenation of strings, and oc-

currence of a string in another string are assumed to be familiar to the reader and

will not be defined. In the following, if not stated otherwise, the small letters a,

b, d, f, g, u, v, w, x, y, z will denote strings. The n th (n > 1) character from the
left in a string x will be denoted by x[n], and the set of all strings of A by A*.

1.2. Let L be a subset of A* whose elements are called objects (e.g. in a typical

language objects will be terms, well-formed formulas, etc.), x is subobject of y

means that x and y are objects and x occurs in y. We shall say that x is a proper

subobject of y iff x is a subobject of y and x ~ y. A proper subobject x of y is a

direct subobject of y iff there is no proper subobject z of y such that x is a proper

subobject of z.

L is called an acceptable set of objects iff it satisfies the following conditions:

1.2.1. The characters " . " , " ~ " , "3" , "V", and "k" are elements of A.

1.2.2. There exists a decidable procedure to recognize objects from other

strings.
1.2.3. If x, y are distinct direct subobjects of z then there is no string occurring

simultaneously in x and y (i.e. x and y do not "overlap"; on the other hand, z

might have characters which do not occur in any direct subobject).
1.2.4. There is a set T whose elements are called types. T is defined inductively

as follows from a fixed countable set To : t C T i f f

(a) tC To, or
(b), t = (t l , ' " , t n) (n > 2) , w h e r e t , E T (1 < i < n) a n d t ~ E T o .
We shall define a mapping ord of T into the set of integers by the following

formula:
~1 if t E T 0 ,

ord(t) =dee I max {ord(t,)} + 1 where t = (h , ' " , in), n >_ 2 if otherwise.

1.2.5. There exists a recursively decidable mapping r of L into T such that if x

is a string and y, w, z are objects and x is the result of replacement in y of some

nonbound (see 1.2.8) occurrences of z by w, then r(z) = r(w) implies tha t x

is an object and r(x) = r (y) . r (x) is called the type of x.

1.2.6. There exist two mutually disjoint subsets V and E of A. Their elements

are called respectively variables and existential parameters. They satisy the following

conditions:
1.2.6.1. If u E V there exist infinitely many distinct variables u l , u2, . . . ,

such that r(u) = r(u,) (i >_ 1).
1.2.6.2. For each t C T, there exist infinitely many distinct existential pa-

rameters cl , c2, . . . , such that r(c,) = t (i >_ 1).

1.2.7. If r(f) -- (h , " ' , tn) (n >_ 2) and x l , - . - , xm (0 < m < n) are
objects such that r(x,) = t, (1 < i < m), then the concatenation f x l . . . x ,~ is
called a functional semi-object. A functional semi-object f x l . . , xm becomes an ob-
ject, called a functional object, if it is not a part of a functional semi-
object fxl . • • XmXm+I" • • Xk (k > m), in the given context.

Journal of the Association for Computing Machinery, Vol. 20, No. 2, April 1973

336 TOMASZ PIETRZYKOWSKI

If f x l . ' . x ,~ is a functional object with r (f) as above, then f, x l , . . . , x~ are
its direct subobjects and

x~) =dof~ty incase m ffi n - - 1,
v (f xl . . . ((t ~ + ~ , . . . , t ,) in case m < n - - 1.

f is called its head and x, (1 < i < n) its i-lh argument.

This definition makes our grammar context sensitive. I t could be avoided by

introducing full bracketing (see [16]); however it would cause some undesirable

technical difficulties in the Unification Algorithm and disturb the simplicity of the

notation.

1.2.8. There will be certain classes of objects called binding scope objects which

will be distinguished in having some (at least one) fixed direct subobjects called

binding designators. These satisfy the following conditions:

(a) A binding designator must be an occurrence of a variable.

(b) Whenever an object y is obtained from a binding scope object x by replac-
ing an occurrence of a variable u by a variable v (where r (u) ffi r (v)) , then y is a

binding scope object, and u is a binding designator for x iff v is a binding designa-
tor for y.

In a binding scope object x, if u is a binding designator for x, then every occur-

rence of u in x is called bound in x. Furthermore, such occurrences will be called

bound in z if x is a subject of an object z. If an occurrence of a variable in an object

if not bound it is called free.

1.2.9. If u~, . . - , u~ (m > 1) are distinct variables and x is an object then

ku l . . . um*x , is a binding scope object, Ul, - " , u ~ , x are its only subobjects,

and u~, . . . , u,~ are its binding designators.

~(V(Ul), . . . , ~-(u~), tx) if r (x) = tl, where tlis a basic type,
T(X) =de f ~t

((1 " (U a) , . . . , r (u , ,) , h , . . . , t ,) if r(x) = (t l , ' " , t ,) .

Such an object will be called a h-function.

1.2.10. The set T contains a type L ITERAL. Each object of type L I T E R A L

will be called a literal (these are the "well-formed formulas"). If x is a literal then

the concatenation -~x is an object and also a literal. The set of literals will be called

the language of L or simply the language.

1.2.11. If u is a variable, Q is V or 3 , and x is a literal, then Qux is a binding

scope object of type LITERAL, where u and x are its only direct subobjects and

u is its binding designator.
Comments. The conditions 1.2.2-1.2.5 and 1.2.10 essentially say that our lan-

guages are unambiguous. The condition 1.2.5 additionally guarantees tha t the
application of a substitution is always possible.

Moreover, conditions 1.2.7, 1.2.9, 1.2.10, and 1.2.11 introduce into the syntax
of some special objects which respectively correspond to functional expressions,

X-expressions, well-formed formulas, and their existential and universal quanti-
fication. The feature of types (which may be interpreted as metalinguistic vari-

ables) makes it possible to avoid bracketing without a danger of ambiguity (com-

pare with [4, 7, 16]).
1.3. Example of an acceptable language. What kind of languages does our

abstract definition allow? An immediate observation is tha t a language using
"bracket-free" or "Polish prefix notat ion" will be acceptable. But this is not re-
quired except for functional objects with variable heads. Subject to this feature,

Journal of the A~ociation for Computing Machinery, Vol. 20, No 2, April 1973

A Complete Mechanization of Second-Order Type Theory 337

and the requirement that V, 3, X, and -~ are "built into" the language, virtually
any normal notation used by mathematicians can be easily adapted to satisfy the

requirements of our acceptable languages.

We shall now give the description of a particular language which we shall use
in examples in the remainder of the paper. Furthermore, we shall give illustrations
of the abstract definitions of Section 1.2.

The specific characters of the language (which are also objects of the language)
are given in Table I.

We now give three rules for recursively generating the set of objects L:
(1) Each of the characters in Table I is an object.
(2) New objects of type CLASS or LITERAL are formed according to Table

II. The words class and literal in Table II denote any object of that type.
(In each of the objects formed in Table II, the direct subobjects are exactly those

denoted by the class and/or literal. Thus, the characters {, N, ~ , V, etc., are not

direct subobjects of, and are not included in any proper subobject of the newly
formed object, but they can be thought of as characters which identify or charac-
terize the newly formed object. The first three objects on the left side of the table
are binding scope objects. The "b.d." and arrow indicates the binding designator,
but this notation has no status in the language.)

(3) Finally, it is apparent from the definitions above that new objects may be
formed (from those obtained by Table I and Table II) by the built-in features of

TABLE I

(CLASS, LITERAL (CLASS, (CLASS, CLASS,
TYPE CLASS CLASS) LITERAL) LITERAL)

Intuitive inter- individual unary func- 0-ary predi- unary predi- binary predi-
pretation of element tion cate eate cate
the type

Constants: 0 A, C, S
(existential
parameters) a, b, c, d F, G

Variables x, y, z f, fl , ""
U , t)~ " ' " ~ ~1 ~ " ' "

p, q P, Q, R P~

TABLE II

New objects formed of type CLASS New objects formed of type LITERAL

{class [literal} class = class

(b.d.) class E class

U class class class ~ class

T
(b.d.) (literal h literal)

N class class (literal Y literal)
T

(b.d.) (literal ~ literal)

class + class

Journal of the Association for Computing Machinery, VoL 20, No. 2, April 1973

338 TOMASZ PIETRZYKOWSKI

the language: forming functional objects, X-expressions, forming quantified literals
with V or 3, and placing -7 in front of a literal.

All of the objects of L for our example are given by the above three rules.
Quantified literals and X-expressions give examples of binding scope objects

as well as those of Table II. In each case the direct subobjects will be identified by
dotted lines drawn around them (no official status, of course!), and the binding
designator will be indicated by "b.d." and an arrow (see Figure 1).

(b.d.)

T
(b.d.)

T
(b.a.)

Xtv)'t P x_. ; •
T

(b.d.)

(Here, x in Qx is bound m the main object, but not by the
binding designator of the main object.)

(Notice that the type of this N-ob|ect is
(CLASS, LITERAL).)

FIG. 1

2. X-Normalization and Substitution

We start with defining the notion of object classes.
2.1. A pair of occurrences of a variable is called bound together its a~ object x

iff these occurrences are bound in x and for each subobject y of x both occurrences
are bound in y or neither of them is.

Let x, y be a pair of objects. We shall say that x ~-~ y iff x results from y by chang-
ing only some bound occurrences of variables providing that if a pair of occurrences
is bound together in y then the corresponding pair is bound together in x and vice
versa, and that the type of corresponding variables remains the same (such change
is usually called "alphabetic change of bound variables").

I t is easy to prove that the relation " ~ " is reflexive, symmetric, and transitive
on L, and hence it is an equivalence relation. Therefore it partitions the set L
into the set of equivalence classes denoted L'. Elements of L' we shall call object

classes. We shall adopt the following notation: If x denotes an object then ~ de-
notes the object class to which x belongs. The notion of object classes simplifies
considerably the definition of substitution and consequently X-contraction. I t
will become clear in further discussion (see Subsection 2.2).

The mapping r can be naturally induced on the set of object classes in the follow-
ing manner:

if ~ E I f then r(~) = r (x) .

Notice that r on L' is well defined because x ~-~ y implies r(x) = r (y) .

2.2. A finite set of ordered pairs { (uz, ~1), " '" , (u . , ~n)} is called a substitution

i f f f o r a l l i (1 < i < n) 4, is an object class and r(g,) = r (u ,) , a n d u l , . . . , u ~

are distinct variables. Substitutions will be denoted by Greek letters: a, ~, ~/, ~',

Journal of the A~ociation for Computing Machinery, Vol 20, No. 2, April 1973

A Complete Mechanization of Second-Order Type Theory 339

and ~ where ~ denotes the empty substitution. In order to simplify the notation (to

avoid barring and superfluous parentheses) in the further text we shall represent a
substitution {(ul, ~1), "." , (u , , £)} as {ul ~--xl , . . . , u , ~--x,}.

Let x be an object and a a substitution where a = {ul ~--Wl, - . . , u , ~--w.}

(n > 1). £a is called the direct application of a to x and is defined as an object
class ~ such that z is the result of the replacement of all free occurrences of u l , • • • ,

u , in an object y respectively by wx, • • • , w~, provided that x ~ y and each vari-
able which occurs bound in y does not occur free in any w~ (1 _~ i _< n). I t is

easy to verify tha t such a y always exists (it follows from 1.2.5 and 1.2.6) and tha t
is determined uniquely.

However, the above definition of the application of substitution does not pro-

vide for the possibility of replacing functional subobjects, which is essential for

higher order systems. In order to generalize it suitably we must first introduce the
notion of X-normalization.

2.3. A functional object such that its head is a X-function we call a X-object.
Let b be a X-object or else a X-function such that b = X u l . . . u , . x . y l . . . y , ~ (0 <

m < n) where x is not a X-function and Y l ' " y , are the arguments of b. Now we
define

~ : ~ { u ~ - - y l , . . - , u m ~ - - y ~ } if m ffi n,
Ap(b) def)

¢Xu~+l . . .u , .x .{u l <--- yl , " " , u~ ~-- y,~} if m < nn.

Now suppose that b is a X-function such that b = Xul.. "Uk'fU~'" "Uk" (0 <

j _< k and we also allow the trivial case that k = 0), where fu j . . . uk is a func-

tional object and u#, • • • , uk are some of its arguments which have no free occur-
rences in f. Then we define

Rd(b) -~defl] if j = 1,

~Ul"''Uj--I"f" otherwise.

Finally for any k-object or k-function b we define:

i ~ ix =def Rd(Ap(b))

We call I/~ Ix the X-contraction of b.
The X-contraction always exists (due to the fact tha t it is not an object but the

object class). Its uniqueness clearly follows from uniqueness of the direct sub-
stitution application.

The above definition of X-contraction is adopted from the original Church defini-
tion of X-conversion [4] with some modifications.

Let x, y be objects. We shall say that x is immediately convertible into y and de-
note it cony(x, y) iff y is the result of the replacement of a X-object z occurring in

x by an element of the object class [~ Ix. Furthermore we shall define that x is
convertible into y and denote it conv*(x, y) iff conv(x, y) or there exists an object

z such that conv*(x, z) and conv(z, y).
An object x is called normal iff for each of its subobjects b which is a X-object

or a X-function we have b = [b Ix • The following theorem relates the above no-
tions and describes an important property of our languages.

THEOREM 1. To each object class ~ there corresponds a unique object class ~ such
that y is a normal object and conv* (x, y) holds.

The proof of this theorem is given in Appendix I. On the basis of this theorem

Journal of the Aa~ociatlon for Computing Machinery, Vo|. 20, No. 2, April 1973

3 4 0 TOMASZ PIETRZYKOWSKI

we shall define a mapping norm on L' as follows:

norm(£) =det ~,

where £ E L ' and y is a normal object such that conv*(x, y) holds.

Finally, we shall define the application of substitution o" to an object class £ by the

formula below:

£ o a =d~f norm(£a) .

In the case of the first-order language, the application and the direct application

of substitutions are identical.

I t should be noted that the above definition would be quite awkward if applied

directly to objects instead of object classes.

Ex~mp/e.

Vu(u E x ^ r u E a) o { x ~ Au, f ~ hv.(a + v).} • Vz(z E Au ^ (a + z) E a).

I t is easy to notice tha t if we were to deal with objects instead of object classes,

the above application of substitution would not be feasible: inserting Au in place

of x would bind the previously free u. The use of object classes makes the general-

ized application of substitution a total operation, where in the case of objects

it would only be partial.
2.4. Clearly generalized substitutions can be identified with mappings of L'

into the set of normal object class. In order to preserve this property of substitu-

tions we shall follow Robinson [14] in defining the composition of substitutions.

Let ~, ~ be a pair of substitutions such that ~ = {ul ~- xl , . . . , u , ~-- x,I and
= {vl ~-- y l , "" • , v~ ~-- y~} where m, n > 0. Then the composition of substitu-

tions ~, ~ is defined as follows:

where {v,, , - . . , v,k} = {vl, . . . , v,} - {ul, - . - , u~}. I t can be proved tha t for

each object class £ and substitutions ~, 7, ~, we have

(.~o~)o~, =.~o(~o~) and (~o~)o r = ,~o(~,o~).

3. Unification

In this section we give a unification procedure which will prove to be adequate for

second-order logic. The term "matching procedure" has also been used elsewhere.
The reader should recall tha t a mechanization of logic, in the style initiated by

Robinson [14], replaces the many varied axioms and rules of inference of conven-
tional logic by a single powerful rule of inference called resolution. This rule of

inference must consequently be quite complex and must in a sense embody the

conventional logical procedures which depend on instantiation and generalization.
This task is, of course, accomplished by unification.

3.1. Let X be a set of object classes. We shall call a substitution a a unifier
of X iff for all ~, ~ E X we have ~ o ~r = ~ o ~. A set ~ of unifiers of X is called a

general unifier of X iff for each unifier ~ of X there exists a pair of substitutions
a, ~ s u c h t h a t ~ E 12 and ~ = a o ~ .

Remark. Intuitively, finding a general unifier for a set X of object classes

Journal of the AMoclatlon for Computing Machinery, Vol. 20, No. 2, April 1973

A Complete Mechanization of Second-Order Type Theory 341

amounts to generating all (in a certain canonical sense) possible ways in which
the objects can be deformed into each other through substitution. A trivial, but
inessential, assumption for the discussion below is tha t all of the object classes
in X are of the same type (since substitution preserves type). Also, the reader
may realize that the main task of producing a general unifier for a (finite) set
will reduce to producing a general unifier for two object classes.

The reader may recall that producing a general unifier in first-order logic can
be accomplished by a rather direct process of substituting terms for individual
variables until the unification is accomplished. However, in higher-order logic we
should expect that the procedure must be more complicated because there win
usually be a greater variety of ways in which object classes can be unified.

3.2. Suppose we wish to unify two object classes 5~ and 60. We will proceed
by attempting (through substitution) to make do and b0 more similar--in stages.
At each stage, one or several different attempts (or possibly none) might be appli-
cable. (What we mean by "a t tempts" will be specified soon, and called elementary
unification substitutions.) Thus our procedure to unify do and 50 will appear as a
tree, each node of which will be a triple (4, 6, a) where 4, 6 are object classes (repre-
senting our progress thus far in attempting to unify d0 and 60) and ~ will be a sub-
stitution (showing how we obtained 5 and 6 from d0 and 60). Such a triple will be
called a progress triple. Of course, the initial node of the tree will be the triple
(do, b0, at,> which we will call the initial triple. (We remark that ~0 could be thought
of as e, the empty substitution, but later when we wish to unify more than two
object classes, it is convenient to be able to allow a nonempty initial substitution.)
Each node will be connected to each (if any) of the subsequent nodes of the tree
by an elementary unification substitution.

3.3. There will be two cases when a progress triple (4, 6, a) will have no subse-
quent nodes. First, if a = 6, then we will call (5, 6, a) a unified triple. Second, if
5 ~ b, but no elementary unification substitution applies, we will call <5, b, ¢) a
dead end. In either case, that branch of the tree ends with <4, 6, ¢).

3.4. Elementary unification substitutions. We now explain what elementary
unification substitutions can be applicable to a progress triple <5, 6, 6). We may
assume that 5 ~ 6. Our first task is always to find the first character (from the
left) at which 5 and 6 "essentially" differ. Formally this means tha t we find the
first n (~_ 1) such that for all objects a and b belonging to object classes 5 and b,
respectively, a[i] = bill (1 < i < n - 1) and a[n] ~ bin]. Of course, by attempt-
ing alphabetical changes of variables, it is easy to find such n and particular ob-
jects a and b. Each of the rules below will be symmetric for both a and b, but we
will only state each for a. Granting this, each rule depends on how a[n] occurs in a,
but we stress that in a given situation more than one rule might be applicable, or
even that a particular rule might be applicable in more than one way. In each case
the elementary unification substitution will be denoted by ~ and will consist of re-
placing a single free variable g occurring in a by a term (usually a X-function) of
the appropriate type. (Informally we remark that g will be a[n] in the second and
third rules, but will not be a[n] in the first rule.)

(1) Elimination Rule. (Intuitively, in this case, we will replace the free head
of some functional subobject in which a[n] occurs in such a way as to "eliminate"
a[n].) Formally, find a functional subobject gx,. • • xp of a where g is a free variable
and such that a[n] occurs in xk (1 < k < p). (So automatically g occurs to the
left of a[n].) Now l e t f be a new variable which does not occur in a or b and which

Joun~a| of the A.~oeiat*on for Computing Maeh~aezy, Vo|. 20, No. 2, April 1973

342 TOMASZ PIETRZYKOWSKI

is of the proper type for the substitution:

ffi {g ,--- X U r . " U ~ ' / U . " " U k - l U k + i " " "U~.},

where r (u 0 = r(x,) . (Notice that ~ will have the intended effect of "eliminating"
a[n].)

(2) Projection Rule. (Intuitively, in this case, we have found that a[n] is
itself the free variable head of a functional subobjeet, and we replace this entire
subobject by one of its arguments of the appropriate type.) Formally, a[n] is a
free variable g in the functional subobject gz~. • .xp of a, and also, for some i (1 _<
i < p) we find that r(z,) -- r (gxl . . .xp) . Then we put

= {g ~ X u ~ . . . u , , . u , . } ,

where r(u,) = 7(x,). (Notice that the substitution is of the proper type and has
the intended effect of "projecting" onto an argument.)

(3) Imi tat ion Rule. (In this case, we have again found (as in rule (2)) tha t
a[n] is the free variable head g of a functional subobject Ox~" • • xp in a where p ~ 0,
so we also allow the case that g is an "individual" variable. However, now the sub-
stitution we make will also depend on the particular subobject y of b which begins
with b[n]. Intuitively, we will replace 0 by a function which will " imitate" the
structure of y.) Having found g and y in this situation we specify what we mean by
an "imitation" y* of y: y* = y in case y has no direct subobjects.

Otherwise y = a ly la2 . . , a ,y~a , ,+ l (m >_ 1) where the y, are its direct sub-
objects which are not occurrences of variables bound in b, and a , are concatena-
tions of some constant letters and bounded variables. (I t reflects the fact tha t our
grammar does not require that y is a concatenation of its subobjects.) In this case
y -- alhxa2"'ot, ,h~a,~+l, where h, -- f , v x . . . v kux . . . u l , (1 _< i _< m), v l , - . . ,
vk (k > 0) are all the binding designators of y, and vl, . . • , vk, u l , • • • , up are
distinct. Furthermore, r (u ,) = ~-(x~) (1 < j _< p) and each f~ is a new variable
of the appropriate type which does not occur in a or b.

Finally we put

= {a ~ X u x . . . u ~ . y .}.

We remark that the object of imitation is to force the eventual task of unification
to subobjects--which are less "complex" syntactically. As this rule is the most
particularly characteristic of our method, and also the most difficult to under-
stand, examples illustrating its necessity will be given soon.

The above three rules are most frequently needed in the unification process.
However, in order to preserve the completeness of the unification procedure we
shall add two more rules which capture more pathological situations.

(4) Repetition Rule. In this case, like in rule (2), a[n] is the free variable head g

of a functional subobject gxl . . • x~ in a where p > 1. (Intuitively this rule adds an

argument to this functional subobject which may be needed later.) Formally

= {g (- - - ~ u l . . . u p . y u l . . . u p u l . } ,

where 1 _< l < p and f is a new variable of appropriate type.

(5) Identification Rule. In this case, both a[n] and b[n] are free variable heads of

respective functional subobjects gxx . . . x~, and hyx . ' . y , of a and b. This rule is

Journal of the Aa~oeiatlon for Computing Machinery, Vol. 20, No. 2, April 1973

A Complete Mechanization of Second-Order Type Theory 343

supposed to guarantee detection of unifying substitutions which are built jointly of
subobjects of xl • • • xp, yl • • • y , .

= (g ~ - X u l . - - up./(u1 . . . upgl(ul . . . up) . . . g , (u l . . . up)).
h ' ~ - X v l ' " v,.f(hl(Vl . " v,) . . . hp(vl " " v ,) v l ' " v~).}.

(The parentheses in the formula above are not a part of the expressions and are

introduced only for visual convenience.)

This completes our list of elementary unification substitutions, as is formally

characterized in the general theorems that follow. Some heuristic modifications

will be mentioned in Subsection 3.8.

3.5. Next, for each elementary unification substitution ~ which is applicable to a

progress triple (d, b, a) we obtain the subsequent progress triple (5~, b~, (r~) de-

termined by ~ as follows:

5~ = ¢io~, ~ = ~o~, and a~ = ~o~,

with the particular modification that if ~ includes any substitutions of the form

f ¢- x where f is a variable which does not occur in the initial triple (a0, b0, no),

then such f ~-- x may be deleted from a~ as superfluous. (Tha t is, such f was intro-

duced somewhere midway in the branch leading from (do, 60, a0) to (5~, 6~, a~)

and now may be forgotten. Later we will refer to such variables f as "new" vari-
ables.)

3.6. Now, given an initial triple (do, bo, o'), form the entire unification tree
T(5o, 60, a) inductively by applying each applicable elementary unification sub-
stitution to each progress triple and thus obtaining its subsequent triples. We

remark tha t it is by no means obvious whether or not this tree is finite. Next de-

fine:

= {, J , is the substitution designated in some unified triple of T(d~, 60, a)}.

(Recalling the definition of Subsection 3.3; one may sec intuitively tha t we form 8
by collecting the "successful" substitutions from the ends of the branches of T.)

3.7. Finally, a natural proposal for a unifier for two object classes 51 and

would be

£ { a , , ~ } =do, S(51, ~ , ~).

And we may extend this definition inductively to more than two object classes

by:

£ { 5 1 , " ' " , 5 , , 5,..{-1} = d e f {ff o 71 [(7 ~ £ { a l , " ' " , a)} and 77 C 8(51 o a, a~+l o a, a}}.

Of course, this says that we extend ~ to one more object class 5,+1 by at tempting
to unify 51 and 5,+1 subject to the various substitutions a which have already been

found successful up through 5, . Notice also that in this definition we could just
as well t ry to unify 5,+1 o a with ~ o a, • -. , or d, o ¢, since these are all the same

as 5~ o a. (We remark that this construction of £ might fail even to be the limit

of effective processes because some T(d, b, a) upon which its inductive definition
depends might fail to be finite. This worry will not concern us now. However,

it should be apparent tha t £ could be given as the limit of effective processes by a
slight complication of the definition.)

Journal of the Association for Computing Machinery, Vol. 20, No. 2, April 1973

344 TOMASZ P I E T R Z Y K O W S K I

3.8. Heuristic modifications. Above we have stated the proposed Unification
Algorithm in a simple, general form. This has been desirable to reflect the intuition
behind the formulation of the elementary unification substitution rules. However,
the reader will realize that in particular applications many duplications may be
produced. We now list a few heuristic modifications which we will incorporate in
the examples. Each of these modifications has the effect of removing superfluous
elementary unification substitutions which would be specified by the rules of Sec-
tion 3.4.

(a) In the Imitation Rule: If a[n] = g is an "individual" variable (i.e. the
number of arguments p = 0) then we may set the "imitation" of y, y* = y.

(b) In the Imitation Rule: If y is a functional object with head h, then we
may use h instead of flu1 • • • up+k in forming y*.

The two modifications just given will have the effect of removing some of the
unnecessary "descendants" of the particular substitution modified. The next
modification, however, is of a more complicated sort: In this case, the applicability
of a particular elementary unification substitution ~ to a progress triple (~, b, a)
will enable us to disregard other substitutions which might, by Section 3.4, have
been applicable to the same (d, b, a) (i.e. this modification works on a "horizontal"
level rather than a "vertical" level as with (a) and (b) above).

(c) Suppose we have found the Imitation Rule applicable where y (as in the
rule) is an "individual" variable (i.e. type, ~-(y) = to) and furthermore, there is no
free occurrence of y in gxl . . . xp. Then we keep this imitation substitution exactly
as is (i.e. ~ -- {g ~ k u l . . . u p . y . } and (~ , b~, ~) is formed normally). However,
we may now forget all other instances of the Projection Rule and the Imitation Rule
which might normally be applicable starting with either a[n] or bin] (recall the
rules are symmetric). This is because the one imitation substitution will produce
the most general unifier possible.

3.9.
Example 1. In the following we give examples of each of the elementary uni-

fications:

Eliminations:
(lab, 2x -~ f y, e) (fib, flY, {f2 ~-- Xuv.flv. }),

2 a
(f2ab, f y, e) (fta, fla, { f ~ Xuv.flu. }),

(fx, fa, e) ---~ (y, y, {f <--. Xu.y.}) .
Projections:
(f2xy, a, e) ~ (x, a, {f2 ~-- huv°u.}),
(f2xy, b, e) ~ (y, b, {f2 ~ ~kUV°V°}).

Imitations:
~X, Aa, e) ~ (a, a, {f ~ Xu.a.}),
~x, a, e) ~ (Aa, Aa, {x <-- Aa}),
(x, Ab, ~) ~ (Aflx, Ab, {f ~ Xu.Aflu.}) ,

2 (f xy, (a + b), e) ~ ((.h~xy + 12 xy), (a + b), {12 *--huv.(fl2UV + £2uv).}).

Example 2. In Figure 2 we show the elementary unifications applied to a
single node of a unification tree. The example is chosen to illustrate how many
elementary unifications may all apply to the same progress triple.

Example 3. In Figure 3 there is presented a complete unification tree. This
tree has five terminals. Terminals 1, 2, 4, and 5 represent unified triples and 3
is a "dead end."

Journal of the Aasociatlon for Computing Machmery, Vol. 20, No. 2, Aprd 1973

A Complete Mechanization of Second-Order Type Theory 345

(ff$~xy, ghb, ~)

~qx, ghb, {f~ ~-- Xuv u }) ' ~ ~ "x3'(gf'xy, gfh,bh2b, {h ~ Xu.fZh,uh,u. })
!

f ~gy, ghb, {y" ~ Xuv.v.})

(gf~xy, gb, { h ~ hu. u. })

FiG. 2

(g~, (a + b), e)

(x, (a q- b), Ig ~-- hu.u.}) ((fix q- f2x), (a + b), Ig ~-- ku. (.flu -I-.fzu).})

I / I
imitation projection imitation

z ~ (a + b) y~ ~ Xu.u. $ 1 ~ Xu.a.

1 / 1
((a + b) , (a q - b) , ((x q - f ~ x) , (a q - b) , ((a q - $ ~ z) , (a - l - b) ,
{g ~ Xu.u., z ~ (a + b)}) {a ~- Xu. (u + f2u).}) {g ~ Xu. (a + f lu) .})

imitation projection imitation
r ~- a .f~ ~- Xu.u . $2 ~-- Xu.b.

((a + f.za), (a q- b), ((a -b x), (a q- b), ((a q- b), (a + b),
{g ~-- ~u. (u q- f2u). , x ~- a}) {g ~-- ~u. (a q- u).}) {g ¢- ku. (a -I- b).})

proJection imitation imitation

((a + a), (a + b), ((a + b), (a + b), ((a + b), (a + b),
{ g ~ - - ~ u . (u + u) . , x ~ - - - a }) { g ~ - - ~ u . (u q - b) . , x * - - a }) { y ~ - - X u . (a q - u) . , x ~ - - b })

® ® ®

Fio. 3

3.10. Order and complexity of languages. In this subsection we introduce
some notions which are pertinent to the main theorem of this section: to establish
the applicability of the unification procedure for second-order languages.

Let f x l . . • x , (m >_ 1) be a functional object. We shall say that

f o r d (f x t . . . x ,) =def max {ord r(X,)l + 1.
l_<,_<,n

(Recall the definition of ord in Subsection 1.2.4.) We now define that a set X of

object classez has order k iff

k = max{ford(fxl. • • x ,) ; where f x l . . . Xm C X and f is variable.}

Journal of the Association for Computing Machmery, Vol. 20, No. 2, April 1973

3 4 6 TOMASZ PIETRZYKOWSKI

Notice that this notion of order depends only on variables, and thus seems to

suggest the "complexity" of possible substitutions into X. Indeed, it wiU be very

useful in this subsection to have a suitable measure of the complexity of substitu-

tions. As a first step we will introduce the "complexity" of an object which ex-

presses the extent to which its subobiects are "nested."

Define a mapping comp of L into the set of integers as follows:

(0 if x has no direct subobjects

comp(x) =de~ ~maxX{Comp(x,)} + 1 where X is the set of all direct subobjects
(of x.

Now we shall define a mapping Comp of the set of substitutions into the set N*

of ordered tuples of integers (this set is described in the proof of Theorem 1; see
Appendix I) :

Comp(a) =dof (n l , . . . , n k) ,

where n, (1 < i < k) is the total number of subobjects of complexity i which

occur in any of x , , . - . , x,~ where a = {u, ~ x l , . . - , u,, +- x~}.

This measure of complexity for substitutions is somewhat difficult to grasp

because it is not apparently linear. This feature is indispensible for the "na tura l i ty"

of the notion in our main application. The set N* is, of course, given the usual

well-order of transfinite ordinal type w ~ which is denoted as < in Appendix I.

I t is essential here only to note tha t < is a well-order and that this order preserves

the "natural i ty" of the complexity of substitutions. In forming Comp(a) , notice

tha t once an object x is counted in an n , , then any of its subobjects can only be

counted in some n~ for j < i. Thus for example,

Coinp({g ~ Nu.(u + Au) . , x ~ Afa}) = (2, 2, 1)

because there are two subobjects (Au and fa) with complexity 1; and two sub-

objects ((u + Au) and Afa) with complexity 2; and one subobject

(Nu. (u + A u) .)

with complexity 3.

We will present one more notion informally to help motivate the proof of the

main theorem of Subsection 3.11. We want to compare how different substitutions
affect object classes ~ and 330 which we are trying to unify. Let V be a fixed set of

variables (in application, V will generally be the free variables appearing in do,

330). We will say that a substitution T is no more specific than a for V (or "more

general") and write r _~ v a in case there exists a substitution ~ such that

i f - - newv = v o ~ - - newv,

where u+--x Cnewv iff u ~ V. Intuitively, T < v a means that T can be de-

formed into a by composition of substitutions, provided that we restrict our atten-

tion only to the parts of the substitutions which replace variables in V. Clearly,

_< v is a reflexive partial order with ~ < v ~. With this notation, if ~ is a unifier

for do and 330, then any general unifier for them must have a r with v < v ~.

The relationship between the "specific" order (< v) and the complexity (<)

of substitutions of the form a - newv points out a clear distinction between

first-order languages and those of higher order. For first-order languages T < v

Journal of the Associattou for Computmg Machinery, Vol. 20, No. 2. April 1973

A Complete Mechanizat ion of Second-Order Type Theory 347

implies Comp(r - newv) < Comp(a - new~). This is because composition of
substitutions involving only first-order variables cannot decrease complexity.

However, this is not the case for languages with higher order variables because we
can have situations such as the following:

T ---- {X ,~-f fx} ,

. = {$ ~ - X u . u . } ,

but

Comp(r) = (1, 1),

Comp(~) = (1),

~'o~ = { x , ~ - . x , f ~ - - k u . u . } , C o m p (r o ~) ffi (1).

And if we have V = {x}, then we even have r _<v r o ,7 -- newv = ~. Neverthe-

less, the proof of the main theorem given in Subsection 3.11 will involve relating

_< v and < for applications connected with the unification procedure.

3.11. Completeness of unification for second-order languages.

THEOREM 2. I f X = {dl, " '" , din} (m >_ 2) where a l , . . . , a~ are object classes

of order not larger than two then ~{al , . . • , am} is a general unifier of X .

PROOF. The proof will be presented in three major parts. We will now summarize

the idea of the proof. Notice from the definition of a general unifier tha t this notion

is nontrivial only for sets of object class which have some unifier. So at first, we will

concentrate our at tention on object classes do and 60 which have some unifier a.

The do, b0 and a are arbitrary but fixed. Motivated by the example of a we will put
the unification procedure to work on do and bo to produce inductively a particular

branch of the unification tree T(do, 60, e). The kth level of this branch will be de-

termined by a substitution ~k (yielding (do o ak, boo a~, ak)). We fix the set V (as in
Subsection 3.10) as the variables free in do, b0 and those being replaced by ~. Now,

each of the ak which we produce inductively has the property of being no more

specific than o" for V (o'k _<v o'). In particular, we will exhibit a~ and ~ such that
= ~k o ~k - newv. We can think of ~k as being a reminder for ~ because it carries

the essential remaining information about the form of a which has not already been

reduced (thus, 710 = a because we must have a0 = e). Now clearly, if some ~ unifies

{do, bo}, then a is taken care of in producing a general unifier for {do, 60} because

a~ _< v ~. The second part of the proof involves showing that indeed, some ak does

unify do and 60. The idea is that if ak-1 did not already unify do and b0 then the new

reminder ~k produced must have Comp(yk) strictly < Comp(yk_l). And since -< is a
well-order, we conclude that the production of distinct ak must end. The third par t

of the proof extends the result to sets of several object classes.
Now we give the first part of the proof. We have do, b0 and ~ as above and we will

produce the inductive sequence a~, ~k such that

(do o o'~, bo o ak , ak) E T(ao, bo, ~) (1)
and

= ak ° yk -- new(~?k), (2)

where u ~-- x E new(7/~) iff u is a "new" variable as defined in the ratification pro-

cedure in Subsection 3.5. Clearly new(y~) ~ newv for V as specified in the last

paragraph.
To start the induction, of course ~o = e and 70 = a. Let us assume (1) and (2)

are valid for k ffi i (i > 0). Let us also denote a = do o a , , b ffi b0 o a , . First we

Jommal of the A~ocintion for Computing Machinery, Vol. 20, No. 2, April 1973

3 4 8 TOMASZ PIETRZYKOWSKI

shall prove that if do o ¢~ ~ b0 o ~, then there exist substitutions ~ and ~ such tha t

• ,+l = ~ o ~ -- new(G) (3)

~, = ~ o ~ - - new(T). (4)

Let n be the integer as defined in the Unification Algorithm and let c, d be sub-

objects of a, b respectively, such tha t their leftmost characters are a[n] and b[n].

Since a[n] ~ b[n] the only way to unify a and b is to:

(a) eliminate c, d from a, b, or

(/~) unify c and d.

In case (a) there must exist integers m, l (1 g m _< n) such that aim] is a free

occurrence of variable and the head of some functional subobject x of z, c is a sub-

object of t h e / t h (1 < 1 < p) argument of x, and aim] ~ k u l . . . u p . v . C ~, (p >_ 1)
such that ut does not occur in v. This last condition is necessary to eliminate c from

a o ~ ; however for objects of order higher than two it could be achieved otherwise

(see [7, pp. 11-14]). These properties imply that there exists a "new" variable fl

such that {a[m] ~ h u l . . . u p . v . } = {a[m] ~-- h u l . . , u p . f l u l . . "Ul--lUl+l"" "Up" } o {j~

XUl"''m--lU~+I"" "Up'V.}. In this case if we define

= {a[m] ~-- k u l . . . u ~ . f l u l . . . m - l m + l . . . u v . }, and
= {.fl ~ k u l . . . u ~ _ l u ~ + l . . . u ~ . v . } U (~, - {a[m] ~- hu l . . . up .v .}) ,

then it is easy to verify tha t eq. (4) is satisfied.

In the case (B) let c o ~i -- d o y~. Obviously at least one of a[n], b[n] must be a

variable. Let us assume tha t it is a[n]: (I f b[n] is also variable the following reason-

ing should be repeated with appropriate modifications.) In this case c is a functional
object (possibly a variable). Assuming that a, b are normal, in order to unify c

with d there must exist v such that a[n] ~ Xu~. • . u~ .v . E ~, (p >_ 0). Now one of

the following subcases must occur:
(~1) d is unifiable with some / th argument of c, or

(~2) v and d must be identical at least on their highest syntactical level, so d
can be obtained from v by replacing all the direct subobjects v~, . - . , vt of v by

corresponding subobjects d l , . . . , dt of d (1 _> 0).
(/~3) bin] is also variable, bin] ¢ - Xv~ . . . v~.w. ~ ~, and v, w consists of a com-

bination of subobjects of c and d.

In subcase (~1) let ~ = {a[n] ~-- kul-- . u~ ,u t . } and ~ = ~ - ~.
In subcase (/~2) the substitution {a[n] ~-- Xu~..-up-v-} can be decomposed as

follows: {a[n] ~ Xu~. . .u~ .v .} = {a[n] ~-- Xu~. . . u ~ . w . } o {f~ ~ ku l . . .u~.g~. , . . . ,

f~ ~-- ku~ . . . u~ .g~ . } , where w is obtained from V by replacing v~, . . . , v~

by f~u l . . . u~+~, . . . , f~u~. . .u~+~, where the fi (1 _~ i < l) are "new" variables
satisfying the requirements of the Unification Algorithm, and the g, (1 < i < l)

are appropriate objects. Let

= {a[n] ~ k u ~ . . . u ~ . w . } and

= (7, -- {a[n] ,,--]ku~. . .u~, .v .}) U {f~ ~ ~ u ~ . . . u ~ . g l . } U {f~ , , - Xu~ . . . up .g~ . } .

I t is easy to notice tha t in both subcases eq. (4) is satisfied.
I t is important to notice tha t ~, as defined above, corresponds precisely to the

substitution ~ specified in the Unification Algorithm (the cases (cO, (~1), (B2),

(~3) correspond respectively to the elimination, projection, imitation, and com-
bination of repetition with identification rules of the Unification Algorithm).

Journal of the A~ociation for Computing Machinery, Vol. 20, No. 2, Aprd 1973

A Complete Mechanization of Second-Order Type Theory 349

Hence f rom t h e a s sumpt ion t Z a t (1) is va l id for k = i and f rom (3) i t follows t h a t

(1) is also t rue for k = i "4- 1.

I t r emains to p rove the v a l i d i t y of (2) . I n o rder to do t h a t le t us examine t h e

fol lowing chain of equal i t ies :

a,+l o ~ - - new0/) =

I (a , o ~ -- new(G)) o ~/ - - new(r/) =

I I (a , o ~ o 7/ - - new(~ o 7/)) - - n e w (y) =

I I I (a , o (~/, O n e w (y)) - - new(~ o ~/)) - - n e w (y) =

I V (a l o ~/~ - - new(~ o ~/)) - new(y) =

V (a , o ~ / , - n e w (y ,)) - new(y) =

VI a , o ~/, - new(r/ ,) = a.

E a c h of t he above equal i t ies is a consequence of the one i m m e d i a t e l y above us ing

the previous resul ts as i nd ica t ed : I follows f rom (3) , I I follows f rom the def ini t ion

of composi t ion of subs t i tu t ions and p roper t i e s of funct ion new, I I I uses (4) , I V

follows for the same reasons as I I , V depends on (4) , and f inal ly V I uses (3) , (4) ,

and the induc t ive a s sumpt ion k = i t oge the r wi th (2) . These equal i t ies i m p l y t h a t

fo rmula (2) holds for k = i A- 1 and consequen t ly ~/ = 7/,+1, which proves e q u a l i t y

(2) for all k (k > 0) . This comple tes t he first p a r t of t he proof.

T h e second p a r t of th is proof ut i l izes t he resul ts (1) and (2) to p rove t h a t t h e r e

exists n (n >_ 0) such t h a t (r. is a unifier of a0, b0 •

Now we shall e s t ima te t he va lues of the complex i ty of t he " r e m i n d e r " subs t i t u -

t ion ~/s (J >_ 0) , p rov ided t h a t ~ o ¢s ~ b0 o (rs •

I n case (o 0 : if Comp(~/s) -- (n l , . . . , nk , - - . ,nm) where

/c = c o m p (X u l . . . u p . w .)

t hen Comp(ys+ l) = (~1, " ' " , nk - 1, . . . , urn). Th is follows f rom the fac t t h a t

7/,+~ = (~ - {a[m] ~ - X u l . - . u v . v . }) U {fl ~ Xu~...ul_lu~+l...up.v.} and t h a t

comp (Xul. • • uv" v o) = comp(Xul , • • u~_lUt+l.., up. v.) "4- 1.

I n subcase (/31): if Comp(Tb) = (n~, . . . , n~) then since ~/,+1 = ~/i -

Comp(~b+l) = (nl - - /1, " " , n, , - - i,~) where (i l , - . . , i,,) = C o m p (~) ~ 0.

I n subcase (/32) : if Comp(~b) = (n l , . . . , nk , - . . , ~t~) where

k = c o m p (h u l . • .up.v.)

t hen C o m p (T b + l) = (m l , • • • , m k - - I , n k - - 1, n k + l , " • • , r i m) . T h i s follows f rom the

fact t h a t ~/~+1 = (~b - - ' {a[n] ~-- X u l . . . u v . v . }) U [J~=~{fl ~ Xul...uv,g,.} where

g, (i = 1, . . . , l) a re objec ts whose complexi t ies a re c lear ly equal to or smal le r

t h a n the cor responding complexi t ies of the d i rec t subob jec t s v~ (i ffi 1, • • • , l) of v.

Consequen t ly c o m p (u l . . . u p . v .) _> c o m p (u ~ . . . u p . g 1 .) -t- 1 for all i (1 < i < 1).

Subcase (/33) can be t r e a t e d in a s imi lar w a y as (/32).

T h e resul ts above i m p l y t h a t if do o a~ ~ boo as t hen Comp(~/¢) >- Comp(~/¢+l),

where " ~ " is the wel l -order specified in L e m m a 1 of A p p e n d i x I . T h u s such a

sequence ~/1, "- - , ~b, " ' " m u s t be finite. So the re m u s t exist k (k _> 0) such t h a t

a0 o ak = /~0 o (r~, which comple tes t he second p a r t of t he proof.

T h e resul t above toge the r w i th (1) impl ies t h a t for an a r b i t r a r y pa i r of ob jec t s

a l , a~ wi th a unifier a the re exists k (k _> 0) and subs t i tu t ions a~ , ~/~ such t h a t

o- = ~ o ~/~ and ¢r~ ~ 8(~1, dz, ~). This comple tes t he proof of our t he o re m for m =- 2.

T h e r ema inde r of t h e proof proceeds b y induc t ion on m.

Le t us assume t h a t the t h e o r e m is va l id for m = i (i >_ 2) . L e t a be a unifier of

Journal of the Association for Computing Machinery, Vol. 20, No. 2, A p r d 1973

~ 5 0 TOMASZ PIETRZYKOWSKI

{at, " '" , a,+d. Obviously a is also a unifier of {at, . . . , ad and from our inductive
assumption it follows that there exists a pair of substitutions ~, ~ such tha t

E fl{at, " " , at} and • = ~ o ~. Clearly ~ is a unifier of at ° ~, a~+~ o ~; hence from the
validity of the theorem for m = 2 follows the existence of substitutions ~', ~' such
that ~' E S(at o ~, a,+t o ~, ~) and ~ = ~' o ~'. Thus the definition of f~ gives

o ~' E f~{at, . . . , a,+t}. F r o m , = ~ o ~1 and ~ -- ~' o ~' follows a = (~ () o ~'.
This completes the proof of Theorem 2.

I t is important to notice that Theorem 2 is not valid for third-order objects. For
example, let a, u, B , # be characters, r (a) = t, r (u) = r (B) = (t , t) , and 1-(~b) =
((t, t), t) where u, 4~ are variables. Then a general unifier of the set {4,B, Ba} must
contain the following substitutions: q~ ~-- ku. B a . and $ ~-- X u . u a . . However, our
unification procedure will provide only the first one.

3.12. In Figures 4-6 we present some examples of applications of the Unifica-

tion Algorithm (for simplicity, the bars over object classes are omitted). The ratified

triples are circled.

E x a m p l e 1. See Figure 4.

E x a m p l e 2. See Figure 5.

E x a m p l e 3. See Figure 6.

~$x, Aaa , ~)

(ASxAf~x, a , If *-- Xu.Aftu.})

• Aa, Aaa , a}~) (AAx, AAa, {f ~-- Xu.Au.~) (AAf2AAf, x, AAa,

((aaa, aaa, (/(AAa, AAa, (
k.. {f ~ Xu .Au. , x ~ a t~.., {f ~-" Xu 'AAa'~/ {f *--- Xu .AAu.})

Fie. 4

1 (a, Aa, { f ~ Xu.u.})

~A_Aa, AAa, {f ~-- Xu.Au.}))

(ffa, Afa, ~)

1
(AflAfaa, AAfta,

{f ,-- Xu.Af~u.])

--11
(AAf, aa.fta, AaASta,

{f . - Xu .aA f , u.})

<add~.Aa, A . . . Aa, (A . . . Af,,A . . " A f , a, A~ . A f , a,
2n--2 ~ ' ~ ~ ~ n-~l

{f '- x~,'~=.~,=~4u'l) I f , - Xu.A..-Af,~,.I)

Fro. 5

Journal of the Aa~oeiation for Computing Machinery, Vol. 20, No. 2, Apri! 1973

A Complete Mechanization of Second-Order Type Theory 351

0 (/Aa, A/a, 0

1 ~Aa, An, {f ~-- Xu.u.}~ (AllAn, AAfla, {f ~ ku.Aflu.})

f *-- X u . A ~ {f ~-- Xu f . u . }) ,~-1~ ~ ~ a,..a
: :

Fro. 6

3.13. In Example 1 the unification tree and, obviously, the most general unifier
are finite. In Example 2 the unification tree is infinite but the most general unifier
is finite (counts as a single substitution). In Example 3 both the unification tree
and the most general unifier are infinite.

Generally speaking, the unification cases where the most general unifier is finite
will be called regular (Examples 1 and 2). If in addition the unification tree is finite
the case will be called strongly regular (Example 1). A unification in which there is
no finite general unifier (Example 3) bill be called essentially singular.

There is a very simple way to discover if a set Q is strongly regular, which is given
in the following propositions.

PROPOSITION 1. The unification tree for a pair of object classes of order not larger

than 2 is strongly regular if there is never a case of the imitation rule being applicable

to a pair of subob3ects such that the variable g being replaced occurs free in the "imitated"

object w.

Obviously if the unification tree for (a, b, e) is regular then the general unifier of
set {a, b} is finite. This leads to the following generalization.

PROPOS~TmN 2. I f for all i , j (1 < i, j _< m) the unification trees for {(a, , a~ , 0}
are regular and {all, • • • , am} is a set of object classes of order not larger than 2, then

~{a~ , . . . , a~} is j lni te .

The proofs of these propositions arc left to the reader.

4. Systems

In this section we discuss first the notion of a system, which serves as our basis for

proving theorems by refutation. Next we develop a notion of unsatisfiability which

corresponds to the usual intuitive notion, but mainly which will prove to be ex-

tremely useful when we consider generalized resolution itt Section 5.

4.1. A finite set of literal classes is called a clause. Clauses will be denoted by

capital Latin letters. A pair of clauses X = {l~, . . - , lm}, Y = {pl, " " , p,,}

(m > 1) is called complementary iff p~ = --1 l, for I < i < m. Such a pair of clauses

will be denoted X, .~. An empty clause will be denoted D.

Journal of the Association for Comput ing Machinery, Vol. 20, No. 2, April 1973

352 TOMASZ P I E T R Z Y K O W S K I

A countable set of clauses is a system. Systems will be denoted by boldface capital
Latin letters.

The above is obviously adopted from Robinson's first-order resolution terminol-
ogy. According to it a clause is interpreted as the disjunction of literals, while a
system is interpreted as the conjunction of clauses. It should be noted that the
notion of "atom" is eliminated from this discussion, since we may use literal classes
of great complexity. Although semantic intent might seem "submerged" by such a
liberal definition avoiding atoms, it will prove very useful in higher order logic: pre-
skolemization, much less "atomization," is not in general possible here.

We now give propositional definitions of model and inconsistency and note their
property of "compactness."

A subset M of (iX is called a model for a system X iff for each X, X E X implies
X N M ~ ~2f and M does not contain a pair of complementary literals.

A system X is inconsistent iff it has no model. Let X be a system. The set GR(X)
called the ground 7evolution of X is defined below:

GR(X) = d~f {Z] Z E X or exist X, Y E X and x such that ~ E X,

- ~ E Y, andZ = (X - {El) (J (Y - {-~})}.

Furthermore let GR ° (X) =dof X, and GR ~+1 (X) =a~ GR(GR" (X)) for n >_ 0.
The following result is a generalization of Robinson's theorem from [14], for count-

able systems.
'~OREM 3. A system X is inconsistent iff there exists n (n >_ O) such that

[] E GR"(X).
The theorem of course is familiar. I t makes use of the (propositional) Compact-

ness Theorem of logic [17] and is easily adapted to our needs by Robinson [14].
4.2. Clearly a system inconsistent by the propositional definition above is

"intuitively inconsistent." But the reverse is not the case: By these propositional
definitions the system composed of the clauses { ~ } and { ~ } is formally not
inconsistent. Yet we want to say that such a system is "unsatisfiable" in a natural
sense. This will be somewhat complicated, but the obvious first step is to provide
for the partial "elimination of quantifiers."

First we shall introduce some auxiliary notions. A substitution {vl ~-- ul , - . . ,
v~ ~-- u~} (n >_ 1) is called a variable change iff {ul ~-- v l , . . . , u,, ~ v,} is also a
substitution. A pair of literal classes ~, ~ are called variants iff there exist variable
changes ~, ~ such that p = ~ o a, and ~ = 15 o ~.

Now we shall introduce our version of combined rules of generalization and
existentialization. For practical convenience the rule of double negation is also
included.

Let p, q be literals. We shall say that ~ is a simple Q-reduction of p iff

 vu,.
(1) i f p ' = 1or then ~ is a variant of or

which is obtained by replacement of all free occurrences of u in r by some arbitrary
variable (possibly u) which is not free in r;

I~ur ~ o { u u , . - - f v , . . . v,}

(2) if p= ('~llCrvu r then ~= (-~*°re°
ffwl . .

Journal of the Association for Computing Machinery, Vol 20, No. 2, April 1973

A Complete Mechanization of Second-Order Type Theory 353

where f or g is an existential parameter of the appropriate type arbitrary but
uniquely assigned respectively to the set of variants of ~ o r E ; here Vl, -. • ,
v, , wl, . . . ,wm (n, m ~ 0) are all the distinct variables occurring free respec-
tively in ~lup and ~Vup;

(3) i f p = ~ - ~ r then q = v;
(4) if otherwise then q = p.
The Q-rule could be given a shorter formulation where only upper subeases of

(1), (2) were treated, and the other subcases together with (3) replaced by ap-
propriate axioms. However, it would obviously make the proof longer, and does not
make implementation of the Q-rule really easier.

We shall say that ~ is Q-reduction of p iff for some ~, ~ is a simple Q-reduction of
and f is a Q-reduction of P-
We shall also say that a clause X = {~1, " '" , ~kl is a Q-reduction of a clause

Y = {~1, ." • , ~k} iff ~ is a Q-reduction of ~ .
4.3. Now we shall introduce a version of the instantiation rule which combines

substitution with the elimination of some quantifiers.
A clause X is an instance of a clause Y under the substitution a (or simply instance)

iff for some subclause Z c Y, X -- ((Y -- Z) [J (Z o a) Q) o ~, where WQ denotes
a Q-reduction of W.

The necessity of the double application of substitution in forming an instance is
illustrated in the example at the end of this subsection.

Let X be a system. The extensionn of X is given by

E(X) --def {Z] Z is an instance of some X E X}.

This is of course a system, and indeed a very rich system which consists exactly
of all the instances of clauses of X. Indeed, it provides the bridge from our proposi-
tional definition of inconsistency of Subsection 4.1 with the usual intuitive notion of
unsatisfiability: A system is called unsatisfiable iff E(X) is inconsistent. We give an
example of how E(X) provides an intuitive decomposition of the possibly complex
literal classes appearing in X. (In this example and elsewhere we will omit the bars
which should indicate object classes.)

Example. Let X be the system:
(1) {(Vx Qx ~ Vx3y P~xy)},
(2) {Qu},
(3) {-~p2av},
(4) {-~(p ~ q), -~p, q}.

Now X itself is not inconsistent, but E(X) has the following clauses as members
(among many, many others) :

(5) {Qa},
(6) { ~P2aFa},
(7) { ~ (V x Qx ~ Vx~ly p2xy), Qa, P2aFa}.

These arise from the substitutions {u ~-- a}, {v ~-- Fal, {p ~ VxQx, q ~- Vx~y P2xy,
x ~ a} and Q-reductions. Notice that clause (4) is essential to supply semantic
intent to the symbol D.

4.4. We have given the notion of unsatisfiability in the above form as it will be
more compatible with our discussion of generalized resolution in Section 5. However,
our notion is exactly equivalent to the usual notion based on Henkin's theory of
general models for type theory [8].

A system X is called original iff no existential parameter occurs in any literal of

Journal of the Assoclatlon for Computing Machinery, Vol. 20, No. 2, April 1973

3 5 4 TOMASZ PIETRZYKOWSKI

any clause of X. X is complete iff whenever a propositional functor occurs in X
then X contains its semantic description (all the three clauses from the list of
axioms (1) to (9) in the beginning of Section 6 in which this functor occurs).

THEOREM 4. I f X is an original and complete system with extension E(X) such

that E(X) has a model (see definition, Subsection 4.1), then X has a general Henkin

model.
The proof of this theorem was provided by D. C. Jensen [9]. The idea of the

proof is as follows: A Henkin model H consists of a domain of elements for each
type; the base universe is the domain of objects of type CLASS. The domain for
objects of type LITERAL is {T, F}. The domain for each compound type (tl , t2)
is a class of functions from the domain for tl to the domain for t2 • (This class is
usually not all functions, but is closed under certain operations.) Then H is a model
for a system X if each clause in X is valid under each assignment of variables to
elements of the appropriate domains. Now a model 3i for E (X) m the sense of
Subsection 4.1 amounts only to an assignment of the truth value T to certain
literals. However, we can construct a Henkin model H for X using this M. The
proof is involved but proceeds along the following lines: First it is noted that E(X)
is so rich that M already includes a complete atomic description for a suitable base
universe for H. This is the case because E(X) forces a "decomposition" of complex
formulas as illustrated in the example above. Next proper domains for compound
type symbols are produced. Finally, it is shown that each clause in X is valid in the
Henkin sense in the H which was produced. Our notion of unsatisfiability may be
compared with others in the literature (see [1, 8, 15]).

The restriction that the system must be original is introduced to safeguard
against the possibility of inserting existential parameters which already occur in the
system. It expresses the conditions under which the rule-C (or existential instantia-
tion) can be legally applied in predicate calculus.

5. Resolution

In this section we shall synthesize the earlier results and formulate the method o
detecting the unsatisfiability of a system. This method can be interpreted as a
generalized resolution principle. The resolution will be the only inference rule for
our systems which combines the properties of cut rule, simple substitution, X-
normalization, and quantifier elimination. In a way it satisfies the conditions stated
by Andrews in [1, p. 38].

Let X, Y be a pair of clauses. A clause Z is called a resolvent of X, Y iff Z =
((X - M) U (Y' - N)) o a, where Y' is an arbitrary but fixed variant Y such that
no variable occurs free in X and Y' simultaneously, M _C X, 2~ ~ Y', and a C ~(P)
where P is such Q-reduction of M U N that no variable introduced in M O N occurs
free in X of Y'.

Let X be a system. The set R (X) , called the resolution of X, is defined as follows:

R (X) =def X U {Z[Z is a resolvent of some X, Y C X}.

Furthermore we define R°(X) = X and for all n (n > 0), R'+I(X) =
R (R ~ (X)) . Now we may state the final result of this paper. We shall say that a
system X is of order k iff the set of literals of which it consists is of order k.

THEOREM 5. Let X be an original system of order not larger than 2. X is unsatis-

fiable iff there exists n such that [] C R ' (X) .

Journal of the Assoclatlon for Computing Machinery, Vol. 20, No. 2, Aprd 1973

A Complete Mechanization of Second-Order Type Theory 355

PROOF. First we shall prove the "if" part. To simplify this part of the proof we
introduce the notion of liberalized ground resolution as follows:

*GR(X) =def {Z I Z E X or there exist X, Y E X and a literal x
such that Z = (X - {4}) (J (r - {~})} .

We note that *GR(X) is larger than GR(X) but in fact they are essentially the
same from the standpoint of refutation (i.e. [] E *GR(X) iff [] E GR(X)) .
Define *GR~(X) analogous to GR' (X) .

Now we shall establish the following implication: for all n >_ 0,
(1) X E E(R'~(X)) implies that there exists Y, Y E *GR'(E(X)) and

Y C X .
For n = 0 the above is obviously true.
Let us assume inductively that the assertion is valid for n = i. If X E E(R'+~(X))

then according to the definition of the operator E there is a clause Z E R~+I(x) and
a substitution a such that X is an instance of Z under a.

But this means that either

(a) Z E R'(X),or
(b) Z = ((U - M) (J (V' - N)) o ~ w h e r e U, V E R'(X) a n d M , N,

satisfy the conditions stated in the definition of the resolvent.
In case (a) the proof of the assertion is obvious.
In case (b), from the definition of the resolvent it follows that there are Q-

reductions M~, N¢ of M, N such that MQ o ~ = N~ o ~.
It is an easy exercise to check that there will also exist Q-reductions M1 and Ni

o f M o (~ o a) a n d N o (~ o a) such t h a t M l o (~ o a) = N l o (~ o a) = {2}. (That
is, the first application of ~ o a is harmless as far as unification is concerned.)

Now (U - M) o ~ and (V' - IV) o ~ are subsets of Z, so let Ul and Vi be the
corresponding subsets of X (which is an instance of Z). Using the singleton {2}
obtained above define U2 = U1 U IZ} and V2 = V1 lJ I -~2}. I t is easy to check that
U2 and V2 are instances of U and V' under ~ o a. Thus U2, V2 E E(R'(X)) .

From the inductive assumption it follows that there exist U3, V3 such that
Ua ~ U2, V8 _c V2 and U3, V3 E *GR~(E(X)). Setting

if follows that

and, of course,

Y = (Us - {z}) (9 (V3 - {~2}),

Y _c (g2 - {2}) U (V2 - {-~2}) = U, U V1 = X,

Y E *GR '+~ (E(X)).

This proves implication (1).
Now let [] E R'~(X). Then obviously [] E E(Rn(X)) and from (1) it follows

that there exists Y, Y E *GR'(E(X)) and Y C []. That clearly proves that
Y = [] and in view of Theorem 3 E(X) is inconsistent. It proves that X is un-
satisfiable and completes the "if" part of the proof.

In order to prove the "only if" part we shall show that
(2) GR(E(X)) C E(R(X)).
Now let us assume that Y E GR(E(X)) . This means that
(a) Y E E(X), or

Journal of the Association for Computing Machinery, VoL 20, No. 2, April 1973

356 TOMASZ P I E T R Z Y K O W S K I

(b) there exists a literal z and clauses Ui , V1 such tha t U1, V1 E E (X) , ~ E
Ui , .-~ E V1, and Y ffi (Ui - {~}) (J (V1 - {-~}) .

In case (a) the proof is obvious.

In case (b) from the definition of operator E it follows that there exist clauses

U, V E X, and substitutions $, ~ such that IN(U1 , U, $) and IN(V1, V, ~).
(IN(Y, Z, q) should be read "Y is an instance of Z under ~.") Without losing

generality we may also assume that U, V, ~, y are chosen so tha t V = V j and if

= {ul ~-- xl , - - . , u,~ ~-- xm}, y = {vl ~-- y l , " " , v~ ~-- yn} then u l , . . . , urn,

vl, • • • , v~ are all distinct, no v, (1 < i < n) occurs in U and no u, (1 < i < m)
occurs in V. This assumption is justified by the fact tha t there are either infinitely

many, or none, distinct variables of any type.

Let a = {ul ~-- x l , . - . ,um ~-- x~ , vl ~-- y l , " '" , vn ~-- y.}. Then obviously
IN(U1, U, a) and IN(V1, V, a) . I t is easy to prove tha t there exist maximal

subsets M, N of U, V such tha t {2} is an instance of both M and N under ~. Then

from Theorem 2 it follows that there exist substitutions ~ and 8 such tha t a =

o O and ~ E ~ (P) . In view of the results above we have IN(Y, (U - M) U (V -

~) , ~ o ~). So clearly there exists a Z such that IN(Y, Z, ~) and IN(Z , (U -

M) U (V - ~) , ~). Since V = V' it becomes obvious tha t Z is a resolvent of

U, V E X so Z E R(X) and consequently Y E E(R(X)) . This proves (2) and by

induction on n we can easily establish tha t

(3) G R ~ (E (X)) C E (R ~ (X) for n p_ 0.

From the definition of unsatisfiability it follows that E (X) is inconsistent, and

by Theorem 3 there exists n such that [] E G R ~ (E (X)) . In view of (3), if [] E

E (R ' (X)) tha t means that there exists X E R~(X) such tha t I N ([] , X, ~).

However, this implies tha t X -- [] , and completes the entire proof.
5.2. Theorem 5 is a generalization of the original Robinson result for first-

order logic. However there is an essential difference: Sets R ' (X) may become
infinite here. Thi~ fact forces us to define some strategy of selecting finite subsets of

R ' (X) without losing the completeness. I t can be easily achieved in many ways;

one of these methods is presented below.

Let d, b be object classes and a a substitution. We shall define a subset of S(a, b, ~)
as follows:

S (k) (a, b, a) = d~f { ~] ~ is a substitution designed in some unified triple of

T (5, b, a) before the level k + 1}

for k ~ 0.
Now let ~(k){51, ~2} --d~f S(k)(a, b, a) and

~(k){a~, . . . , a , , a~+l} =de~ U {s(~)(a, o ~, a,+l o ~, a> I ~ E ~ { a ~ , . . . , a,}}

for all i ~ 2.
Obviously limb_= S (~) (a, b, a) = S(a, b, a) and lim~=,o ~(~){51, . . . , d,} =

~{a~, . . . , a,} for (i ~ 2).
In an analogous way if X is a system let R(~) (X) be a system defined as follows:

Z E R(~)(X) iff there exists a quadruple of clauses X, Y, M, N and substitution a

such t h a t X , Y E X, M _ ~ X , ~ C Y ' , a n d Z = (X - - M) @ a U (Y ' - ~) ® a

where a E 12(~) (P) where P is as in the definition of resolution. We also define:

]on+l
R~ °) (X) -- X and ,~(~) (X) = R(~) (R~) (X)) .

Journal of the Association for Computing Machinery, Vol. 20, No. 2, Aprd 1973

A Complete Mechanization of Second-Order Type Theory 357

From this definition it immediately follows that for each X and all n, k (n, k > 0),

R~) (X) is finite and lim~.~ R~) (X) = R" (X).
Finally, Theorem 5 can be generalized as follows:
THEOREM 6. Let X be an original system of the order not larger than 2. X is up-

satisfiable iff there exist k, n such that [] E R~k) (X), and R(~) (X) is finite.

The proof of this theorem is obvious.
However, it should be mentioned that the above method of finitizing the resolu-

tion sets is far from being practical, and the problem of dealing with infinite resolu-
tion sets requires separate consideration.

6. Application of the Method

This section is devoted to applications of our method to various proofs.
To economize on notation we shall assume that a clause {~51, p~, .- . , Psi

(n > 1) will be simply denoted as pl, p2, .-- , p~ •
First we shall state the axioms of the propositional calculus, which will be used in

later proofs. (A similar approach has been used by Bledsoe in [2].)

(1) ~ (p ~ q), -~p, q,
(2) (p ~ q),p,
(3) (p ~ q), _nq,
(4) -~(p ^ q),p,
(5) -~(p ^ q),q,
(6) (p ^ q), -np, _nq,
(7) -~(p v q), p, q,
(8) (p v q), -~p,
(9) (p v q),-~q.

6.1. The following two examples from number theory are chosen to emphasize
the advantages of not destroying the original form of the theorems. It is obviously
possible in our system to realize the idea of "marco predicates" as postulated by
Meltzer in [10].

Example 1. First we shall prove unsatisfiability of the system consisting of

clauses (1) to (9) and the following:

(10) x = x

(11) ~PO, ~PSa, Px

(12) -7Vx(x = 0 V 3 y x = Sy)

Proof,

(13) -~(b = 0 Y 3 y b = Sy)

(14) 4 (0 = 0 V 3yO = Sy),

(Sa = 0 V 3y Sa = Sy)

(15) .-10=O, ~ (S a = O V ~y
Sa = Sy)

(16) -7(Sa = 0 V 3y Sa = Sy)

(17) -nSa = Sy

(18) []

(property of equality),

(part of the axiom of induction),

(negated theorem).

from (12) and Q-rule,

from (11), (13) P e-- Xu.(u = 0 Y 3y

U = Sy) . ,

from (8), (14),

from (10), (15),
from (9), (16), and Q-rule,

from (10), (17).

Journal of the Association for Computing Machinery, Vol. 20, N'o, 2, April 1973

358 TOMASZ PIETRZYKOWSKI

Example 2.
from its original form.

(10) .-1Sx = O)

(11) (x + Sy) = S(x + Y) I (axioms of number theory),
(12) (x + O) = x
(13) ~PO, ~PSa, Px (part of the induction axiom),
(14) -~x = y, ~ x = z, y = z (property of equality),
(15) m V x V y ((y + x) = 0 D (negated theorem).

y -- 0)

Proof.

(16) m V y ((y + b) = O D y =0)
(17) - ~ ((d + 0) = O:Dd = 0),

~ ((c + Sa) = O D e = 0)

(18) -~((d+0) f 0 ~ d = 0) ,
(c + Sa) = 0

(19) (d+O) = O,(c+ Sa) = 0 from(2) , (18),
(20) ~d = O, (c + Sa) = 0 f rom(3) , (18) ,
(21) --1(4 + O) = y, y = O, (c from (14), (19),

+ Sa) - -0
(22) ~(d + O) -- d, (c + Sa) = 0 from(20), (21),
(23) (c + Sa) = 0 from (12), (22),
(24) ~ (c + S a) = y , y = O f rom(14) , (23) ,
(25) S(c + a) = 0 from (11), (24),
(26)

Now we shall prove another number theoretical theorem starting

from (15) and Q-rule,
from (13), (16), Q-rule, and P ~--

Xu.Vy((y + u) = O D y = 0).,
from (2), (17),

D from (10), (25).

It is clear that if proofs of the above theorems were made after completing
skolemization and atomization they would be much longer. Moreover, there is one
more advantage: If we keep the theorems in their "natural form" they seem to be
more suitable to attack by heuristic strategies derived from some "natural" proof
techniques. For example, the choice of proper substitution for the predicate P
(line (14) in Example 1 and line (17) in Example 2) can be justified by some
simple heuristic reasons.

6.2. In the following we shall present proofs of the three theorems from set
theory.

Example 3.1 The following presents a proof of a part of De Morgan's law. It
should be noted that it is impossible to preskolemize this system.

(10) mVux E fu,xE rl ufu (definition of N),
(l l) ~ 3 u x E fu,x E U ufu (definition of U),

(12) ~ x E Cy,~xEy'~ (definition of C),
(13) xE Cy, xE y ¢
(14) -~V x~'f(x E C (J ufu D x E (negated theorem).

NuCfu)

Proof.

(15) ~ (a E COuFu ~ a E from (14) and Q-rule,
NuCFu)

(16) a E COuFu from (2), (15),

In tu i t ive ly , i n t e rp re t f'lufu as fl,f, for in tersec t ion indexed by i, and s imi lar ly b y Uufu.

Journal of the Assoeiatmn for Computing Machinery, Vol. 20, No. 2, April 1973

A Complete Mechanization of Second-Order Type Theory 359

(17) -aa E UuFu

(18) ~ a E Fu

(19) ~ a E nuCFu
(20) -~a E CFb

(21) a E Fb

(22) []

~om(12) , (16),
~om(11) , (17) , and Q-ru~,
~om(3) , (15),
~om(10) , (19), and Q-rule,
~om(13) , (20),
f rom(18) , (21) .

Example 4.

skolemized:

(10) x E {u [Pu}, ~Px~

(11) mx E { u l P u } , P x ~

(12) ~ V z (z E {u[3vP~uv}

3v z E {u I fu r})

Proof.

(13) ~ (a E {ul3vp2uv}

~v a E { u I P2uv})
(14) a E {ul3vP2uv
(15) P~ab

This is another simple example of a theorem which cannot be pre-

16) ~ a E {uIP2uv}
17) ~p2av

18) []

Example 5. Here we shall prove half

(10) x E {uiPu}, mPx~

(11) mx E { u l P u } , P x ~
(12) m x = y, ~Px, Py

(13) d E x , x ~ y

(14) ~ d E y, x C y
(15) 3 f V x (x ~ a ~ 3y(y E a ^

fy = x))

Proof.

(16) V x (x C _ a ~ 3 y (y E a h

fy = y))
(17) (x C a ~ ~ly(y E a h

Fy = x))

(18) m x ~ a , Gx E a h
FGx = x

(19) ~ x C a , Gx E a
(20) ~ x C a, FGx = x

(21) --~Rz, ~qz , z E- {u l (R u h
Qu)}

(22) Rz, ~ z E {ul (Ru ^ Qu)}

(23) Qz, ~ z E {ul (Ru ^ Qu)}

(axiom of class formation),

(negated theorem).

from (12) and Q-rule,

from (2), (13),
from (11), (14), Q-rule and

P ~ ~u.3vP~uv.,

from (3), (13), and Q-rule,
from (10), (16), and P ~ ~,u.P~uv.,
from (15), (17).

of Cantor's theorem (see [11, p. 56]).

(axioms of class formation),

(axiom of equality),

(definition of "c_" relation'),

(negated theorem).

from (15) and Q-rule,

from (16) and Q-rule,

f rom(l) , (17),

Actually, the parameter d should be given as a binary function
fled notation clearly follows as a special case.

from (4), (18),
from (5), (lS),
from (6), (10), and

P *- hu. (Ru h Qu). ,
from (4), (11), and

P ~ hu. (Ru h Qu). ,
from (5), (11), and

P ~-- Xu.(Ru h Qu). ,

(of x and y), but this simpli-

Journal of the Association for Computing Machinery, VoL 20, No. 2, Aprd 1973

360 TOMASZ P I E T R Z Y K O W S K I

(24) ~ x ~_ a, ~PFGx, Px

(25) -~{ui(-~u E Fu ^ q~)/~

a, ~QG{u i (mu E Fu ^

Qu)}, G{u I (~ u E Fu ^

Qu)} E {ul (-~u E Fu ^
Qu)}

(26) m { u l (~ u E Fu ^ Qu)}

a, ~QG{u I (~ u E Fu ^
Qu)}

(27) m { u [(~ u E Fu A u E a)}
C a

(28) d E { u l (~ u E Fu h u E a)}
(29) (-~d E Fd ^ d E a)

(30) d E a
(31) ~ d E a
(32) []

from (12), (20),
from (21), (24), R ~ X u . ~ u E Fu.,

P (-- Xu.Gx E u. , z ,-- G{u I (~ u
E Fu ^ Q u) } , x ~ - { u l (~ u

E Fu A Qu)}

from (22), (25), R ~-- ku. ~ u E Fu.,

z~--G{u I (m u E Fu ^ Qu)},

from (19), (26), and Q ~ Xu.u E a.,

• ~ - { u l (-~u E Fu h u E a)l
from (13), (27),
from (11), (28), and P ~ X u . (~ u

E Fu h u E a) . ,
from (5), (29),
from (14), (27),
from (30), (31).

Some comments about this proof. In lines (16) to (20) an atomization of the
original theorem is performed. Lines (21) and (22) are characteristic of many
proofs where there is a necessity to introduce a predicate which is not an atomic
formula (in this case it is X u . (m u E Fu A u E a) .) . The derivation of line (25)
is based on an interesting example of double second-order unification to obtain a
merge. I t should be noted that the above proof would be impossible to realize
without use of some axioms of propositional calculus (axioms of conjunction (4)
and (5)).

7. Conclusion

The method described above is clearly a proper generalization of the resolution
principle for second-order logic. However, its application raises many problems
which do not exist in the first-order case. We shall present some of them.

The main problem is due to the fact that growth of the resolution sets in the
presence of second-order axioms is much faster. It focuses our attention on special
strategies to accelerate the search. Most of the first-order general strategies can be
directly applied (like set of support, merging, ancestry filters, and unit preference),
but some, such as Pl-deduction, need modifications. However, it seems to be im-
perative to develop problem oriented strategies which will be suited to particular

mathematical theories. The common feature of these strategies should be a pos-

sibility of dealing with much more complex atomic formulas than in first order.

Special consideration must be given to the fact that the unification of second-

order literals generally involves many unifiers. This implies introducing some

schemas of preference ordering of unifiers while producing resolvents. It becomes

especially important when a general unifier is infinite.

The last group of problems is connected with the computer implementation of

this method. Since the structure of the objects and the manipulation of them are

more complex, there is clearly a need for some special data structure and manipula-

tion rules which will suit the specific features of the higher order systems.

Journal of the Assoclahon for Computing Machmery, Vol. 20, No. 2, April 1973

A Complete Mechanization of Second-Order Type Theory 361

Append ix I

THEOREM 1. For each object class ~ there corresponds a unique object class ~ such

that y is a normal object and conv* (x, y) holds.

PROOF. Proof of this theorem is partially provided in [1, pp. 8-13] (the existence

of a normal object y) and the rest can be obtained from the works of Church and

Rosser. However, we shall give here an independent proof which seems to be simpler.

The proof is based on the following lemmas.

Let N* be the set of all finite tuples of natural numbers, ordered by the relation

" ~ " as follows: (xl , • • • , x~) ~- (yl , • • • , y~) iff n > m or n = m and there exists

k such tha t for all i (0 < i < k), x~_, = ym-~ and x,_k > ym-k •

LEMMA 1. If {X,} (i = 1, 2, . ' .) is a sequence of elements of N * such that X , ~.

X,+~ , then this sequence is finite.

A proof of this lemma can be easily obtained by application of a double induction:

on the length of X, and on the value of its r ightmost component.

We shall introduce some functions characterizing the type complexness of objects.

Let lord be a mapping of the set of X-objects into the set of integers described as

follows:

l o r d (k u l . . . u , , . x . w l . . . w i n) = d e f max {ord (r (u ,))} A- 1

m < n). And finally Lord is a mapping of L into N* given by the (where 1 <

formula
Lord(x) =d~f (i , , " ' " , ik),

where x is an object and i s = number of k-subobjects y of x such tha t lord(y) = j .

A X-object which has no proper k-subobjects is called minimal .

LEMMA 2. Let kul . . . u , . x . w l . . "win (n >_ m > 1) be a min imal X-object and let

-- I hul. . . u , . x . w l . . .w,~ [~ • I f z is a k-subobject of y then lord(y) > lord(z).

PROOF. Let z = Xv l : . . v k . s . q l . . . q~ (1 < 1 < k). F rom the assumption it

follows tha t all x, wl , • . . ,wm have no k-subobjects, and this means tha t there exist

such i0 tha t w~ o = kv~. . , v~.s.. Now from the definitions of functions ord and lord,

and the fact tha t r (u ,) = r(w,) (1 < i < n) combined with the above, we obtain

the following:

lord(y) =- max {ord(T(u,))} A- 1

= max {ord(r(w,))} + 1 ~ ord(r(zo,o)) + 1

= ord((r (v l) , . - . , r (v~) , r (s))) + 1

= max {ord(T(v,))} + 2 >_ max {ord(T(v~))} -t- 2

= lord(z) + 1 > lord(z).

This proves Lemma 2.

Now we shall proceed with the main par t of thc proof.

Let x, y be objects such tha t cony(x, y) holds and let contr(x, y) denote the k-

subobject of x which is replaced in y by its X-contraction. Let us additionally assume

tha t contr(x, y) is minimal. Let Lord(x) = (i~, . . . , ik , "'" , i,,) and lord(contr

(x, y)) = k where 1 < k < m. This means tha t y has one k-subobject of lord =-]c

less and some new k-subobjects. However, all these new k-subobjects obviously

Journal of the Association for Computing Machinery, Vol. 20, No 2, April 1973

362 TOMASZ P I E T R Z Y K O W S K I

occur in contr(x, y) and by Lemma 2 their lord is smaller than k. These two results
together with the definition of mapping Lord imply tha t

Lord(y) = (j l , " " , j k - l , ik - 1, ik+l, . . . , i~).

This means that Lord(x) > Lord(y).
Now let a l , a2, . . . , be a sequence of objects such that cony(a , , a,+l) (i ~_ 1)

holds and cont r (a , , a,+~) is minimal. I t is easily noticed that if a, is not a normal
object then it has at least one minimal k-subobject. Thus there also exists an object
a,+l such tha t cony(a , , a,+l). So, from the formula above it follows tha t Lord(a,) ~-
Lord(a,+~) for all i ~ 1. But Lemma implies that the sequence Lord(a,) (i =
1, 2, . . •) must be finite. Thus there exists an n such that a, is a normal object and
obviously conv*(al, a,) holds. Since al is an arbitrary object it remains only to
prove tha t the object class dd, uniquely corresponds to d~.

Let us assume inversely tha t there exists an object b such that b is normal,
conv*(al, b) holds, and b ~ d , . Let k be a number such tha t conv*(ak, b) holds
and * cony (ak+~, b) is false. Obviously such a k always exists and 1 < k _< n - 1.
Since conv*(ak, b) holds, there exists a sequence bl, . . . , b= (~n >_ 2) such that

' ~ ' ~ Y E S

IP. :,.o,,o,.,)l
1" @

© s P EMPTY) NO
~Y~S

('S N EMPTY)
4 NO

] NP: =N]
EMPTY

i"
I TAKE <°,=,O') ~R~ P I

I
1 P'.R-:,..,.o-,l 1

FIND n SUCH THAT:

(1) FOR ALL; (1 < - ;<_n)

o[,3 =bi l l ,
(z)a[n] *u[°],
(3) o [n] IS NOT BOUNDED
OCCURRENCE OF VARIABLE

FIND LARGEST ; SUCH THAT :
(t) 0 [;] I$ FREE OCCURRENCE OF VARIABLE,
(z) ; < j ,

(3) THERE EXISTS k SUCH THAT °In I OCCURS IN k lit
ARGUMENT OF THE FUNCTIONAL SUBOBJECT WITH
HEAD 0[,]

@OES SUCH ; EX,S 9

I ¢ :={o(,l 4- ~"1 " "p.f"l' '"k-l"k.l
(ELIMINATtON RULE)

NO

°'} I

Flowchart: part (a)

NO , /~(g) = T(X)

~.WHERE 4~= {g . q - x } , j
• YES

o = oo~

b ,= bo~

Cr'=S O ' o ~ - ~ IF g IGeNEW w

L 0"o~ OTHERWISE

YES ~ NO

Flowchart: part (b)

Journal of the A~ociation for Computing Machinery, VoL 20, No. 2, April 1973

A Complete Mechanization of Second-Order Type Theory

o' • o ['.]
x : • SUITABLE SUBOBJECT OF
., b BEGINNING IN bil l] [g : " b in] I

I_ u : [~-~- ['~- - -~~9_.__ ' ' j x ' -SUITABLE SUBOBJECT

I t - (flS 9 A VARIABLE SUC BEGINNING IN a [n]

k T"AT ORO(~(~)) = l J I
;,Es : ~

C.lo) - . ~ ,)) NO I "

•'
" ° ['] I

• SUITABLE SUBOBJECT OF b
~GINNING IN ben]

C
(. is g,,A VARIABLE) NO

i
~ .oEs ~ OCCUR TREE ~N x~

N ~ , .,

'.::J: 7 :°;E;:::: !,

:, b{.] I
: ffi SUITABLE St)BOBJECT OF a,

BEGINNING IN o[nl

• It
.... , . - } 1

=i WHERE w ~ IS BEFINEB BY
| ms I..ITATION R . ~ I

363

Flowchart: part (c)

cony(b, , b,+t) holds for each i (1 < i < m - 1), bl = ak and be = b. Now, let
c = contr(ak, ak+j) and c, be the subobject of b~ (1 < i < p < m) which is the
image of c under the replacement induced by the conversion from b, to b~+l. There
must exist certain p (1 _< p < m) such that cp = contr(b~, b~+~) or cp disappears
from b~+t (otherwise b~ would have a X-subobject which contradicts with the as-
sumption that b~ is a normal object). Now we shall define the sequence bl', • • • , b='
as follows:

, ~result of replacing c~ in b, by an element of I e, I x (t < i _< p),
b~ = (b~+l (p < i < m).

I t is easily noticed that conv(b,', b,+l)' holds for all i (1 < i < m) and tha t b~-l"' =
b~. Moreover it can also be shown that conv(ak+~, b2'). These two results imply
that conv*(ak+~, b~) holds, which contradicts the definition of k, and completes the
proof of this theorem.

Appeadix II

A flowchart of the Unification Algorithm is presented in three parts. The notation
used here is as close as possible to the one used in the description of the algorithm;

Journal of the Association for Computing Machinery, Vol. 20, No. 2, April 1973

3 6 4 TOMASZ PIETRZYKOWSKI

however some additional conventions are necessary:

P denotes the recently completed level of the unification tree,

N denotes the level which is under construction,

S deuotes the set of unifiers recently produced.

The box indicates the possibility of a message to the user t ha t a singu-

lari ty is detected (i t may cause an infinite looping!).

I f the algorithm terminates or if the growth of S terminates, S will be a most

general unifier (in the case of the second-order language by Theorem 2). However,

S m a y grow indefinitely (essential singulari ty).

ACKNOWLEDGMENT. I would like to express m y sincere grat i tude to Mr. D. A

Forkes, whose discovery of a certain higher order unification algori thm inspired me

to develop this method, and to Dr. A. Ehrenfeucht and Dr. A. Gabrielian for their

comments and criticisms. But especially I feel in debt to Dr. D. C. Jensen, whose

help, criticisms, and corrections allowed me to bring the p a p e r to the present form.

REFERENCES

1. ANDREWS, P. Resolution in type theory. J. Symbolic Logic 86, 3 (1971), 414-432.
2. BLEDSOE, W.W. Splitting and reduction heuristics in automatic theorem proving. Arti-

ficial Intelligence ~ (1971), pp. 57-78.
3. DE BRUIJN, N. G. The mathematical language AUTOMATH, its usage and some of its

extensions. Symposium on Automatic Demonstration, Versailles, Dec. 1968, Springer-
Verlag, 1970, pp. 29--61.

4. CHURCH, A. The Calculi of Lambda-Conversion. Princeton U. Press, Princeton, N. J.,
1941.

5. DARLINGTON, J .L . Automatic theorem proving with equality substitutions and mathe-
matical induction. In Machine Intelligence 3, D. Michie (Ed.), American Elsevier, New
York, 1968, pp. 113-130.

6. DARLINGTON, J.L. A partial mechanization of second-order logic. In Machine Intelligence
6, B. Melzer and D. Michie (eds.), American Elsevier, New York, 1971, pp. 91-100.

7. GOULD, W.E. A matching procedure for omega-order logic. Ph.D. thesis, Princeton U.,
Princeton, N. J. ; University Microfilms, Ann Arbor, Mich.

8. HENKIN, L. Completeness in the theory of types. J. Symbolic Logic 15 (1960), 81-91.
9. JENSEN, D. C. A two-valued type theory model convenient for resolution theorem-

proving. CSRR 2055, Dep. of Applied Analysis and Comput. Sci., U. of Waterloo, Water-
loo, Ont., Canada, 1971.

10. MELTZER, B. Power amplification for theorem-provers. In Machine Intelligence 5, B.
Meltzer and D. Michie (Eds.), American Elsevier, New York, 1970, pp. 165-180.

11. MONK, J. D. Introduction to ,get Theory. McGraw-Hill, New York, 1969.
12. PIETRZYKOWSKI, T. A natural language for formal mathematical reasoning (TPL 2),

Part I. CSRR 2015, Dep. of Applied Analysis and Comput. Sci., U. of Waterloo, Waterloo,
Ont., Canada, 1970.

13. PIETRZYKOWSKI, T. A complete mechanization of second order skolemized logic. CSRR
2036, Dep. of Applied Analysis and Comput. Sci., U. of Waterloo, Waterloo, Ont., Canada,
1971.

14. ROBINSON, J.A. A machine-oriented logic based on the resolution principle. J. ACM 12,
1 (Jan. 1965), 23-41.

15. RonINSON, J.A. New directions in mechanical theorem proving. Proc. IFIP Cong. 68,
Vol. 1, North-Holland Pub. Co., Amsterdam, pp. 63--67.

16. ROBINSON, J. A. Mechanizing higher-order logic. In Machine Intelligence .~, B. Meltzer
and D. Michie (Eds.), American Elsevier, New York, 1969, pp. 157-172.

17. SHOE~FIELD, J. R. Mathematical Logic, Addison-Wesley, Reading, Mass., 1967.

RECEIVED MAY 1971; REVISED MAY 1972

Journal of the. mociatlon for Computing Machinery, Vol. 20, No. 2, April 1973

