
A Complete Multi-Processor System-on-Chip FPGA-Based
Emulation Framework

Pablo G. Del Valle?, David Atienza†?, Ivan Magan?, Javier G. Flores?, Esther A. Perez?,
Jose M. Mendias?, Luca Benini‡, Giovanni De Micheli†

?DACYA/UCM, Juan del Rosal 8, 28040 Madrid, Spain. pgarciav@fdi.ucm.es, {datienza, mendias}@dacya.ucm.es
† LSI/EPFL, EPFL-IC-ISIM-LSI Station 14, 1015 Lausanne, Switzerland. {david.atienza, giovanni.demicheli}@epfl.ch

‡DEIS/Bologna, Viale Risorgimento 2, 40136 Bologna, Italy. {lbenini}@deis.unibo.it

Abstract— With the growing complexity in consumer embedded prod-
ucts and the improvements in process technology, Multi-Processor
System-On-Chip (MPSoC) architectures have become widespread. These
new systems are very complex to design as they must execute multiple
complex real-time applications (e.g. video processing, or videogames),
while meeting several additional design constraints (e.g. energy con-
sumption or time-to-market). Therefore, mechanisms to efficiently explore
the different possible HW-SW design interactions in complete MPSoC
systems are in great need. In this paper, we present a new FPGA-based
emulation framework that allows designers to rapidly explore a large
range of MPSoC design alternatives at the cycle-accurate level. Our
results show that the proposed framework is able to extract a number
of critical statistics from processing cores, memory and interconnection
systems, with a speed-up of three orders of magnitude compared to cycle-
accurate MPSoC simulators.

I. INTRODUCTION

New applications ported to embedded systems (e.g. scalable video
rendering or multi-band wireless protocols) demand complex single-
chip multi-processor designs to meet their real-time processing re-
quirements while respecting other critical embedded design con-
straints, such as low energy consumption or reduced implementation
size. Furthermore, the consumer market is reducing more and more
the time-to-market and price [15]. Thus, not making feasible any
longer complete redesigns of such multi-core systems from scratch.
In this context, Multi-Processor Systems-on-Chips (MPSoC) have
been proposed as a promising solution for all these previous prob-
lems, since they are single-chip architectures consisting of complex
integrated components communicating with each other at very high
speeds [15]. Nevertheless, one of their main design challenges is the
fast exploration of multiple hardware (HW) and software (SW) im-
plementation alternatives with accurate estimations of performance,
energy and power to tune the MPSoC architecture in an early stage
of the design process.

Several MPSoC simulators have been proposed, both at transac-
tion and cycle-accurate levels using HDL languages and SystemC.
Although they achieve accurate estimations, they are limited in
performance (circa 10-100 Khz) due to signal management overhead.
Thus, such environments cannot be used to analyze MPSoC solutions
with complex embedded applications and large inputs to cover the
variations in data loads at run-time. Moreover, higher abstraction
levels simulators attain faster simulation speeds, but at the cost of
a significant loss of accuracy. Hence, they are not suitable for fine-
grained architectural tuning.

One solution for the speed problems of cycle-accurate simulators
is HW emulation. Various MPSoC emulation frameworks have been
proposed [20], [9], [1]. However, they are usually very expensive for
embedded design (between $100K and $1M). Moreover, they are not
flexible enough for MPSoC architecture exploration since they mainly
aim at large MPSoCs prototyping or SW debugging. Typically, the

baseline architectures (e.g. processing cores or interconnections) are
proprietary, not permitting internal changes.

In this paper, we present a new FPGA-based emulation frame-
work that allows to explore a large range of design alternatives of
complete MPSoC systems at the cycle-accurate level. Its modular
architecture can extract a large range of critical statistics from three
key architectural levels of MPSoC systems (i.e. processing cores,
memory subsystem and interconnection mechanisms), while real-life
applications are executed. Our experiments show that this framework
achieves detailed cycle-accurate reports of these three levels with a
speed-up of three orders of magnitude compared to state-of-the-art
cycle-accurate MPSoC simulators.

The remainder of the paper is organized as follows. In Section II,
we summarize related work of MPSoC analysis and testing. In Sec-
tion III, we present the flexible architecture of the MPSoC emulation
platform and the statistics extraction mechanism. In Section IV,
we present the advanced mechanism incorporated to decouple the
emulation performed from the physical characteristics of the present
hardware. In Section V, we detail how the HW/SW emulation process
of MPSoC architectures is performed. In Section VI, we illustrate the
speed and versatility of our emulation framework for MPSoC design.
Finally, in Section VII, we draw our conclusions.

II. RELATED WORK

It is widely accepted that MPSoCs represent a promising solution
for forthcoming complex embedded systems [15]. This has spurred
research on modelling and prototyping MPSoC designs, both using
HW and SW.

From the SW viewpoint, different solutions have been suggested
at different abstraction levels, enabling tradeoffs between simulation
speed and accuracy. First, fast analytical models have been proposed
to prune very distinct design options using high level languages (e.g.
C or C++) [17], [5]. Second, transaction-level modelling in SystemC,
both at the academic [18], [21] and industrial level [16], [6], have
enabled more accuracy in system-level simulation at the cost of
sacrificing simulation speed (circa 100-200 Khz). Thus, not enabling
extensive testing with large and various systems due to the too long
simulation times, conversely to our emulation framework. Moreover,
in most of the cases, they are only limited to a range of propietary
interfaces (e.g. AMBA or LISA). Finally, important research has
been done to obtain cycle-accurate frameworks in SystemC or HDL
languages. In this context, companies have developed cycle-accurate
simulators using post-synthesis libraries from HW vendors [12], [19].
However, their simulation speeds (10 to 50 Khz) are unsuitable
for complex MPSoC exploration and validation. In the academic
context, the MPARM SystemC framework presented in [3] is one
of the most complete simulators for system-exploration since it
includes cycle-accurate cores, complex memory hierarchies (e.g.

3-901882-19-7 2006 IFIP 140

caches, scratchpads) and interconnection mechanisms (e.g. AMBA or
STBus). It can extract reliable energy and performance figures, but
its major shortcoming is its simulation speed (120 Khz in a Pentium
IV at 2.8 Ghz, see Section VI for further details).

From the HW viewpoint, an important alternative for MPSoC
prototyping and validation is HW emulation. In industry, one of the
most complete sets of statistics is provided by Palladium II [20],
which can accomodate very complex systems (i.e. up to 256 Mgate).
However, its main disadvantages are its operation frequency (circa
1.6 Mhz) and cost (around $1 million). Then, ASIC Integrator [2]
is much faster for MPSoC architectural exploration. However, its
major drawback is the limitation to up to five ARM-based cores
and only AMBA interconnection mechanisms. The same limitation of
proprietary cores usage for exploration occurs with Heron [9]. Finally,
other relevant industrial emulation approaches are System Explore [1]
and Zebu-XL [8], both based in multi-FPGA emulation in the order
of Mhz. They can be used to validate IPs, but are not flexible enough
for fast MPSoC design exploration or detailed statistics extraction. In
the academic world, the most complete emulation platform up-to-date
for exploring MPSoC alternatives is TC4SOC [7]. It uses a propietary
32-bit VLIW core and enables the exploration of the interconnection
mechanisms and different protocols by using an FPGA to reconfigure
the network interfaces. Also, [4] proposes a HW/SW emulation
framework that enables the exploration of different Network-on-
Chip (NoC) interconnection mechanisms. However, they do not allow
designers to exhaustively extract statistics and explore the other
two architectural levels we propose, namely memory hierarchy and
processing cores.

III. MPSOC EMULATION ARCHITECTURE

The proposed MPSoC framework uses FPGA emulation as the
key element to introduce SW to real HW, execute that SW on the
considered MPSoC platform capable of multi-megahertz speeds, and
extract detailed system statistics. An overview of the baseline HW
architecture of our MPSoC emulation platform is depicted in Figure 1.
It consists of four main elements from where designers can get critical
statistics about MPSoC designs:

1) The evaluation (e.g. performance, generated traffic or locality
of references) of different MPSoC processing cores, such as,
Power PC, ARM or VLIW cores.

2) The definition of the first level of the on-chip memory hierarchy
(i.e. I-cache, D-cache and scratchpad memories), as well as
main memories, namely private and shared memories between
processors.

3) The evaluation of different interconnection mechanisms be-
tween the first level of the memory hierarchy and the main
memory (i.e. buses and NoC interconnections).

4) The obtained statistics are automatically sent to a host PC via
an standard Ethernet connection thanks to our own developed
statistics extraction subsystem. It includes a graphical interface
running onto the host PC to analyze the information received
and provide detailed reports.

These elements are designed in standard and parameterizable
VHDL and mapped onto a Xilinx Virtex 2 Pro vp30 board (or
V2VP30) with 3M gates, which costs $2000 approximately in the
market, and that includes two embedded Power PCs, various types
of memories (i.e. SRAM, SDRAM and DDR) and an Ethernet
port. However, any other FPGA could be used instead. The only
requirements are the availability of an Ethernet core to download the
statistics, a compiler for the included cores and a method to upload
both the FPGA synthesis of our framework and the compiled code of

Fig. 1. Overview of the HW architecture of the emulated MPSoC

the application under study. In our case, Xilinx provides all these tools
in its Embedded Development Kit (EDK) framework for FPGAs.

In addition, remark that the purpose of our emulator is not the
prototyping of final HW components in MPSoC systems, but the em-
ulation and fast exploration for designers of desired characteristics of
the eventual system. Therefore, our framework includes mechanisms
to configure the exploration and hide the physical characteristics of
the underlying HW that do not match the selected values, conversely
to traditional prototyping. A detailed explanation of the included
mechanisms is given in Section IV.

In the following subsections we describe in detail the architecture
and advanced emulation mechanisms of the different elements in-
cluded in our emulation platform. Also, it is outlined the synthesis
figures for each component.

A. Processing Elements

In our framework, any type of processor or coprocessor core can be
included, both propietary and public ones. The accepted input forms
are netlist mapping onto the underlying FPGA and HDL languages
(i.e. Verilog, VHDL or Synthesizable SystemC). This addition of
cores is possible since the memory controller that receives the
memory requests in our system includes an external pinout interface
and protocol that can be easily modified to match the respective ones
of the studied processor (see Subsection III-B). Moreover, only the
instruction set processing part of the core is required because its
memory hierarchy (e.g. caches or scratchpad) are replaced by our
framework to explore different memory configurations.

In the current version of the system, we have ported a hard-core
(PowerPC 405) and a soft-core (Microblaze) provided by Xilinx.
None includes HDL sources, only netlist mapping, and the inclu-
sion process for their pinout interfaces and protocols required one
week. Regarding platform’s scalability, it is worth to mention that a
complete Microblaze requires only 4% of the total resources of our
V2VP30 FPGA (574 out of 13.696 slices).

B. Memory Hierarchy

As Figure 1 indicates, in the basic emulated architecture two
memory levels presently exist: L1 cache memories and main mem-
ories. However, it is a matter of minutes to add additional cache
memory levels or private memories to each processing element, either
on a processor basis or by processor groups. The main element

141

in the memory hierarchy that enables this easy integration of new
memory devices and protocols is the memory controller. One memory
controller is connected to each processing core to capture all memory
requests of the respective processors. Then, it forwards them to
the necessary element of the memory subsystem according to the
demanded memory address. In the current implementation, it takes
2% of the total available resources of our V2VP30 FPGA (270 of
13.696 slices), and includes interfaces and protocols for four memory
components and three different memory address ranges:

1) Private scratchpad memory, addressable by SW at a config-
urable memory position and with unrestricted size, as long as
enough RAM resources exist. It also allows configuring latency
and can be used to place instructions or data. Its synthesis takes
1% of the V2VP30 (181 of 13.696 slices), apart from used
RAM resources.

2) Private main memory, cacheable or non-cacheable, addressable
in a configurable memory range of each processor. It is also
possible to configure its size and latency. Its synthesis takes
an insignificant amount of the total V2VP30 FPGA resources
(apart again from the used RAM).

3) Shared main memory, cacheable or non-cacheable according
to user’s configuration. It is possible to configure its size and
latency. Its inclusion does not take any part in the FPGA since
it uses real memories (i.e. SRAM, SDRAM or DDR) available
on the board.

4) Private HW-controlled data and instruction caches, transparent
to the processors, and embedded before the cacheable address
range of the two types of available main memories. It is possible
to define independently for each of them their total sizes, line
sizes and latencies to explore different design alternatives. In
our experiments, both caches are direct-mapped. However, their
modular designs include in different concurrent processes the
replacement policy and associativity, making easy to change
this configuration with additional algorithms to test.

Finally, each memory controller is able to observe and keep
synchronization of different clock domains, due to its multiple
external interfaces. Then, the memory controller informs the Virtual
Platform Clock Manager (see Section IV for more details) to stop the
clock of the processor during the emulation each time one physical
memory device is not able to fulfil the defined latency. Hence,
the stopped processor preserves its current internal state until it is
resumed by the clock manager, when the memory controller informs
that the information requested is available. This abstraction layer
in the platform allows us to implement the corresponding memory
resources either in internal FPGA memory (optimal performance)
or with external memories (bigger size), while still preserving the
intended emulation parameters and balancing emulation performance
and use of resources. Currently, our memory controller monitors two
clock domains: one is used for the microprocessor and another one
is used for the memories and the memory controller itself.

C. Interconnection Mechanisms

The third configurable element in our MPSoC emulation frame-
work is the interconnection mechanism between the memory con-
troller and the main memory (i.e. SRAM, SDRAM or DDR mem-
ories). At this level, we have included both buses and NoCs. To
enable this variety of choices, apart from the flexibility in the type
of interfaces of the memory controller, we have also included a
configurable main memory bridge in the device side. It includes
two different public pinout interfaces: one relates to the memory
and another one to the instantiated interconnection. Similarly as with

the memory controller, this enables us to extend the current list
of available interconnection mechanisms by modifying the required
pinout and protocol.

In the current version, the two available buses on Xilinx FPGAs
are included [10], i.e. On-Chip Peripheral Bus (OPB) for general-
purpose devices and Processor Local Bus (PLB) for fast memories
and processors. Also, we have created our own 32-bit data/address
bus for exploration purposes, where the bandwidth and arbitration
policies can be configured. For our experiments (see Section VI) the
arbitration latency is one cycle, and is connected to all processing
cores through an OPB interface and to an external SRAM memory
through a custom SRAM controller. However, any other algorithm
and external pinout can be included. Its synthesis (including the
SRAM controller) represents 1% of the V2P30 FPGA (210 of 13.696
slices).

In addition, we have included the possibility to explore custom-
made NoC solutions. The synthesizable NoC code is generated using
the Xpipes NoC Compiler [13]. It allows to study topologies with any
number of switches, interconnections between them with bandwidth
constraints and Network Interfaces (NIs) to connect external cores
to the NoC. We have modified the memory controller and the
main memory bridges to be able to generate Open Core Protocol
(OCP) transactions as the Xpipes NIs require [13]. Regarding FPGA
utilization, a complex NoC-based system with 6 switches of 4
input/output channels and 3 output buffers uses 70% of the V2P30
FPGA (9659 of 13.696 slices).

Finally, to illustrate the complexity of adding new interconnection
mechanisms to our framework, remark that the inclusion of each of
these buses and NoC interconnection interfaces required us only one
week of work. Furthermore, as with processing cores, any other high-
performance proprietary bus (e.g. AMBA, STBus, etc.) can be added
to our emulation framework as blackbox, since the integration process
only requires to know the used protocol and external bus pinout.

D. Statistics Extraction Subsystem

The main feature pursued in our design of the statistic extraction
subsystem is its transparent inclusion in the basic MPSoC architecture
to be evaluated, and with minimum penalty in performance in the
overall emulation process. For this purpose, as it is depicted in
Figure 2 with labels SNIFFER 1..n, we have implemented HW
sniffers that monitor certain signals of the memory controller and the
external pinout of each of the devices included in the MPSoC. These
sniffers are connected to a statistics manager through a dedicated
bus, that processes the received information and stores the statistics
in a buffer created in dedicated Block RAM memory inside the
FPGA. Finally, the buffers are concurrently processed by our network
dispatcher to generate MAC packets, in our own format, and send
them by an Ethernet port connected to the host PC (see Figure 2).

From a design point of view all sniffers in our platform share
a common structure. They have a dedicated interface to capture
internal signals from the module they are monitoring and a conection
to our custom statistics bus. There is an skeleton available to ease
the creation of new sniffers. This skeleton requires the designer to
indicate separately the set of ports, signals or internal registers to be
monitored in the component, and include them in a specific section
of a predefined Finite State Machine (FSM). This FSM automatically
creates the packets and sends the statistics of the HW sniffer to
the statistics manager according to our own custom communication
protocol and dedicated bus intercommunication system. Currently,
we provide two diferent types of sniffers. The first one, called
event-logging, exhaustively logs all interesting events that occur in

142

the platform. The second type of sniffers, called count-logging, are
designed only to count events, such as cache misses, bus transactions,
memory accesses, etc.; Thus, generating more concise results, and
what tipically designers demand from cycle-accurate simulators to
test their systems. Our experimental results with real-life MPSoC
designs (see Section VI) indicate that, practically an unlimited
number of event-counting sniffers can be added to the design without
deteriorating at all the emulation speed. This establishes one of the
main differences with SW cycle-accurate simulation systems: the
inclusion of additional cores or analysis sniffers to the evaluated
MPSoC architecture does not slow down the emulation process.

Finally, as an example to see how much overhead in FPGA area
the statistics extraction subsystem represents, remark that the amount
of resources used by one event-logging sniffer is 0.1% (14 slices)
while for an event-counting sniffer is about 0.2% (31 out of 13.696
slices).

IV. VIRTUAL PLATFORM CLOCK MANAGER (VPCM)

Apart from the flexibility of the emulated MPSoC architecture, in
order to be able to effectively validate future manufactured versions
of MPSoC platforms working at various final frequencies and speeds,
our emulation framework includes an additional hardware element,
namely the Virtual Platform Clock Manager (VPCM), shown in
Figure 2. It is the HW element used in our framework to provide
multiple virtual clock domains. This module generates as output the
clock signals used in the emulated MPSoC subsystems (VIRTUAL

CLK signals in Figure 2). It receives two different types of input
signals. First, the physical clock generated in the oscilator of the
FPGA (not shown in Figure 2 for simplification purposes), which in
the current implementation is set to 150 MHz. Second, one signal
from each memory controller of the emulated MPSoC subsystems
(VIRTUAL CLK SUPRESSION 1..N in Figure 2) used to request a
virtual clock inhibition period if any attached memory device of the
emulated hierarchy is not able to return the requested value at this
moment respecting its set user-defined latency (see Section III-B).
The use of the virtual clock domains generated by the VPCM module
is two-fold in our emulation framework:

• First, this mechanism can be employed to perform the emulation
of final MPSoC designs with different physical features than the
available HW components. Once the respective VIRTUAL CLK

SUPRESSION 1..N signal is risen, the corresponding VIRTUAL

CLK signal of that sub-system (or the related set of sub-
systems) is inhibited (no clock pulses are generated). Hence,
the stopped processor preserves its current internal state until
its clock (VIRTUAL CLK i) is resumed by the VPCM. This
occurs when the memory controller informs that the information
requested is available in the accessed memory. This abstraction
layer in the platform allows us to implement the corresponding
memory resources either in internal FPGA memory (optimal
performance) or with external memories (bigger size), while
still preserving the intended emulation parameters and balancing
emulation performance and use of resources. For instance, if the
desired latency of the main memories in the final system is 10
cycles, but it is not feasible with the type of memory modules
available for its emulation in the used FPGA (e.g. use of a large
SDRAM instead of multiple SRAMs), the VPCM unit will stop
the clock of the processors involved at run-time, thus hiding
the additional clock cycles required by the memory. Currently,
our VPCM includes two clock domains: one is used for the
microprocessor, memories and interconnection mechanisms. The
other one is for the memory controllers.

Fig. 2. HW architecture of the statistics extraction subsystem in the proposed
MPSoC emulation framework

• Second, the virtual clock generated by the VPCM unit for each
of the components in the emulated MPSoC can be transpar-
ently stopped at run-time in case of saturation of the Ethernet
connection. Then, when the congestion has disappeared (i.e.
all the extracted statistics at that execution moment have been
downloaded), the virtual clock of all the components can be
resumed, without losing any vital information of the behaviour
of the emulated MPSoC.

Moreover, the combination of these two mechanisms enables the
execution and cycle-accurate modeling of the emulated system at a
different speed than the allowed clocked speed of the available HW
components for a certain final configuration of the emulated MPSoC.
In fact, it is similar to the mechanism used in SW simulations, but at a
much higher frequency (see Section VI). For instance, it is possible to
explore the behavior of a final system clocked at 500 MHz, even if the
present cores of the FPGA can only work at 100 MHz. To this end, the
designer can define the latencies of each final component, which can
be easily extracted from a post-synthesis analysis before the cores are
combined in the final system to be manufactured. Then, our FPGA-
based framework takes care of synchronizing all the components for
the correct sampling according to the defined frequency. For instance,
in case of using a MPSoC with a desired virtual clock for the main
memory of 500 MHz, divided by a real working frequency of 100
MHz on the FPGA, our framework will be able to stop the clock of
the real execution as many cycles as needed for the slower devices
to respond like if they were operating at the desired speed.

V. HW AND SW MPSOC EMULATION FLOWS

One key advantage of our approach for a realistic exploration of
MPSoC designs at high speed is its double integration of HW and SW
flows in one overall framework. An overview of these two separated
emulation flows and how they are combined in a final step to create
the actual emulated MPSoC architecture is shown in Figure 3.

Concerning the HW flow, in the first phase it is defined the HW
architecture. In this phase the user specifies one concrete architecture
for each of the three main architectural levels that constitute the final

143

Fig. 3. HW and SW flows included in the MPSoC Emulation Framework

MPSoC system: processing cores, memory subsystem and intercon-
nection to the main memories. This is done by instantiating, in a
plug-and-play fashion, the predefined HDL modules available in our
repository for each of the previous three levels (see Section III). For
a complex MPSoC architecture with 8 processors and 20 additional
HW modules, this step requires few hours. In the second phase,
the range of parameters to be explored at each level and included
HW instance is defined. This process can be done in few minutes
thanks to our use of parameters in the instantiated modules. In the
third phase, the designer specifies which HW components are the
targets of the statistics extraction and connects adequate sniffers to
each of them. This phase requires less than one hour in real-life
MPSoC designs. Finally, in the fourth phase, the whole MPSoC
HW platform is synthesized with the standard tool provided by the
concrete FPGA supplier used. In our case we use the Integrated
Software Environment (ISE) from the EDK Xilinx toolflow [11]. The
synthesis process of our framework for a complex MPSoC system
(i.e. 30 elements) takes approximately half an hour for the first time it
is performed, but modifications in the current configurations of some
cores take no longer than some minutes to be resynthesized. Overall,
the whole process of creating the HW component of a complex
MPSoC architecture requires no more than few hours within our
emulation framework.

Related to the SW flow, the first phase is the programming of the
application to be used in the final MPSoC system. In our case, the
Xilinx EDK tool used for the SW phase includes GNU C (gcc)
and C++ (g++) compilers/linkers for the Power PC and Microblaze
cores available in our repository. Thus, if the application to be tested
is already written in any of these languages, no effort (and time)
is required for the designer since the memory hierarchy and the
utilization of the interconnection mechanism (e.g. generation of OCP
transaction for the NIs of the NoC) are transparently generated by
the underlying emulated HW architecture. In the second phase, the
SW is compiled and binaries are generated by the EDK framework
for each processor. In case of run-time errors, the system includes
ported versions of the GNU gdb debugger. The compilation of the
SW part of an 8-processor emulation system only takes minutes.

Finally, in the last phase of the construction of the MPSoC
emulation framework, the HW and SW components are uploaded
onto the Xilinx FPGA-based platform using a JTAG device. Once the
configuration of the overall MPSoC platform is finished, the system
runs autonomously while the statistics are concurrently extracted and
sent to the host PC. Then, our provided graphical interface running
onto the host captures the packets sent and displays the statistics

TABLE I
TIMING COMPARISONS BETWEEN OUR MPSOC EMULATION FRAMEWORK

AND THE CYCLE-ACCURATE MPARM SIMULATOR

MPARM MPSoC Emulation
Matrix (one core) 106 sec 1.2 sec
Matrix (4 cores) 5’ 23 sec 1.2 sec
Matrix (8 cores) 13’ 17 sec 1.2 sec
Dithering (4 cores-bus) 2’ 35 sec 0.18
Dithering (4 cores-NoC) 3’ 15 sec 0.17

obtained onto the screen. In case the designer wants to modify
the executed application, no re-synthesis is required and in few
minutes another application can be tested in the proposed emulation
framework.

VI. EXPERIMENTAL RESULTS

We have assessed the performance and flexibility of the proposed
emulation framework in comparison with the MPARM framework [3]
by running several examples of multimedia applications in MPSoC
architectures. In our experiments MPARM is executed on a Pentium
IV at 3.0 Ghz with 1 GByte SDRAM and running GNU/Linux 2.6.

In the first set of experiments we have evaluated the speed-ups
that can be obtained by the emulation framework in comparison to
cycle-accurate simulators. To this end, we have defined a simple SoC
architecture composed by one Power PC core and our own bus using
the protocol and latency of the AMBA bus. The memory hierarchy is
composed by a L1 D-cache, I-cache and scratchpad memories, and
an SRAM main memory of 32 MB. L1 memories sizes are evaluated
in the range 2-16 KB, without relevant variations in the required
time for the simulations/emulations performed. We have quantified
the performance gains on a simple application, typical of multimedia
processing, a matrix multiply processing core. Our results indicate
(see Table I) that the emulation speed of our cycle-accurate emulation
framework running at a real frequency of 100 MHz achieves more
than 10 MHz (1.2 sec), including statistics extraction with 6 HW
sniffers to cover the L1 memories, the memory controller and the
traffic on the bus. However, the simulation speed of the cycle-accurate
MPARM framework running on a 3 GHz processor is barely 125 KHz
(106 sec). Thus, our emulation framework obtains an overall speed-
up of 88× while obtaining similar statistics as MPARM, e.g. total
cycles spent by the processor, memory/scratchpad accesses, block-
read/writes, simple read/writes, etc. (see Table II for a summary).
Similar results were obtained with the soft-core Microblaze instead
of the Power PC, showing that the inclusion of netlist softcores does
not affect the performance of our emulation system, since they are
not in the critical path of the virtual platform clocks.

The second set of experiments has allowed us to evaluate how
the emulated system scales when complex MPSoC architectures are
explored. In this case, we have tested various configurations of
interconnection mechanisms. We have instantiated a system with 4
cores (1 PowerPC and 3 Microblazes) and a complex L1 hierarchy for
each core with 4 KB for D-cache and I-cache, 4 KB scratchpad and 16
KB of private memory. Then, two global main memories are shared
between all processors of 1 MB using the OPB, OCP and our own
bus. This whole system consumes 66% of the available space in the
V2VP30 and runs at a platform frequency of well beyond 100 MHz.
Next, we have explored the use of NoCs via the Xpipes Compiler [13]
to replace the shared bus. The tested NoC configurations were
composed of 2 32-bit switches with 4 inputs/outputs and 3-package
buffers. The use of such a NoC topology with a sniffer in the

144

Fig. 4. Execution speedups of our MPSoC Emulation framework compared
to the execution time of the cycle-accurate MPARM simulator

emulation system required 30%, using in the end 80% of our board
for the whole MPSoC system. As SW driver, we have used a simple
dithering filtering (around 300 lines of C code) using the Floyd
algorithm [14] in two 128x128 grey images, divided in 4 segments
and stored in the shared memories. This application is highly parallel
and imposes almost the same workload in each processor, only
slightly more in the last processor, which is in charge of merging
the obtained results.

This second set of experiments showed that the emulation system
scales significantly better than SW simulation (see Table I). In fact,
the exploration of MPSoC solutions with 4 cores (more than 30
HW components in total) and multiple bus-based interconnections,
took 0.18 seconds (at 100 MHz) in the emulation platform, but
155 seconds in MPARM (at 125 KHz), resulting in a final speed-
up of approximately 860× (see Figure 4 and Table I). Moreover, the
exploration of NoC interconnections imposes more overhead in cycle-
accurate simulators (see Table I) than in our emulation platform due
to the additional signals to manage, which enables even more speed-
ups. In this case, the evaluation of each NoC configuration to try
to find the design that optimally uses the available bandwitdh to the
two main shared memories avoiding the congestion present in the
bus-based solutions, required even less time in the emulated system
(0.17 seconds), while more than three minutes in MPARM (due to the
overhead of cycle-accurate signal management). As a result, our HW-
SW emulation framework achieved an overall speed-up of more than
three orders of magnitude (1140×), illustrating its clear benefits for
the exploration of the design space of complex MPSoC architectures
compared to cycle-accurate simulators.

VII. CONCLUSIONS

MPSoC architectures have been proposed as a possible solution to
tackle the complexity of forthcoming embedded systems. These new
systems are very complex to design since they have to be able to run
various complex applications (e.g. video processing, or videogames),
while meeting several additional design constraints, such as real-time
performance or energy consumption. Hence, new frameworks that
enable designers to validate and explore the behavior of their MPSoC
design solutions executing the aforementioned software applications
in a fast and cycle-accurate way are required. In this paper we
have presented a new FPGA-based emulation framework that enables
the rapid extraction of a large range of statistics at three different
architectural levels of MPSoC designs, i.e. processing cores, memory
subsystem and interconnection mechanisms. The experimental results
have shown that our proposed framework obtains detailed reports with
an speed-up of three orders of magnitude compared to cycle-accurate
MPSoC simulators. Moreover, the addition of more processing cores

TABLE II
EXCERPT OF STATISTICS EXTRACTED WITH THE EMULATION FRAMEWORK

Metric Matrix (1 core)
Processor cycles 1.3×107

Memory reads 0
Memory block-reads 32×103

Memory writes 256×103

Scratchpad reads 4096×103

Scratchpad writes 0
Cache read hits 4064×103

Cache read misses 32×103

and more complex memory architectures in our emulation framework
suitably scales. Thus, almost no loss in emulation speed occurs,
conversely to cycle-accurate simulators.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Federico Angiolini for his help
with XPIPESCOMPILER. This work is partially supported by the
Spanish Government Research Grant TIN2005-05619 and a Mobility
Post-Doc Grant from UCM for David Atienza.

REFERENCES

[1] Aptix System explore, 2003. http://www.aptix.com.
[2] ARM integrator AP, 2004. http://www.arm.com.
[3] L. Benini, et al. Mparm: Exploring the MPSoC design space with

SystemC. Journal of VLSI, September 2005.
[4] N. Genko, et al. A Complete Network-On-Chip Emulation Framework.

In Proc. of DATE, 2005.
[5] G. Braun, et al. Processor/memory co-exploration on multiple abstrac-

tion levels. In Proc. of DATE, 2003.
[6] CoWare. Convergensc and LisaTek product lines, 2004. http://www.

coware.com.
[7] M. Diaz Nava, et al. An open platform for developing MPSoCs. IEEE

Computer, pp. 60–67, July 2005.
[8] Emulation and Verification Engineering. Zebu Xl and ZV models, 2005.

http://www.eve-team.com.
[9] H. Engineering. Heron mpsoc emulation, 2004. http://www.

hunteng.co.uk.
[10] Xilinx Enterprise. Xilinx Virtex-II Pro FPGA and IP components

descriptions, 2004. http://www.xilinx.com/publications/
products/v2pro/xc v2pro43.htm.

[11] Xilinx Enterprise. Xilinx Embedded Development Kit (EDK), 2004.
http://www.xilinx.com/ise/embedded/edk docs.htm.

[12] M. Graphics. Platform express and primecell, 2003. http://www.
mentor.com/.

[13] A. Jalabert, et al. xpipescompiler: A tool for instantiating application
specific NoC. In Proc. DATE, 2004.

[14] R. W. Floyd, L. Steinberg. An adaptive algorithm for spatial gray scale.
In Proc. of ISDT, 1985.

[15] A. Jerraya and W. Wolf. Multiprocessor Systems-on-Chips. Morgan
Kaufmann, Elsevier, 2005.

[16] ARM. PrimeXSys platform architecture and methodologies, white paper.
Technical report, 2004.

[17] P. Mishra, et al. Proc.-mem. co-exploration driven by an architectural
description language. In Proc. ICVLSI, 2001.

[18] P. G. Paulin, et al. Stepnp: A system-level exploration platform for
network procs. IEEE D & T of Computers, 2002.

[19] Synopsys. Realview Maxsim ESL environment, 2003. http://www.
synopsys.com/.

[20] Cadence Palladium II, 2005. http://www.cadence.com.
[21] A. Wieferink, et al. A generic toolset for SoC multiprocessor debugging

and synchronization. In Proc. ASAP, 2003.

145

